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ABSTRACT

The use of target networks in deep reinforcement learning is a widely popular solu-
tion to mitigate the brittleness of semi-gradient approaches and stabilize learning.
However, target networks notoriously require additional memory and delay the
propagation of Bellman updates compared to an ideal target-free approach. In
this work, we step out of the binary choice between target-free and target-based
algorithms. We introduce a new method that uses a copy of the last linear layer of
the online network as a target network, while sharing the remaining parameters
with the up-to-date online network. This simple modification enables us to keep
the target-free’s low-memory footprint while leveraging the target-based literature.
We find that combining our approach with the concept of iterated Q-learning,
which consists of learning consecutive Bellman updates in parallel, helps improve
the sample-efficiency of target-free approaches. Our proposed method, iterated
Shared Q-Learning (iS-QL), bridges the performance gap between target-free and
target-based approaches across various problems while using a single Q-network,
thus stepping towards resource-efficient reinforcement learning algorithms.

1 INTRODUCTION

Originally, Q-learning (Watkins & Dayan, 1992) was introduced as a reinforcement learning (RL)
method that performs asynchronous dynamic programming using a single look-up table. By storing
only one Q-estimate, Q-learning benefits from an up-to-date estimate and a low memory footprint.
However, replacing look-up tables with non-linear function approximators and allowing off-policy
samples to make the method more scalable introduces training instabilities (Sutton & Barto, 2018). To
address this, Mnih et al. (2015) introduce Deep Q-Network (DQN), an algorithm that constructs the
regression target from an older version of the online network, known as the target network, which is
periodically updated to match the online network (see “Target Based” in Figure 1). This modification
to the temporal-difference objective helps mitigate the negative effects of function approximation
and bootstrapping (Zhang et al., 2021), two elements of the deadly triad (van Hasselt et al., 2018).
Recently, new methods have demonstrated that increasing the size of the Q-network can enhance
the learning speed and final performance of temporal difference methods (Espeholt et al., 2018;
Schwarzer et al., 2023; Nauman et al., 2024; Lee et al., 2025). Numerous ablation studies highlight
the crucial role of the target network in maintaining performance improvements over smaller networks
(Figure 7 in Schwarzer et al. (2023), and Figure 9b in Nauman et al. (2024)). Interestingly, even
methods initially introduced without a target network (Bhatt et al. (2024) and Kim et al. (2019))
benefit from its reintegration (Figure 5 in Palenicek et al. (2025) and Gan et al. (2021)).

While temporal difference methods clearly benefit from target networks, their utilization doubles
the memory footprint dedicated to Q-networks. This ultimately limits the size of the online network
due to the constrained memory capacity of the processing units (e.g. the vRAM of a GPU). This
limitation is not only problematic for learning on edge devices where memory is constrained, but also
for applications that inherently require large network sizes, such as handling high-dimensional state
spaces (Boukas et al., 2021; Pérez-Dattari et al., 2019), processing multi-modal inputs (Schneider
et al., 2025), or constructing mixtures of experts (Obando Ceron et al., 2024; Hendawy et al., 2024).
This motivates the development of target-free methods (see “Target Free” in Figure 1).

In this work, we introduce an alternative to the binary choice between target-free and target-based
approaches. We propose storing only the parameters of the last linear layer, while using the parameters
of the online network to substitute the other layers of the target network (see “Shared Features” in
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Bellman operatorFeature extractor Linear layerOnline networkTarget network

Target Based Target Free Shared Features iterated Shared Features

Figure 1: We propose a simple alternative to target-based/target-free approaches, where a linear layer
represents the target network, sharing the rest of the parameters with the online network (Shared
Features). We apply the concept of iterated Q-learning (Vincent et al., 2025), which consists of
learning multiple Bellman updates in parallel, to reduce the performance gap between target-free and
target-based approaches (iterated Shared Features).

Figure 1). Although this simple modification alone helps reduce the performance gap between
target-free and target-based DQN (see “iS-DQN K = 1” in Figure 4, right), we explain in this work
how it opens up the possibility of leveraging the target-based literature to reduce this gap further,
while maintaining a low memory footprint. Notably, this approach is also orthogonal to regularization
techniques that have been shown to be effective for target-free algorithms (Kim et al., 2019; Bhatt
et al., 2024; Gallici et al., 2025). Therefore, we will build upon these approaches to benefit from their
performance gains.

In the following, we leverage the concept of iterated Q-learning (Vincent et al., 2025) to enhance
the learning speed (in terms of the number of environment interactions) of target-free algorithms,
which is a major bottleneck in many real-world applications. The concept of iterated Q-learning,
initially introduced as a target-based approach, aims at learning multiple Bellman iterations in parallel.
This leads to a new algorithm, termed iterated Shared Q-Network (iS-QN), pronounced “ice-QN”
to emphasize that it contains a frozen head. iS-QN utilizes a single network with multiple linear
heads, where each head is trained to represent the Bellman target of the previous one (see “iterated
Shared Features” in Figure 1). Our evaluation of iS-QN across various RL settings demonstrates
that it improves the learning speed of target-free methods while maintaining a comparable memory
footprint and training time.

2 BACKGROUND

Deep Q-Network (Mnih et al., 2015) The optimal policy of a Markov Decision Process (MDP)
can be obtained by selecting for each state, the action that maximizes the optimal action-value
function Q∗. This function represents the largest achievable expected sum of discounted rewards
given a state-action pair. In the context of discrete action spaces, Mnih et al. (2015) approximate the
optimal action-value function with a neural network Qθ, represented by a vector of parameters θ.
This neural network is learned to approximate its Bellman iteration ΓQθ, leveraging the contraction
property of the Bellman operator Γ in the value space to guide the optimization process toward the
operator’s fixed point, i.e., the optimal action-value function Q∗. In practice, a sample estimate of
the Bellman iteration is used, where for a sample (s, a, r, s′), ΓQθ(s, a) = r + γmaxa′ Qθ(s

′, a′),
where γ is the discount factor. However, this learning procedure is unstable because the neural
network Qθ learns from its own values, which change at each optimization step due to function
approximation, and because of the compound effect of the overestimation bias. To mitigate these
issues, the authors introduce a target network with parameters θ̄ to stabilize the regression target ΓQθ̄,
and periodically update these parameters to the online parameters θ every T steps. On the negative
side, this doubles the memory footprint dedicated to Q-networks.

Iterated Q-Network (Vincent et al., 2025) By using a target network, DQN slows down the
training process as multiple gradient steps are dedicated to each Bellman iteration, as ΓQθ̄ is delayed
by some gradient steps compared to ΓQθ. To increase the learning speed, Vincent et al. (2025)
propose to learn consecutive Bellman iterations in parallel. This approach uses a sequence of online
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parameters (θi)
K
i=1 and a sequence of target parameters (θ̄i)

K−1
i=0 . Each online network Qθi+1

is
trained to regress ΓQθ̄i . Similarly to DQN, each target parameter θ̄i is updated to the online parameter
θi+1 every T steps. Importantly, the structure of a chain is enforced by setting each θ̄i to θi every
D ≪ T steps so that each Qθi+1

, which is learned to regress ΓQθ̄i , are forced to approximate ΓQθi .
This results in QθK ≈ ΓQθK−1

≈ . . . ≈ ΓKQθ0 , thus learning K consecutive Bellman iterations in
parallel. Importantly, DQN can be recovered by setting K = 1. While the feature representation can
be shared across the online Q-networks, iterated Q-Network (i-QN) has the drawback of requiring an
old copy of the online networks to stabilize training, significantly increasing the memory footprint. In
the following, we will explain how the concept of i-QN can help reduce the performance gap between
target-free and target-based approaches while maintaining a low memory footprint.

3 RELATED WORK

Other works have considered removing the target network in different RL scenarios. Vasan et al.
(2024) introduce Action Value Gradient, an algorithm designed to work well in a streaming scenario
where no replay buffer, no batch updates, and no target networks are available. Gallici et al. (2025)
also develop a method for a streaming scenario, in which they rely on parallel environments to cope
with the non-stationarity of the sample distribution. Gradient Temporal Difference learning is another
line of work that does not use target networks (Sutton et al., 2009; Maei et al., 2009; Yang et al.,
2021; Patterson et al., 2022; Elelimy et al., 2025). Instead, they compute the gradient w.r.t. the
regression target as well as the gradient w.r.t. the predictions, which doubles the compute requirement.
Additionally, to address the double sampling problem, another network is trained to approximate the
temporal difference value, which also increases the memory footprint.

Alternatively, some works construct the regression target from the online network instead of the target
network, but still use a target network in some other way. For example, Ohnishi et al. (2019) compute
the TD(0) loss from the online network and add a term in the loss to constrain the predictions of
the online network for the next state-action pair (s′, a′) to remain close to the one predicted by the
target network. Piché et al. (2021; 2023) develop a similar approach, enforcing similar values for the
state-action pair (s, a). Lindström et al. (2025) show that the target network can be removed after a
pretraining phase in which they rely on expert demonstrations.

Many regularization techniques have been developed, attempting to combat the performance drop
that occurs when removing the target network. We stress that our approach is orthogonal to these
regularization techniques and we show in Section 5 that our method improves the performance of
target-free methods equipped with these advancements. Li & Pathak (2021) encode the input of
the Q-network with learned Fourier features. While this approach seems promising, the authors
acknowledge that the performance degrades for high-dimensional problems. Shao et al. (2022)
remove the target-network and search for an action that maximizes the Q-network predictions more
than the action proposed by the policy. Searching for a better action requires additional resources and
is only relevant for actor-critic algorithms. Kim et al. (2019) leverage the MellowMax operator to
get rid of the target network. However, the temperature parameter needs to be tuned (Kim, 2020),
which increases the compute budget, and a follow-up work demonstrates that the reintegration of
the target network is beneficial (Gan et al., 2021). We combine the MellowMax operator with the
presented approach in Section D.1 and demonstrate that it bridges the performance gap between the
target-free and target-based approaches. Finally, Bhatt et al. (2024) point out the importance of using
batch normalization (Ioffe & Szegedy, 2015) to address the distribution shift of the input given to
the critic. Our investigation reveals that it degrades the performance in a discrete action setting (see
Figure 21, right).

The idea of learning multiple Bellman iterations has been introduced by Schmitt et al. (2022). They
demonstrate convergence guarantees in the case of linear function approximation. Then, Vincent et al.
(2024) used this approach to learn a recurrent hypernetwork generating a sequence of Q-functions
where each Q-function approximates the Bellman iteration of the previous Q-function. Finally,
Vincent et al. (2025) introduced iterated Q-Network as a far-sighted version of DQN that learns the K
following Bellman iterations in parallel instead of only learning the following one. While promising,
those approaches rely on a separate copy of the learnable parameters to stabilise the training process,
which increases the memory footprint. In this work, we propose to leverage the potential of iterated
Q-learning to boost the learning speed of target-free algorithms.
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Algorithm 1 iterated Shared Deep Q-Network (iS-DQN). Modifications to DQN are in purple.
1: Initialize a network Qθ with K + 1 heads, where each head is defined by the parameters ωk. We

note θk = (ω, ωk), and ω the shared parameters such that θ = (ω, ω0, .., ωK). D is an empty
replay buffer.

2: Repeat
3: Set u ∼ Uniform({1, ..,K}).
4: Take action a ∼ ϵ-greedy.(Qθu(s, ·)); Observe reward r, next state s′.
5: Update D ← D

⋃
{(s, a, r, s′)}.

6: every G steps
7: Sample a mini-batch B = {(s, a, r, s′)} from D.
8: Store [Q0(s

′, ·), .., QK(s′, ·)]← Qθ(s
′, ·) and [Q0(s, a), .., QK(s, a)]← Qθ(s, a).

9: Compute the loss ▷ ⌈·⌉ indicates a stop gradient operation.
LiS-QN =

∑
(s,a,r,s′)∈B

∑K
k=1(⌈r + γmaxa′ Qk−1(s

′, a′)⌉ −Qk(s, a))
2.

10: Update θ from ∇θLiS-QN.
11: every T steps
12: Update ωk ← ωk+1, for k ∈ {0, . . . ,K − 1}.

4 METHOD

Our goal is to design a new algorithm that improves the learning speed of target-free value-based
RL methods without significantly increasing the number of parameters used by the Q-networks. To
achieve this, we consider a single Q-network parameterized with K + 1 heads. We note ωk the
parameters of the kth head, ω the shared parameters, and define θ = (ω, ω0, .., ωK) and θk = (ω, ωk).
Following Vincent et al. (2025), for a sample d = (s, a, r, s′), the training loss is

LiS-QN
d (θ) =

K∑
k=1

LQN
d (θk, θk−1), (1)

where LQN
d can be chosen from any temporal-difference learning algorithm. For instance, DQN uses

LQN
d (θk, θk−1) = (⌈r + γmaxa′ Qθk−1

(s′, a′)⌉ −Qθk(s, a))
2, where ⌈·⌉ indicates a stop gradient

operation. We stress that ω0 is not learned. However, every T steps, each ωk is updated to ωk+1,
similarly to the target update step in DQN. This way, iS-QN allows to learn K Bellman iterations
in parallel while only requiring a small amount of additional parameters on top of a target-free
approach. Indeed, in the general case, the size of each head ωk is negligible compared to the size of
shared parameters ω. Algorithm 1 summarizes the changes brought to the pseudo-code of DQN to
implement this approach.

In Figure 2, we compare the training paths defined by the Q-functions obtained after each target
update of the proposed approach (top) and the target-based approach (bottom). For each given sample,
the target-based approach learns only 1 Bellman iteration at a time and proceeds to the following one
after T training steps. In contrast, the iterated Shared Features approach learns several consecutive
Bellman iterations in parallel for each given sample. The considered window also moves forward
every T training steps. As the window shifts, the network represents Q-functions that are closer to
the optimal Q-function since every Q-function is learned to represent the Bellman iteration of the
previous Q-function. Similarly to the target-based and target-free approaches, the online parameters
are updated with the gradient computed through the forward pass of the state-action pair (s, a), as
indicated with blue arrows. In Figure 2, we depict our approach with K = 2. However, the number
of heads can be increased at minimal cost. We note that the first Q-function is considered fixed in
this representation, even if the head is the only frozen element and the previous layers are shared with
the other learned Q-estimates. We remark that iS-QN with K = 1 implements the “Shared Features”
approach presented in Figure 1. Interestingly, the target-free approach can also be depicted in Figure 2.
Indeed, not using a target network is equivalent to updating the target network to the online network
after each gradient step. Consequently, the target-free approach can be understood as the target-based
representation with a window shifting at every step. Therefore, the target-free approach passes
through the Bellman iterations faster, creating instabilities as the optimization landscape may direct
the training path toward undesirable Q-functions.
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Bellman operator

Feature extractor

Linear layer

Online parameters

Target parameters

Gradient path

Target Based

iterated Shared Features

Windows shift by
one    -function
every T steps

Figure 2: Comparison of the training path defined by the target networks obtained after each target
update during training between the target-based approach (bottom) and the iterated Shared Features
approach (top). While both approaches wait for T training steps before shifting their respective
window by one Q-function, our approach already considers the following Bellman iterations using
multiple heads, where each head represents the Bellman iteration of the previous head.
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Figure 3: Reducing the performance gap in online RL on 15 Atari games with the CNN architecture
and LayerNorm (LN). While removing the target network leads to a 10% drop in AUC (left), iS-DQN
K = 9 (using 10 linear heads), not only closes the gap but improves over the target-based approach
by 6%. Importantly, iS-DQN uses a comparable number of parameters to TF-DQN (right).

In the following, we apply iterated Shared Features to several target-based approaches on multiple
RL settings, demonstrating that it reduces the gap between target-free and target-based methods. For
each algorithm A, we note TB-A as its target-based version, TF-A as its target-free version, and
iS-A as the iterated shared approach, where “iS” stands for iterated Shared. For example, for the
experiments with the DQN algorithm, we note TF-DQN, the target-free version, and iS-DQN, the
iterated Shared version. Importantly, we incorporate the insights provided by Gallici et al. (2025)
to use LayerNorm (Ba et al., 2016) for the experiments with discrete action spaces, as we found it
beneficial, even for the target-based approach. Similarly, we use BatchNorm (Ioffe & Szegedy, 2015),
as suggested by Bhatt et al. (2024), to improve sample-efficiency in continuous action settings, except
for the target-based approach, as it degrades performances (see Figure 25, right).

5 EXPERIMENTS

We evaluate iS-QN in online, offline, continuous control, and language-based RL scenarios to
demonstrate that it can enhance the learning speed of target-free methods. We focus on the learning
speed because, in this work, we are interested in the sample efficiency of target-free methods. We
use the Area Under the performance Curve (AUC) to measure the learning speed. The AUC has
the benefit of depending less on the training length compared to the end performance, as it accounts
for the performance during the entire training. It also favors algorithms that constantly improve
during training over those that only emerge at the end of training, thus penalizing algorithms that
require many samples to perform well. In each experiment, we report the AUC of each algorithm,
normalized by the AUC of the target-based approach, to facilitate comparison. By normalizing the
AUCs, the resulting metric can also be interpreted as the average performance gap observed during
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Figure 4: Left: Reducing the performance gap in online RL on 10 Atari games with the IMPALA
architecture and LayerNorm (LN). Similar to the results with the CNN architecture, iS-DQN bridges
the gap between the target-free and target-based approaches. Middle and Right: Reducing the
performance gap in online RL on 15 Atari games with the CNN architecture. Removing the target
network of the vanilla DQN algorithm results in a 60% performance drop (100%− 40%). By using
iS-DQN with K = 3, the performance drop is divided by 4 (100%−85% = 15% = 60%/4), thereby
confirming the benefit of this approach.

training between the considered approach and the target-based approach. We use the Inter-Quantile
Mean (IQM) and 95% stratified bootstrapped confidence intervals to allow for more robust statistics
as advocated by Agarwal et al. (2021). The IQMs are computed over 5 seeds per Atari game, 10
seeds per DMC Hard tasks, and 5 seeds for Wordle. 15 Atari games are used for the experiments
on the CNN architecture, and 10 games for the experiments on the IMPALA architecture to reduce
the computational budget. Importantly, all hyperparameters are kept untouched with respect to the
standard values (Castro et al., 2018), only the architecture is modified, as described in Section 4.
Extensive details about the selection process of the Atari games, the metrics computation, the
hyperparameters, and the individual learning curves are reported in the appendix.

5.1 ONLINE DISCRETE CONTROL

First, we evaluate iS-DQN on 15 Atari games (Bellemare et al., 2013) with the vanilla CNN
architecture (Mnih et al., 2015) equipped with LayerNorm. As expected, the target-free approach
yields an AUC 10% smaller than the target-based approach, as shown in Figure 3 (left). This
performance drop is constant across the training, see Figure 3 (middle). Interestingly, iS-DQN
K = 1 improves over TF-DQN by simply storing an old copy of the last linear head. As more
Bellman iterations are learned in parallel, the performance gap between iS-DQN and TB-DQN
shrinks. Remarkably, iS-DQN K = 9 even outperforms the target-based approach by 6% in AUC.
We note a slight decline in performance for iS-DQN K = 49. We conjecture that this is due to
the shared feature representation not being rich enough to enable the network to learn 49 Bellman
iterations in parallel with linear approximations. Importantly, Figure 3 (right) testifies that this
performance boost is achieved with approximately half of the parameters used by the target-based
approach, truly reducing the memory footprint required by the Q-functions.

Our evaluation with the IMPALA architecture (Espeholt et al., 2018) with LayerNorm confirms the
ability of iS-DQN to reduce the performance gap between target-free and target-based approaches.
Indeed, Figure 4 (left) indicates that removing the target network leads to an 8% performance drop
while iS-DQN annuls the performance gap as more Bellman iterations are learned in parallel, i.e., as
K increases. Interestingly, as opposed to the CNN architecture, increasing the number of heads to
learn 49 Bellman iterations in parallel is beneficial in this scenario. We believe this is due to IMPALA
architecture’s ability to produce a richer representation than the CNN architecture, thereby allowing
more Bellman iterations to be approximated with a linear mapping. The plots of the performance
curve and the number of parameters are similar to the ones for the CNN architecture, see Figure 19.

Finally, we confirm the benefit of the iterated Shared Features approach by removing the normalization
layers for all algorithms with the CNN architecture in Figure 4 (right). We observe a major drop in
performance for TF-DQN, leading to 60% performance gap (100%−40%). Notably, iS-DQN K = 1
reduces this performance gap to 18% (100%− 82%). This highlights the potential of simply storing
the last linear layer and using the features of the online network to build a lightweight regression
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Figure 5: Reducing the performance gap in offline RL on 10 Atari games with the IMPALA archi-
tecture and LayerNorm (LN). iS-CQL shrinks the performance gap from 26% to 6%. Interestingly,
applying the idea of sharing parameters to Ensemble DQN (Ensemble Shared Features, ES-CQL)
also reduces the performance gap, demonstrating that this idea is not limited to iterated Q-learning
and can be applied to other target-based approaches.
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Figure 6: Reducing the performance gap in online RL on the 7 DMC Hard tasks with the SimbaV2
architecture and BatchNorm (BN). iS-SAC recovers the performance drop incurred by removing the
target network (left). This performance boost is made while reducing the total number of parameters
by 49% (right).

target. While increasing the number of learned Bellman iterations to 3 brings a small benefit, the
performances are slightly decreasing for higher values of K, indicating that LayerNorm is beneficial
to provide useful representations when considering a higher number of linear heads.

5.2 OFFLINE DISCRETE CONTROL

We consider an offline RL setting in which the agent has access to 10% of the dataset collected by
a vanilla DQN agent trained with a budget of 200 million frames (Agarwal et al., 2020), sampled
uniformly. We adapt the loss for learning each Bellman iteration to the one proposed by Kumar et al.
(2020b). This leads to an iterated version of Conservative Q-Learning (CQL). In Figure 5, iS-CQL
K = 9 reduces the performance gap by 20 percentage points, ending up with a performance gap
of 6% compared to 26% for TF-CQL. Additionally, we evaluate another way of sharing features to
show that this idea is not limited to iterated Q-learning. Instead of building a chain of Q-functions
represented by linear heads, we define an ensemble of pairs of linear heads. Each pair contains a
frozen head representing a target network Q̄ that is used to train the learned head representing the
associated online network Q, as depicted in Figure 5 (right). We evaluate this variant that we call
Ensemble Shared Features (ES-CQL), with 5 pairs of heads, i.e. 10 heads, to match the number
of heads used by iS-CQL K = 9, as the number of heads of iS-QN is always equal to K + 1.
Importantly, ES-CQL also outperforms TF-CQL, reinforcing the idea that sharing parameters and
using linear heads is a fruitful direction.

5.3 ONLINE CONTINUOUS CONTROL

We investigate the behavior of iS-QN on the DeepMind Control suite (Tassa et al., 2018), focusing on
the hard tasks. We select Soft Actor-Critic (SAC, Haarnoja et al. (2018)) as the base algorithm and
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Figure 7: Reducing the performance gap in offline RL on Wordle with the GPT-2 small architecture.
iS-ILQL K = 9, not only closes the gap but improves over the target-based approach by more than
5%. Importantly, iS-ILQL saves 33% of RAM compared to the target-based approach (right).

adapt the architecture to the one proposed by Lee et al. (2025) (SimbaV2) so that the target-based
approach corresponds to the state-of-the-art. This experiment allows us to test iS-QN on different
learning dynamics, as the target updates are done with an exponentially moving average instead of a
hard update, and the loss for the critic uses a categorical distribution to learn the distribution of the
return. Interestingly, Figure 6 (left) shows that only using an old copy of the last layer of the critic
to construct the regression target (iS-SAC K = 1) recovers the performance drop incurred by the
target-free approach compared to the target-based approach. Importantly, Lee et al. (2025) design
the critic with significantly more parameters than the actor, as commonly done in the actor-critic
literature (Mysore et al., 2021; Mastikhina et al., 2025). This means that iS-SAC K=1 reduces the
total number of parameters by 49%, see Figure 6 (right). When considering more heads to learn the
following Bellman updates, we find it beneficial to give more importance to the first Bellman updates
by scaling the future terms in the loss by a discounting factor of 0.25. We leave the investigation of
finding the best way to weight each term in the loss to future work. In Section D.4, we provide a
first direction leveraging the concept of meta-gradient reinforcement learning (Xu et al., 2018) to
tune learnable coefficients assigned to each term in the loss during training. We note that in this
setting, iS-SAC K = 9 only performs on par with K = 1. Nonetheless, iS-SAC K = 9 is still
performing better than the best target-free approach, having overlapping confidence intervals with the
target-based approach, which serves as the gold standard, as it requires additional parameters.

5.4 SCALING UP TO LANGUAGE MODELS

In this experiment, we evaluate iS-QN on an offline RL language processing task. Specifically,
we focus on Implicit Language Q-Learning (ILQL, Snell et al. (2023)), a method introduced with
a target network. It adapts implicit Q-learning (Kostrikov et al., 2023) to the language domain
by sampling action tokens from a policy, learned with supervised learning, and weighted by the
advantage computed from the Q-function. We evaluate ILQL on the Wordle game (Lokshtanov &
Subercaseaux, 2022), a multi-turn game where the agent guesses a hidden word and receives feedback
after each attempt. As in Snell et al. (2023), we choose the GPT-2 small architecture, which results in
TB-ILQL using 264 million parameters. In Figure 7 (left), we note that while a performance drop
is noticeable, the target-free approach does not perform significantly worse than the target-based
variant. Importantly, sharing parameters and learning K = 9 Bellman iterations in parallel improves
the learning speed of the target-free approach by 10% without significantly increasing the memory
footprint. This leads iS-QN to save 88 million parameters compared to the original approach.

5.5 STREAMING REINFORCEMENT LEARNING

We consider the streaming setting in which the RL agent only learns from a stream of data. In this
setting, the agent does not have access to a replay buffer, batch updates, or parallel environments.
These constraints position the RL agent in a drastically different setting from the previously considered
ones, as replay buffers and batch updates greatly stabilize the learning process (Vasan et al., 2024).
Elsayed et al. (2024) introduced Stream Q(λ), an algorithm adapted for the streaming setting. It is
an adaptation of the original Q(λ) algorithm that uses observation and reward normalization, sparse
initialization, layer norm, and an adaptive step-size optimizer. In this experiment, we combine
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Figure 8: Increasing the learning speed in a streaming scenario on 7 Atari games with the CNN
architecture and LayerNorm (LN). iS-Stream Q(λ) K = 3 improves over the target-free approach by
more than 10%, outperforming or performing on par with the baseline on 6 out of the 7 games.

Stream Q(λ) with the presented approach to obtain iS-Stream Q(λ). We remark that Stream Q(λ)
was introduced without a target network; therefore, we focus only on this version (TF-Stream Q(λ)).
We fix a target update period of T = 10 for iS-Stream Q(λ). In Figure 8, we report the performance
of the target-free approach and the presented approach for three values of K across 7 Atari games
that were selected for their diversity in human-normalized score (see Figure 10). iS-Stream Q(λ)
K = 1 performs similarly to the target-free variant. Remarkably, increasing the number of heads
to 4 (K = 3) improves the learning speed compared to the target-free approach. In this setting,
increasing the number of heads until 9 Bellman iterations are learned in parallel, is not helpful. In this
setting, the absence of batch updates increases the variance of the gradient steps, potentially leading
to unstable updates for the shared parameters for a large number of heads.

5.6 WHY IS IS-QN IMPROVING OVER TARGET-FREE APPROACHES?

We now provide some insights to understand why iS-QN reduces the performance gap between
target-free and target-based approaches. First, we investigate the change in the learning dynamics
that happens when the features are shared between the online and the target heads (“Shared Features”
or equivalently, “iterated Shared Features” with K = 1, see Figure 1). To evaluate the impact on the
learning dynamics, we compute, for each gradient step of an iS-DQN K = 1 agent, the gradient with
respect to the loss of iS-DQN, as well as the gradients that the target-based loss and the target-free
loss would produce. These quantities determine how the parameters evolve during training. We then
report the cosine similarity between the gradients w.r.t. the iS-QN loss and the TB-DQN loss, and the
cosine similarity between the gradients w.r.t. the TF-DQN loss and the TB-DQN loss in Figure 9
(left) for 15 Atari games. Interestingly, the gradients obtained by the target-based approach are closer
to the gradients of iS-DQN K = 1 than the gradients of the target-free approach, especially at the
beginning of the training. This means that by simply using a copy of the last linear layer and sharing
features, iS-DQN’s learning dynamics become closer to those of the target-based approach.

At first sight, the fact that iS-QN uses frozen heads on top of features changing at each gradient step
might seem like an uncommon practice in machine learning. However, this design choice is already
part of the reinforcement learning literature. Indeed, in Deep Q-Network, the Q-network is designed
with multiple heads, each one representing the prediction for a specific action. For each sample, only
the selected head corresponding to the sampled action is updated, while the other heads, built on
top of the features that are getting updated, remain frozen. This is likely to contribute to the policy
churn phenomenon identified by Schaul et al. (2022), highlighting that the greedy-policy changes for
a significant proportion of the states in the replay buffer after a single batch update. To measure the
impact of sharing features, we introduce the notion of target churn, which we define as the absolute
value of the difference between the regression target before and after each batch update. We report
the cumulative target churn of iS-DQN, reinitialized to zero after each target update, normalized
by the target churn of TF-DQN in Figure 9 (middle). Conveniently, the target-based approach has
a constant target churn of zero since the batch update does not influence the fully separated target
network, and the normalization brings the target churn of the target-free approach to a constant value
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Figure 9: Left: The cosine similarity between the gradients w.r.t. the loss of iS-DQN and TB-DQN
is larger than the cosine similarity between the gradients w.r.t. the loss of TF-DQN and TB-DQN.
Therefore, iS-DQN brings the learning dynamics of the target-free approach closer to those of the
target-based approach. Middle: The target churn is the difference between the regression targets
computed before and after each batch update. The target predictions of iS-DQN are less influenced
by batch updates than the ones computed from the target-free approach. Right: The effective rank
(srank) of the features in the penultimate layer is higher for iS-QN, resulting in a higher expressivity.

of 1. Remarkably, the target churn of iS-DQN K = 1 and 9 lies in between 0 and 1, indicating that
iS-QN’s targets are more stable than the ones of the target-free approach. We note that the target
churn for K = 9 is larger than K = 1, due to the influence of the additional terms in the loss.

Beyond improving the learning dynamics of TF-DQN, iS-DQN also provides a richer state repre-
sentation. We measure the representation expressivity by reporting the effective rank (srank) of the
features in the penultimate layer (Kumar et al., 2020a) in Figure 9 (right). Interestingly, the srank
obtained by iS-DQN K = 1 is closer to the srank of TB-DQN than the srank of TF-DQN, which
further demonstrates the benefit of using the last linear layer to construct the target. Notably, learning
K = 9 Bellman iterations in parallel increases the representation capacity of the network by a large
margin. This behavior is also visible in the offline setting, where iS-CQL reaches a similar srank as
the target-based approach at the end of the training (see Figure 23, middle). This confirms the benefit
of iS-QN to foster a richer representational capacity.

6 LIMITATION AND CONCLUSION

The proposed approach introduces the number of Bellman updates K to learn in parallel as a new
hyperparameter and there seems to be a different optimal value for each setting. However, we
usually observe a stable increase in performance as K grows until the benefit of the approach starts
to diminish. Therefore, we recommend increasing K until performance begins to decrease, as is
commonly done with the learning rate. In Sections D.2, D.3, and D.4, we provide an extensive
analysis of the dependency of iS-QN on its hyperparameters. In this work, we focus on reducing the
memory footprint of the function approximators. Depending on the setting, other objects such as the
replay buffer and the optimizer can occupy a large portion of the RAM. We remark that the proposed
approach can be combined with other works addressing these issues (Vasan et al., 2024). Additionally,
the proposed approach reduces the memory footprint during training but uses the same amount during
inference, which is complementary to pruning methods that use more memory during training and
less during inference (Graesser et al., 2022). As reported in Figure 11, iS-QN does not reduce the
training time or the number of floating-point operations, except for the language processing task for
which the temporal-difference error can be computed with a single pass through the network.

We introduced a simple yet efficient method for mitigating the performance drop that occurs when
removing the target network in deep value-based reinforcement learning, while maintaining a low
memory footprint. This is made possible by storing a copy of the last linear layer of the online
network and using the features of the online network as input to this frozen linear head to construct
the regression target. From there, more heads can be added to learn multiple Bellman iterations in
parallel. We demonstrated that this new algorithm, iterated Shared Q-Networks, improves over the
target-free approach and yields higher returns when the number of heads increases. We believe that
combining iS-QN with mixed precision training methods is a promising direction for future work
to facilitate online learning in resource-constrained settings, without sacrificing performance. In
Section D.5, we provide a pilot study demonstrating positive results.
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REPRODUCIBILITY STATEMENT

Special care was taken to ensure this work is reproducible. The code will be made open source
upon acceptance and is shared in the supplementary material. It contains the list of dependencies and
their exact version that was used to generate the results. To ease reproducibility, all hyperparameters
are listed in Appendix E, and the individual training curves are shown in Appendix F.

LARGE LANGUAGE MODEL USAGE

A large language model was helpful in polishing writing, improving reading flow, and identifying
remaining typos.
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A EXPERIMENT SETUP

0 5 10 15 20
Human-normalized Score of DQN at 200M Frames

BeamRider    MsPacman    Qbert    Tutankham    Pong    Enduro    Asterix    FishingDerby    SpaceInvaders    Assault    CrazyClimber    DemonAttack    Breakout    Boxing    VideoPinball    
Atari games selection

Selected games for 
the CNN experiments
Selected games for 
the IMPALA experiments*

Figure 10: The Atari games selected for the experiments
of this paper were chosen to cover a variety of normal-
ized returns obtained by DQN after 200M frames. To
lower the computational budget of the experiments with
the IMPALA architecture, we reduced the set of games
to 10 by removing 5 games, while maintaining diversity.

Atari setup We build our codebase fol-
lowing Machado et al. (2018) standards and
taking inspiration from Castro et al. (2018)
codebase. Namely, we use the game over
signal to terminate an episode instead of
the life signal. The input given to the neu-
ral network is a concatenation of 4 frames
in grayscale of dimension 84 by 84. To get
a new frame, we sample 4 frames from
the Gym environment (Brockman et al.,
2016) configured with no frame-skip, and
apply a max pooling operation on the 2 last
grayscale frames. We use sticky actions
to make the environment stochastic (with
p = 0.25).

Atari games selection Our evaluations
on the CNN architecture were performed
on the 15 games recommended by Graesser
et al. (2022). They were chosen for their
diversity of Human-normalized score that
DQN reaches after being trained on 200
million frames, as shown in Figure 10. As the IMPALA architecture increases the training length,
we removed 5 games, while maintaining diversity in the final scores to reduce the computational
budget. For the offline experiment, we used the datasets provided by Gulcehre et al. (2020). As the
game Tutankham is not available in the released dataset, we replaced it with Qbert, indicated with an
asterisk in Figure 10.

DeepMind Control suite setup Our codebase follows the implementation details of Lee et al.
(2025). Before running the experiment presented in Section 5.3, we took special care that our
codebase reproduces the evaluation performance shared by the authors. As a takeaway from this
exercise, we note that the precision with which the state and reward are normalized matters, as using
float32 leads to lower performance than using float64. We invite interested readers to examine our
code for more details. We emphasize that the performances reported in this work correspond to those
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collected during training, not the ones obtained during a separate evaluation phase, as they are closer
to the initial motivation behind online learning (Machado et al., 2018).

Wordle setup Our codebase is a fork of the repository shared by the authors (Snell et al., 2023),
from which we implemented the target-free and the iterated Shared Features approaches. We refer
to the original paper for extensive details about the setup. Every algorithm was given a budget of
600 000 gradient steps. This value was chosen by running TB-ILQL until the performance reported
in Table 6 of Snell et al. (2023) was reached.

Streaming RL setup We follow the implementation choices made by Elsayed et al. (2024). We
detail here the differences with the classical Atari setup described earlier. Namely, the source of
stochasticity is replaced from sticky actions to a random number of NO OP actions chosen uniformly
between 0 and 30. The life loss signal is used for episode termination instead of the game over signal.
The last hidden linear layer is composed of 256 neurons instead of 512. The neural network weights
are initialized with a sparsity level of 90%. The optimizer’s hyperparameters are κ = 2 and the
default learning rate is 1. The trace coefficient is set to λ = 0.8.

Computing the Area Under the Curve For each experiment, we report the normalized IQM
AUC. For that, we first compute the undiscounted return obtained for each epoch, averaged over the
episodes, as advocated by Machado et al. (2018). Then, we sum the human-normalized returns over
the epochs and compute the IQM and 95% stratified bootstrap confidence intervals over the seeds and
games. Finally, we divide the obtained values by the IQM of the target-based approach to facilitate
the comparison. The human-normalized scores are computed from human and random scores that
were reported in Schrittwieser et al. (2020). As discussed in Section 5, the normalized AUCs can also
be interpreted as the average performance gap between the considered algorithm and the target-based
approach. Indeed, dividing the two sums of performances across the training is equivalent to dividing
the two averages of performances across the training because the normalizing factors cancel out.

B TRAINING TIME AND FLOATING-POINT OPERATIONS
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Figure 11: While TF-DQN and iS-DQN require fewer parameters, their training time is similar to
TB-DQN since each algorithm uses a similar amount of computation, as indicated by the number of
floating-point operations (FLOPs) per gradient steps. Left: All algorithms on the Atari benchmark
require a similar amount of FLOPs and training time. Middle: As reported in Figure 25, the
target-based approach does not benefit from BatchNorm for the DMC benchmark. This is why
TB-SAC does not use BatchNorm and therefore has a lower amount of FLOPs compared to the other
approaches. Importantly, the difference in training time between the algorithms is less visible across
the algorithms. Right: Thanks to the way the embeddings are computed, the target-free approach and
iS-ILQL can compute the TD error from a single pass through the neural network, which lowers the
training time.

The presented approach is designed to reduce the memory footprint of target-based methods, while
performing better than the target-free approach. In Figure 11 (bottom), we report the training
time in hours required by all algorithms. On the top row, we report the number of floating-point
operations (FLOPs) required by all algorithms to perform one gradient step. Computations were made
on an NVIDIA GeForce RTX 4090 Ti with the game Asterix for the DQN experiments, and with the
task Dog-walk for the SAC experiments. As expected, all algorithms require the same training time

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

and FLOPs because the same amount of computation is needed. Indeed, a forward pass through the
network for estimating the value of the next state is necessary to compute the temporal-difference
error. We note two exceptions. First, for experiments with SAC, the amount of FLOPs is reduced for
the target-based approach, as it does not use BatchNorm. However, the difference in training time
remains small. Second, for the experiments with ILQL, the training time for the target-free approach
and iS-ILQL is smaller than that of the target-based approach since only one forward pass is required
for computing the temporal difference instead of two forward passes. This results in the target-free
approach and iS-ILQL having a small training time. While this reduction is not visible in the amount
of FLOPs per gradient steps, we verified that the amount of FLOPs per loss computation (forward
pass only) is indeed lower: TB-ILQL: 3.3× 1010 FLOPs, TF-ILQL: 2.0× 1010 FLOPs, iS-ILQL
K = 1: 2.1× 1010 FLOPs, and iS-ILQL K = 9: 2.5× 1010 FLOPs.

We point out that when computing the algorithm’s runtime, the environment steps are simulated,
which does not reflect the real-world duration. For example, an episode of an Atari game can be
executed significantly faster in simulation than in real life. This means that if real-world durations
were taken into account, sample-efficient algorithms would achieve better performance earlier than
less sample-efficient methods.

C ALGORITHMIC DETAILS

Aggregating individual losses In Equation 1, we define the loss of iS-QN as the sum of losses
over each Bellman iteration. Other ways of aggregating the losses are possible. Nonetheless, we
decided to stick to the version proposed by Vincent et al. (2025) and leave this investigation for
future work. We provide a first alternative in Section 5.3 that provides a performance boost by
discounting the following terms by a factor of 0.25. While it is true that taking the sum of temporal
differences increases the magnitude of the loss, it has a different impact on the updates than simply
multiplying the learning rate by the number of terms in the loss. Indeed, the Adam optimizer (Kingma
& Ba, 2015) first normalizes the gradient with a running statistic before applying the learning rate.
Therefore, changing the aggregation mechanism has a greater impact on the direction of the update
than on its magnitude. This is why we do not compare iS-QN against baselines instantiated with
different learning rates.

Sampling actions Following Vincent et al. (2025), at each environment interaction, an action
is sampled from a single head chosen uniformly as shown in Line 3 in Algorithm 1. The authors
motivate this choice by arguing that it allows each Q-function to interact with the environment,
thereby avoiding passive learning, identified by Ostrovski et al. (2021). This choice is further justified
by an ablation study (see Figure 19 in Vincent et al. (2025)) demonstrating a stronger performance
against another sampling strategy consisting of sampling one head for each episode, as proposed in
Osband et al. (2016).

In the experiment on continuous control (Section 5.3), the policy network is used to sample actions.
To align with the choice of computing the discounted sum of temporal differences, the critic estimate
in the policy loss is calculated as the average discounted prediction over the sequence of Q-predictions
given by the heads. The experiment on the language task (Section 6) also uses a policy network to
sample actions, but weighs each prediction with the predicted advantage from the critic. To align with
the choice made for the experiment on continuous control, the average over the weights corresponding
to each head is computed to obtain a single scalar value to weight each action probability.
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D ADDITIONAL EXPERIMENTS

In this section, we train each agent for 40M frames rather than 100M to reduce the computational
budget.

D.1 COMPARISON WITH MELLOWMAX DQN

80 100
in % of TB-Mellow

TB-Mellow
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Figure 12: When using the MellowMax operator, the presented approach (iS-Mellow) effectively
reduces the performance gap between the target-free approach (TF-Mellow) and the target-based
approach (TB-Mellow).

We combine the MellowMax operator (Kim et al., 2019) with the presented idea. We select the games
that were presented in the original paper (Kim et al., 2019), and use the same temperature coefficients
(ω = 1 000 for Breakout, and ω = 30 for Seaquest). Remarkably, in Figure 12, the performance gap
between the target-free and target-based approaches is reduced by the presented approach.

D.2 ABLATION STUDY ON THE TARGET UPDATE PERIOD
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4 6 8 10 12

iS-DQN K = 9

Figure 13: Ablation study on the target update period T for the game Tutankham. iS-DQN’s
performance remains stable when varying the target update period. This shows that it is not sensitive
to the target update period for this game.

We perform an ablation study on the frequency at which the heads of the iS-DQN agent are updated.
This hyperparameter plays a role similar to the target update period T in DQN, allowing both
algorithms to propagate rewards, as explained in Section 4. In Figure 13, we report the performance
of the target-based approach and the presented approach for 5 different values of T on the game
Tutankham. As a reminder, T = 8000 is the default value used in Section 5. We also report the
performance of the target-free variant as a horizontal line since this algorithm does not use this
hyperparameter. Interestingly, the performance of iS-DQN remains similar across different values of
T , demonstrating its robustness to this hyperparameter in this game. Remarkably, iS-DQN K = 9
outperforms both the target-free and target-based variants across all target update periods.
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D.3 ABLATION STUDY ON THE NUMBER OF BELLMAN UPDATES
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Width × 1.0

90 100 110

Width × 2.0

Figure 14: Ablation study on the number of Bellman updates learned in parallel K and the size of
the shared features. iS-DQN achieves similar performance for large values of K and consistently
outperforms the target-free approach.

We analyze the sensitivity of iS-DQN with respect to the number of Bellman updates K learned in
parallel. As discussed in Section 5.1, the richness of the shared features can affect the behavior of the
method. To account for this aspect, we vary the size of the last linear layer from half the default value
(256 neurons, "Width × 0.5") to twice the default (1024 neurons, "Width × 2.0"). To perform this
study, we choose the games CrazyClimber and Tutankham as the performance of iS-DQN on those
games for the default setting (512 neurons, "Width × 1.0") reflects the overall performance presented
in Figure 3 on the 15 games. In Figure 14, we report the performance of iS-DQN for the three
different settings with the number of heads varying from 2 (K = 1) to 50 (K = 49). As expected,
the performance of iS-DQN is similar for large values of K (K ≥ 9). Importantly, every value of
K results in improved performance compared to the target-free variant, even if a slight decrease in
performance occurs at the largest values of K. This is expected, as the potential of learning multiple
Bellman updates in parallel can be better realized with the higher representational capacity.

D.4 AUTOMATIC TUNING OF THE IMPORTANCE OF EACH BELLMAN UPDATE

In this section, we explore a way of tuning the importance of each Bellman update during training. For
that, we propose weighting each term in the loss with a different coefficient. We note the coefficient
(αk)

K
k=1. Intuitively, more weight should be given to a Bellman update that produces a gradient

aligned with the gradients of the other Bellman updates. We will show that meta-learning those
coefficients using the concept of meta-gradient reinforcement learning (Xu et al., 2018) provides a
natural way to achieve this goal. Indeed, the update rule coming from the meta-gradient algorithm of
a coefficient αk linked to the kth Bellman update, depends on the dot product between the gradient of
the loss of the kth Bellman update and the gradient of the sum of all Bellman updates:

αk ←αk + λαλθ

How well aligned will the gradient of the loss
of the kth head be with its current value?︷ ︸︸ ︷

∇ω(α)kL
QN
d (θ(α)k, θ(α)k−1)

T∇ωk
LQN
d (θk, θk−1)

+ λαλθ ∇ω(α)

[
K∑
i=1

LQN
d (θ(α)i, θ(α)i−1)

]
T∇ωLQN

d (θk, θk−1)︸ ︷︷ ︸
How well aligned will the gradient of the overall loss w.r.t. the shared parameters

be with the value of the gradient of the kth head?

, (2)

where d = (s, a, r, s′) is a sample, α is the vector of coefficients (αk)
K
k=1, θ(α) is the parameters

after one gradient step starting from θ, ω is the shared parameters, ωk is the parameters of the kth

head such that θk = (ω, ωk), λθ is the learning rate of the parameters, and λα is the meta learning
rate.

In the following, we define the meta-optimization problem, analyse the empirical results, and
finally derive Equation 2. To define the meta-optimization problem, we first stress the de-
pendence of the learned parameters on the meta-parameters by noting them as a function of
α: θ∗(α). Therefore, the inner loop of the meta-gradient optimization problem is defined as
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θ∗(α) = minθ
∑K

k=1 αkLQN
d (θk, θk−1). This leads to the following optimization problem:

min
α

K∑
k=1

LQN
d (θ∗(α)k, θ

∗(α)k−1) s.t. θ∗(α) = min
θ

K∑
k=1

αkLQN
d (θk, θk−1)

1 20 40
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Figure 15: Top: Evolution of the meta-learned coefficients for each Bellman update during training
for 3 Atari games. Remarkably, the coefficients converge to similar values, indicating that setting
equal weights for each Bellman update is a good static choice for this setting. Bottom: Meta iS-DQN
K = 9 performs on par with iS-DQN K = 9, which is coherent with the values of the learned
coefficients.

We evaluate this approach for K = 9 on 3 Atari games, selected for their diversity in human-
normalized scores (see Figure 10). We parameterize the meta-parameters (αk)

K
k=1 as logits (zk)Kk=1

and apply the softmax function such that the loss is a convex combination of the individual terms. In
Figure 15 (top), we report the learned meta-parameters, which we use as a proxy for the importance
of each Bellman update during training. Remarkably, after 10M frames, the coefficients converge to
identical values, giving equal importance to each Bellman update. This indicates that setting equal
weights for each Bellman update is a good static choice for this setting, as proposed in Equation 1.
This explains why in Figure 15 (bottom), Meta iS-DQN K = 9 performs on par with iS-DQN K = 9,
as iS-DQN K = 9 uses equal static weights during training. Importantly, Meta iS-DQN K = 9
performs better than iS-DQN K = 1.

To derive Equation 2, we assume that the meta-parameters only influence one update step, as in Xu
et al. (2018). We also simplify the computations by choosing SGD as the optimizer instead of Adam,
noting θ(α) the parameters after one gradient step, starting from θ. The meta-parameter update, for a
sample d = (s, a, r, s′) is

αk ← αk − λα∇αk

K∑
i=1

LQN
d (θ(α)i,θ(α)i−1) = αk − λα

K∑
i=1

∇αk
LQN
d (θ(α)i, θ(α)i−1), (3)

where∇αk
LQN
d (θ(α)i, θ(α)i−1) = ∇θ(α)iL

QN
d (θ(α)i, θ(α)i−1)

T∇αk
θ(α)i

+∇θ(α)i−1
LQN
d (θ(α)i, θ(α)i−1)

T∇αk
θ(α)i−1 (4)

Equation 4 comes from the chain rule. We remark that for any k, ∇θk−1
LQN
d (θk, θk−1) = 0, since

the target network is frozen. We split the parameters of the heads from the shared parameters as in
Section 4: θ(α)i = (ω(α), ω(α)i), where ω represents the shared parameters and ωi the parameters
of the ith head. We now focus on the gradient of the ith head parameters with respect to αk:

∇αk
ω(α)i

(a)
= ∇αk

ωi − λθ∇ωi

K∑
j=1

αjLQN
d (θj , θj−1)

 (b)
= −λθ∇αk

 K∑
j=1

αj∇ωiL
QN
d (θj , θj−1)


(c)
= −λθ∇αk

(
αi∇ωi

LQN
d (θi, θi−1)

)
(d)
= −λθ1k=i∇ωi

LQN
d (θi, θi−1). (5)

(a) comes from the definition of ω(α)i, (b) uses the fact that ωi and λθ do not depend on αk, (c) uses
the fact that the parameters of the ith head do not influence the parameters of the other heads, and (d)
uses the fact that ∇αk

αi = 1k=i. Similarly, we derive the gradient of the shared parameters ω(α)
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with respect to αk:

∇αk
ω(α)

(e)
= ∇αk

ω − λθ∇ω

K∑
j=1

αjLQN
d (θj , θj−1)

 (f)
= −λθ∇αk

 K∑
j=1

αj∇ωLQN
d (θj , θj−1)


(g)
= −λθ

 K∑
j=1

∇αk
αj∇ωLQN

d (θj , θj−1)

 (h)
= −λθ

 K∑
j=1

1k=j∇ωLQN
d (θj , θj−1)


(i)
= −λθ∇ωLQN

d (θk, θk−1). (6)

(e) comes from the definition of ω(α), (f) uses the fact that ω and λθ do not depend on αk,
and the linearity of the sum, (g) uses the linearity of the gradient operator, (h) uses the fact that
∇αk

αj = 1k=j , and in (i), we evaluate the indicator function. Plugging Equations 5 and 6 in
Equation 4, we obtain:

∇αk
LQN
d (θ(α)i, θ(α)i−1)

(j)
= ∇θ(α)iL

QN
d (θ(α)i, θ(α)i−1)

T∇αk
θ(α)i

(k)
= ∇ω(α)iL

QN
d (θ(α)i, θ(α)i−1)

T∇αk
ω(α)i +∇ω(α)LQN

d (θ(α)i, θ(α)i−1)
T∇αk

ω(α)

(l)
= −λθ∇ω(α)iL

QN
d (θ(α)i, θ(α)i−1)

T
1k=i∇ωi

LQN
d (θi, θi−1)

− λθ∇ω(α)LQN
d (θ(α)i, θ(α)i−1)

T∇ωLQN
d (θk, θk−1) (7)

(j) comes from Equation 4, (k) uses the decomposition between the head parameters and the shared
parameters, and (l) comes from Equations 5 and 6. Finally, plugging Equation 7 in Equation 3 and
using the linearity of the dot product, we obtain the result presented in Equation 2:

αk ←αk + λαλθ∇ω(α)kL
QN
d (θ(α)k, θ(α)k−1)

T∇ωk
LQN
d (θk, θk−1)

+ λαλθ

K∑
i=1

∇ω(α)LQN
d (θ(α)i, θ(α)i−1)

T∇ωLQN
d (θk, θk−1).

= αk + λαλθ∇ω(α)kL
QN
d (θ(α)k, θ(α)k−1)

T∇ωk
LQN
d (θk, θk−1)

+ λαλθ∇ω(α)

[
K∑
i=1

LQN
d (θ(α)i, θ(α)i−1)

]T

∇ωLQN
d (θk, θk−1).

D.5 PILOT STUDY: MIXED PRECISION TRAINING OF IS-QN
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Figure 16: When reducing the precision of the operations performed during the forward and backward
passes of the neural network from float32 to float16, iS-QN still bridges the performance gap between
the target-free and target-based approaches.

To further reduce the resources required during training, the presented approach can be combined
with other techniques that also aim at reducing resource requirements. We provide an initial study
that combines the idea of performing operations with lower precision to further reduce the memory
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footprint (Micikevicius et al., 2018) with the presented approach. Specifically, the computations
during the forward and backward passes of the neural network are performed in float16b rather than
float32. In Figure 16, we show that the performance gap between the target-free and target-based
approaches remains when the operations are performed with lower precision. Remarkably, iS-DQN
K = 1 closes the performance gap, and iS-DQN K = 9 further boosts the learning speed of the
target-free approach, outperforming the target-based approach when the precision of the operations
is reduced. Overall, we observe a slight decrease in performance across all algorithms, which is
expected, as the precision of the operations during the forward and backward passes decreases.

E LIST OF HYPERPARAMETERS

Our codebase is written in Jax (Bradbury et al., 2018). The details of hyperparameters used for the
experiments are provided in Table 1 (Atari), Table 2 (DMC Hard), and Table 3 (Wordle). In each
experiment, the same hyperparameters as those provided in the original target-based approaches are
used without further tuning. We note Convda,bC a 2D convolutional layer with C filters of size a× b
and stride d, and FC E a fully connected layer with E neurons. When added, LayerNorm is placed
before each activation function, and BatchNorm is placed after the activation function. Additionally,
when BatchNorm is used, the state-action and next state-next action pairs are first concatenated and
then passed as a single batch to the network as suggested by the authors of CrossQ and CrossQ +
WN (Bhatt et al., 2024; Palenicek et al., 2025).

Table 1: Summary of the shared hyperparameters used for the Atari experiments. The CNN
architecture is described here. We used three stacked layers of size 32, 64, and 64 with a last linear
layer of size 512 for the IMPALA architecture (Espeholt et al., 2018).

Shared hyperparameters
Discount factor γ 0.99
Horizon H 27 000
Full action space No
Reward clipping clip(−1, 1)
Batch size 32

Torso architecture
Conv48,832
−Conv24,464
−Conv13,364

Head architecture
FC 512

−FC nA [TB-QN, TF-QN]
−FC (K + 1) · nA [iS-QN]

Activations ReLU

CQL hyperparameters
Number of gradient

62 500steps per epoch
Target update

2 000period T
Dataset size 5 000 000
Learning rate 5× 10−5

Adam ϵ 3.125× 10−4

CQL weight α 0.1

DQN hyperparameters
Number of training

250 000steps per epoch
Target update

8 000period T
Type of the FIFOreplay buffer D
Initial number

20 000of samples in D
Maximum number

1 000 000of samples in D
Gradient step

4period G
Starting ϵ 1
Ending ϵ 0.01
ϵ linear decay

250 000duration
Batch size 32
Learning rate 6.25× 10−5

Adam ϵ 1.5× 10−4
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Table 2: Summary of the shared hyperparameters
used for the DMC Hard experiments.

Environment
Discount factor γ 0.99
Horizon H 1000
Action repeat 2

Experiments
Batch size 256
Policy architecture SimbaV2 Actor
Critic Torso SimbaV2 Critic
architecture

Critic Head
architecture

FC 512
−FC natoms

[TB-SAC, TF-SAC]
−FC (K + 1) · natoms

[iS-SAC]
Activations ReLU
BatchNorm TF-SAC, iS-SAC
Number of

500 000training steps
Soft target update τ 5× 10−3

Initial number
5 000of samples in D

Maximum number
1 000 000of samples in D

Initial learning rate 1× 10−4

Final learning rate 1× 10−5

Optimizer Adam

SimbaV2 hyperparameters
Double Q No
Distributional critic

101bins natoms

Table 3: Summary of the shared hyperparameters
used for the Wordle experiments.

Environment
Dataset Wordle Twitter dataset
Discount factor γ 0.99
Number of tokens 35 (alphabet + colors)

Rewards −1 for incorrect guess,
0 for correct guess

Experiments
Batch size 1024

Policy architecture GPT-2 small
(Dropout p = 0.1)

Torso architecture Q,V
GPT-2 small

(Dropout p = 0.1)

Head architecture Q

FC 1536
−FC nA [TB-ILQL,

TF-ILQL]
−FC (K + 1) · nA

[iS-ILQL]

Head architecture V

FC 1536
−FC 1 [TB-ILQL,

TF-ILQL]
−FC (K + 1) · 1

[iS-ILQL]
Activations ReLU
Number of gradient steps 600 000
Soft target update τ 5× 10−3

Learning rate 1× 10−5

Optimizer Adam

ILQL hyperparameters
Inverse temperature β 4.0
CQL weight α 1× 10−4
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F INDIVIDUAL LEARNING CURVES

F.1 DEEP Q-NETWORK WITH CNN AND LAYERNORM
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Figure 17: Reducing the performance gap in online RL on 15 Atari games with the CNN architecture
and LayerNorm. Left: iS-DQN K = 9 not only reduces the performance gap but outperforms the
target-based approach. Middle: iS-DQN annuls the performance gap for the games where the score is
below the human level. Right: iS-DQN exhibits a lower amount of dormant neurons at the beginning
of the training compared to the target-free approach.
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Figure 18: Per game training curves of iS-DQN, TF-DQN, and TB-DQN with the CNN architecture
and LayerNorm. Except on Asterix, iS-DQN outperforms or is on par with the target-free approach
(TF-DQN).
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F.2 DEEP Q-NETWORK WITH IMPALA AND LAYERNORM
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Figure 19: Reducing the performance gap in online RL on 10 Atari games with the IMPALA
architecture and LayerNorm. Left: iS-DQN K = 9 is outperforms the target-free approach. Middle:
iS-DQN annuls the performance gap for the games where the score is below the human level. Right:
iS-DQN requires significantly fewer parameters than the target-based approach while reaching similar
performance.
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Figure 20: Per game training curves of iS-DQN, TF-DQN, and TB-DQN with the IMPALA architec-
ture and LayerNorm. Our approach outperforms or is on par with the target-free approach (TF-DQN)
on all games.
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F.3 DEEP Q-NETWORK WITH CNN
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Figure 21: Reducing the performance gap in online RL on 15 Atari games with the CNN architecture.
Left: iS-DQN K = 3 significantly reduces the performance gap between the target-free and target-
based approaches. Middle: iS-DQN annuls the performance gap for the games where the score is
below the human level. Right: Including BatchNorm in the architecture damages the performance on
the 5 considered games of the target-based approach. This is why BatchNorm is not included for the
experiments with TB-DQN.
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Figure 22: Per game training curves of iS-DQN, TF-DQN, and TB-DQN with the CNN architecture.
Remarkably, iS-DQN outperforms the target-free approach (TF-DQN) on all games.
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F.4 CONSERVATIVE Q-LEARNING WITH IMPALA AND LAYERNORM
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Figure 23: Reducing the performance gap in offline RL on 10 Atari games with the IMPALA
architecture and LayerNorm. Left: iS-CQL significantly reduces the performance gap for the gameS
where the score is below the human level. Middle: At the end of the training, iS-CQL and ES-CQL
lead to a higher srank than the target-free approach, which indicates a higher representation capability.
Right: All methods converge to a low amount of dormant neurons at the end of the training.
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Figure 24: Per game training curves of iS-CQL, TF-CQL, and TB-CQL with the IMPALA architecture
and LayerNorm. Except on VideoPinball, iS-CQL outperforms or is on par with the target-free
approach (TF-CQL).
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F.5 SOFT ACTOR-CRITIC WITH SIMBAV2 AND BATCHNORM
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Figure 25: Reducing the performance gap in online RL on the 7 DMC Hard tasks with the SimbaV2
architecture and BatchNorm. Left: As opposed to iS-SAC, the target-free approach suffers from a
low srank, which indicates a lower representation capability. Middle: The percentage of dormant
neurons remains low during training for all methods, not exceeding 7%. Right: The target-based
approach does not benefit from BatchNorm. This is why it is not included in the experiments with
TB-SAC. Importantly, all algorithms use ℓ2-norm as described in Lee et al. (2025).
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Figure 26: Per task training curves of iS-SAC, TF-SAC, and TB-SAC with the SimbaV2 architecture
and BatchNorm. iS-SAC consistently performs better than or on par with the target-free approach.
Interestingly, iS-SAC even outperforms the target-based approach on the humanoid tasks.
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