

000 001 002 003 004 005 BRIDGING THE PERFORMANCE-GAP BETWEEN TARGET- 006 FREE AND TARGET-BASED REINFORCEMENT LEARNING 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024

ABSTRACT

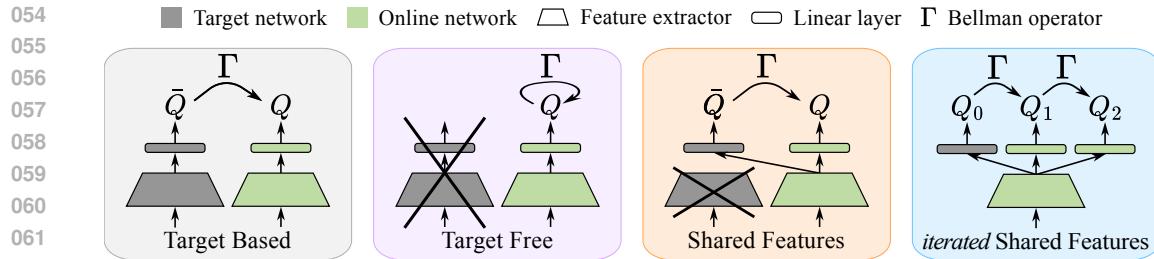
025 The use of target networks in deep reinforcement learning is a widely popular solution
026 to mitigate the brittleness of semi-gradient approaches and stabilize learning.
027 However, target networks notoriously require additional memory and delay the
028 propagation of Bellman updates compared to an ideal target-free approach. In
029 this work, we step out of the binary choice between target-free and target-based
030 algorithms. We introduce a new method that uses a copy of the last linear layer of
031 the online network as a target network, while sharing the remaining parameters
032 with the up-to-date online network. This simple modification enables us to keep
033 the target-free’s low-memory footprint while leveraging the target-based literature.
034 We find that combining our approach with the concept of iterated Q -learning,
035 which consists of learning consecutive Bellman updates in parallel, helps improve
036 the sample-efficiency of target-free approaches. Our proposed method, iterated
037 **Shared Q -Learning (iS-QL)**, bridges the performance gap between target-free and
038 target-based approaches across various problems while using a single Q -network,
039 thus stepping towards resource-efficient reinforcement learning algorithms.
040

1 INTRODUCTION

041 Originally, Q -learning (Watkins & Dayan, 1992) was introduced as a reinforcement learning (RL)
042 method that performs asynchronous dynamic programming using a single look-up table. By storing
043 only one Q -estimate, Q -learning benefits from an up-to-date estimate and a low memory footprint.
044 However, replacing look-up tables with non-linear function approximators and allowing off-policy
045 samples to make the method more **scalable** introduces training instabilities (Sutton & Barto, 2018). To
046 address this, Mnih et al. (2015) introduce Deep Q -Network (DQN), an algorithm that constructs the
047 regression target from an older version of the online network, known as the *target network*, which is
048 periodically updated to match the online network (see “Target Based” in Figure 1). This modification
049 to the temporal-difference objective helps mitigate the negative effects of function approximation
050 and bootstrapping (Zhang et al., 2021), two elements of the deadly triad (van Hasselt et al., 2018).
051 Recently, new methods have demonstrated that increasing the size of the Q -network can enhance
052 the learning speed and final performance of temporal difference methods (Espeholt et al., 2018;
053 Schwarzer et al., 2023; Nauman et al., 2024; Lee et al., 2025). Numerous ablation studies highlight
054 the crucial role of the target network in maintaining performance improvements over smaller networks
055 (Figure 7 in Schwarzer et al. (2023), and Figure 9b in Nauman et al. (2024)). Interestingly, even
056 methods initially introduced without a target network (Bhatt et al. (2024) and Kim et al. (2019))
057 benefit from its reintegration (Figure 5 in Palenicek et al. (2025) and Gan et al. (2021)).

058 While temporal difference methods clearly benefit from target networks, their utilization doubles
059 the memory footprint dedicated to Q -networks. This ultimately limits the size of the online network
060 due to the constrained **memory capacity of the processing units (e.g. the vRAM of a GPU)**. This
061 limitation is not only problematic for learning on edge devices where memory is constrained, but also
062 for applications that inherently require large network sizes, such as handling high-dimensional state
063 spaces (Boukas et al., 2021; Pérez-Dattari et al., 2019), processing multi-modal inputs (Schneider
064 et al., 2025), or constructing mixtures of experts (Obando Ceron et al., 2024; Hendawy et al., 2024).
065 This motivates the development of target-free methods (see “Target Free” in Figure 1).

066 In this work, we introduce an alternative to the binary choice between target-free and target-based
067 approaches. We propose storing only the parameters of the last linear layer, while using the parameters
068 of the online network to substitute the other layers of the target network (see “Shared Features” in



064 Figure 1: We propose a simple alternative to target-based/target-free approaches, where a linear layer
 065 represents the target network, sharing the rest of the parameters with the online network (Shared
 066 Features). We apply the concept of iterated Q -learning (Vincent et al., 2025), which consists of
 067 learning multiple Bellman updates in parallel, to reduce the performance gap between target-free and
 068 target-based approaches (*iterated* Shared Features).

069
 070 Figure 1). Although this simple modification alone helps reduce the performance gap between
 071 target-free and target-based DQN (see “iS-DQN $K = 1$ ” in Figure 4, right), we explain in this work
 072 how it opens up the possibility of leveraging the target-based literature to reduce this gap further,
 073 while maintaining a low memory footprint. Notably, this approach is also orthogonal to regularization
 074 techniques that have been shown to be effective for target-free algorithms (Kim et al., 2019; Bhatt
 075 et al., 2024; Gallici et al., 2025). Therefore, we will build upon these approaches to benefit from their
 076 performance gains.

077
 078 In the following, we leverage the concept of iterated Q -learning (Vincent et al., 2025) to enhance
 079 the learning speed (in terms of the number of environment interactions) of target-free algorithms,
 080 which is a major bottleneck in many real-world applications. The concept of iterated Q -learning,
 081 initially introduced as a target-based approach, aims at learning multiple Bellman iterations in parallel.
 082 This leads to a new algorithm, termed iterated Shared Q -Network (iS-QN), pronounced “ice-QN”
 083 to emphasize that it contains a frozen head. iS-QN utilizes a single network with multiple linear
 084 heads, where each head is trained to represent the Bellman target of the previous one (see “*iterated*
 085 Shared Features” in Figure 1). Our evaluation of iS-QN across various RL settings demonstrates
 086 that it improves the learning speed of target-free methods while maintaining a comparable memory
 087 footprint and training time.

088 2 BACKGROUND

089
 090 **Deep Q -Network (Mnih et al., 2015)** The optimal policy of a Markov Decision Process (MDP)
 091 can be obtained by selecting for each state, the action that maximizes the optimal action-value
 092 function Q^* . This function represents the largest achievable expected sum of discounted rewards
 093 given a state-action pair. In the context of discrete action spaces, Mnih et al. (2015) approximate the
 094 optimal action-value function with a neural network Q_θ , represented by a vector of parameters θ .
 095 This neural network is learned to approximate its Bellman iteration ΓQ_θ , leveraging the contraction
 096 property of the Bellman operator Γ in the value space to guide the optimization process toward the
 097 operator’s fixed point, i.e., the optimal action-value function Q^* . In practice, a sample estimate of
 098 the Bellman iteration is used, where for a sample (s, a, r, s') , $\Gamma Q_\theta(s, a) = r + \gamma \max_{a'} Q_\theta(s', a')$,
 099 where γ is the discount factor. However, this learning procedure is unstable because the neural
 100 network Q_θ learns from its own values, which change at each optimization step due to function
 101 approximation, and because of the compound effect of the overestimation bias. To mitigate these
 102 issues, the authors introduce a target network with parameters $\bar{\theta}$ to stabilize the regression target $\Gamma Q_{\bar{\theta}}$,
 103 and periodically update these parameters to the online parameters θ every T steps. On the negative
 104 side, this doubles the memory footprint dedicated to Q -networks.

105 **Iterated Q -Network (Vincent et al., 2025)** By using a target network, DQN slows down the
 106 training process as multiple gradient steps are dedicated to each Bellman iteration, as $\Gamma Q_{\bar{\theta}}$ is delayed
 107 by some gradient steps compared to ΓQ_θ . To increase the learning speed, Vincent et al. (2025)
 108 propose to learn consecutive Bellman iterations in parallel. This approach uses a sequence of online

parameters $(\theta_i)_{i=1}^K$ and a sequence of target parameters $(\bar{\theta}_i)_{i=0}^{K-1}$. Each online network $Q_{\theta_{i+1}}$ is trained to regress $\Gamma Q_{\bar{\theta}_i}$. Similarly to DQN, each target parameter $\bar{\theta}_i$ is updated to the online parameter θ_{i+1} every T steps. Importantly, the structure of a chain is enforced by setting each $\bar{\theta}_i$ to θ_i every $D \ll T$ steps so that each $Q_{\theta_{i+1}}$, which is learned to regress $\Gamma Q_{\bar{\theta}_i}$, are forced to approximate ΓQ_{θ_i} . This results in $Q_{\theta_K} \approx \Gamma Q_{\theta_{K-1}} \approx \dots \approx \Gamma^K Q_{\theta_0}$, thus learning K consecutive Bellman iterations in parallel. Importantly, DQN can be recovered by setting $K = 1$. While the feature representation can be shared across the online Q -networks, iterated Q -Network (i-QN) has the drawback of requiring an old copy of the online networks to stabilize training, significantly increasing the memory footprint. In the following, we will explain how the concept of i-QN can help reduce the performance gap between target-free and target-based approaches while maintaining a low memory footprint.

3 RELATED WORK

Other works have considered removing the target network in different RL scenarios. Vasan et al. (2024) introduce Action Value Gradient, an algorithm designed to work well in a streaming scenario where no replay buffer, no batch updates, and no target networks are available. Gallici et al. (2025) also develop a method for a streaming scenario, in which they rely on parallel environments to cope with the non-stationarity of the sample distribution. Gradient Temporal Difference learning is another line of work that does not use target networks (Sutton et al., 2009; Maei et al., 2009; Yang et al., 2021; Patterson et al., 2022; Elelimy et al., 2025). Instead, they compute the gradient w.r.t. the regression target as well as the gradient w.r.t. the predictions, which doubles the compute requirement. Additionally, to address the double sampling problem, another network is trained to approximate the temporal difference value, which also increases the memory footprint.

Alternatively, some works construct the regression target from the online network instead of the target network, but still use a target network in some other way. For example, Ohnishi et al. (2019) compute the TD(0) loss from the online network and add a term in the loss to constrain the predictions of the online network for the next state-action pair (s', a') to remain close to the one predicted by the target network. Piché et al. (2021; 2023) develop a similar approach, enforcing similar values for the state-action pair (s, a) . Lindström et al. (2025) show that the target network can be removed after a pretraining phase in which they rely on expert demonstrations.

Many regularization techniques have been developed, attempting to combat the performance drop that occurs when removing the target network. We stress that our approach is orthogonal to these regularization techniques and we show in Section 5 that our method improves the performance of target-free methods equipped with these advancements. Li & Pathak (2021) encode the input of the Q -network with learned Fourier features. While this approach seems promising, the authors acknowledge that the performance degrades for high-dimensional problems. Shao et al. (2022) remove the target-network and search for an action that maximizes the Q -network predictions more than the action proposed by the policy. Searching for a better action requires additional resources and is only relevant for actor-critic algorithms. Kim et al. (2019) leverage the MellowMax operator to get rid of the target network. However, the temperature parameter needs to be tuned (Kim, 2020), which increases the compute budget, and a follow-up work demonstrates that the reintegration of the target network is beneficial (Gan et al., 2021). **We combine the MellowMax operator with the presented approach in Section D.1 and demonstrate that it bridges the performance gap between the target-free and target-based approaches.** Finally, Bhatt et al. (2024) point out the importance of using batch normalization (Ioffe & Szegedy, 2015) to address the distribution shift of the input given to the critic. Our investigation reveals that it degrades the performance in a discrete action setting (see Figure 21, right).

The idea of learning multiple Bellman iterations has been introduced by Schmitt et al. (2022). They demonstrate convergence guarantees in the case of linear function approximation. Then, Vincent et al. (2024) used this approach to learn a recurrent hypernetwork generating a sequence of Q -functions where each Q -function approximates the Bellman iteration of the previous Q -function. Finally, Vincent et al. (2025) introduced iterated Q -Network as a far-sighted version of DQN that learns the K following Bellman iterations in parallel instead of only learning the following one. While promising, those approaches rely on a separate copy of the learnable parameters to stabilise the training process, which increases the memory footprint. In this work, we propose to leverage the potential of iterated Q -learning to boost the learning speed of target-free algorithms.

162 **Algorithm 1** *iterated Shared Deep Q -Network (iS-DQN)*. Modifications to DQN are in **purple**.
163 1: Initialize a network Q_θ with $K + 1$ heads, where each head is defined by the parameters ω_k . We
164 note $\theta_k = (\omega, \omega_k)$, and ω the shared parameters such that $\theta = (\omega, \omega_0, \dots, \omega_K)$. \mathcal{D} is an empty
165 replay buffer.
166 2: **Repeat**
167 3: Set $u \sim \text{Uniform}(\{1, \dots, K\})$.
168 4: Take action $a \sim \epsilon\text{-greedy.}(Q_{\theta_u}(s, \cdot))$; Observe reward r , next state s' .
169 5: Update $\mathcal{D} \leftarrow \mathcal{D} \cup \{(s, a, r, s')\}$.
170 6: **every G steps**
171 7: Sample a mini-batch $\mathcal{B} = \{(s, a, r, s')\}$ from \mathcal{D} .
172 8: Store $[Q_0(s', \cdot), \dots, Q_K(s', \cdot)] \leftarrow Q_\theta(s', \cdot)$ and $[Q_0(s, a), \dots, Q_K(s, a)] \leftarrow Q_\theta(s, a)$.
173 9: Compute the loss $\triangleright [\cdot] \text{ indicates a stop gradient operation.}$
174 10: $\mathcal{L}^{\text{iS-QN}} = \sum_{(s, a, r, s') \in \mathcal{B}} \sum_{k=1}^K ([r + \gamma \max_{a'} Q_{k-1}(s', a')] - Q_k(s, a))^2$.
175 10: Update θ from $\nabla_\theta \mathcal{L}^{\text{iS-QN}}$.
176 11: **every T steps**
177 12: Update $\omega_k \leftarrow \omega_{k+1}$, for $k \in \{0, \dots, K - 1\}$.
178

179
180 **4 METHOD**
181

182 Our goal is to design a new algorithm that improves the learning speed of target-free value-based
183 RL methods without significantly increasing the number of parameters used by the Q -networks. To
184 achieve this, we consider a *single* Q -network parameterized with $K + 1$ heads. We note ω_k the
185 parameters of the k^{th} head, ω the shared parameters, and define $\theta = (\omega, \omega_0, \dots, \omega_K)$ and $\theta_k = (\omega, \omega_k)$.
186 Following Vincent et al. (2025), for a sample $d = (s, a, r, s')$, the training loss is
187

$$\mathcal{L}_d^{\text{iS-QN}}(\theta) = \sum_{k=1}^K \mathcal{L}_d^{\text{QN}}(\theta_k, \theta_{k-1}), \quad (1)$$

191 where $\mathcal{L}_d^{\text{QN}}$ can be chosen from any temporal-difference learning algorithm. For instance, DQN uses
192 $\mathcal{L}_d^{\text{QN}}(\theta_k, \theta_{k-1}) = ([r + \gamma \max_{a'} Q_{\theta_{k-1}}(s', a')] - Q_{\theta_k}(s, a))^2$, where $[\cdot]$ indicates a stop gradient
193 operation. We stress that ω_0 is not learned. However, every T steps, each ω_k is updated to ω_{k+1} ,
194 similarly to the target update step in DQN. This way, iS-QN allows to learn K Bellman iterations
195 in parallel while only requiring a small amount of additional parameters on top of a target-free
196 approach. Indeed, in the general case, the size of each head ω_k is negligible compared to the size of
197 shared parameters ω . Algorithm 1 summarizes the changes brought to the pseudo-code of DQN to
198 implement this approach.

199 In Figure 2, we compare the training paths defined by the Q -functions obtained after each target
200 update of the proposed approach (top) and the target-based approach (bottom). For each given sample,
201 the target-based approach learns only 1 Bellman iteration at a time and proceeds to the following one
202 after T training steps. In contrast, the iterated Shared Features approach learns several consecutive
203 Bellman iterations in parallel for each given sample. The considered window also moves forward
204 every T training steps. As the window shifts, the network represents Q -functions that are closer to
205 the optimal Q -function since every Q -function is learned to represent the Bellman iteration of the
206 previous Q -function. Similarly to the target-based and target-free approaches, the online parameters
207 are updated with the gradient computed through the forward pass of the state-action pair (s, a) , as
208 indicated with blue arrows. In Figure 2, we depict our approach with $K = 2$. However, the number
209 of heads can be increased at minimal cost. We note that the first Q -function is considered fixed in
210 this representation, even if the head is the only frozen element and the previous layers are shared with
211 the other learned Q -estimates. We remark that iS-QN with $K = 1$ implements the “Shared Features”
212 approach presented in Figure 1. Interestingly, the target-free approach can also be depicted in Figure 2.
213 Indeed, not using a target network is equivalent to updating the target network to the online network
214 after each gradient step. Consequently, the target-free approach can be understood as the target-based
215 representation with a window shifting at every step. Therefore, the target-free approach passes
216 through the Bellman iterations faster, creating instabilities as the optimization landscape may direct
217 the training path toward undesirable Q -functions.

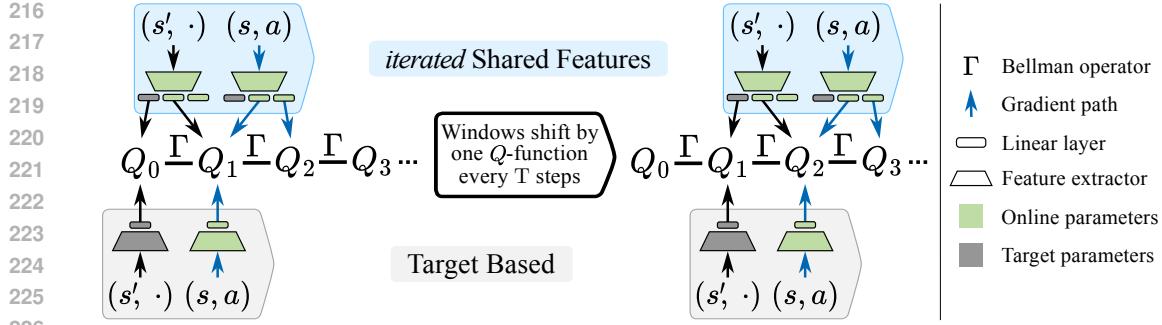


Figure 2: Comparison of the training path defined by the target networks obtained after each target update during training between the target-based approach (bottom) and the *iterated Shared Features* approach (top). While both approaches wait for T training steps before shifting their respective window by one Q -function, our approach already considers the following Bellman iterations using multiple heads, where each head represents the Bellman iteration of the previous head.

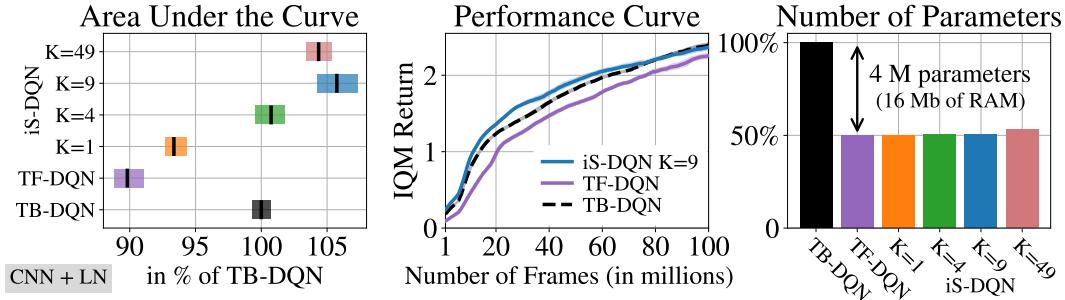


Figure 3: Reducing the performance gap in online RL on 15 **Atari** games with the CNN architecture and LayerNorm (LN). While removing the target network leads to a 10% drop in AUC (left), iS-DQN $K = 9$ (using 10 linear heads), not only closes the gap but improves over the target-based approach by 6%. Importantly, iS-DQN uses a comparable number of parameters to TF-DQN (right).

In the following, we apply *iterated Shared Features* to several target-based approaches on multiple RL settings, demonstrating that it reduces the gap between target-free and target-based methods. For each algorithm A, we note TB-A as its target-based version, TF-A as its target-free version, and iS-A as the *iterated Shared* approach, where “iS” stands for *iterated Shared*. [For example, for the experiments with the DQN algorithm, we note TF-DQN, the target-free version, and iS-DQN, the iterated Shared version.](#) Importantly, we incorporate the insights provided by Gallici et al. (2025) to use LayerNorm (Ba et al., 2016) for the experiments with discrete action spaces, as we found it beneficial, even for the target-based approach. Similarly, we use BatchNorm (Ioffe & Szegedy, 2015), as suggested by Bhatt et al. (2024), to improve sample-efficiency in continuous action settings, except for the target-based approach, as it degrades performances (see Figure 25, right).

5 EXPERIMENTS

We evaluate iS-QN in online, offline, continuous control, and language-based RL scenarios to demonstrate that it can enhance the learning speed of target-free methods. We focus on the learning speed because, in this work, we are interested in the sample efficiency of target-free methods. We use the Area Under the performance Curve (AUC) to measure the learning speed. The AUC has the benefit of depending less on the training length compared to the end performance, as it accounts for the performance during the entire training. It also favors algorithms that constantly improve during training over those that only emerge at the end of training, thus penalizing algorithms that require many samples to perform well. In each experiment, we report the AUC of each algorithm, normalized by the AUC of the target-based approach, to facilitate comparison. By normalizing the AUCs, the resulting metric can also be interpreted as the average performance gap observed during

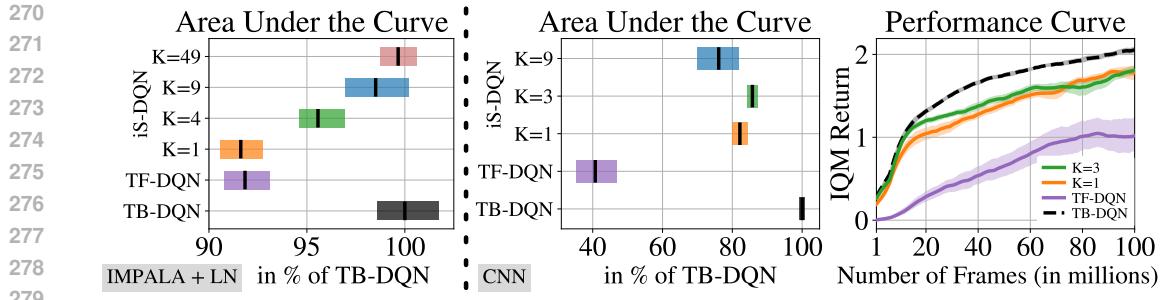


Figure 4: **Left:** Reducing the performance gap in online RL on 10 **Atari** games with the IMPALA architecture and LayerNorm (LN). Similar to the results with the CNN architecture, iS-DQN bridges the gap between the target-free and target-based approaches. **Middle** and **Right:** Reducing the performance gap in online RL on 15 **Atari** games with the CNN architecture. Removing the target network of the vanilla DQN algorithm results in a 60% performance drop (100% – 40%). By using iS-DQN with $K = 3$, the performance drop is divided by 4 (100% – 85% = 15% = 60%/4), thereby confirming the benefit of this approach.

training between the considered approach and the target-based approach. We use the Inter-Quantile Mean (IQM) and 95% stratified bootstrapped confidence intervals to allow for more robust statistics as advocated by Agarwal et al. (2021). The IQMs are computed over 5 seeds per Atari game, 10 seeds per DMC Hard tasks, and 5 seeds for Wordle. 15 Atari games are used for the experiments on the CNN architecture, and 10 games for the experiments on the IMPALA architecture to reduce the computational budget. Importantly, all hyperparameters are kept untouched with respect to the standard values (Castro et al., 2018), only the architecture is modified, as described in Section 4. Extensive details about the selection process of the Atari games, the metrics computation, the hyperparameters, and the individual learning curves are reported in the appendix.

5.1 ONLINE DISCRETE CONTROL

First, we evaluate iS-DQN on 15 Atari games (Bellemare et al., 2013) with the vanilla CNN architecture (Mnih et al., 2015) equipped with LayerNorm. As expected, the target-free approach yields an AUC 10% smaller than the target-based approach, as shown in Figure 3 (left). This performance drop is constant across the training, see Figure 3 (middle). Interestingly, iS-DQN $K = 1$ improves over TF-DQN by simply storing an old copy of the last linear head. As more Bellman iterations are learned in parallel, the performance gap between iS-DQN and TB-DQN shrinks. Remarkably, iS-DQN $K = 9$ even outperforms the target-based approach by 6% in AUC. We note a slight decline in performance for iS-DQN $K = 49$. We conjecture that this is due to the shared feature representation not being rich enough to enable the network to learn 49 Bellman iterations in parallel with linear approximations. Importantly, Figure 3 (right) testifies that this performance boost is achieved with approximately half of the parameters used by the target-based approach, truly reducing the memory footprint required by the Q -functions.

Our evaluation with the IMPALA architecture (Espeholt et al., 2018) with LayerNorm confirms the ability of iS-DQN to reduce the performance gap between target-free and target-based approaches. Indeed, Figure 4 (left) indicates that removing the target network leads to an 8% performance drop while iS-DQN annuls the performance gap as more Bellman iterations are learned in parallel, i.e., as K increases. Interestingly, as opposed to the CNN architecture, increasing the number of heads to learn 49 Bellman iterations in parallel is beneficial in this scenario. We believe this is due to IMPALA architecture’s ability to produce a richer representation than the CNN architecture, thereby allowing more Bellman iterations to be approximated with a linear mapping. The plots of the performance curve and the number of parameters are similar to the ones for the CNN architecture, see Figure 19.

Finally, we confirm the benefit of the iterated Shared Features approach by removing the normalization layers for all algorithms with the CNN architecture in Figure 4 (right). We observe a major drop in performance for TF-DQN, leading to 60% performance gap (100% – 40%). Notably, iS-DQN $K = 1$ reduces this performance gap to 18% (100% – 82%). This highlights the potential of simply storing the last linear layer and using the features of the online network to build a lightweight regression

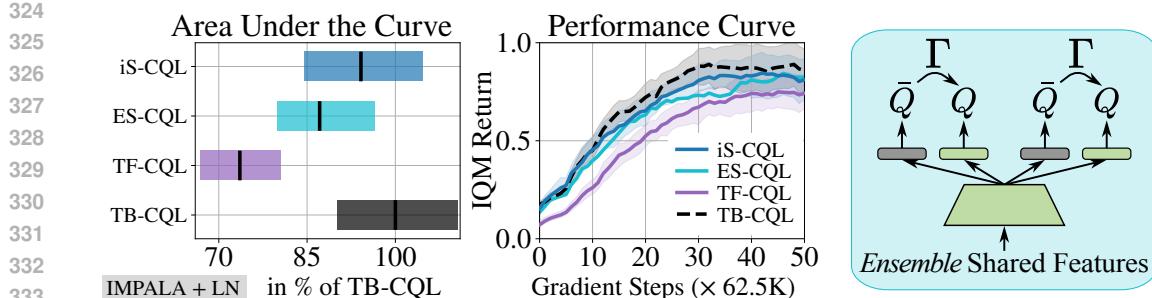


Figure 5: Reducing the performance gap in offline RL on 10 **Atari** games with the IMPALA architecture and LayerNorm (LN). iS-CQL shrinks the performance gap from 26% to 6%. Interestingly, applying the idea of sharing parameters to Ensemble DQN (*Ensemble Shared Features*, ES-CQL) also reduces the performance gap, demonstrating that this idea is not limited to iterated Q -learning and can be applied to other target-based approaches.

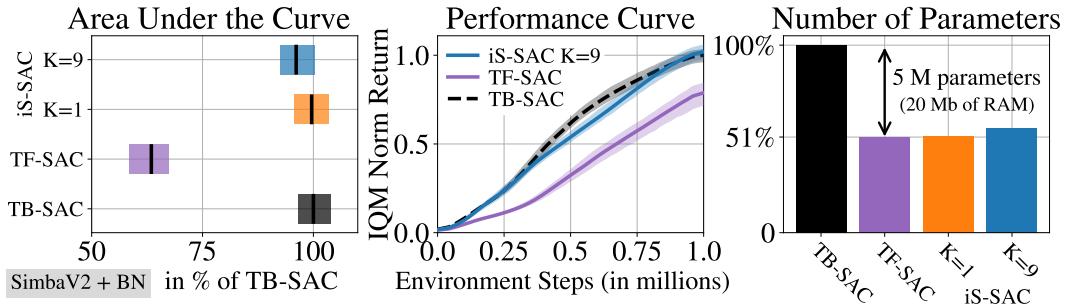


Figure 6: Reducing the performance gap in online RL on the 7 **DMC Hard** tasks with the SimbaV2 architecture and BatchNorm (BN). iS-SAC recovers the performance drop incurred by removing the target network (left). This performance boost is made while reducing the *total* number of parameters by 49% (right).

target. While increasing the number of learned Bellman iterations to 3 brings a small benefit, the performances are slightly decreasing for higher values of K , indicating that LayerNorm is beneficial to provide useful representations when considering a higher number of linear heads.

5.2 OFFLINE DISCRETE CONTROL

We consider an offline RL setting in which the agent has access to 10% of the dataset collected by a vanilla DQN agent trained with a budget of 200 million frames (Agarwal et al., 2020), sampled uniformly. We adapt the loss for learning each Bellman iteration to the one proposed by Kumar et al. (2020b). This leads to an iterated version of Conservative Q -Learning (CQL). In Figure 5, iS-CQL $K = 9$ reduces the performance gap by 20 percentage points, ending up with a performance gap of 6% compared to 26% for TF-CQL. Additionally, we evaluate another way of sharing features to show that this idea is not limited to iterated Q -learning. Instead of building a chain of Q -functions represented by linear heads, we define an ensemble of pairs of linear heads. Each pair contains a frozen head representing a target network \bar{Q} that is used to train the learned head representing the associated online network Q , as depicted in Figure 5 (right). We evaluate this variant that we call Ensemble Shared Features (ES-CQL), with 5 pairs of heads, i.e. 10 heads, to match the number of heads used by iS-CQL $K = 9$, as the number of heads of iS-QN is always equal to $K + 1$. Importantly, ES-CQL also outperforms TF-CQL, reinforcing the idea that sharing parameters and using linear heads is a fruitful direction.

5.3 ONLINE CONTINUOUS CONTROL

We investigate the behavior of iS-QN on the DeepMind Control suite (Tassa et al., 2018), focusing on the hard tasks. We select Soft Actor-Critic (SAC, Haarnoja et al. (2018)) as the base algorithm and

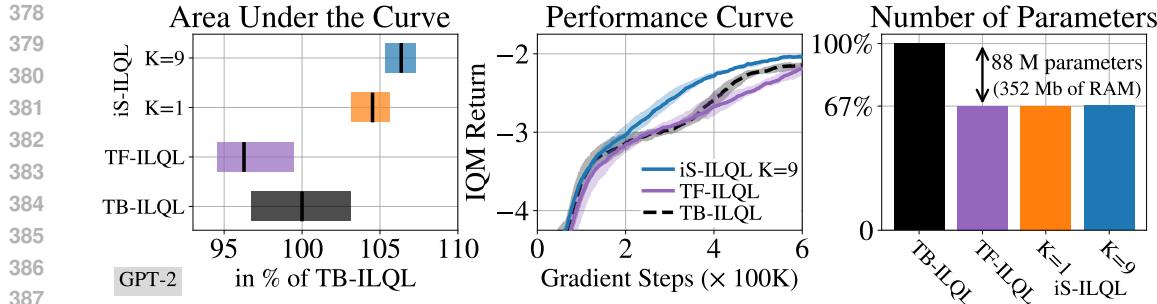


Figure 7: Reducing the performance gap in offline RL on **Wordle** with the GPT-2 small architecture. iS-ILQL $K = 9$, not only closes the gap but improves over the target-based approach by more than 5%. Importantly, iS-ILQL saves 33% of RAM compared to the target-based approach (right).

adapt the architecture to the one proposed by Lee et al. (2025) (SimbaV2) so that the target-based approach corresponds to the state-of-the-art. This experiment allows us to test iS-QN on different learning dynamics, as the target updates are done with an exponentially moving average instead of a hard update, and the loss for the critic uses a categorical distribution to learn the distribution of the return. Interestingly, Figure 6 (left) shows that only using an old copy of the last layer of the critic to construct the regression target (iS-SAC $K = 1$) recovers the performance drop incurred by the target-free approach compared to the target-based approach. Importantly, Lee et al. (2025) design the critic with significantly more parameters than the actor, as commonly done in the actor-critic literature (Mysore et al., 2021; Mastikhina et al., 2025). This means that iS-SAC $K=1$ reduces the *total* number of parameters by 49%, see Figure 6 (right). When considering more heads to learn the following Bellman updates, we find it beneficial to give more importance to the first Bellman updates by scaling the future terms in the loss by a discounting factor of 0.25. *We leave the investigation of finding the best way to weight each term in the loss to future work.* In Section D.4, we provide a first direction leveraging the concept of meta-gradient reinforcement learning (Xu et al., 2018) to tune learnable coefficients assigned to each term in the loss during training. We note that in this setting, iS-SAC $K = 9$ only performs on par with $K = 1$. Nonetheless, iS-SAC $K = 9$ is still performing better than the best target-free approach, having overlapping confidence intervals with the target-based approach, which serves as the *gold standard*, as it requires additional parameters.

5.4 SCALING UP TO LANGUAGE MODELS

In this experiment, we evaluate iS-QN on an offline RL language processing task. Specifically, we focus on Implicit Language Q -Learning (ILQL, Snell et al. (2023)), a method introduced with a target network. It adapts implicit Q -learning (Kostrikov et al., 2023) to the language domain by sampling action tokens from a policy, learned with supervised learning, and weighted by the advantage computed from the Q -function. We evaluate ILQL on the Wordle game (Lokshtanov & Subercaseaux, 2022), a multi-turn game where the agent guesses a hidden word and receives feedback after each attempt. As in Snell et al. (2023), we choose the GPT-2 small architecture, which results in TB-ILQL using 264 million parameters. In Figure 7 (left), we note that while a performance drop is noticeable, the target-free approach does not perform significantly worse than the target-based variant. Importantly, sharing parameters and learning $K = 9$ Bellman iterations in parallel improves the learning speed of the target-free approach by 10% without significantly increasing the memory footprint. This leads iS-QN to save 88 million parameters compared to the original approach.

5.5 STREAMING REINFORCEMENT LEARNING

We consider the streaming setting in which the RL agent only learns from a stream of data. In this setting, the agent does not have access to a replay buffer, batch updates, or parallel environments. These constraints position the RL agent in a drastically different setting from the previously considered ones, as replay buffers and batch updates greatly stabilize the learning process (Vasan et al., 2024). Elsayed et al. (2024) introduced Stream $Q(\lambda)$, an algorithm adapted for the streaming setting. It is an adaptation of the original $Q(\lambda)$ algorithm that uses observation and reward normalization, sparse initialization, layer norm, and an adaptive step-size optimizer. In this experiment, we combine

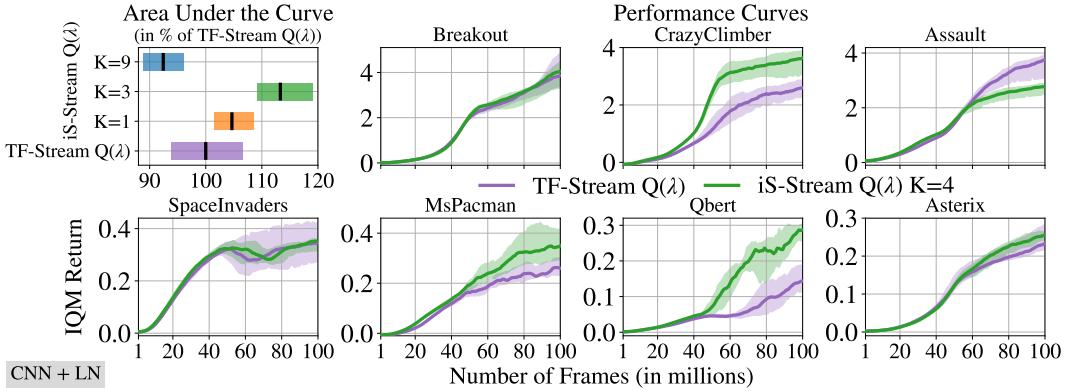


Figure 8: Increasing the learning speed in a streaming scenario on 7 Atari games with the CNN architecture and LayerNorm (LN). iS-Stream $Q(\lambda)$ $K = 3$ improves over the target-free approach by more than 10%, outperforming or performing on par with the baseline on 6 out of the 7 games.

Stream $Q(\lambda)$ with the presented approach to obtain iS-Stream $Q(\lambda)$. We remark that Stream $Q(\lambda)$ was introduced without a target network; therefore, we focus only on this version (TF-Stream $Q(\lambda)$). We fix a target update period of $T = 10$ for iS-Stream $Q(\lambda)$. In Figure 8, we report the performance of the target-free approach and the presented approach for three values of K across 7 Atari games that were selected for their diversity in human-normalized score (see Figure 10). iS-Stream $Q(\lambda)$ $K = 1$ performs similarly to the target-free variant. Remarkably, increasing the number of heads to 4 ($K = 3$) improves the learning speed compared to the target-free approach. In this setting, increasing the number of heads until 9 Bellman iterations are learned in parallel, is not helpful. In this setting, the absence of batch updates increases the variance of the gradient steps, potentially leading to unstable updates for the shared parameters for a large number of heads.

5.6 WHY IS iS-QN IMPROVING OVER TARGET-FREE APPROACHES?

We now provide some insights to understand why iS-QN reduces the performance gap between target-free and target-based approaches. First, we investigate the change in the learning dynamics that happens when the features are shared between the online and the target heads (“Shared Features” or equivalently, “iterated Shared Features” with $K = 1$, see Figure 1). To evaluate the impact on the learning dynamics, we compute, for each gradient step of an iS-DQN $K = 1$ agent, the gradient with respect to the loss of iS-DQN, as well as the gradients that the target-based loss and the target-free loss would produce. These quantities determine how the parameters evolve during training. We then report the cosine similarity between the gradients w.r.t. the iS-QN loss and the TB-DQN loss, and the cosine similarity between the gradients w.r.t. the TF-DQN loss and the TB-DQN loss in Figure 9 (left) for 15 Atari games. Interestingly, the gradients obtained by the target-based approach are closer to the gradients of iS-DQN $K = 1$ than the gradients of the target-free approach, especially at the beginning of the training. This means that by simply using a copy of the last linear layer and sharing features, iS-DQN’s learning dynamics become closer to those of the target-based approach.

At first sight, the fact that iS-QN uses frozen heads on top of features changing at each gradient step might seem like an uncommon practice in machine learning. However, this design choice is already part of the reinforcement learning literature. Indeed, in Deep Q -Network, the Q -network is designed with multiple heads, each one representing the prediction for a specific action. For each sample, only the selected head corresponding to the sampled action is updated, while the other heads, built on top of the features that are getting updated, remain frozen. This is likely to contribute to the policy churn phenomenon identified by Schaul et al. (2022), highlighting that the greedy-policy changes for a significant proportion of the states in the replay buffer after a single batch update. To measure the impact of sharing features, we introduce the notion of *target churn*, which we define as the absolute value of the difference between the regression target before and after each batch update. We report the cumulative target churn of iS-DQN, reinitialized to zero after each target update, normalized by the target churn of TF-DQN in Figure 9 (middle). Conveniently, the target-based approach has a constant target churn of zero since the batch update does not influence the fully separated target network, and the normalization brings the target churn of the target-free approach to a constant value

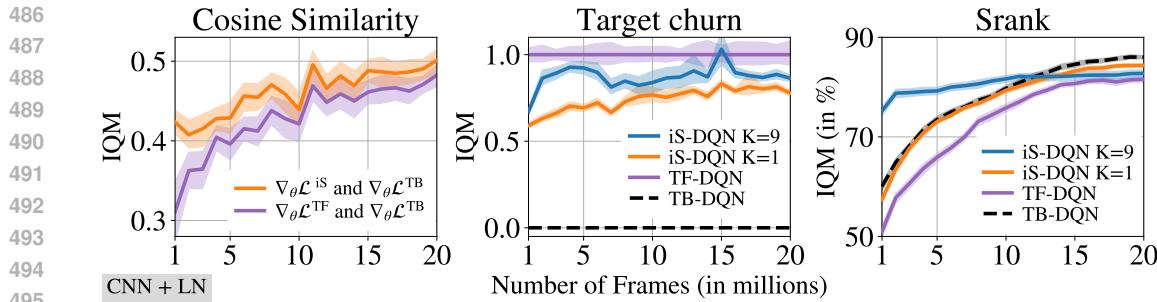


Figure 9: **Left:** The cosine similarity between the gradients w.r.t. the loss of iS-DQN and TB-DQN is larger than the cosine similarity between the gradients w.r.t. the loss of TF-DQN and TB-DQN. Therefore, iS-DQN brings the learning dynamics of the target-free approach closer to those of the target-based approach. **Middle:** The target churn is the difference between the regression targets computed before and after each batch update. The target predictions of iS-DQN are less influenced by batch updates than the ones computed from the target-free approach. **Right:** The effective rank (srank) of the features in the penultimate layer is higher for iS-QN, resulting in a higher expressivity.

of 1. Remarkably, the target churn of iS-DQN $K = 1$ and 9 lies in between 0 and 1, indicating that iS-QN’s targets are more stable than the ones of the target-free approach. We note that the target churn for $K = 9$ is larger than $K = 1$, due to the influence of the additional terms in the loss.

Beyond improving the learning dynamics of TF-DQN, iS-DQN also provides a richer state representation. We measure the representation expressivity by reporting the effective rank (srank) of the features in the penultimate layer (Kumar et al., 2020a) in Figure 9 (right). Interestingly, the srank obtained by iS-DQN $K = 1$ is closer to the srank of TB-DQN than the srank of TF-DQN, which further demonstrates the benefit of using the last linear layer to construct the target. Notably, learning $K = 9$ Bellman iterations in parallel increases the representation capacity of the network by a large margin. This behavior is also visible in the offline setting, where iS-CQL reaches a similar srank as the target-based approach at the end of the training (see Figure 23, middle). This confirms the benefit of iS-QN to foster a richer representational capacity.

6 LIMITATION AND CONCLUSION

The proposed approach introduces the number of Bellman updates K to learn in parallel as a new hyperparameter and there seems to be a different optimal value for each setting. However, we usually observe a stable increase in performance as K grows until the benefit of the approach starts to diminish. Therefore, we recommend increasing K until performance begins to decrease, as is commonly done with the learning rate. In Sections D.2, D.3, and D.4, we provide an extensive analysis of the dependency of iS-QN on its hyperparameters. In this work, we focus on reducing the memory footprint of the function approximators. Depending on the setting, other objects such as the replay buffer and the optimizer can occupy a large portion of the RAM. We remark that the proposed approach can be combined with other works addressing these issues (Vasan et al., 2024). Additionally, the proposed approach reduces the memory footprint during training but uses the same amount during inference, which is complementary to pruning methods that use more memory during training and less during inference (Graesser et al., 2022). As reported in Figure 11, iS-QN does not reduce the training time or the number of floating-point operations, except for the language processing task for which the temporal-difference error can be computed with a single pass through the network.

We introduced a simple yet efficient method for mitigating the performance drop that occurs when removing the target network in deep value-based reinforcement learning, while maintaining a low memory footprint. This is made possible by storing a copy of the last linear layer of the online network and using the features of the online network as input to this frozen linear head to construct the regression target. From there, more heads can be added to learn multiple Bellman iterations in parallel. We demonstrated that this new algorithm, iterated Shared Q -Networks, improves over the target-free approach and yields higher returns when the number of heads increases. We believe that combining iS-QN with mixed precision training methods is a promising direction for future work to facilitate online learning in resource-constrained settings, without sacrificing performance. In Section D.5, we provide a pilot study demonstrating positive results.

540 REPRODUCIBILITY STATEMENT
541542 Special care was taken to ensure this work is reproducible. **The code will be made open source**
543 **upon acceptance** and is shared in the supplementary material. It contains the list of dependencies and
544 their exact version that was used to generate the results. To ease reproducibility, all hyperparameters
545 are listed in Appendix E, and the individual training curves are shown in Appendix F.546
547 LARGE LANGUAGE MODEL USAGE
548549 A large language model was helpful in polishing writing, improving reading flow, and identifying
550 remaining typos.
551552 REFERENCES
553554 Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. An optimistic perspective on offline
555 reinforcement learning. In *International Conference on Machine Learning*, 2020.556 Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville, and Marc Bellemare. Deep
557 reinforcement learning at the edge of the statistical precipice. In *Advances in Neural Information
558 Processing Systems*, 2021.559 Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. *Stat*, 2016.560 Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning envi-
561 ronment: An evaluation platform for general agents. *Journal of Artificial Intelligence Research*,
562 2013.563 Aditya Bhatt, Daniel Palenicek, Boris Belousov, Max Argus, Artemij Amiranashvili, Thomas Brox,
564 and Jan Peters. Crossq: Batch normalization in deep reinforcement learning for greater sample
565 efficiency and simplicity. In *International Conference on Learning Representations*, 2024.566 Ioannis Boukas, Damien Ernst, Thibaut Théate, Adrien Bolland, Alexandre Huynen, Martin Buch-
567 wald, Christelle Wynants, and Bertrand Cornélusse. A deep reinforcement learning framework for
568 continuous intraday market bidding. *Machine Learning*, 2021.569 James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclau-
570 rin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao Zhang.
571 *JAX: composable transformations of Python+NumPy programs*, 2018.572 Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
573 Wojciech Zaremba. Openai gym. *arXiv preprint arXiv:1606.01540*, 2016.574 Pablo Samuel Castro, Subhodeep Moitra, Carles Gelada, Saurabh Kumar, and Marc G Belle-
575 mare. Dopamine: A research framework for deep reinforcement learning. *arXiv preprint
576 arXiv:1812.06110*, 2018.577 Esraa Elelimy, Brett Daley, Andrew Patterson, Marlos C Machado, Adam White, and Martha White.
578 Deep reinforcement learning with gradient eligibility traces. *Reinforcement Learning Journal*,
579 2025.580 Mohamed Elsayed, Gautham Vasan, and A Rupam Mahmood. Streaming deep reinforcement learning
581 finally works. *arXiv preprint arXiv:2410.14606*, 2024.582 Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam Doron,
583 Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl with importance
584 weighted actor-learner architectures. In *International Conference on Machine Learning*, 2018.585 Matteo Gallici, Mattie Fellows, Benjamin Ellis, Bartomeu Pou, Ivan Masmitja, Jakob Nicolaus Foer-
586 ster, and Mario Martin. Simplifying deep temporal difference learning. In *International Conference
587 on Learning Representations*, 2025.

594 Yaozhong Gan, Zhe Zhang, and Xiaoyang Tan. Stabilizing q learning via soft mellowmax operator.
 595 In *Proceedings of the AAAI Conference on Artificial Intelligence*, 2021.
 596

597 Laura Graesser, Utku Evci, Erich Elsen, and Pablo Samuel Castro. The state of sparse training in
 598 deep reinforcement learning. In *International Conference on Machine Learning*, 2022.

599 Caglar Gulcehre, Ziyu Wang, Alexander Novikov, Thomas Paine, Sergio Gómez, Konrad Zolna,
 600 Rishabh Agarwal, Josh S Merel, Daniel J Mankowitz, Cosmin Paduraru, et al. RL unplugged: A
 601 suite of benchmarks for offline reinforcement learning. *Advances in Neural Information Processing
 602 Systems*, 2020.

603 Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
 604 maximum entropy deep reinforcement learning with a stochastic actor. In *International Conference
 605 on Machine Learning*, 2018.

606 Ahmed Hendawy, Jan Peters, and Carlo D'Eramo. Multi-task reinforcement learning with mixture of
 607 orthogonal experts. In *International Conference on Learning Representations*, 2024.

608 Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
 609 reducing internal covariate shift. In *International Conference on Machine Learning*, 2015.

610 Seungchan Kim. Adaptive tuning of temperature in mellowmax using meta-gradients. *Master Thesis,
 611 Brown University*, 2020.

612 Seungchan Kim, Kavosh Asadi, Michael Littman, and George Konidaris. Deepmellow: removing
 613 the need for a target network in deep q-learning. In *International Joint Conference on Artificial
 614 Intelligence*, 2019.

615 Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In *International
 616 Conference on Learning Representations*, 2015.

617 Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
 618 q-learning. In *International Conference on Learning Representations*, 2023.

619 Aviral Kumar, Rishabh Agarwal, Dibya Ghosh, and Sergey Levine. Implicit under-parameterization
 620 inhibits data-efficient deep reinforcement learning. In *International Conference on Learning
 621 Representations*, 2020a.

622 Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
 623 reinforcement learning. In *Advances in Neural Information Processing Systems*, 2020b.

624 Hojoon Lee, Youngdo Lee, Takuma Seno, Donghu Kim, Peter Stone, and Jaegul Choo. Hyperspherical
 625 normalization for scalable deep reinforcement learning. In *International Conference on Machine
 626 Learning*, 2025.

627 Alexander Li and Deepak Pathak. Functional regularization for reinforcement learning via learned
 628 fourier features. In *Advances in Neural Information Processing Systems*, 2021.

629 Alexander Lindström, Arunselvan Ramaswamy, and Karl-Johan Grinnemo. Pre-training deep q-
 630 networks eliminates the need for target networks: An empirical study. In *The 14th International
 631 Conference on Pattern Recognition Applications and Methods (ICPRAM)*, 2025.

632 Daniel Lokshtanov and Bernardo Subercaseaux. Wordle is np-hard. In *International Conference on
 633 Fun with Algorithms*, 2022.

634 Marlos C Machado, Marc G Bellemare, Erik Talvitie, Joel Veness, Matthew Hausknecht, and Michael
 635 Bowling. Revisiting the arcade learning environment: Evaluation protocols and open problems for
 636 general agents. *Journal of Artificial Intelligence Research*, 2018.

637 Hamid Maei, Csaba Szepesvári, Shalabh Bhatnagar, Doina Precup, David Silver, and Richard S
 638 Sutton. Convergent temporal-difference learning with arbitrary smooth function approximation. In
 639 *Advances in Neural Information Processing Systems*, 2009.

640 Olya Mastikhina, Dhruv Sreenivas, and Pablo Samuel Castro. Optimistic critics can empower small
 641 actors. *Reinforcement Learning Journal*, 2025.

648 Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Garcia,
 649 Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, et al. Mixed precision
 650 training. In *International Conference on Learning Representations*, 2018.

651

652 Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
 653 Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
 654 through deep reinforcement learning. *Nature*, 2015.

655

656 Siddharth Mysore, Bassel El Mabsout, Renato Mancuso, and Kate Saenko. Honey. i shrunk the actor:
 657 A case study on preserving performance with smaller actors in actor-critic rl. In *IEEE Conference
 658 on Games*, 2021.

659

660 Michal Nauman, Mateusz Ostaszewski, Krzysztof Jankowski, Piotr Miłoś, and Marek Cygan. Bigger,
 661 regularized, optimistic: scaling for compute and sample-efficient continuous control. In *Advances
 662 in Neural Information Processing Systems*, 2024.

663

664 Johan Samir Obando Ceron, Ghada Sokar, Timon Willi, Clare Lyle, Jesse Farebrother, Jakob Nicolaus
 665 Foerster, Gintare Karolina Dziugaite, Doina Precup, and Pablo Samuel Castro. Mixtures of experts
 666 unlock parameter scaling for deep RL. In *International Conference on Machine Learning*, 2024.

667

668 Shota Ohnishi, Eiji Uchibe, Yotaro Yamaguchi, Kosuke Nakanishi, Yuji Yasui, and Shin Ishii.
 669 Constrained deep q-learning gradually approaching ordinary q-learning. *Frontiers in Neurorobotics*,
 670 2019.

671

672 Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via
 673 bootstrapped dqn. In *Advances in Neural Information Processing Systems*, 2016.

674

675 Georg Ostrovski, Pablo Samuel Castro, and Will Dabney. The difficulty of passive learning in deep
 676 reinforcement learning. In *Advances in Neural Information Processing Systems*, 2021.

677

678 Daniel Palenicek, Florian Vogt, and Jan Peters. Scaling off-policy reinforcement learning with batch
 679 and weight normalization. In *Advances in Neural Information Processing Systems*, 2025.

680

681 Andrew Patterson, Adam White, and Martha White. A generalized projected bellman error for
 682 off-policy value estimation in reinforcement learning. *Journal of Machine Learning Research*,
 683 2022.

684

685 Rodrigo Pérez-Dattari, Carlos Celemín, Javier Ruiz-del Solar, and Jens Kober. Continuous control
 686 for high-dimensional state spaces: An interactive learning approach. In *International Conference
 687 on Robotics and Automation*, 2019.

688

689 Alexandre Piché, Joseph Marino, Gian Maria Marconi, Valentin Thomas, Christopher Pal, and
 690 Mohammad Emtyaz Khan. Beyond target networks: Improving deep *q*-learning with functional
 691 regularization. In *NeurIPS Workshop on Deep Reinforcement Learning*, 2021.

692

693 Alexandre Piché, Valentin Thomas, Joseph Marino, Rafael Pardinas, Gian Maria Marconi, Christopher
 694 Pal, and Mohammad Emtyaz Khan. Bridging the gap between target networks and functional
 695 regularization. *Transactions on Machine Learning Research*, 2023.

696

697 Tom Schaul, André Barreto, John Quan, and Georg Ostrovski. The phenomenon of policy churn. In
 698 *Advances in Neural Information Processing Systems*, 2022.

699

700 Simon Schmitt, John Shawe-Taylor, and Hado Van Hasselt. Chaining value functions for off-policy
 701 learning. In *AAAI Conference on Artificial Intelligence*, 2022.

702

703 Tim Schneider, Cristiana de Farias, Roberto Calandra, Liming Chen, and Jan Peters. Active perception
 704 for tactile sensing: A task-agnostic attention-based approach. In *German Robotics Conference*,
 705 2025.

706

707 Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
 708 Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
 709 chess and shogi by planning with a learned model. *Nature*, 2020.

702 Max Schwarzer, Johan Samir Obando Ceron, Aaron Courville, Marc G Bellemare, Rishabh Agarwal,
 703 and Pablo Samuel Castro. Bigger, better, faster: Human-level atari with human-level efficiency. In
 704 *International Conference on Machine Learning*, 2023.

705 Lin Shao, Yifan You, Mengyuan Yan, Shenli Yuan, Qingyun Sun, and Jeannette Bohg. Grac:
 706 Self-guided and self-regularized actor-critic. In *Conference on Robot Learning*, 2022.

708 Charlie Victor Snell, Ilya Kostrikov, Yi Su, Sherry Yang, and Sergey Levine. Offline rl for natural
 709 language generation with implicit language q learning. In *International Conference on Learning
 710 Representations*, 2023.

711 Richard S. Sutton and Andrew G. Barto. *Reinforcement Learning: An Introduction*. The MIT Press,
 712 2018.

714 Richard S. Sutton, Hamid Reza Maei, Doina Precup, Shalabh Bhatnagar, David Silver, Csaba
 715 Szepesvári, and Eric Wiewiora. Fast gradient-descent methods for temporal-difference learning
 716 with linear function approximation. In *International Conference on Machine Learning*, 2009.

717 Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden,
 718 Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. *arXiv preprint
 719 arXiv:1801.00690*, 2018.

721 Hado van Hasselt, Yotam Doron, Florian Strub, Matteo Hessel, Nicolas Sonnerat, and Joseph Modayil.
 722 Deep reinforcement learning and the deadly triad. *arXiv preprint arXiv:1812.02648*, 2018.

723 Gautham Vasan, Mohamed Elsayed, Alireza Azimi, Jiamin He, Fahim Shariar, Colin Bellinger,
 724 Martha White, and A. Rupam Mahmood. Deep policy gradient methods without batch updates,
 725 target networks, or replay buffers. In *Advances in Neural Information Processing Systems*, 2024.

727 Théo Vincent, Alberto Maria Metelli, Boris Belousov, Jan Peters, Marcello Restelli, and Carlo
 728 D'Eramo. Parameterized projected bellman operator. In *AAAI Conference on Artificial Intelligence*,
 729 2024.

730 Théo Vincent, Daniel Palenicek, Boris Belousov, Jan Peters, and Carlo D'Eramo. Iterated q -network:
 731 Beyond one-step bellman updates in deep reinforcement learning. *Transactions on Machine
 732 Learning Research*, 2025.

734 Christopher JCH Watkins and Peter Dayan. Q-learning. *Machine Learning*, 1992.

735 Zhongwen Xu, Hado P van Hasselt, and David Silver. Meta-gradient reinforcement learning.
 736 *Advances in neural information processing systems*, 2018.

738 Guang Yang, Yang Li, Di'an Fei, Tian Huang, Qingyun Li, and Xingguo Chen. Dhqn: a stable
 739 approach to remove target network from deep q-learning network. In *International Conference on
 740 Tools with Artificial Intelligence*, 2021.

741 Shangtong Zhang, Hengshuai Yao, and Shimon Whiteson. Breaking the deadly triad with a target
 742 network. In *International Conference on Machine Learning*, 2021.

743

744

745

746

747

748

749

750

751

752

753

754

755

756 TABLE OF CONTENTS
757

758	A Experiment Setup	15
759	B Training Time and Floating-point Operations	16
760	C Algorithmic Details	17
762	D Additional Experiments	18
763	D.1 Comparison with MellowMax DQN	18
764	D.2 Ablation Study on the Target Update Period	18
765	D.3 Ablation Study on the Number of Bellman Updates	19
766	D.4 Automatic tuning of the Importance of Each Bellman Update	19
767	D.5 Pilot Study: Mixed Precision Training of iSQN	21
768		
769	E List of Hyperparameters	22
770	F Individual Learning Curves	24
771	F.1 Deep Q -Network with CNN and LayerNorm	24
772	F.2 Deep Q -Network with IMPALA and LayerNorm	25
773	F.3 Deep Q -Network with CNN	26
774	F.4 Conservative Q -Learning with IMPALA and LayerNorm	27
775	F.5 Soft Actor-Critic with SimbaV2 and BatchNorm	28
776		

778 **A EXPERIMENT SETUP**
779

780 **Atari setup** We build our codebase following Machado et al. (2018) standards and 781 taking inspiration from Castro et al. (2018) 782 codebase. Namely, we use the *game over* 783 signal to terminate an episode instead of 784 the life signal. The input given to the 785 neural network is a concatenation of 4 frames 786 in grayscale of dimension 84 by 84. To get 787 a new frame, we sample 4 frames from 788 the Gym environment (Brockman et al., 789 2016) configured with no frame-skip, and 790 apply a max pooling operation on the 2 last 791 grayscale frames. We use sticky actions 792 to make the environment stochastic (with 793 $p = 0.25$).

794 **Atari games selection** Our evaluations 795 on the CNN architecture were performed 796 on the 15 games recommended by Graesser 797 et al. (2022). They were chosen for their 798 diversity of Human-normalized score that 799 DQN reaches after being trained on 200 800 million frames, as shown in Figure 10. As the 801 IMPALA architecture increases the training 802 length, we removed 5 games, while 803 maintaining diversity in the final scores to 804 reduce the computational budget of the 805 experiments with the IMPALA architecture. 806 For the offline experiment, we used the 807 datasets provided by Gulcehre et al. (2020). 808 As the game *Tutankham* is not available in 809 the released dataset, we replaced it with *Qbert*, 810 indicated with an asterisk in Figure 10.

811 **DeepMind Control suite setup** Our 812 codebase follows the implementation details of 813 Lee et al. (2025). Before running the 814 experiment presented in Section 5.3, we took 815 special care that our codebase reproduces 816 the evaluation performance shared by the 817 authors. As a takeaway from this 818 exercise, we note that the precision with 819 which the state and reward are normalized 820 matters, as using float32 leads to lower 821 performance than using float64. We invite 822 interested readers to examine our 823 code for more details. We emphasize that 824 the performances reported in this work 825 correspond to those

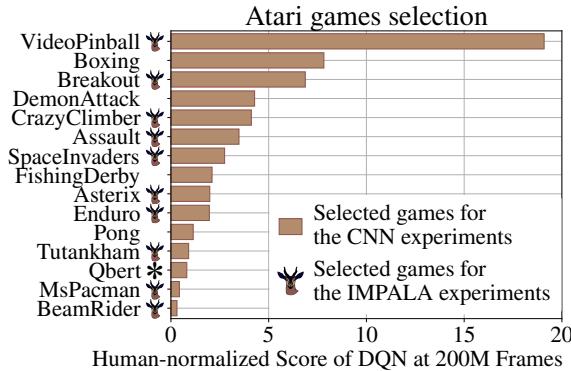


Figure 10: The Atari games selected for the experiments of this paper were chosen to cover a variety of normalized returns obtained by DQN after 200M frames. To lower the computational budget of the experiments with the IMPALA architecture, we reduced the set of games to 10 by removing 5 games, while maintaining diversity.

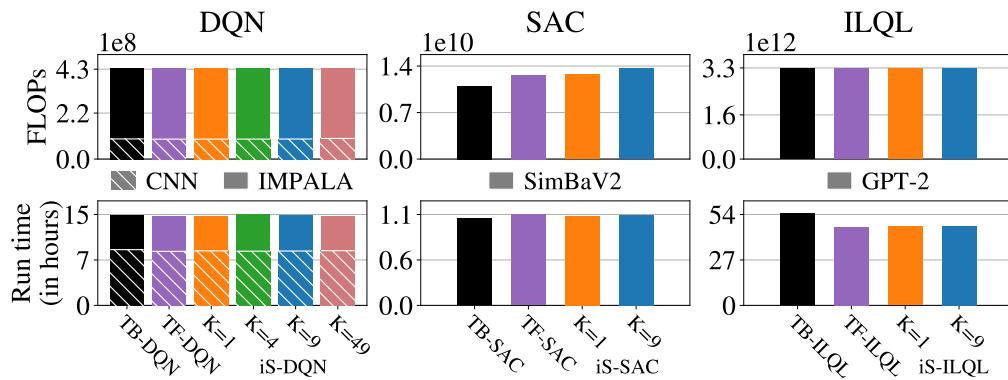
810 collected during training, not the ones obtained during a separate evaluation phase, as they are closer
 811 to the initial motivation behind online learning (Machado et al., 2018).

812 **Wordle setup** Our codebase is a fork of the repository shared by the authors (Snell et al., 2023),
 813 from which we implemented the target-free and the iterated Shared Features approaches. We refer
 814 to the original paper for extensive details about the setup. **Every algorithm was given a budget of**
 815 **600 000 gradient steps. This value was chosen by running TB-ILQL until the performance reported**
 816 **in Table 6 of Snell et al. (2023) was reached.**

817 **Streaming RL setup** We follow the implementation choices made by Elsayed et al. (2024). We
 818 detail here the differences with the classical Atari setup described earlier. Namely, the source of
 819 stochasticity is replaced from sticky actions to a random number of *NO OP* actions chosen uniformly
 820 between 0 and 30. The *life loss* signal is used for episode termination instead of the *game over* signal.
 821 The last hidden linear layer is composed of 256 neurons instead of 512. The neural network weights
 822 are initialized with a sparsity level of 90%. The optimizer’s hyperparameters are $\kappa = 2$ and the
 823 default learning rate is 1. The trace coefficient is set to $\lambda = 0.8$.

824 **Computing the Area Under the Curve** For each experiment, we report the normalized IQM
 825 AUC. For that, we first compute the undiscounted return obtained for each epoch, averaged over the
 826 episodes, as advocated by Machado et al. (2018). Then, we sum the human-normalized returns over
 827 the epochs and compute the IQM and 95% stratified bootstrap confidence intervals over the seeds and
 828 games. Finally, we divide the obtained values by the IQM of the target-based approach to facilitate
 829 the comparison. The human-normalized scores are computed from human and random scores that
 830 were reported in Schrittwieser et al. (2020). As discussed in Section 5, the normalized AUCs can also
 831 be interpreted as the average performance gap between the considered algorithm and the target-based
 832 approach. Indeed, dividing the two sums of performances across the training is equivalent to dividing
 833 the two averages of performances across the training because the normalizing factors cancel out.

835 B TRAINING TIME AND FLOATING-POINT OPERATIONS



849 Figure 11: While TF-DQN and is-DQN require fewer parameters, their training time is similar to
 850 TB-DQN since each algorithm uses a similar amount of computation, as indicated by the number of
 851 floating-point operations (FLOPs) per gradient steps. **Left:** All algorithms on the Atari benchmark
 852 require a similar amount of FLOPs and training time. **Middle:** As reported in Figure 25, the
 853 target-based approach does not benefit from BatchNorm for the DMC benchmark. This is why
 854 TB-SAC does not use BatchNorm and therefore has a lower amount of FLOPs compared to the other
 855 approaches. Importantly, the difference in training time between the algorithms is less visible across
 856 the algorithms. **Right:** Thanks to the way the embeddings are computed, the target-free approach and
 857 is-ILQL can compute the TD error from a single pass through the neural network, which lowers the
 858 training time.

859 The presented approach is designed to reduce the memory footprint of target-based methods, while
 860 performing better than the target-free approach. In Figure 11 (bottom), we report the training
 861 time in hours required by all algorithms. On the top row, we report the number of floating-point
 862 operations (FLOPs) required by all algorithms to perform one gradient step. Computations were made
 863 on an NVIDIA GeForce RTX 4090 Ti with the game Asterix for the DQN experiments, and with the
 task Dog-walk for the SAC experiments. As expected, all algorithms require the same training time

864 and FLOPs because the same amount of computation is needed. Indeed, a forward pass through the
 865 network for estimating the value of the next state is necessary to compute the temporal-difference
 866 error. We note two exceptions. First, for experiments with SAC, the amount of FLOPs is reduced for
 867 the target-based approach, as it does not use BatchNorm. However, the difference in training time
 868 remains small. Second, for the experiments with ILQL, the training time for the target-free approach
 869 and iS-ILQL is smaller than that of the target-based approach since only one forward pass is required
 870 for computing the temporal difference instead of two forward passes. This results in the target-free
 871 approach and iS-ILQL having a small training time. While this reduction is not visible in the amount
 872 of FLOPs per gradient steps, we verified that the amount of FLOPs per loss computation (forward
 873 pass only) is indeed lower: TB-ILQL: 3.3×10^{10} FLOPs, TF-ILQL: 2.0×10^{10} FLOPs, iS-ILQL
 874 $K = 1$: 2.1×10^{10} FLOPs, and iS-ILQL $K = 9$: 2.5×10^{10} FLOPs.

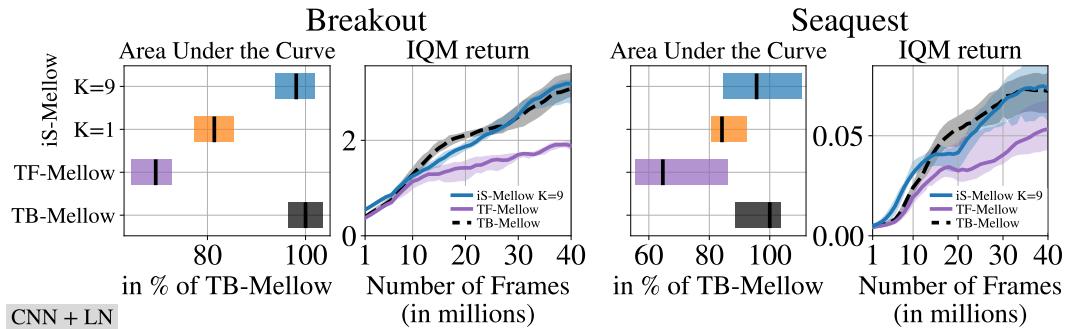
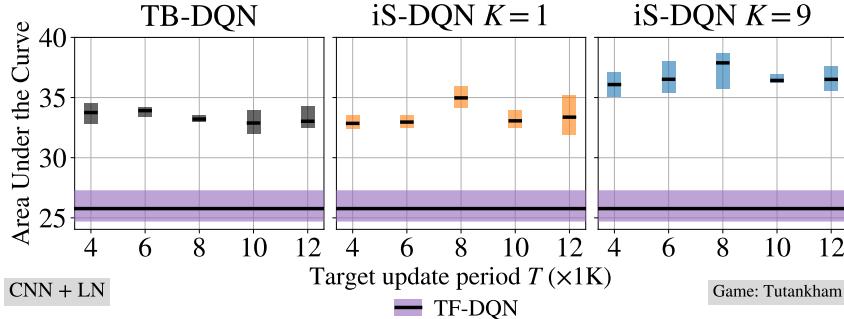
875 We point out that when computing the algorithm’s runtime, the environment steps are simulated,
 876 which does not reflect the real-world duration. For example, an episode of an Atari game can be
 877 executed significantly faster in simulation than in real life. This means that if real-world durations
 878 were taken into account, sample-efficient algorithms would achieve better performance earlier than
 879 less sample-efficient methods.

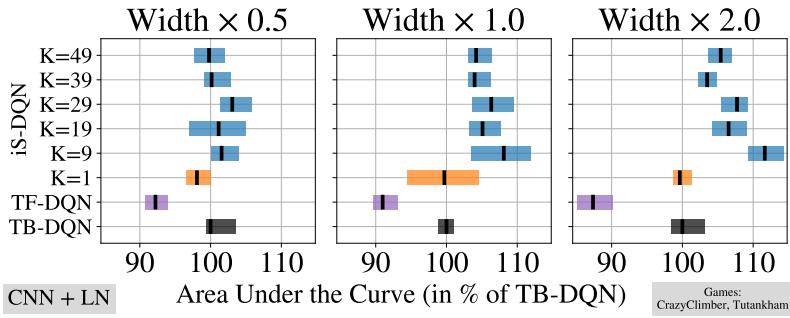
880 C ALGORITHMIC DETAILS

883 **Aggregating individual losses** In Equation 1, we define the loss of iS-QN as the sum of losses
 884 over each Bellman iteration. Other ways of aggregating the losses are possible. Nonetheless, we
 885 decided to stick to the version proposed by Vincent et al. (2025) and leave this investigation for
 886 future work. We provide a first alternative in Section 5.3 that provides a performance boost by
 887 discounting the following terms by a factor of 0.25. While it is true that taking the sum of temporal
 888 differences increases the magnitude of the loss, it has a different impact on the updates than simply
 889 multiplying the learning rate by the number of terms in the loss. Indeed, the Adam optimizer (Kingma
 890 & Ba, 2015) first normalizes the gradient with a running statistic before applying the learning rate.
 891 Therefore, changing the aggregation mechanism has a greater impact on the direction of the update
 892 than on its magnitude. This is why we do not compare iS-QN against baselines instantiated with
 893 different learning rates.

894 **Sampling actions** Following Vincent et al. (2025), at each environment interaction, an action
 895 is sampled from a single head chosen uniformly as shown in Line 3 in Algorithm 1. The authors
 896 motivate this choice by arguing that it allows each Q -function to interact with the environment,
 897 thereby avoiding passive learning, identified by Ostrovski et al. (2021). This choice is further justified
 898 by an ablation study (see Figure 19 in Vincent et al. (2025)) demonstrating a stronger performance
 899 against another sampling strategy consisting of sampling one head for each episode, as proposed in
 900 Osband et al. (2016).

901 In the experiment on continuous control (Section 5.3), the policy network is used to sample actions.
 902 To align with the choice of computing the discounted sum of temporal differences, the critic estimate
 903 in the policy loss is calculated as the average discounted prediction over the sequence of Q -predictions
 904 given by the heads. The experiment on the language task (Section 6) also uses a policy network to
 905 sample actions, but weighs each prediction with the predicted advantage from the critic. To align with
 906 the choice made for the experiment on continuous control, the average over the weights corresponding
 907 to each head is computed to obtain a single scalar value to weight each action probability.

918 **D ADDITIONAL EXPERIMENTS**
919920 In this section, we train each agent for 40M frames rather than 100M to reduce the computational
921 budget.
922923 **D.1 COMPARISON WITH MELLOWMAX DQN**
924936 Figure 12: When using the MellowMax operator, the presented approach (iS-Mellow) effectively
937 reduces the performance gap between the target-free approach (TF-Mellow) and the target-based
938 approach (TB-Mellow).
939940 We combine the MellowMax operator (Kim et al., 2019) with the presented idea. We select the games
941 that were presented in the original paper (Kim et al., 2019), and use the same temperature coefficients
942 ($\omega = 1000$ for *Breakout*, and $\omega = 30$ for *Seaquest*). Remarkably, in Figure 12, the performance gap
943 between the target-free and target-based approaches is reduced by the presented approach.
944945 **D.2 ABLATION STUDY ON THE TARGET UPDATE PERIOD**
946958 Figure 13: Ablation study on the target update period T for the game *Tutankham*. iS-DQN’s
959 performance remains stable when varying the target update period. This shows that it is not sensitive
960 to the target update period for this game.
961962 We perform an ablation study on the frequency at which the heads of the iS-DQN agent are updated.
963 This hyperparameter plays a role similar to the target update period T in DQN, allowing both
964 algorithms to propagate rewards, as explained in Section 4. In Figure 13, we report the performance
965 of the target-based approach and the presented approach for 5 different values of T on the game
966 *Tutankham*. As a reminder, $T = 8000$ is the default value used in Section 5. We also report the
967 performance of the target-free variant as a horizontal line since this algorithm does not use this
968 hyperparameter. Interestingly, the performance of iS-DQN remains similar across different values of
969 T , demonstrating its robustness to this hyperparameter in this game. Remarkably, iS-DQN $K = 9$
970 outperforms both the target-free and target-based variants across all target update periods.
971

972 D.3 ABLATION STUDY ON THE NUMBER OF BELLMAN UPDATES
973984
985 Figure 14: Ablation study on the number of Bellman updates learned in parallel K and the size of
986 the shared features. iS-DQN achieves similar performance for large values of K and consistently
987 outperforms the target-free approach.988 We analyze the sensitivity of iS-DQN with respect to the number of Bellman updates K learned in
989 parallel. As discussed in Section 5.1, the richness of the shared features can affect the behavior of the
990 method. To account for this aspect, we vary the size of the last linear layer from half the default value
991 (256 neurons, "Width $\times 0.5$ ") to twice the default (1024 neurons, "Width $\times 2.0$ "). To perform this
992 study, we choose the games *CrazyClimber* and *Tutankham* as the performance of iS-DQN on those
993 games for the default setting (512 neurons, "Width $\times 1.0$ ") reflects the overall performance presented
994 in Figure 3 on the 15 games. In Figure 14, we report the performance of iS-DQN for the three
995 different settings with the number of heads varying from 2 ($K = 1$) to 50 ($K = 49$). As expected,
996 the performance of iS-DQN is similar for large values of K ($K \geq 9$). Importantly, every value of
997 K results in improved performance compared to the target-free variant, even if a slight decrease in
998 performance occurs at the largest values of K . This is expected, as the potential of learning multiple
999 Bellman updates in parallel can be better realized with the higher representational capacity.1000 D.4 AUTOMATIC TUNING OF THE IMPORTANCE OF EACH BELLMAN UPDATE
10011002 In this section, we explore a way of tuning the importance of each Bellman update during training. For
1003 that, we propose weighting each term in the loss with a different coefficient. We note the coefficient
1004 $(\alpha_k)_{k=1}^K$. Intuitively, more weight should be given to a Bellman update that produces a gradient
1005 aligned with the gradients of the other Bellman updates. We will show that meta-learning those
1006 coefficients using the concept of meta-gradient reinforcement learning (Xu et al., 2018) provides a
1007 natural way to achieve this goal. Indeed, the update rule coming from the meta-gradient algorithm of
1008 a coefficient α_k linked to the k^{th} Bellman update, depends on the dot product between the gradient of
1009 the loss of the k^{th} Bellman update and the gradient of the sum of all Bellman updates:

1010
1011
$$\alpha_k \leftarrow \alpha_k + \lambda_\alpha \lambda_\theta \underbrace{\nabla_{\omega(\alpha)_k} \mathcal{L}_d^{\text{QN}}(\theta(\alpha)_k, \theta(\alpha)_{k-1})^T \nabla_{\omega_k} \mathcal{L}_d^{\text{QN}}(\theta_k, \theta_{k-1})}_{\text{How well aligned will the gradient of the loss of the } k^{\text{th}} \text{ head be with its current value?}}$$

1012
$$+ \lambda_\alpha \lambda_\theta \underbrace{\nabla_{\omega(\alpha)} \left[\sum_{i=1}^K \mathcal{L}_d^{\text{QN}}(\theta(\alpha)_i, \theta(\alpha)_{i-1}) \right]^T \nabla_{\omega} \mathcal{L}_d^{\text{QN}}(\theta_k, \theta_{k-1})}_{\text{How well aligned will the gradient of the overall loss w.r.t. the shared parameters be with the value of the gradient of the } k^{\text{th}} \text{ head?}}, \quad (2)$$

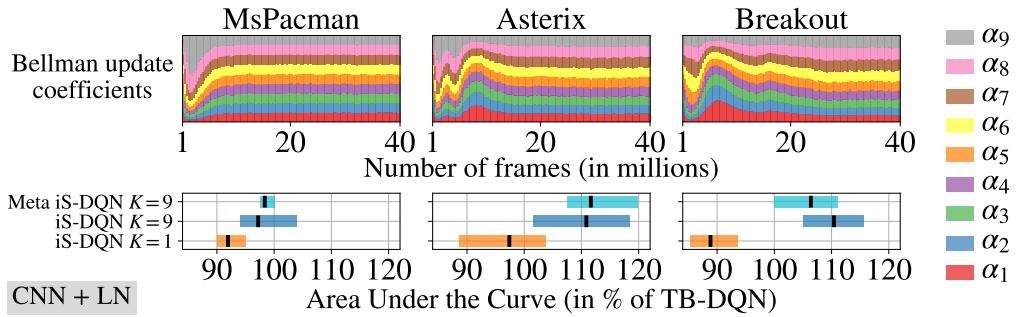
1013
1014
1015
1016
1017
1018

1019 where $d = (s, a, r, s')$ is a sample, α is the vector of coefficients $(\alpha_k)_{k=1}^K$, $\theta(\alpha)$ is the parameters
1020 after one gradient step starting from θ , ω is the shared parameters, ω_k is the parameters of the k^{th}
1021 head such that $\theta_k = (\omega, \omega_k)$, λ_θ is the learning rate of the parameters, and λ_α is the meta learning
1022 rate.1023 In the following, we define the meta-optimization problem, analyse the empirical results, and
1024 finally derive Equation 2. To define the meta-optimization problem, we first stress the de-
1025 pendence of the learned parameters on the meta-parameters by noting them as a function of
1026 α : $\theta^*(\alpha)$. Therefore, the inner loop of the meta-gradient optimization problem is defined as

1026 $\theta^*(\alpha) = \min_{\theta} \sum_{k=1}^K \alpha_k \mathcal{L}_d^{\text{QN}}(\theta_k, \theta_{k-1})$. This leads to the following optimization problem:
 1027

$$1028 \quad \min_{\alpha} \sum_{k=1}^K \mathcal{L}_d^{\text{QN}}(\theta^*(\alpha)_k, \theta^*(\alpha)_{k-1}) \quad \text{s.t. } \theta^*(\alpha) = \min_{\theta} \sum_{k=1}^K \alpha_k \mathcal{L}_d^{\text{QN}}(\theta_k, \theta_{k-1})$$

1031



1032
 1033 **Top:** Evolution of the meta-learned coefficients for each Bellman update during training
 1034 for 3 Atari games. Remarkably, the coefficients converge to similar values, indicating that setting
 1035 equal weights for each Bellman update is a good static choice for this setting. **Bottom:** Meta iS-DQN
 1036 $K = 9$ performs on par with iS-DQN $K = 9$, which is coherent with the values of the learned
 1037 coefficients.

1038 We evaluate this approach for $K = 9$ on 3 Atari games, selected for their diversity in human-
 1039 normalized scores (see Figure 10). We parameterize the meta-parameters $(\alpha_k)_{k=1}^K$ as logits $(z_k)_{k=1}^K$
 1040 and apply the softmax function such that the loss is a convex combination of the individual terms. In
 1041 Figure 15 (top), we report the learned meta-parameters, which we use as a proxy for the importance
 1042 of each Bellman update during training. Remarkably, after 10M frames, the coefficients converge to
 1043 identical values, giving equal importance to each Bellman update. This indicates that setting equal
 1044 weights for each Bellman update is a good static choice for this setting, as proposed in Equation 1.
 1045 This explains why in Figure 15 (bottom), Meta iS-DQN $K = 9$ performs on par with iS-DQN $K = 9$,
 1046 as iS-DQN $K = 9$ uses equal static weights during training. Importantly, Meta iS-DQN $K = 9$
 1047 performs better than iS-DQN $K = 1$.

1048 To derive Equation 2, we assume that the meta-parameters only influence one update step, as in Xu
 1049 et al. (2018). We also simplify the computations by choosing SGD as the optimizer instead of Adam,
 1050 noting $\theta(\alpha)$ the parameters after one gradient step, starting from θ . The meta-parameter update, for a
 1051 sample $d = (s, a, r, s')$ is

$$1052 \quad \alpha_k \leftarrow \alpha_k - \lambda_{\alpha} \nabla_{\alpha_k} \sum_{i=1}^K \mathcal{L}_d^{\text{QN}}(\theta(\alpha)_i, \theta(\alpha)_{i-1}) = \alpha_k - \lambda_{\alpha} \sum_{i=1}^K \nabla_{\alpha_k} \mathcal{L}_d^{\text{QN}}(\theta(\alpha)_i, \theta(\alpha)_{i-1}), \quad (3)$$

$$1053 \quad \text{where } \nabla_{\alpha_k} \mathcal{L}_d^{\text{QN}}(\theta(\alpha)_i, \theta(\alpha)_{i-1}) = \nabla_{\theta(\alpha)_i} \mathcal{L}_d^{\text{QN}}(\theta(\alpha)_i, \theta(\alpha)_{i-1})^T \nabla_{\alpha_k} \theta(\alpha)_i \\ 1054 \quad + \nabla_{\theta(\alpha)_{i-1}} \mathcal{L}_d^{\text{QN}}(\theta(\alpha)_i, \theta(\alpha)_{i-1})^T \nabla_{\alpha_k} \theta(\alpha)_{i-1} \quad (4)$$

1055 Equation 4 comes from the chain rule. We remark that for any k , $\nabla_{\theta_{k-1}} \mathcal{L}_d^{\text{QN}}(\theta_k, \theta_{k-1}) = 0$, since
 1056 the target network is frozen. We split the parameters of the heads from the shared parameters as in
 1057 Section 4: $\theta(\alpha)_i = (\omega(\alpha), \omega(\alpha)_i)$, where ω represents the shared parameters and ω_i the parameters
 1058 of the i^{th} head. We now focus on the gradient of the i^{th} head parameters with respect to α_k :

$$1059 \quad \nabla_{\alpha_k} \omega(\alpha)_i \stackrel{(a)}{=} \nabla_{\alpha_k} \left(\omega_i - \lambda_{\theta} \nabla_{\omega_i} \sum_{j=1}^K \alpha_j \mathcal{L}_d^{\text{QN}}(\theta_j, \theta_{j-1}) \right) \stackrel{(b)}{=} -\lambda_{\theta} \nabla_{\alpha_k} \left(\sum_{j=1}^K \alpha_j \nabla_{\omega_i} \mathcal{L}_d^{\text{QN}}(\theta_j, \theta_{j-1}) \right) \\ 1060 \quad \stackrel{(c)}{=} -\lambda_{\theta} \nabla_{\alpha_k} \left(\alpha_i \nabla_{\omega_i} \mathcal{L}_d^{\text{QN}}(\theta_i, \theta_{i-1}) \right) \stackrel{(d)}{=} -\lambda_{\theta} \mathbb{1}_{k=i} \nabla_{\omega_i} \mathcal{L}_d^{\text{QN}}(\theta_i, \theta_{i-1}). \quad (5)$$

1061 (a) comes from the definition of $\omega(\alpha)_i$, (b) uses the fact that ω_i and λ_{θ} do not depend on α_k , (c) uses
 1062 the fact that the parameters of the i^{th} head do not influence the parameters of the other heads, and (d)
 1063 uses the fact that $\nabla_{\alpha_k} \alpha_i = \mathbb{1}_{k=i}$. Similarly, we derive the gradient of the shared parameters $\omega(\alpha)$

1080 with respect to α_k :

$$\begin{aligned}
 \nabla_{\alpha_k} \omega(\alpha) &\stackrel{(e)}{=} \nabla_{\alpha_k} \left(\omega - \lambda_\theta \nabla_\omega \sum_{j=1}^K \alpha_j \mathcal{L}_d^{\text{QN}}(\theta_j, \theta_{j-1}) \right) \stackrel{(f)}{=} -\lambda_\theta \nabla_{\alpha_k} \left(\sum_{j=1}^K \alpha_j \nabla_\omega \mathcal{L}_d^{\text{QN}}(\theta_j, \theta_{j-1}) \right) \\
 &\stackrel{(g)}{=} -\lambda_\theta \left(\sum_{j=1}^K \nabla_{\alpha_k} \alpha_j \nabla_\omega \mathcal{L}_d^{\text{QN}}(\theta_j, \theta_{j-1}) \right) \stackrel{(h)}{=} -\lambda_\theta \left(\sum_{j=1}^K \mathbb{1}_{k=j} \nabla_\omega \mathcal{L}_d^{\text{QN}}(\theta_j, \theta_{j-1}) \right) \\
 &\stackrel{(i)}{=} -\lambda_\theta \nabla_\omega \mathcal{L}_d^{\text{QN}}(\theta_k, \theta_{k-1}). \tag{6}
 \end{aligned}$$

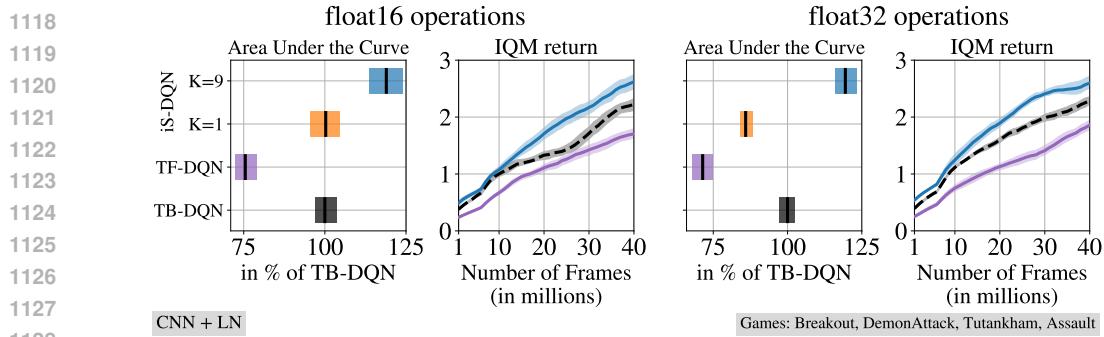
1090 (e) comes from the definition of $\omega(\alpha)$, (f) uses the fact that ω and λ_θ do not depend on α_k ,
 1091 and the linearity of the sum, (g) uses the linearity of the gradient operator, (h) uses the fact that
 1092 $\nabla_{\alpha_k} \alpha_j = \mathbb{1}_{k=j}$, and in (i), we evaluate the indicator function. Plugging Equations 5 and 6 in
 1093 Equation 4, we obtain:

$$\begin{aligned}
 \nabla_{\alpha_k} \mathcal{L}_d^{\text{QN}}(\theta(\alpha)_i, \theta(\alpha)_{i-1}) &\stackrel{(j)}{=} \nabla_{\theta(\alpha)_i} \mathcal{L}_d^{\text{QN}}(\theta(\alpha)_i, \theta(\alpha)_{i-1})^T \nabla_{\alpha_k} \theta(\alpha)_i \\
 &\stackrel{(k)}{=} \nabla_{\omega(\alpha)_i} \mathcal{L}_d^{\text{QN}}(\theta(\alpha)_i, \theta(\alpha)_{i-1})^T \nabla_{\alpha_k} \omega(\alpha)_i + \nabla_{\omega(\alpha)} \mathcal{L}_d^{\text{QN}}(\theta(\alpha)_i, \theta(\alpha)_{i-1})^T \nabla_{\alpha_k} \omega(\alpha) \\
 &\stackrel{(l)}{=} -\lambda_\theta \nabla_{\omega(\alpha)_i} \mathcal{L}_d^{\text{QN}}(\theta(\alpha)_i, \theta(\alpha)_{i-1})^T \mathbb{1}_{k=i} \nabla_{\omega_i} \mathcal{L}_d^{\text{QN}}(\theta_i, \theta_{i-1}) \\
 &\quad - \lambda_\theta \nabla_{\omega(\alpha)} \mathcal{L}_d^{\text{QN}}(\theta(\alpha)_i, \theta(\alpha)_{i-1})^T \nabla_\omega \mathcal{L}_d^{\text{QN}}(\theta_k, \theta_{k-1}) \tag{7}
 \end{aligned}$$

1101 (j) comes from Equation 4, (k) uses the decomposition between the head parameters and the shared
 1102 parameters, and (l) comes from Equations 5 and 6. Finally, plugging Equation 7 in Equation 3 and
 1103 using the linearity of the dot product, we obtain the result presented in Equation 2:

$$\begin{aligned}
 \alpha_k &\leftarrow \alpha_k + \lambda_\alpha \lambda_\theta \nabla_{\omega(\alpha)_k} \mathcal{L}_d^{\text{QN}}(\theta(\alpha)_k, \theta(\alpha)_{k-1})^T \nabla_{\omega_k} \mathcal{L}_d^{\text{QN}}(\theta_k, \theta_{k-1}) \\
 &\quad + \lambda_\alpha \lambda_\theta \sum_{i=1}^K \nabla_{\omega(\alpha)} \mathcal{L}_d^{\text{QN}}(\theta(\alpha)_i, \theta(\alpha)_{i-1})^T \nabla_\omega \mathcal{L}_d^{\text{QN}}(\theta_k, \theta_{k-1}). \\
 &= \alpha_k + \lambda_\alpha \lambda_\theta \nabla_{\omega(\alpha)_k} \mathcal{L}_d^{\text{QN}}(\theta(\alpha)_k, \theta(\alpha)_{k-1})^T \nabla_{\omega_k} \mathcal{L}_d^{\text{QN}}(\theta_k, \theta_{k-1}) \\
 &\quad + \lambda_\alpha \lambda_\theta \nabla_{\omega(\alpha)} \left[\sum_{i=1}^K \mathcal{L}_d^{\text{QN}}(\theta(\alpha)_i, \theta(\alpha)_{i-1}) \right]^T \nabla_\omega \mathcal{L}_d^{\text{QN}}(\theta_k, \theta_{k-1}).
 \end{aligned}$$

1115 D.5 PILOT STUDY: MIXED PRECISION TRAINING OF iS-QN



1128 Figure 16: When reducing the precision of the operations performed during the forward and backward
 1129 passes of the neural network from float32 to float16, iS-QN still bridges the performance gap between
 1130 the target-free and target-based approaches.

1132 To further reduce the resources required during training, the presented approach can be combined
 1133 with other techniques that also aim at reducing resource requirements. We provide an initial study
 that combines the idea of performing operations with lower precision to further reduce the memory

footprint (Micikevicius et al., 2018) with the presented approach. Specifically, the computations during the forward and backward passes of the neural network are performed in float16b rather than float32. In Figure 16, we show that the performance gap between the target-free and target-based approaches remains when the operations are performed with lower precision. Remarkably, iS-DQN $K = 1$ closes the performance gap, and iS-DQN $K = 9$ further boosts the learning speed of the target-free approach, outperforming the target-based approach when the precision of the operations is reduced. Overall, we observe a slight decrease in performance across all algorithms, which is expected, as the precision of the operations during the forward and backward passes decreases.

E LIST OF HYPERPARAMETERS

Our codebase is written in Jax (Bradbury et al., 2018). The details of hyperparameters used for the experiments are provided in Table 1 (Atari), Table 2 (DMC Hard), and Table 3 (Wordle). In each experiment, the same hyperparameters as those provided in the original target-based approaches are used without further tuning. We note $\text{Conv}_{a,b}^d C$ a 2D convolutional layer with C filters of size $a \times b$ and stride d , and $\text{FC } E$ a fully connected layer with E neurons. When added, LayerNorm is placed before each activation function, and BatchNorm is placed after the activation function. Additionally, when BatchNorm is used, the state-action and next state-next action pairs are first concatenated and then passed as a single batch to the network as suggested by the authors of CrossQ and CrossQ + WN (Bhatt et al., 2024; Palenicek et al., 2025).

Table 1: Summary of the shared hyperparameters used for the **Atari** experiments. The CNN architecture is described here. We used three stacked layers of size 32, 64, and 64 with a last linear layer of size 512 for the IMPALA architecture (Espeholt et al., 2018).

Shared hyperparameters		DQN hyperparameters	
Discount factor γ	0.99	Number of training steps per epoch	250 000
Horizon H	27 000	Target update period T	8 000
Full action space	No	Type of the replay buffer \mathcal{D}	FIFO
Reward clipping	$\text{clip}(-1, 1)$	Initial number of samples in \mathcal{D}	20 000
Batch size	32	Maximum number of samples in \mathcal{D}	1 000 000
Torso architecture	$\text{Conv}_{8,8}^4 32$ $-\text{Conv}_{4,4}^2 64$ $-\text{Conv}_{3,3}^1 64$	Gradient step period G	4
Head architecture	FC 512 $-\text{FC } n_{\mathcal{A}} [\text{TB-QN, TF-QN}]$ $-\text{FC } (K + 1) \cdot n_{\mathcal{A}} [\text{iS-QN}]$	Starting ϵ	1
Activations	ReLU	Ending ϵ	0.01
CQL hyperparameters		ϵ linear decay duration	250 000
Number of gradient steps per epoch	62 500	Batch size	32
Target update period T	2 000	Learning rate	6.25×10^{-5}
Dataset size	5 000 000	Adam ϵ	1.5×10^{-4}
Learning rate	5×10^{-5}	CQL weight α	0.1

1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199

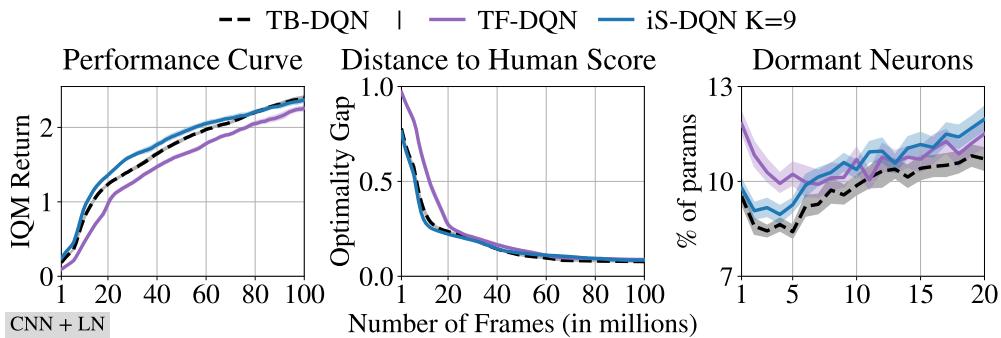
1200 Table 2: Summary of the shared hyperparameters
 1201 used for the **DMC Hard** experiments.

Environment	
Discount factor γ	0.99
Horizon H	1000
Action repeat	2
Experiments	
Batch size	256
Policy architecture	SimbaV2 Actor
Critic Torso architecture	SimbaV2 Critic
Critic Head architecture	FC 512 -FC n_{atoms} [TB-SAC, TF-SAC] -FC $(K + 1) \cdot n_{\text{atoms}}$ [iS-SAC]
Activations	ReLU
BatchNorm	TF-SAC, iS-SAC
Number of training steps	500 000
Soft target update τ	5×10^{-3}
Initial number of samples in \mathcal{D}	5 000
Maximum number of samples in \mathcal{D}	1 000 000
Initial learning rate	1×10^{-4}
Final learning rate	1×10^{-5}
Optimizer	Adam
SimbaV2 hyperparameters	
Double Q	No
Distributional critic bins n_{atoms}	101

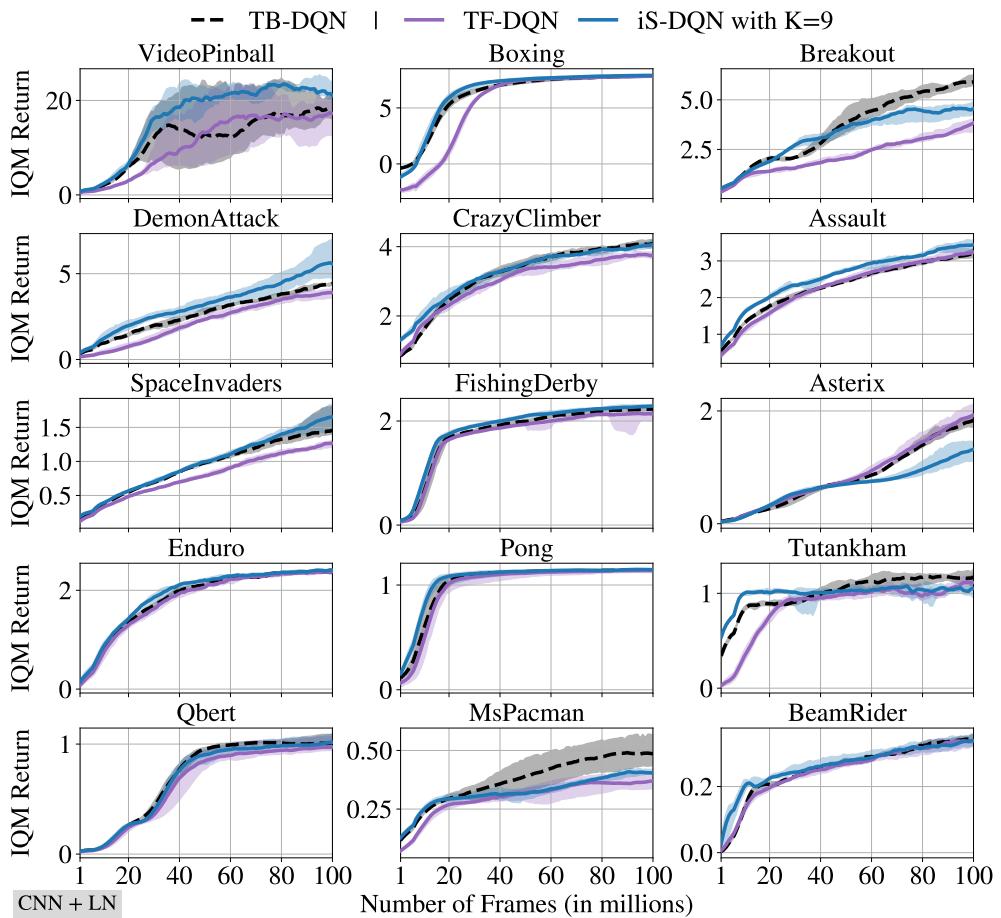
1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241

1202 Table 3: Summary of the shared hyperparameters
 1203 used for the **Wordle** experiments.

Environment	
Dataset	Wordle Twitter dataset
Discount factor γ	0.99
Number of tokens	35 (alphabet + colors)
Rewards	-1 for incorrect guess, 0 for correct guess
Experiments	
Batch size	1024
Policy architecture	GPT-2 small (Dropout $p = 0.1$)
Torso architecture Q, V	GPT-2 small (Dropout $p = 0.1$)
Head architecture Q	FC 1536 -FC $n_{\mathcal{A}}$ [TB-ILQL, TF-ILQL] -FC $(K + 1) \cdot n_{\mathcal{A}}$ [iS-ILQL]
Head architecture V	FC 1536 -FC 1 [TB-ILQL, TF-ILQL] -FC $(K + 1) \cdot 1$ [iS-ILQL]
Activations	ReLU
Number of gradient steps	600 000
Soft target update τ	5×10^{-3}
Learning rate	1×10^{-5}
Optimizer	Adam
ILQL hyperparameters	
Inverse temperature β	4.0
CQL weight α	1×10^{-4}

1242 F INDIVIDUAL LEARNING CURVES
12431244 F.1 DEEP Q -NETWORK WITH CNN AND LAYERNORM
1245

1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295



1293
1294
1295

1296

F.2 DEEP Q -NETWORK WITH IMPALA AND LAYERNORM

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

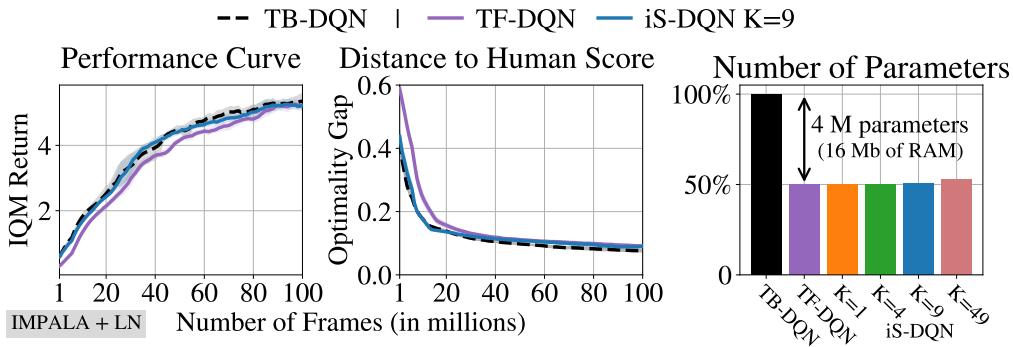


Figure 19: Reducing the performance gap in online RL on 10 **Atari** games with the IMPALA architecture and LayerNorm. **Left:** iS-DQN $K = 9$ is outperforms the target-free approach. **Middle:** iS-DQN annuls the performance gap for the games where the score is below the human level. **Right:** iS-DQN requires significantly fewer parameters than the target-based approach while reaching similar performance.

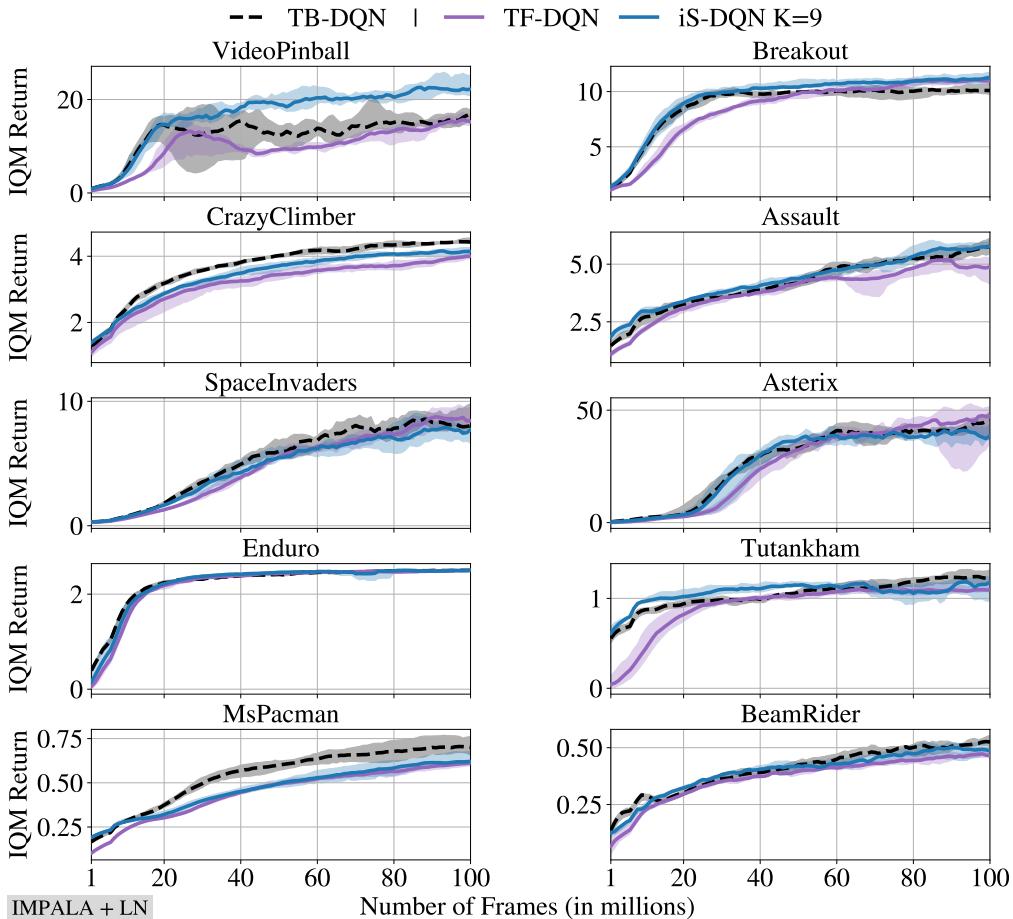
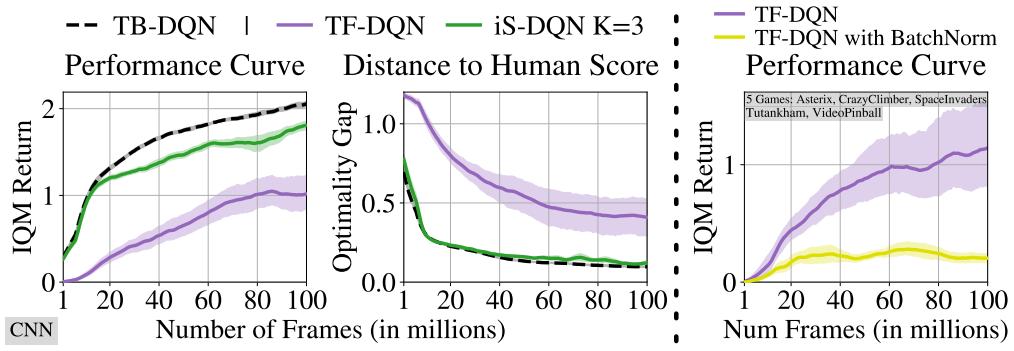
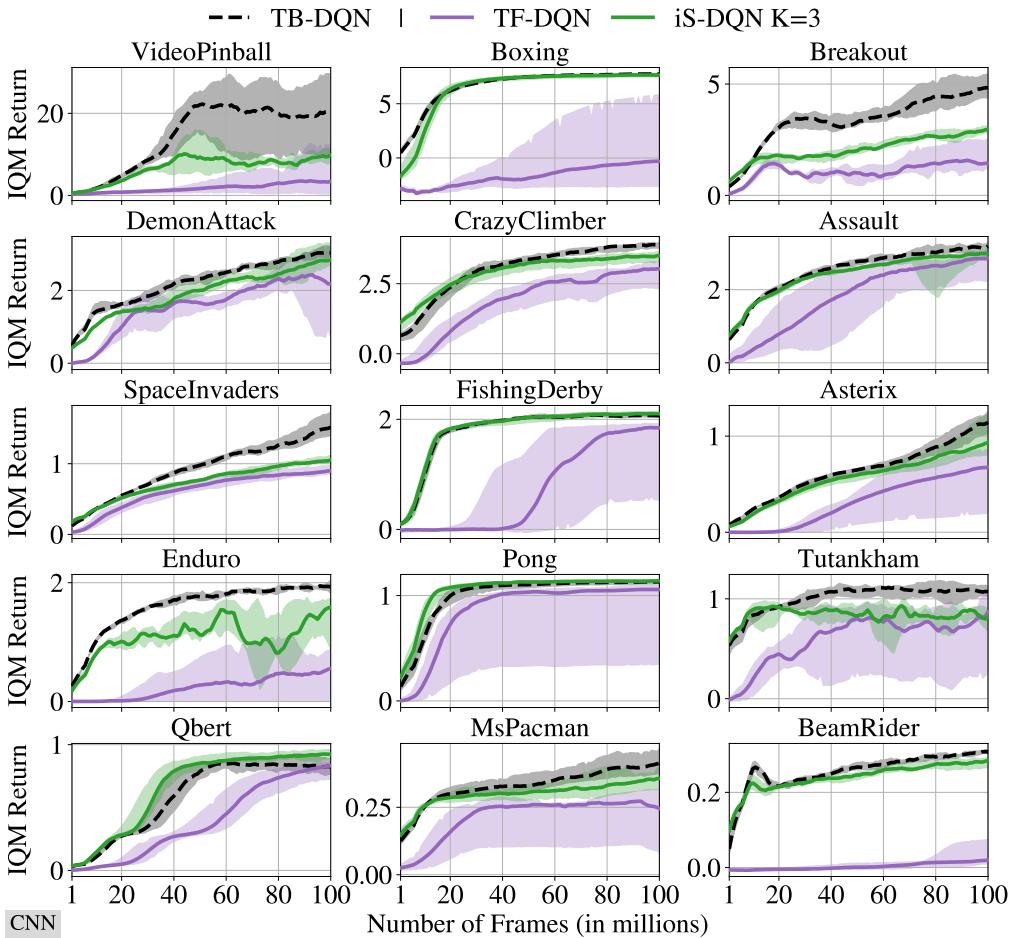


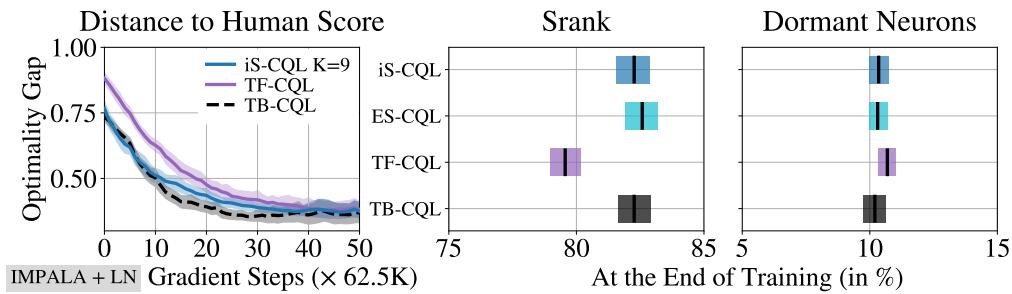
Figure 20: Per game training curves of iS-DQN, TF-DQN, and TB-DQN with the IMPALA architecture and LayerNorm. Our approach outperforms or is on par with the target-free approach (TF-DQN) on all games.

1350
1351 F.3 DEEP Q -NETWORK WITH CNN
1352
1353
1354
1355

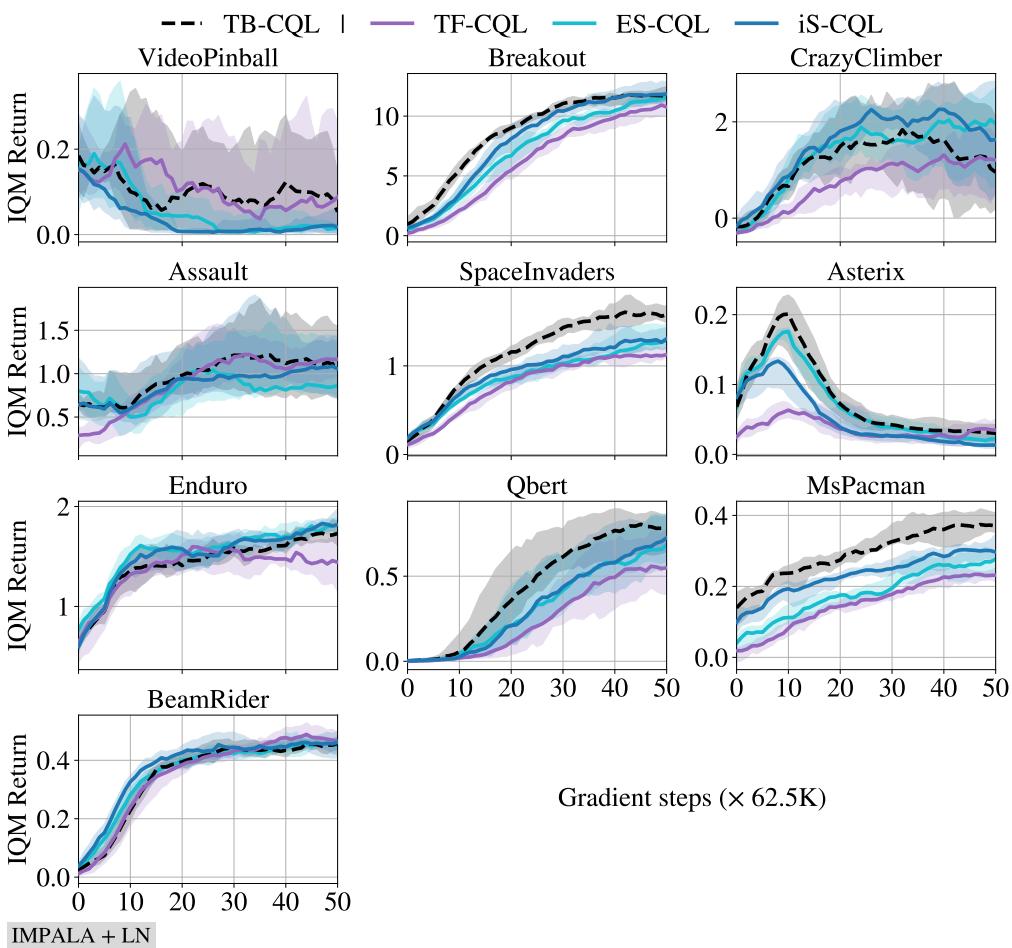
1364
1365 Figure 21: Reducing the performance gap in online RL on 15 **Atari** games with the CNN architecture.
1366 **Left:** iS-DQN $K = 3$ significantly reduces the performance gap between the target-free and target-
1367 based approaches. **Middle:** iS-DQN annuls the performance gap for the games where the score is
1368 below the human level. **Right:** Including BatchNorm in the architecture damages the performance on
1369 the 5 considered games of the target-based approach. This is why BatchNorm is not included for the
1370 experiments with TB-DQN.



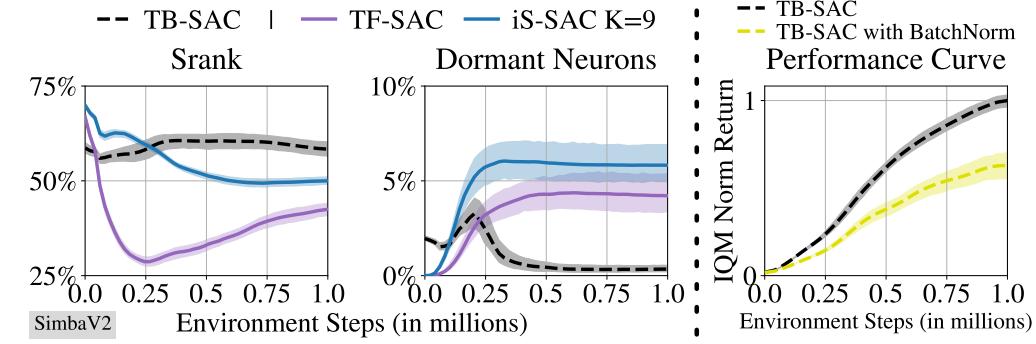
1402
1403 Figure 22: Per game training curves of iS-DQN, TF-DQN, and TB-DQN with the CNN architecture.
Remarkably, iS-DQN outperforms the target-free approach (TF-DQN) on all games.

1404
1405 F.4 CONSERVATIVE Q -LEARNING WITH IMPALA AND LAYERNORM
1406
1407

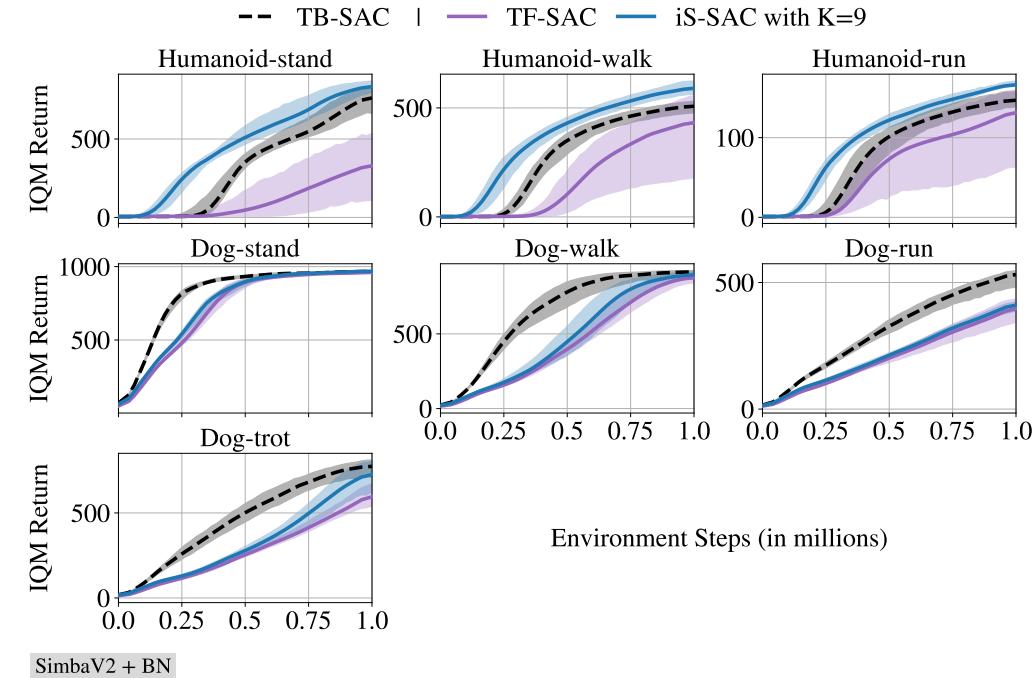
1417
1418 Figure 23: Reducing the performance gap in offline RL on 10 **Atari** games with the IMPALA
1419 architecture and LayerNorm. **Left:** iS-CQL significantly reduces the performance gap for the games
1420 where the score is below the human level. **Middle:** At the end of the training, iS-CQL and ES-CQL
1421 lead to a higher srank than the target-free approach, which indicates a higher representation capability.
1422 **Right:** All methods converge to a low amount of dormant neurons at the end of the training.
1423
1424



1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456 Figure 24: Per game training curves of iS-CQL, TF-CQL, and TB-CQL with the IMPALA architecture
1457 and LayerNorm. Except on *VideoPinball*, iS-CQL outperforms or is on par with the target-free
approach (TF-CQL).
1458

1458 F.5 SOFT ACTOR-CRITIC WITH SIMBAV2 AND BATCHNORM
1459

1472 Figure 25: Reducing the performance gap in online RL on the 7 **DMC Hard** tasks with the SimbaV2
1473 architecture and BatchNorm. **Left:** As opposed to iS-SAC, the target-free approach suffers from a
1474 low srank, which indicates a lower representation capability. **Middle:** The percentage of dormant
1475 neurons remains low during training for all methods, not exceeding 7%. **Right:** The target-based
1476 approach does not benefit from BatchNorm. This is why it is not included in the experiments with
1477 TB-SAC. **Importantly, all algorithms use ℓ_2 -norm as described in Lee et al. (2025).**



1501 Figure 26: Per task training curves of iS-SAC, TF-SAC, and TB-SAC with the SimbaV2 architecture
1502 and BatchNorm. iS-SAC consistently performs better than or on par with the target-free approach.
1503 Interestingly, iS-SAC even outperforms the target-based approach on the humanoid tasks.
1504

1505
1506
1507
1508
1509
1510
1511