
Published as a workshop paper at SCOPE - ICLR 2025

TOWARDS INFINITE-LONG PREFIX IN TRANSFORMER

Yingyu Liang∗ Zhenmei Shi† Zhao Song‡ Chiwun Yang§

ABSTRACT

Prompting and context-based fine-tuning methods, which we call Prefix Learning,
have been proposed to enhance the performance of language models on various
downstream tasks. They are empirically efficient and effective, matching the
performance of full parameter fine-tuning, but the theoretical understandings are
limited. In this paper, we aim to address this limitation by studying their ability
from the perspective of prefix length. In particular, we provide a convergence
guarantee for training an ultra-long prefix in a stylized setting using the Neural
Tangent Kernel (NTK) framework. Based on this strong theoretical guarantee, we
design and implement an algorithm that only needs to introduce and fine-tune a
few extra trainable parameters instead of an infinite-long prefix in each layer of a
transformer, and can approximate the prefix attention to a guaranteed polynomial-
small error. Preliminary experimental results on vision, natural language, and math
data show that our method achieves superior or competitive performance compared
to existing methods like full parameters fine-tuning, P-Tuning V2, and LoRA.
This demonstrates our method is promising for parameter-efficient fine-tuning.
Our code can be found at https://github.com/ChristianYang37/
chiwun/tree/main/src/NTK-Attention.

1 INTRODUCTION

P X

Attention

Prefix Attention NTK-Attention (ours)

k X

: Trainable Parameter

: Frozen Parameter

: Layer Input Matrix

Complexity = O(mL+L)
Num Params = md

Complexity = O(Ld+L)
Num Params = rs + sd + r

22

W
W

: Backbone

Attention
ZA ZB

Figure 1: Illustration of existing prefix attention methods (Algorithm 1) and our NTK-Attention (Al-
gorithm 2). Compared to the former, NTK-Attention significantly reduces the number of parameters
and the time complexity. Here, X ∈ RL×d is the input of this layer, W = [WQ,WK ,WV] is frozen
weights of attention, P ∈ Rm×d is the trainable prefix matrix and ZA ∈ Rr×s, ZB ∈ Rs×d, k ∈ Rr

are the trainable parameters in our method. L is the input length, d the input dimension, m the
prefix length, and r a hyperparameter in NTK-attention (i.e., the dimension of the constructed feature
mapping; see Section 3). Note that m≫ L and m≫ d, and r = poly(d) (usually be chosen to d or
2d), s ≤ ⌊d/2⌋ (low-rank of ZA, ZB) are used in our experiments.

The advent of Large Language Models (LLMs) and Vision LLMs (vLLMs) has significantly advanced
the field of Artificial Intelligence (AI), with prominent examples like ChatGPT (ChatGPT, 2022),

∗ yingyul@hku.hk. The University of Hong Kong. yliang@cs.wisc.edu. University of
Wisconsin-Madison.

† zhmeishi@cs.wisc.edu. University of Wisconsin-Madison.
‡ magic.linuxkde@gmail.com. The Simons Institute for the Theory of Computing at the University

of California, Berkeley.
§ christiannyang37@gmail.com. Sun Yat-sen University.

1

https://github.com/ChristianYang37/chiwun/tree/main/src/NTK-Attention
https://github.com/ChristianYang37/chiwun/tree/main/src/NTK-Attention

Published as a workshop paper at SCOPE - ICLR 2025

GPT-4 (Achiam et al., 2023; Bubeck et al., 2023), Claude (Claude-3, 2024), Llama (Touvron et al.,
2023a;b), Gemini (Gemini, 2024), ViT (Dosovitskiy et al., 2020), DETR (Carion et al., 2020), BLIP
(Li et al., 2022; 2023a), CLIP (Radford et al., 2021). They have exhibited impressive performances
across a spectrum of tasks, encompassing chat systems (Maaz et al., 2023; Xu et al., 2023a; Zheng
et al., 2024), text-to-image conversion (Qiao et al., 2019; Frolov et al., 2021; Zhang et al., 2023),
AI mathematical inference (Hendrycks et al., 2020; Yu et al., 2023a; Yao et al., 2023), and many
more. However, despite these advancements, pre-existing LLMs often fall short in specialized
domains that demand a deeper understanding of professional knowledge (Tajbakhsh et al., 2016;
Devlin et al., 2018; Gururangan et al., 2020; Hu et al., 2021; Sun, 2023; Kasneci et al., 2023; Li
et al., 2023b; Thirunavukarasu et al., 2023; Li et al., 2024b; Wang et al., 2024). This has led to
the development of fine-tuning/adaptation (Shi et al., 2022; Xu et al., 2023b; Shi et al., 2024a)
methodologies aimed at enhancing the proficiency of these models in executing more specialized
tasks (Mangrulkar et al., 2022). Several notable contributions in this area, such as LoRA (Low-Rank
Adaptation, Hu et al. (2021)), P-Tuning (Liu et al., 2021b; 2023), and (IA)3 (Liu et al., 2022), have
displayed performances rivaling those of full-parameter fine-tuning techniques. This underscores the
potential of these fine-tuning strategies to further refine the capabilities of Large Language Models.

Among the methods proposed, most context-based fine-tuning methods, e.g., Prompt-Tuning (Lester
et al., 2021; Liu et al., 2021a), Prefix-Tuning (Li & Liang, 2021), P-Tuning (Liu et al., 2023; 2021b),
use enhanced input sequences (or virtual prompt, a.k.a soft prompt) to optimize their model outputs.
These methods are gaining significant interest due to their ease of implementation across various
model architectures, and also prevention of catastrophic forgetting with static pre-trained parameters
(Wang et al., 2023b; Sohn et al., 2023; Yang et al., 2024). We call the above approaches Prefix
Learning since they improve the performance by optimizing a prefix matrix added to the input in
each attention layer of the LLMs (see detailed formulation in Section 2).

Despite its wide use and strong empirical performance, we still have a limited understanding of
why and how prefix learning operates (Wang et al., 2023a; Petrov et al., 2024a;b). One common
phenomenon in prior empirical studies is that prefix learning results in better downstream performance
when the prefix length increases (Lester et al., 2021; Liu et al., 2023). We call this phenomenon
scaling law in prefix learning: the longer the prefix, the larger downstream dataset the model can fit,
and thus the better performance the model would have. Then intuitively, we would like to ask:

What happens when the prefix length is large or even tends to infinity?

The answer to this cannot be directly figured out via empirical evaluations, since it is impractical to
implement networks with ultra-long or even infinite prefixes in practice. Therefore, we first perform
a theoretical analysis of prefix learning. We study the optimization of ultra-long prefix learning via
the Neural Tangent Kernel (NTK) technique (Jacot et al., 2018), which has been used for analyzing
overparameterized networks and thus is suitable for ultra-long prefix learning. Based on the insights
gained from the analysis, we propose our method, NTK-attention, which reparameterizes prefix
learning and can approximate infinite-long prefix learning using a finite number of parameters. We
also conduct some empirical evaluations of our method on vision, natural language understanding,
and math inference datasets to demonstrate its effectiveness. We have the following contributions:

• We first perform a theoretical analysis of optimizing an ultra-long prefix in a stylized attention
network; see Appendix B. We consider a simplified attention network, and show that when prefix
length m is sufficiently large (i.e., prefix learning is sufficiently over-parameterized), the training
can be analyzed via NTK, which leads to our theoretical guarantee of convergence to small errors.
This also provides theoretical support for scaling law in prefix learning.

• We then propose our NTK-Attention (Algorithm 2), motivated by the above strong theoretical
guarantee; see Section 3. Our method approximates existing prefix attention (Algorithm 2) by
utilizing three trainable parameters ZA, ZB and k, to replace the parameter in prefix attention
(the prefix matrix P). This allows scaling the prefix length without large memory usage and
computational time that increases with the prefix length. It reduces the computation complexity
from O(mL) to O(L2), where L is the input length and m is the prefix length. See Figure 1 for an
illustration.

• We further conduct experiments on vision, language and math datasets to verify our theoretical
results; see Appendix C. The experiments include (1) a comparison among our NTK-Attention,
full parameters fine-tuning, and LoRA on CIFAR-100, Food-101 and Tiny-Imagenet datasets with

2

Published as a workshop paper at SCOPE - ICLR 2025

the same pre-trained ViT backbone; (2) a comparison among our NTK-Attention, P-Tuning V2,
and LoRA on SuperGLUE, WikiText-103, Penn TreeBank and LAMBADA datasets with the same
pre-trained ChatGLM3-6B and OPT-{125M, 350M, 1.3B, 2.7B, 6.7B} family; (3) a comparison
among our NTK-Attention and LoRA on GSM8K and MATH datasets with supervised fine-tune
pre-trained models LLAMA-3.2; (4) an ablation study to validate sensitivity of hyper-parameters
in NTK-Attention; (5) a comparison of the computational costs between our method and standard
prefix learning on random data. The empirical results show that on average our NTK-Attention
method achieves better performance than the competitors. For example, on SuperGLUE datasets, it
achieves an average accuracy that is 1.07% higher than LoRA and 12.94% higher than P-Tuning
V2. It is also observed that our method maintains low time and memory costs while those of
prefix learning scales with prefix length. The experimental results demonstrate that our method is
effective and efficient and supports our theoretical analysis.

2 PRELIMINARY: GENERAL PREFIX LEARNING

In this section, we provide the detailed formulation for prefix learning, which optimizes prefix
matrices in the attention layers of transformer-based LLMs.

Transformer Network with Prefix. Let X ∈ RL×d be an input matrix to the transformer network,
where L and d are the input length and dimension. An N -layer transformer network with an initial-
layer prefix matrix P(0) ∈ Rm(0)×d and a positional embedding matrix E ∈ R(m(0)+L)×d first

concatenate S(0) :=
[
P⊤
(0), X

⊤
]⊤
∈ R(m(0)+L)×d, then the output of the whole model is defined as:

fT (X) := TF(N) ◦ · · · ◦ TF(1)(S(0) + E),

where the ℓ-th layer of transformer block for ℓ ∈ [N], is then given by: TF(ℓ)(X) := FF(ℓ) ◦
PrefixAttn(ℓ)(X). Denote L′ := m(0) + L. The feed-forward network:

FF(ℓ)(X) := ReLU(XW(ℓ),1 + 1L′b⊤(ℓ),1)W
⊤
(ℓ),2

+ 1L′b⊤(ℓ),1 +X,

where W(ℓ),1,W(ℓ),2 ∈ Rd×d1 are projection weights, b1 ∈ Rd1 , b2 ∈ Rd are biases, and d1 represent
the hidden dimension of feed-forward. For simplicity, we consider only the single-head attention
network with prefix learning, a.k.a Prefix Attention in this work, is:

PrefixAttn(ℓ)(X) := Softmax(
Q(ℓ)K

⊤
(ℓ),P√
d

)V(ℓ),P +X, (1)

where Q(ℓ) := XW(ℓ),Q ∈ RL′×d,K(ℓ),P = S(ℓ)W(ℓ),K , V(ℓ),V = S(ℓ)W(ℓ),Q ∈ R(m(ℓ)+L′)×d.

Notably, S(ℓ) :=
[
P⊤
(ℓ), X

⊤
]⊤
∈ R(m(ℓ)+L′)×d be the concatenation of the prefix and the input,

and trainable prefix matrix P(ℓ) ∈ Rm(ℓ)×d stands for m(ℓ) virtual token vectors (or soft prompt).
W(ℓ),Q,W(ℓ),K ,W(ℓ),V ∈ Rd×d are query, key, and value parameter matrices in ℓ-layer, respec-
tively. Specifically, the length of prefix matrix m(ℓ) ≥ 0 for ℓ ∈ {0, · · · , N} in each layer can be
personalized due to some specific requirement.

General Prefix Learning Framework. The concept of Prefix Learning contains P-Tuning
(Liu et al., 2023; 2021b), Prefix-Tuning (Li & Liang, 2021), ICL (Brown et al., 2020), CoT
(Wei et al., 2022b) and so on. Essentially, they are all searching for the optimal prefix for a
specific task based on a strong pre-trained language model. We note the pre-trained weights
θ = {W(ℓ),Q,W(ℓ),K ,W(ℓ),V ,W(ℓ),1,W(ℓ),2, b(ℓ),1, b(ℓ),2}Nℓ=1 are all frozen during the optimiza-
tion process of prefix learning. Besides, prefix parameters of the whole model, θp = {P(ℓ)}Nℓ=0 are
trainable or adjustable for parameter-efficient-fine-tuning.

Denote the dataset as Dpl = {(Xi, Yi)}ni=1 where n is the dataset size, and Xi, Yi ∈ RL×d. Let
γ(·, ·) denote the loss function for the specific task (e.g., prompting, context-based fine-tuning, etc).
The training objective of prefix learning is:

min
θp
Lpl(θp) :=

n∑
i=1

γ(fT (Xi), Yi). (2)

3

Published as a workshop paper at SCOPE - ICLR 2025

Previous Observation. A rich line of studies (Liu et al., 2021b; Lester et al., 2021; Liu et al., 2023;
Reynolds & McDonell, 2021; Arora et al., 2022; Brown et al., 2020; Dong et al., 2022; Shi et al.,
2023; Von Oswald et al., 2023; Xu et al., 2024; Fu et al., 2022; Agarwal et al., 2024; Kaplan et al.,
2020; Hoffmann et al., 2022) have reported a common observation that as the prefix length increases,
the model’s ability to master complex skills also improves. Specifically, the performance of fine-tuned
models is enhanced when the prefix length grows within a certain range. A similar trend is observed
in prompting methods and in-context learning, where longer and more complex prompts lead to
better inference abilities in LLMs, and providing more examples in ICL results in improved LLM
performance. We summarize this as the scaling law in prefix learning: the longer the prefix length for
fine-tuning, the larger dataset the model can fit, thus, the more complicated skill it can master. This
motivates investigating prefix learning with long prefixes.

Algorithm 1 Prefix Attention

Input: Input matrix X ∈ RL×d

Parameters: Frozen query, key and value
weights WQ,WK ,WV ∈ Rd×d, trainable
prefix matrix P ∈ Rm×d

Output: Exact output Attn ∈ RL×d

1: procedure PREFIXATTEN(X)
2: S ←

[
P⊤, X⊤]⊤

3: Q,KP , VP ← XWQ, SWK , SWV

4: A← exp(QK⊤
P /
√
d)

5: D ← diag(A1m+L)
6: return D−1AVP

7: end procedure

Algorithm 2 NTK-Attention

Input: Input matrix X ∈ RL×d

Parameters: Frozen query, key and value
weights WQ,WK ,WV ∈ Rd×d, trainable
weights ZA ∈ Rr×s, ZB ∈ Rs×d, k ∈ Rr

Output: Approx output T ∈ RL×d

1: procedure NTK-ATTEN(X)
2: Q,K, V ← XWQ, XWK , XWV ,
3: Â← exp(QK⊤/

√
d)

4: D̂ ← diag(Â1L +Φ(Q)k)

5: T ← D̂−1(ÂV +Φ(Q)ZA · ZB)
6: return T
7: end procedure

3 NTK-ATTENTION: APPROXIMATE INFINITE-LONG PREFIX ATTENTION

The preceding section discussed the convergence guarantee of training sufficiently long prefixes in
transformer-based models. This strong theoretical property inspires us to scale up the prefix length
m (We omit the notation of layer number (ℓ) in further derivations). However, such prefix learning
(Algorithm 1) necessitates a time complexity of O(mLd+ L2d) in each layer of the model, which
is impractical due to a large m. This section proposes an approximate algorithm to make long
prefix learning practical. Our algorithm, NTK-Attention, is designed to output an approximation of
PrefixAttn(X) (Eq. (1)) in each layer of the model within O(L1+o(1)) and without using the long
prefix matrix P . We present the derivation and motivation of our algorithm in Section 3.1, formalize
the NTK-Attention algorithm in Section 3.2, and provide an approximation guarantee in Section 3.3.

3.1 DERIVATION: REPLACING PREFIX P WITH TRAINABLE PARAMETERS Z, k

There exists a wealth of attention approximation algorithms capable of executing attention com-
putations within n1+o(1) time (Han et al., 2024; Liang et al., 2024a;b). However, our focus lies
predominantly with the polynomial method (Tsai et al., 2019; Katharopoulos et al., 2020; Alman &
Song, 2023; 2024b). Our method has exhibited exceptional performance in terms of time and space
complexity through the use of a streaming algorithm.

Polynomial method. In attention networks, the query, key, and value state matrices, denoted as
Q,K, V ∈ RL×d, are assumed to have all entries bounded (Alman & Song, 2023). Under this
condition, the polynomial method first constructs a linear mapping ϕ : Rd → Rr, where r = poly(d)
(Alman & Song, 2023), and it satisfies the following relation (i, j ∈ [L], Qi,Kj ∈ Rd represent the
i-th row of Q and the j-th row of K respectively):

ϕ(Qi)
⊤ϕ(Kj) ≈ exp(Q⊤

i Kj/
√
d). (3)

Here, the mapping ϕ(·) is constructed based on the Taylor expansion of the exponential function,
and the larger value of r ≥ d would bring the approximation (Eq. (3)) with a smaller error. This
is guaranteed by Lemma 3.4 in Alman & Song (2023), refer to a copy in Lemma N.7. The i-th

4

Published as a workshop paper at SCOPE - ICLR 2025

Method Num Params Task Average
BoolQ CB Copa MultiRC RTE

P-Tuning V2 m = 1 0.12M 65.69±0.32 67.06±0.37 52.00±1.00 53.59±0.28 65.97±0.22 60.86±0.44

P-Tuning V2 m = 10 1.15M 66.67±0.23 74.07±0.00 54.00±0.00 54.17±0.71 66.55±0.25 63.10±0.24

P-Tuning V2 m = 100 11.47M 69.42±0.02 74.54±0.47 64.50±0.50 61.62±2.28 76.77±0.83 69.37±0.82

LoRA r′ = 8 3.67M 76.52±0.10 90.23±0.39 86.50±0.50 65.09±0.41 87.76±0.37 81.24±0.35

NTK-Attention (ours), r = 128, s = 16 3.78M 75.06±0.12 96.04±0.84 88.00±2.00 65.85±0.33 86.59±0.52 82.31±0.76

Table 1: Performance of different fine-tuning methods on the SuperGLUE datasets. The base model
is ChatGLM3-6B. The methods include P-Tuning V2, LoRA, and our NTK-Attention method. The
metric on these datasets is accuracy (measured in %). The best score on each dataset is boldfaced.

row of the approximate attention (denoted as PolyAttni ∈ R1×d) then can be computed as follows:

PolyAttni :=
ϕ(Qi)

⊤ ∑L
j=1 ϕ(Kj)V

⊤
j

ϕ(Qi)⊤
∑L

j=1 ϕ(Kj)
∈ R1×d,∀i ∈ [L].

Recall that given an input matrix X ∈ RL×d, thus, Q = XWQ, and we have [KP , VP] =

[
P
X

]
·

[WK ,WV] =

[
PWK PWV

XWK XWV

]
. Let KC := PWK , VC := PWV ∈ Rm×d and K := XWK , V :=

XWV ∈ RL×d. We expand the i-th row of the prefix attention, PrefixAttni(X) ∈ R1×d as:

PrefixAttni(X) =
exp(Q⊤

i K
⊤/
√
d)V + exp(Q⊤

i K
⊤
C /
√
d)VC

exp(Q⊤
i K

⊤/
√
d)1L + exp(Q⊤

i K
⊤
C /
√
d)1m

≈ exp(Q⊤
i K

⊤/
√
d)V + ϕ(Qi)

⊤Z

exp(Q⊤
i K

⊤/
√
d)1L + ϕ(Qi)⊤k

where

Z =

m∑
j=1

ϕ(KC,j)V
⊤
C,j ∈ Rr×d, k =

m∑
j=1

ϕ(KC,j) ∈ Rr. (4)

Here, the first step explicitly computes the softmax function, and the second step holds since replacing
exp(Q⊤

i K
⊤/
√
d) by Eq. (3), which is exp(Q⊤

i K
⊤
C,j/
√
d) ≈ ϕ(Qi)

⊤ϕ(KC,j),∀j ∈ [m].

Therefore, checking the training process of P , we observe that P is updating iff Z and k are updating.
Hence, we can replace P by utilizing trainable parameters Z and k in Eq. (4) to re-parameterize
the prefix attention. This is the key to how NTK-Attention approximates prefix attention without a
large number of parameters.

3.2 ALGORITHM

To present our algorithm, based on ϕ, we define: Φ(A) = [ϕ(A1,∗), · · · , ϕ(AL,∗)]
⊤ ∈ RL×r,∀A ∈

RL×d. Below we present our NTK-Attention method in Algorithm 2, and for comparison also present
the traditional prefix attention for prefix learning in Algorithm 1.

Implementation Detail of ϕ. In order to find a balance between approximation and efficient
computation of NTK-Attention, we use the first-order polynomial method. In particular, we choose
r = d, and the function ϕ is given by ϕ(z) := d−

1
4 ·(z◦1z≥0d

+exp(z)◦1z<0d
)+1d ∈ Rd,∀z ∈ Rd,

where 1z≥0d
∈ Rd is an indicative vector and its i-th entry for i ∈ [d] equals 1 only when zi ≥ 0,

and 0 otherwise.

Initialization, Approximation and Training of Z and k. In Section B, we initialize prefix matrix P
from standard normal distribution. Since the pre-trained weights WQ,WK ,WV ∈ Rd×d are known,
the initialization of Z and k, denotes Z(0) and k(0), can then be computed by Eq. (4). However,
consider that Z caches rd parameters for r = poly(d), which is insufficient parameter-efficient. In
response to it, we choose s ≤ ⌊d/2⌋ as an appropriately small integer, then Z(0) ≈ ZA(0) ·ZB(0) is
decomposed into two low-rank matrices ZA(0) ∈ Rr×s, ZB(0) ∈ Rs×d. For training, let gZA

(t) ∈
Rr×s, gZB

(t) ∈ Rs×d and gk(t) ∈ Rr denote the gradients of ZA(t), ZB(t) and k(t) at time t, and
η denote the learning rate. Then the update rule is:

ZA(t+ 1) := ZA(t)− ηgZA
(t), ZB(t+ 1) := ZB(t)− ηgZB

(t), k(t+ 1) := k(t)− ηgk(t).

5

Published as a workshop paper at SCOPE - ICLR 2025

Method Num Params Dataset Average
CIFAR-100 Food-101 Tiny-Imagenet

FFT 86.39M 85.15±0.13 84.76±0.07 76.20±0.23 82.04±0.14

LoRA r′ = 16 7.08M 92.17±0.05 89.38±0.33 88.22±0.09 89.92±0.16

LoRA r′ = 32 14.16M 92.01±0.20 89.86±0.11 90.16±0.12 90.68±0.14

NTK-Attention (ours), r = 64, s = 32 7.09M 92.55±0.03 90.57±0.01 89.46±0.10 90.86±0.05

Table 2: Performance of different fine-tuning methods on the CIFAR-100, Food-101 and Tiny-
Imagenet datasets. The base model is ViT-Base. The methods include FFT, LoRA, and our method
NTK-Attention. The metric is accuracy (measured in %). The best score on each dataset is boldfaced.

Number of Trainable Parameters. Since given r and s as two hyper-parameters in NTK-Attention,
for each attention layer in transformer-based architecture, we denote β := r

d . The number of trainable
parameters could be computed by (βs+ β + s)d where integer β ≥ 1 and s ≤ ⌊d/2⌋. This is more
flexible when adjusting the practical efficiency needs. For LoRA with its hyper-parameter r′ ≤ ⌊d/2⌋,
where r′ is the rank number used for approximation, its number of trainable parameters is 4r′d and
for prefix attention with its hyper-parameter m ≥ 1, its number of trainable parameters is md in each
attention layer. By choosing (βs+ β + s) ≤ 4r′, the higher efficiency of NTK-Attention compared
to LoRA will be satisfied.

3.3 ERROR BOUND AND COMPLEXITY REDUCTION

Introducing an ultra-long prefix matrix P ∈ Rm×d to satisfy the conditions in Theorem M.2 requires
md parameters for m ≥ Ω(λ−2 poly(n, d, exp(B))), while it also bring a O(m(m + L)d) time
complexity to compute Algorithm 1. Our NTK-Attention relieve this by replacing P with Z and k,
where we state our theoretical guarantee as follows:

Theorem 3.1 (Error bound with reduced time complexity, informal version of Theorem N.2). Let
m denote the prefix length. Given an input matrix X ∈ RL×d and prefix matrix P ∈ Rm×d,
we denote Q = XWQ, KC = PWK and VC = PWV . If the condition Eq. (4), ∥Q∥∞ ≤
o(
√
logm), ∥KC∥∞ ≤ o(

√
logm), ∥VC∥∞ ≤ o(

√
logm) and d = O(logm) holds, then Algo-

rithm 2 outputs a matrix T ∈ RL×d within time complexity of O(L2d) that satisfies:

∥T − PrefixAttn(X,P)∥∞ ≤ 1/ poly(m). (5)

Furthermore, if we replace the original attention operation (attention computation on input X with
K = XWK and V = XWV) with fast attention algorithms like HyperAttention (Han et al., 2024),
then NTK-Attention can be even more efficient, achieving Eq. (5) within complexity O(L1+o(1)d)
(see Corollary N.3 for proofs).

4 CONCLUSION

In this study, we illuminated the principles of prefix learning for fine-tuning when the prefix length
is large. We conducted an in-depth theoretical analysis, demonstrating that when the prefix length
is sufficiently large, the attention network is over-parameterized, and the Neural Tangent Kernel
technique can be leveraged to provide a convergence guarantee of prefix learning. Based on these
insights, we proposed a novel efficient fine-tuning method called NTK-Attention, which approximates
prefix attention using two trainable parameters to replace the large prefix matrix, thus significantly
mitigating memory usage issues and reducing computational cost for long prefixes. We also pro-
vided empirical results to support our theoretical findings, demonstrating NTK-Attention’s superior
performance on downstream tasks over baselines across natural language, math, and vision datasets.

ACKNOWLEDGMENT

We sincerely thank all anonymous reviewers for their constructive suggestions, which have helped
us to improve this paper. Research is partially supported by the National Science Foundation (NSF)
Grants 2023239-DMS, CCF-2046710, and Air Force Grant FA9550-18-1-0166.

6

Published as a workshop paper at SCOPE - ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Raghav Addanki, Chenyang Li, Zhao Song, and Chiwun Yang. One pass streaming algorithm for
super long token attention approximation in sublinear space. arXiv preprint arXiv:2311.14652,
2023.

Rishabh Agarwal, Avi Singh, Lei M Zhang, Bernd Bohnet, Stephanie Chan, Ankesh Anand, Zaheer
Abbas, Azade Nova, John D Co-Reyes, Eric Chu, et al. Many-shot in-context learning. arXiv
preprint arXiv:2404.11018, 2024.

Sina Alemohammad, Zichao Wang, Randall Balestriero, and Richard Baraniuk. The recurrent neural
tangent kernel. arXiv preprint arXiv:2006.10246, 2020.

Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 1, context-free grammar. arXiv
preprint arXiv:2305.13673, 2023a.

Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 3.2, knowledge manipulation.
arXiv preprint arXiv:2309.14402, 2023b.

Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 3.1, knowledge storage and
extraction. arXiv preprint arXiv:2309.14316, 2023c.

Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 3.3, knowledge capacity scaling
laws. arXiv preprint arXiv:2404.05405, 2024.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In International conference on machine learning, pp. 242–252. PMLR, 2019.

Josh Alman and Zhao Song. Fast attention requires bounded entries. Advances in Neural Information
Processing Systems, 36, 2023.

Josh Alman and Zhao Song. The fine-grained complexity of gradient computation for training large
language models. arXiv preprint arXiv:2402.04497, 2024a.

Josh Alman and Zhao Song. How to capture higher-order correlations? generalizing matrix soft-
max attention to kronecker computation. In The Twelfth International Conference on Learning
Representations, 2024b.

Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Russ R Salakhutdinov, and Ruosong Wang. On
exact computation with an infinitely wide neural net. Advances in neural information processing
systems, 32, 2019.

Simran Arora, Avanika Narayan, Mayee F Chen, Laurel Orr, Neel Guha, Kush Bhatia, Ines Chami,
and Christopher Re. Ask me anything: A simple strategy for prompting language models. In The
Eleventh International Conference on Learning Representations, 2022.

Sergei Bernstein. On a modification of chebyshev’s inequality and of the error formula of laplace.
Ann. Sci. Inst. Sav. Ukraine, Sect. Math, 1(4):38–49, 1924.

Alberto Bietti and Julien Mairal. On the inductive bias of neural tangent kernels. Advances in Neural
Information Processing Systems, 32, 2019.

Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101 – mining discriminative compo-
nents with random forests. In European Conference on Computer Vision, 2014.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

7

Published as a workshop paper at SCOPE - ICLR 2025

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general intelligence:
Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey
Zagoruyko. End-to-end object detection with transformers. In European conference on computer
vision, pp. 213–229. Springer, 2020.

ChatGPT. Optimizing language models for dialogue. OpenAI Blog, November 2022. URL https:
//openai.com/blog/chatgpt/.

Herman Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on the sum of
observations. The Annals of Mathematical Statistics, pp. 493–507, 1952.

Lenaic Chizat and Francis Bach. Implicit bias of gradient descent for wide two-layer neural networks
trained with the logistic loss. In Conference on learning theory, pp. 1305–1338. PMLR, 2020.

Timothy Chu, Zhao Song, and Chiwun Yang. Fine-tune language models to approximate unbiased
in-context learning. arXiv preprint arXiv:2310.03331, 2023.

Timothy Chu, Zhao Song, and Chiwun Yang. How to protect copyright data in optimization of
large language models? In Proceedings of the AAAI Conference on Artificial Intelligence, pp.
17871–17879, 2024.

Claude-3. Introducing the next generation of claude. Anthropic News, March 2024. URL https:
//www.anthropic.com/news/claude-3-family/.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in Neural Information Processing Systems,
35:16344–16359, 2022.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Yichuan Deng, Zhihang Li, and Zhao Song. Attention scheme inspired softmax regression. arXiv
preprint arXiv:2304.10411, 2023.

Yichuan Deng, Zhao Song, and Chiwun Yang. Attention is naturally sparse with gaussian distributed
input. arXiv preprint arXiv:2404.02690, 2024.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Ning Ding, Shengding Hu, Weilin Zhao, Yulin Chen, Zhiyuan Liu, Hai-Tao Zheng, and Maosong Sun.
Openprompt: An open-source framework for prompt-learning. arXiv preprint arXiv:2111.01998,
2021.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu Sun, Jingjing Xu, and
Zhifang Sui. A survey on in-context learning. arXiv preprint arXiv:2301.00234, 2022.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes
over-parameterized neural networks. In ICLR. arXiv preprint arXiv:1810.02054, 2019.

8

https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/
https://www.anthropic.com/news/claude-3-family/
https://www.anthropic.com/news/claude-3-family/

Published as a workshop paper at SCOPE - ICLR 2025

Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding, Jiezhong Qiu, Zhilin Yang, and Jie Tang. Glm:
General language model pretraining with autoregressive blank infilling. In Proceedings of the 60th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
320–335, 2022.

Javier Ferrando, Gabriele Sarti, Arianna Bisazza, and Marta R Costa-jussà. A primer on the inner
workings of transformer-based language models. arXiv preprint arXiv:2405.00208, 2024.

Sergey Foss, Dmitry Korshunov, Stan Zachary, et al. An introduction to heavy-tailed and subexpo-
nential distributions, volume 6. Springer, 2011.

Stanislav Frolov, Tobias Hinz, Federico Raue, Jörn Hees, and Andreas Dengel. Adversarial text-to-
image synthesis: A review. Neural Networks, 144:187–209, 2021.

Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark, and Tushar Khot. Complexity-based prompting
for multi-step reasoning. In The Eleventh International Conference on Learning Representations,
2022.

Yeqi Gao, Sridhar Mahadevan, and Zhao Song. An over-parameterized exponential regression. arXiv
preprint arXiv:2303.16504, 2023a.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, and
Haofen Wang. Retrieval-augmented generation for large language models: A survey. arXiv
preprint arXiv:2312.10997, 2023b.

Gemini. Welcome to the gemini era. Google Deepmind Technologies, May 2024. URL https:
//deepmind.google/technologies/gemini/.

Suchin Gururangan, Ana Marasović, Swabha Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A Smith. Don’t stop pretraining: Adapt language models to domains and tasks. arXiv
preprint arXiv:2004.10964, 2020.

Uffe Haagerup. The best constants in the khintchine inequality. Studia Mathematica, 70(3):231–283,
1981.

Insu Han, Rajesh Jayaram, Amin Karbasi, Vahab Mirrokni, David Woodruff, and Amir Zandieh.
Hyperattention: Long-context attention in near-linear time. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=
Eh0Od2BJIM.

David Lee Hanson and Farroll Tim Wright. A bound on tail probabilities for quadratic forms in
independent random variables. The Annals of Mathematical Statistics, 42(3):1079–1083, 1971.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. NeurIPS,
2021.

Wassily Hoeffding. Probability inequalities for sums of bounded random variables. The collected
works of Wassily Hoeffding, pp. 409–426, 1994.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Jiri Hron, Yasaman Bahri, Jascha Sohl-Dickstein, and Roman Novak. Infinite attention: Nngp and ntk
for deep attention networks. In International Conference on Machine Learning, pp. 4376–4386.
PMLR, 2020.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

9

https://deepmind.google/technologies/gemini/
https://deepmind.google/technologies/gemini/
https://openreview.net/forum?id=Eh0Od2BJIM
https://openreview.net/forum?id=Eh0Od2BJIM

Published as a workshop paper at SCOPE - ICLR 2025

Jerry Yao-Chieh Hu, Maojiang Su, En-Jui Kuo, Zhao Song, and Han Liu. Computational limits of
low-rank adaptation (lora) for transformer-based models. arXiv preprint arXiv:2406.03136, 2024.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. Advances in neural information processing systems, 31, 2018.

Zhengbao Jiang, Frank F Xu, Luyu Gao, Zhiqing Sun, Qian Liu, Jane Dwivedi-Yu, Yiming Yang,
Jamie Callan, and Graham Neubig. Active retrieval augmented generation. arXiv preprint
arXiv:2305.06983, 2023.

Praneeth Kacham, Vahab Mirrokni, and Peilin Zhong. Polysketchformer: Fast transformers via
sketches for polynomial kernels. arXiv preprint arXiv:2310.01655, 2023.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Enkelejda Kasneci, Kathrin Seßler, Stefan Küchemann, Maria Bannert, Daryna Dementieva, Frank
Fischer, Urs Gasser, Georg Groh, Stephan Günnemann, Eyke Hüllermeier, et al. Chatgpt for good?
on opportunities and challenges of large language models for education. Learning and individual
differences, 103:102274, 2023.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are rnns:
Fast autoregressive transformers with linear attention. In International conference on machine
learning, pp. 5156–5165. PMLR, 2020.

Aleksandr Khintchine. Über dyadische brüche. Mathematische Zeitschrift, 18(1):109–116, 1923.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Beatrice Laurent and Pascal Massart. Adaptive estimation of a quadratic functional by model selection.
Annals of statistics, pp. 1302–1338, 2000.

Jaehoon Lee, Samuel Schoenholz, Jeffrey Pennington, Ben Adlam, Lechao Xiao, Roman Novak, and
Jascha Sohl-Dickstein. Finite versus infinite neural networks: an empirical study. Advances in
Neural Information Processing Systems, 33:15156–15172, 2020.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691, 2021.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. Advances in Neural Information Processing Systems, 33:
9459–9474, 2020.

Chenyang Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. Exploring the frontiers of softmax: Prov-
able optimization, applications in diffusion model, and beyond. arXiv preprint arXiv:2405.03251,
2024a.

Chenyang Li, Yingyu Liang, Zhenmei Shi, Zhao Song, and Tianyi Zhou. Fourier circuits in neural
networks: Unlocking the potential of large language models in mathematical reasoning and modular
arithmetic. arXiv preprint arXiv:2402.09469, 2024b.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-
training for unified vision-language understanding and generation. In International conference on
machine learning, pp. 12888–12900. PMLR, 2022.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
pre-training with frozen image encoders and large language models. In International conference
on machine learning, pp. 19730–19742. PMLR, 2023a.

10

Published as a workshop paper at SCOPE - ICLR 2025

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190, 2021.

Yinheng Li, Shaofei Wang, Han Ding, and Hang Chen. Large language models in finance: A survey.
In Proceedings of the Fourth ACM International Conference on AI in Finance, pp. 374–382, 2023b.

Yuanzhi Li and Yingyu Liang. Learning overparameterized neural networks via stochastic gradient
descent on structured data. Advances in neural information processing systems, 31, 2018.

Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma. Chain of thought empowers transformers to
solve inherently serial problems. arXiv preprint arXiv:2402.12875, 2024c.

Yingyu Liang, Heshan Liu, Zhenmei Shi, Zhao Song, and Junze Yin. Conv-basis: A new
paradigm for efficient attention inference and gradient computation in transformers. arXiv preprint
arXiv:2405.05219, 2024a.

Yingyu Liang, Zhenmei Shi, Zhao Song, and Yufa Zhou. Tensor attention training: Provably efficient
learning of higher-order transformers. arXiv preprint arXiv:2405.16411, 2024b.

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta, Tenghao Huang, Mohit Bansal, and
Colin A Raffel. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context
learning. Advances in Neural Information Processing Systems, 35:1950–1965, 2022.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig.
Pre-train, prompt, and predict: a systematic survey of prompting methods in natural language
processing. arxiv. arXiv preprint arXiv:2107.13586, 2021a.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Lam Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang.
P-tuning v2: Prompt tuning can be comparable to fine-tuning universally across scales and tasks.
arXiv preprint arXiv:2110.07602, 2021b.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, Yujie Qian, Zhilin Yang, and Jie Tang. Gpt
understands, too. AI Open, 2023.

Yichao Lu, Paramveer Dhillon, Dean P Foster, and Lyle Ungar. Faster ridge regression via the
subsampled randomized hadamard transform. Advances in neural information processing systems,
26, 2013.

Muhammad Maaz, Hanoona Rasheed, Salman Khan, and Fahad Shahbaz Khan. Video-chatgpt:
Towards detailed video understanding via large vision and language models. arXiv preprint
arXiv:2306.05424, 2023.

Sadhika Malladi, Alexander Wettig, Dingli Yu, Danqi Chen, and Sanjeev Arora. A kernel-based
view of language model fine-tuning. In International Conference on Machine Learning, pp.
23610–23641. PMLR, 2023.

Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut, Younes Belkada, Sayak Paul, and Benjamin
Bossan. Peft: State-of-the-art parameter-efficient fine-tuning methods. https://github.
com/huggingface/peft, 2022.

Mitch Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large annotated corpus
of english: The penn treebank. Computational linguistics, 19(2):313–330, 1993.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Mohammed Ali mnmoustafa. Tiny imagenet, 2017. URL https://kaggle.com/
competitions/tiny-imagenet.

Alexander Munteanu, Simon Omlor, Zhao Song, and David Woodruff. Bounding the width of neural
networks via coupled initialization a worst case analysis. In International Conference on Machine
Learning, pp. 16083–16122. PMLR, 2022.

11

https://github.com/huggingface/peft
https://github.com/huggingface/peft
https://kaggle.com/competitions/tiny-imagenet
https://kaggle.com/competitions/tiny-imagenet

Published as a workshop paper at SCOPE - ICLR 2025

Samet Oymak and Mahdi Soltanolkotabi. Toward moderate overparameterization: Global con-
vergence guarantees for training shallow neural networks. IEEE Journal on Selected Areas in
Information Theory, 1(1):84–105, 2020.

Druv Pai, Sam Buchanan, Ziyang Wu, Yaodong Yu, and Yi Ma. Masked completion via structured
diffusion with white-box transformers. In The Twelfth International Conference on Learning
Representations, 2024.

Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Quan Ngoc Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The lambada dataset:
Word prediction requiring a broad discourse context. arXiv preprint arXiv:1606.06031, 2016.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019.

Aleksandar Petrov, Philip Torr, and Adel Bibi. When do prompting and prefix-tuning work? a
theory of capabilities and limitations. In The Twelfth International Conference on Learning
Representations, 2024a.

Aleksandar Petrov, Philip HS Torr, and Adel Bibi. Prompting a pretrained transformer can be a
universal approximator. arXiv preprint arXiv:2402.14753, 2024b.

Tingting Qiao, Jing Zhang, Duanqing Xu, and Dacheng Tao. Mirrorgan: Learning text-to-image
generation by redescription. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 1505–1514, 2019.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Laria Reynolds and Kyle McDonell. Prompt programming for large language models: Beyond the
few-shot paradigm. In Extended Abstracts of the 2021 CHI Conference on Human Factors in
Computing Systems, pp. 1–7, 2021.

Mark Rudelson and Roman Vershynin. Hanson-wright inequality and sub-gaussian concentration.
2013.

Mariia Seleznova and Gitta Kutyniok. Neural tangent kernel beyond the infinite-width limit: Effects
of depth and initialization. In International Conference on Machine Learning, pp. 19522–19560.
PMLR, 2022.

Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, and Tri Dao.
Flashattention-3: Fast and accurate attention with asynchrony and low-precision. arXiv preprint
arXiv:2407.08608, 2024.

Zhenmei Shi, Junyi Wei, and Yingyu Liang. A theoretical analysis on feature learning in neural
networks: Emergence from inputs and advantage over fixed features. In International Conference
on Learning Representations, 2021.

Zhenmei Shi, Jiefeng Chen, Kunyang Li, Jayaram Raghuram, Xi Wu, Yingyu Liang, and Somesh Jha.
The trade-off between universality and label efficiency of representations from contrastive learning.
In The Eleventh International Conference on Learning Representations, 2022.

Zhenmei Shi, Junyi Wei, Zhuoyan Xu, and Yingyu Liang. Why larger language models do in-context
learning differently? In R0-FoMo: Robustness of Few-shot and Zero-shot Learning in Large
Foundation Models, 2023.

Zhenmei Shi, Yifei Ming, Ying Fan, Frederic Sala, and Yingyu Liang. Domain generalization via
nuclear norm regularization. In Conference on Parsimony and Learning, pp. 179–201. PMLR,
2024a.

12

Published as a workshop paper at SCOPE - ICLR 2025

Zhenmei Shi, Yifei Ming, Xuan-Phi Nguyen, Yingyu Liang, and Shafiq Joty. Discovering the gems
in early layers: Accelerating long-context llms with 1000x input token reduction. arXiv preprint
arXiv:2409.17422, 2024b.

Zhenmei Shi, Junyi Wei, and Yingyu Liang. Provable guarantees for neural networks via gradient
feature learning. Advances in Neural Information Processing Systems, 36, 2024c.

Kihyuk Sohn, Huiwen Chang, José Lezama, Luisa Polania, Han Zhang, Yuan Hao, Irfan Essa, and
Lu Jiang. Visual prompt tuning for generative transfer learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 19840–19851, 2023.

Zhao Song and Xin Yang. Quadratic suffices for over-parametrization via matrix chernoff bound.
arXiv preprint arXiv:1906.03593, 2019.

Zhongxiang Sun. A short survey of viewing large language models in legal aspect. arXiv preprint
arXiv:2303.09136, 2023.

Nima Tajbakhsh, Jae Y Shin, Suryakanth R Gurudu, R Todd Hurst, Christopher B Kendall, Michael B
Gotway, and Jianming Liang. Convolutional neural networks for medical image analysis: Full
training or fine tuning? IEEE transactions on medical imaging, 35(5):1299–1312, 2016.

Arun James Thirunavukarasu, Darren Shu Jeng Ting, Kabilan Elangovan, Laura Gutierrez, Ting Fang
Tan, and Daniel Shu Wei Ting. Large language models in medicine. Nature medicine, 29(8):
1930–1940, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Joel A Tropp. Improved analysis of the subsampled randomized hadamard transform. Advances in
Adaptive Data Analysis, 3(01n02):115–126, 2011.

Yao-Hung Hubert Tsai, Shaojie Bai, Makoto Yamada, Louis-Philippe Morency, and Ruslan Salakhut-
dinov. Transformer dissection: a unified understanding of transformer’s attention via the lens of
kernel. arXiv preprint arXiv:1908.11775, 2019.

Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordvintsev,
Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient descent. In
International Conference on Machine Learning, pp. 35151–35174. PMLR, 2023.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel Bowman. Superglue: A stickier benchmark for general-purpose language
understanding systems. Advances in neural information processing systems, 32, 2019.

Jiayu Wang, Yifei Ming, Zhenmei Shi, Vibhav Vineet, Xin Wang, and Neel Joshi. Is a picture worth
a thousand words? delving into spatial reasoning for vision language models. arXiv preprint
arXiv:2406.14852, 2024.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022a.

Yihan Wang, Jatin Chauhan, Wei Wang, and Cho-Jui Hsieh. Universality and limitations of prompt
tuning. Advances in Neural Information Processing Systems, 36, 2023a.

Zhen Wang, Rameswar Panda, Leonid Karlinsky, Rogerio Feris, Huan Sun, and Yoon Kim. Multitask
prompt tuning enables parameter-efficient transfer learning. arXiv preprint arXiv:2303.02861,
2023b.

13

Published as a workshop paper at SCOPE - ICLR 2025

Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vincent
Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 139–149, 2022b.

Colin Wei, Jason D Lee, Qiang Liu, and Tengyu Ma. Regularization matters: Generalization and
optimization of neural nets vs their induced kernel. Advances in Neural Information Processing
Systems, 32, 2019.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language models.
arXiv preprint arXiv:2206.07682, 2022a.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022b.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transformers:
State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771, 2019.

Junda Wu, Tong Yu, Rui Wang, Zhao Song, Ruiyi Zhang, Handong Zhao, Chaochao Lu, Shuai Li,
and Ricardo Henao. Infoprompt: Information-theoretic soft prompt tuning for natural language
understanding. Advances in Neural Information Processing Systems, 36, 2023.

Canwen Xu, Daya Guo, Nan Duan, and Julian McAuley. Baize: An open-source chat model with
parameter-efficient tuning on self-chat data. arXiv preprint arXiv:2304.01196, 2023a.

Zhuoyan Xu, Zhenmei Shi, Junyi Wei, Fangzhou Mu, Yin Li, and Yingyu Liang. Towards few-shot
adaptation of foundation models via multitask finetuning. In The Twelfth International Conference
on Learning Representations, 2023b.

Zhuoyan Xu, Zhenmei Shi, and Yingyu Liang. Do large language models have compositional ability?
an investigation into limitations and scalability. In ICLR 2024 Workshop on Mathematical and
Empirical Understanding of Foundation Models, 2024.

Jingfeng Yang, Hongye Jin, Ruixiang Tang, Xiaotian Han, Qizhang Feng, Haoming Jiang, Shaochen
Zhong, Bing Yin, and Xia Hu. Harnessing the power of llms in practice: A survey on chatgpt and
beyond. ACM Transactions on Knowledge Discovery from Data, 18(6):1–32, 2024.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large language models. Advances in Neural
Information Processing Systems, 36, 2023.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhenguo
Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions for
large language models. arXiv preprint arXiv:2309.12284, 2023a.

Yaodong Yu, Sam Buchanan, Druv Pai, Tianzhe Chu, Ziyang Wu, Shengbang Tong, Benjamin
Haeffele, and Yi Ma. White-box transformers via sparse rate reduction. Advances in Neural
Information Processing Systems, 36:9422–9457, 2023b.

Yaodong Yu, Tianzhe Chu, Shengbang Tong, Ziyang Wu, Druv Pai, Sam Buchanan, and Yi Ma. Emer-
gence of segmentation with minimalistic white-box transformers. arXiv preprint arXiv:2308.16271,
2023c.

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang, Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu,
Wendi Zheng, Xiao Xia, et al. Glm-130b: An open bilingual pre-trained model. arXiv preprint
arXiv:2210.02414, 2022.

Yuchen Zeng and Kangwook Lee. The expressive power of low-rank adaptation. arXiv preprint
arXiv:2310.17513, 2023.

Chenshuang Zhang, Chaoning Zhang, Mengchun Zhang, and In So Kweon. Text-to-image diffusion
model in generative ai: A survey. arXiv preprint arXiv:2303.07909, 2023.

14

Published as a workshop paper at SCOPE - ICLR 2025

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language
models. arXiv preprint arXiv:2205.01068, 2022.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36, 2024.

Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Conditional prompt learning for
vision-language models. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 16816–16825, 2022.

Mo Zhou, Rong Ge, and Chi Jin. A local convergence theory for mildly over-parameterized two-layer
neural network. In Conference on Learning Theory, pp. 4577–4632. PMLR, 2021.

15

Published as a workshop paper at SCOPE - ICLR 2025

Appendix

CONTENTS

1 Introduction 1

2 Preliminary: General Prefix Learning 3

3 NTK-Attention: Approximate Infinite-Long Prefix Attention 4

3.1 Derivation: Replacing Prefix P with Trainable Parameters Z, k 4

3.2 Algorithm . 5

3.3 Error Bound and Complexity Reduction . 6

4 Conclusion 6

A Related Work 18

B Theoretical Analysis of Prefix Learning via NTK 18

B.1 Problem Setup . 18

B.2 Neural Tangent Kernel . 19

B.3 Main Result: Loss Convergence Guarantee . 19

C Empirical Evaluations 20

D Algorithm Details and Computational Complexity Analysis 22

E Experimental Details 23

E.1 Setup Details . 23

E.2 Additional Empirical Complexity Analysis . 23

E.3 Additional Ablation Study . 24

F Naive NTK-Attention Implementation with Flash-Attention 25

G Further Discussions 25

H Preliminary of Analysis 26

H.1 Facts . 27

H.2 Probability . 27

I Definitions of NTK Analysis 28

I.1 Loss function . 29

J Gradient Computation 30

J.1 Computing Gradient . 30

16

Published as a workshop paper at SCOPE - ICLR 2025

J.2 Gradient Descent . 32

K Neural Tangent Kernel 34

K.1 Kernel Perturbation . 34

K.2 Kernel PSD during Training Process . 37

L Loss Decomposition 38

L.1 Bounding C0 . 43

L.2 Bounding C1,2 . 46

L.3 Bounding C2 . 48

L.4 Bounding C3 . 49

L.5 Bounding Loss during Training Process . 52

L.6 Helpful Lemma . 52

M Convergence of Prefix Learning 55

M.1 Main Result . 55

M.2 Induction Part 1. For Weights . 56

M.3 Induction Part 2. For Loss . 56

M.4 Induction Part 3. For Gradient . 57

M.5 Bounding Loss at Initialization . 58

N NTK-Attention 58

N.1 Definitions . 58

N.2 Error Bound . 58

N.3 Tools from Fast Attention . 59

O Taylor Series 59

Roadmap. We provide supplementary parts of the full version of this paper from Appendix A to
Appendix C. We review related works of this work in Appendix A. We supplement the theoretical
analysis of infinite-long prefix learning in Appendix B. The main empirical evaluation of NTK-
Attention is shown in Appendix C.

In Appendix D, we present the details of our method and prefix attention, and give a complexity and
memory analysis. The experimental details for our empirical evaluation are shown in Appendix E.
We give a naive implementation of NTK-Attention within Python code in Appendix F. We provide
more discussions on our work in Appendix G, including the limitations and societal impacts of this
paper.

We provide the preliminary we use in our analysis in Appendix H, including helpful probability tools.
We provide the basic definitions in Appendix I, and give helpful Lemmas about gradient computation
in Appendix J. Then we present our adaptation of NTK in our analysis in Appendix K, in Appendix L
show how to decompose the training objective to simplify proofs, and finally post our main results
and the proofs for analyzing the training in Appendix M.

17

Published as a workshop paper at SCOPE - ICLR 2025

In Appendix N, we compute the error bound on our NTK-Attention approximating ultra-long prefix
in attention. In Appendix O, we state helpful tools about the Taylor series.

A RELATED WORK

Prefix Learning. Prefix Learning (Lester et al., 2021; Ding et al., 2021; Wang et al., 2022b; Zhou
et al., 2022; Liu et al., 2021a; Petrov et al., 2024a; Wu et al., 2023), including Prompt-Tuning (Lester
et al., 2021), Prefix-Tuning (Li & Liang, 2021), P-Tuning (Liu et al., 2023; 2021b), Reweighted
In-Context Learning (RICL) (Chu et al., 2023) and so on, is proposed to enhance the performance
of language models on the downstream tasks and to reduce the costs of computational resources of
fine-tuning the whole model. Those methods optimize task-specific prompts for downstream task
improvement. On the other hand, besides the Parameter-Efficient-Fine-Tuning (PEFT) approaches
(Mangrulkar et al., 2022) we mentioned above, Retrieval Augmented Generation (RAG) (Lewis et al.,
2020; Jiang et al., 2023; Gao et al., 2023b) and Chain-of-Thought (CoT) prompting (Wei et al., 2022b;
Wang et al., 2022a; Fu et al., 2022) can also be considered as prefix learning. We conclude all these
works to an optimization problem that improves the prefix based on task-specific measurements.

Neural Tangent Kernel. Neural Tangent Kernel (NTK) (Jacot et al., 2018) studies the gradient flow
of neural networks in the training process. They showed neural networks are equivalent to Gaussian
processes in the infinite-width limit at initialization. A bunch of works has explained the strong
performance and the learning ability of neural networks at over-parameterization, such as (Li & Liang,
2018; Du et al., 2019; Song & Yang, 2019; Allen-Zhu et al., 2019; Wei et al., 2019; Bietti & Mairal,
2019; Lee et al., 2020; Chizat & Bach, 2020; Shi et al., 2021; Zhou et al., 2021; Seleznova & Kutyniok,
2022; Gao et al., 2023a; Li et al., 2024a; Shi et al., 2024c) and many more. Furthermore, Arora et al.
(2019) gave the first exact algorithm on computing Convolutional NTK (CNTK), Alemohammad
et al. (2020) proposed Recurrent NTK, and Hron et al. (2020) presented infinite attention via NNGP
and NTK for attention networks. These works have demonstrated advanced performance by utilizing
NTK in different neural network architectures. In particular, Malladi et al. (2023) have studied the
training dynamic of fine-tuning LLMs via NTK and confirmed the efficiency of such methods.

Theory of Understanding Large Language Models. Since the complicated transformer-based
architecture and stochastic optimization process of LLMs lead the study of their behaviors to be a
challenge, analyzing LLMs through some theoretical guarantee helps in providing insights to improve
and design the next generation of AI systems. This topic includes efficient LLMs (Alman & Song,
2023; 2024a;b; Han et al., 2024; Kacham et al., 2023; Addanki et al., 2023; Deng et al., 2024; Shi
et al., 2024b), optimization of LLMs (Deng et al., 2023; Li et al., 2024a), white-box transformers (Yu
et al., 2023b;c; Ferrando et al., 2024; Pai et al., 2024), analysis of emergent abilities of LLMs (Brown
et al., 2020; Wei et al., 2022a; Allen-Zhu & Li, 2023a;b;c; 2024), etc. Especially, (Alman & Song,
2023) proved that the hardness of fast attention can be achieved within n1+o(1) times executions,
one effective way is to construct a high-order polynomial mapping based on Taylor expansion of the
exponential function exp(·), and it inspired the design of our NTK-Attention method.

B THEORETICAL ANALYSIS OF PREFIX LEARNING VIA NTK

In this section, we explore the theory behind prefix learning with ultra-long prefixes. We first present
the theoretical setting for a simplified model F(W,x, a) in Section B.1, and then in Section B.2 intro-
duce the formal definition of the neural tangent kernel for our problem and confirm the convergence
of the kernel matrices needed for performing NTK analysis. In Section B.3 we state the main result,
a convergence guarantee of prefix learning in this setting (the detailed analysis is in the appendix).

B.1 PROBLEM SETUP

Model. The attention computation with prefix P given is by Eq. (1). Since the attention parameters

are fixed, it can be rewritten as Softmax(X̃P⊤ + b) ·
[
PWV

b′

]
where X̃ = XWQW

⊤
K/
√
d, b =

XWQW
⊤
KX⊤/

√
d, and b′ = XWV . We view the input sequence as one token (i.e., assuming

L = 1) such that the input X and thus X̃ become vectors, simplifying our analysis from matrix-form

18

Published as a workshop paper at SCOPE - ICLR 2025

calculations to vector-form. Furthermore, ignoring the bias terms, and introducing notations x := X̃⊤

and W = P⊤, the attention simplifies to Softmax(xW) ·W⊤WV =
∑

r∈[m] exp(w
⊤
r x)wrWV∑

r∈[m] exp(w
⊤
r x)

where
wr is the r-th column of W . We therefore consider the following two-layer attention model:

F(W,x, a) := m

∑
r∈[m] exp(w

⊤
r x)wrar∑

r∈[m] exp(w
⊤
r x)

(6)

with the hidden-layer weights W = [w1, w2, . . . , wm] ∈ Rd×m and output-layer weights a= [a1, a2,
. . . , am]⊤ ∈ Rm. Such a stylized setting has been widely used for studying the learning behavior of
transformer-based models (Deng et al., 2023; Chu et al., 2023; 2024; Li et al., 2024a), and they gave
detailed derivations and guarantees for its connection to attention. Furthermore, our analysis can be
extended to models with bias terms and matrix inputs rigorously.

Training. Consider a training datasetD = {(xi, yi)}ni=1 where the i-th data point (xi, yi) ∈ Rd×Rd.
Assume ∥xi∥2 ≤ 1 and ∥yi∥2 ≤ 1 for any i ∈ [n]. The training loss is measured by the ℓ2 norm
of the difference between model prediction F(W,xi, a) and ideal output vector yi. Formally, the
training objective is:

L(W) :=
1

2

n∑
i=1

∥F(W,xi, a)− yi∥22. (7)

The weights W are initialized to W (0) as follows: ∀r ∈ [m], sample wr(0) ∼ N (0, Id) indepen-
dently. For output-layer a, randomly sample ar ∼ Uniform{−1,+1} independently for r ∈ [m] and
fix a during the training. Then use gradient descent (GD) to update the trainable weights W (t) with a
fixed learning rate η > 0. Then for t ≥ 0:

W (t+ 1) := W (t)− η · ∇WL(W (t)). (8)

B.2 NEURAL TANGENT KERNEL

Here, we give the formal definition of NTK in our analysis, which is a kernel function that is driven
by hidden-layer weights W (t) ∈ Rd×m. To present concisely, we first introduce an operator function
in the following. For all r ∈ [m], k ∈ [d] and i ∈ [n]:

vk,r(W) := Wk,r · ar · 1m −Wk,∗ ◦ a ∈ Rm, Gi,r(W) := mSr(W
⊤xi) · ⟨vk,r,S(W⊤xi)⟩ ∈ R

where S(z) = exp(z)
⟨exp(z),1m⟩ ∈ Rm for any z ∈ Rm, and ◦ denotes element-wise product.

Then, we define the kernel matrix H(W (t)) as an nd× nd Gram matrix, where its (k1, k2)-th block
is an n× n matrix for k1, k2 ∈ [d], and the (i, j)-th entry of the block is:

[Hk1,k2]i,j(W (t)) :=
1

m
x⊤
i xj

m∑
r=1

Gi,r(W (t)) · Gj,r(W (t)).

We can show that Sr(W⊤xi) = O(1
m) and ⟨vk,r,S(W⊤xi)⟩ = O(1), thus Gi,r(W) is O(1). Then

H(W) is close to H∗ := H(W (0)) when W is close to W (0). This kernel convergence is the key
needed for the NTK analysis and is formalized below (details in Appendix K).
Lemma B.1 (Kernel convergence, informal version of Lemma K.3). For δ ∈ (0, 0.1) and B =

max{Cσ
√

log(nd/δ), 1}. Let W̃ = [w̃1, · · · , w̃m] ∈ Rd×m and satisfy ∥w̃r − wr(0)∥2 ≤ R for
any r ∈ [m], where R is some constant in (0, 0.01). Define H̃ := H(W̃) ∈ Rnd×nd. Then with
probability at least 1− δ, we have ∥H∗ − H̃∥ ≤ 8R

√
nd · exp(22B).

B.3 MAIN RESULT: LOSS CONVERGENCE GUARANTEE

Assumption on NTK H∗. In the NTK analysis framework for the convergence of training neural
networks, one widely-used and mild assumption is that H∗ is a positive definite (PD) matrix, i.e., its
minimum eigenvalue λ := λmin(H

∗) > 0 (Du et al., 2019; Oymak & Soltanolkotabi, 2020). With
this, our main result is presented as follows.

19

Published as a workshop paper at SCOPE - ICLR 2025

Theorem B.2 (Main result, informal version of Theorem M.2). Assume λ > 0. For any ϵ, δ ∈ (0, 0.1),
B = max{Cσ

√
log(nd/δ), 1}, m = λ−2 poly(n, d, exp(B)), η = λm−1/ poly(n, d, exp(B))

and T̂ = Ω((mηλ)−1 log(nd/ϵ)). Then, after T̂ iterations of update (Eq. (8)), we have L(W (T̂)) ≤
ϵ holds with probability at least 1− δ.

Proof sketch of Theorem B.2. We use the math induction to show that the weight w perturbation is
small so that the loss landscape is almost convex around the network’s initialization in Lemma M.3,
Lemma M.4 and Lemma M.5, which are based on Lemma B.1. Then, we conclude the results by
standard convex optimization analysis. See the complete proof in Appendix M.1.

Discussion. Theorem B.2 mainly describes the following fact for any dataset with n data points. After
initializing the prefix matrix from a normal distribution, assuming the minimum eigenvalue of NTK
λ > 0, setting m to be a large enough value so that the network is sufficiently over-parameterized.
Then with proper learning rate, the loss can be minimized in finite training time to an arbitrarily
small error ϵ. Corresponding to the real-world implementation, it explains that adequately long
prefix learning can master downstream tasks when fine-tuning LLMs. Furthermore, it also helps us
understand the working mechanism of prefix learning, inspiring us to explore the direction of using
ultra-long prefixes.

Now we connect our theory to the scaling law in prefix learning. Following (Kaplan et al., 2020),
we focus on the relationship between the loss and the computational cost. We prove that the loss
decreases with the computational cost scaling up, providing a theoretical confirmation about the
scaling law in prefix learning.

Proposition B.3 (Scaling Law in Prefix Learning). We define N := O(md) as the number of
parameters, D := O(n) as the size of training dataset, Ccpt := O(NDT) as the total compute cost,
and α := nd. We choose T as Theorem B.2, then the loss of training, denotes L, satisfies:

L ≈ α

[exp(ηλCcpt)]
1
α

Proof sketch of Proposition B.3. This proof follows from the definitions of Ccpt, N, D and α and
Theorem B.2.

Proposition B.3 shows that the training loss of the prefix learning converges exponentially as we
increase the computational cost Ccpt, which primarily depends on the number of parameters and the
training time in prefix learning, further indicating a possible relationship for formulating scaling law
in prefix learning.

C EMPIRICAL EVALUATIONS

In this section, we evaluate our method NTK-Attention on natural language understanding, math
inference, and fine-grained image classification tasks. All our experiments use the Huggingface (Wolf
et al., 2019) trainer with AdamW optimizer (Kingma & Ba, 2014), and all optimizer hyper-parameters
are set to the defaults. We provide more details in Appendix E.

Evaluation on Natural Language Understanding Datasets. In this experiment, we utilize five
binary classification datasets in SuperGLUE (Wang et al., 2019) for evaluation: the BoolQ, CB,
Copa, MultiRC, and RTE datasets. We use a pre-trained LLM ChatGLM3-6B (Zeng et al., 2022; Du
et al., 2022) as the base model. For comparison, we choose P-Tuning V2 (Liu et al., 2023; 2021b)
which is a standard prefix learning method, and choose LoRA (Hu et al., 2021) which is a popular
parameter-efficient fine-tuning method often achieving state-of-the-art. P-Tuning V2 uses different
lengths of virtual prefix {1, 10, 100, 200}, and LoRA uses rank r′ = 8. We choose r = 128 (the
dimension of each head of ChatGLM3-6B) and s = 16 for our NTK-Attention.

The results are provided in Table 1. Our NTK-Attention method achieves much higher performance
than P-Tuning V2. Interestingly, as m increases, the performance of P-Tuning V2 also improves,
which is consistent with our analysis. Our analysis also suggests that NTK-Attention approximates
ultra-long prefix learning and thus can perform better than P-Tuning V2. The experimental results

20

Published as a workshop paper at SCOPE - ICLR 2025

LLAMA-3.2-1B LLAMA-3.2-3B
0

20

40

60

80

Ac
cu

ra
cy

 S
co

re
s

0.0 0.0

25.9

57.0

30.9

66.6

GSM8K
Zero-Shot
LoRA
NTK-Attention

LLAMA-3.2-1B LLAMA-3.2-3B
0.0

2.5

5.0

7.5

10.0

12.5

15.0

0.0 0.0

4.6

12.6

5.0

14.4

MATH
Zero-Shot
LoRA
NTK-Attention

Figure 2: Compare our results with LoRA and Zero-Shot on Math inference data. The y-axis is the
accuracy.

also show that NTK-Attention achieves better performance than LoRA on CB, Copa, and MultiRC
datasets, and achieves better average performance over all the datasets. These results show that
NTK-Attention can be a promising efficient fine-tuning method.

Model Method Num Params Datasets Average
WikiText-103 Penn TreeBank LAMBADA

LoRA, r′ = 8 30.50 35.97 46.02 37.50
OPT-125M P-Tuning V2, m = 32 0.29M 2264.22 963.09 1762.19 1663.17

NTK-Attention, r = 2d, s = 10 31.41 33.52 45.39 36.77

LoRA, r′ = 8 24.76 30.41 38.80 31.32
OPT-350M P-Tuning V2, m = 32 0.77M 7383.48 1339.43 14020.36 7581.09

NTK-Attention, r = 2d, s = 10 25.67 28.85 36.97 30.50

LoRA, r′ = 8 16.71 21.27 24.16 20.71
OPT-1.3B P-Tuning V2, m = 32 1.57M 2230.76 540.17 3480.77 2083.9

NTK-Attention, r = 2d, s = 10 17.04 20.09 24.04 20.39

LoRA, r′ = 8 15.06 19.61 22.13 18.93
OPT-2.7B P-Tuning V2, m = 32 2.62M 772.48 277.99 3378.18 1476.22

NTK-Attention, r = 2d, s = 10 14.83 18.52 21.85 18.40

LoRA, r′ = 8 12.81 17.36 19.38 16.52
OPT-6.7B P-Tuning V2, m = 32 4.19M 2051.10 409.37 4709.46 2389.98

NTK-Attention, r = 2d, s = 10 12.56 16.68 18.81 16.02

Table 3: Performance of different fine-tuning methods on OPT-{125M, 350M, 1.3B, 2.7B, 6.7B}
pre-trained models with WikiText-103, Penn TreeBank and LAMBADA datasets. The metric is
perplexity (PPL), with its smaller value standing for better performance. The best score on each
dataset and model is boldfaced.

Evaluation on Language Modeling Tasks. In this experiment, we focus on the scalability of
NTK-Attention on a family of language models of different sizes, the OPT family with the model
sizes 125M, 350M, 1.3B, 2.7B and 6.7B (Zhang et al., 2022). We introduce three text datasets,
which are WikiText-103 (Merity et al., 2016), Penn TreeBank (Marcus et al., 1993), and LAMBADA
(Paperno et al., 2016), to compare the scalability of NTK-Attention with LoRA (Hu et al., 2021) and
P-Tuning V2 (Liu et al., 2023; 2021b). As we choose r′ = 8 for LoRA, m = 32 for P-Tuning V2,
and r = 2d and s = 10 for our NTK-Attention, the numbers of trainable parameters are aligned to the
same as 32d for each attention layer. The results are stated in Table 3, which shows the improvement
of NTK-Attention compared to baselines when scaling the model size.

Evaluation on Math Inference Datasets. In order to thoroughly verify the effectiveness of NTK-
Attention, we conduct experiments on the math inference task, which includes GSM8K (Cobbe et al.,
2021) and MATH (Hendrycks et al., 2021) datasets. These are considered as fair benchmarks to test
the complex capability of LLMs. We follow Yu et al. (2023a) to supervised fine-tune two pretrained
models LLAMA-3.2-1B and LLAMA-3.2-3B (Touvron et al., 2023a;b) with dataset MetaMathQA
(Yu et al., 2023a). We state our results in Figure 2, and we use accuracy scores for counting the
matched answers for evaluation. As we can see, our NTK-attention (r = d, s = 16) is better than the

21

Published as a workshop paper at SCOPE - ICLR 2025

two baselines, LoRA and Zero-Shot, where LoRA uses r′ = 16 for LLAMA-3.2-1B and r′ = 32 for
LLAMA-3.2-3B.

Evaluation on Vision Datasets. We evaluate the method on three image classification datasets:
CIFAR-100 (Krizhevsky et al., 2009), Food-101 (Bossard et al., 2014), and Tiny-Imagenet (mn-
moustafa, 2017). The base model to be fine-tuned on these datasets is ViT-Base (Dosovitskiy et al.,
2020) that is pretrained on the ImageNet-21k (Deng et al., 2009). We compare our method to two
baselines: (1) FFT (Full parameters Fine-Tuned) that fine-tunes all parameters; (2) LoRA that
fine-tunes the base model with the popular LoRA method (Hu et al., 2021) with rank r′ = {16, 32}.
The results are presented in Table 2. Our method performs much better than FFT: 7.40%, 5.81% and
13.26% higher accuracy on the three datasets, respectively. Note that FFT updates all parameters
and has much higher computational costs than LoRA or our method. Our method has a similar
performance to LoRA with r′ = 32, achieving slightly better average accuracy. These results provide
positive empirical support for our method.

Ablation Study. We validate the sensitivity of hyper-parameters r and s and give the results in
Appendix E.3. The results firstly indicate that choosing r = d and s = 4 is enough for high-
performance fine-tuning on LLAMA-3.1-8B. Also, we follow Table 4 to suggest choosing a larger
value of r primarily instead of s to achieve supernal accuracy.

Empirical Evaluation of Computational Cost. We also provide experimental results of the compu-
tational costs of NTK-Attention (Algorithm 2) and the standard Prefix Attention (Algorithm 1) in
Appendix E.2. The results show that Prefix Attention’s run time is quadratic and memory usage is
linear in the prefix length, so its costs are typically much higher, while NTK-Attention maintains a
small run time and memory usage.

D ALGORITHM DETAILS AND COMPUTATIONAL COMPLEXITY ANALYSIS

Here, we give the detailed version of two algorithms of this paper, which are prefix attention and
NTK-Attention. Moreover, we comment on each computation step with its corresponding complexity
to demonstrate our memory and complexity reduction in detail.

From Algorithm 3 and Algorithm 4, we can see the comparison analysis of memory reduction (from
O(md) to O(rd+ r)) and complexity reduction (from O(mL+ L2) to O(Ld+ L2) since m≫ L
and m≫ d) between two fine-tuning methods, indicating the efficiency of our NTK-Attention.

Algorithm 3 Prefix Attention (Detailed version of Algorithm 1)

Input: Input matrix X ∈ RL×d

Parameters: Frozen query, key and value weights WQ,WK ,WV ∈ Rd×d, trainable prefix
matrix P ∈ Rm×d ▷ Additional memory usage O(md)
Output: Exact output Attn ∈ RL×d

1: procedure PREFIXATTENTION(X)

2: Concatenate input matrix with prefix matrix S ←
[
P
X

]
∈ R(m+L)×d

3: Compute query, key, and value matrices for attention Q← XWQ ∈ RL×d, KP ← SWK ∈
R(m+L)×d, VP ← SWV ∈ R(m+L)×d ▷ Time complexity O(Ld2 + 2(m+ L)d2)

4: Compute exponential matrix A← exp(QK⊤
P /
√
d) ∈ RL×(m+L) ▷ Time complexity

O(L(m+ L)d)
5: Compute summation of exponential matrix D ← diag(A1m+L) ∈ RL×L ▷ Time

complexity O(L(m+ L))
6: Compute prefix attention output Attn← D−1AVP ∈ RL×d ▷ Here D−1A ∈ RL×(m+L) is

the attention matrix (a.k.a attention scores). This step implements A multiply VP first, then get
D−1 · (AVP) with time complexity O(L(m+ L)d+ L2d)

7: return Attn
8: end procedure

22

Published as a workshop paper at SCOPE - ICLR 2025

Algorithm 4 NTK-Attention (Detailed version of Algorithm 2, w low-rank)

Input: Input matrix X ∈ RL×d

Parameters: Frozen query, key and value weights WQ,WK ,WV ∈ Rd×d, trainable weights
ZA ∈ Rr×s, ZB ∈ Rs×d and k ∈ Rr ▷ Additional memory usage O(rs+ sd+ r)
Output: Approximating output T ∈ RL×d

1: procedure NTK-ATTENTION(X)
2: Compute query, key, and value matrices for attention Q← XWQ ∈ RL×d, K ← XWK ∈

RL×d, V ← XWV ∈ RL×d ▷ Time complexity O(3Ld2)

3: Compute approximating exponential matrix Â← exp(QK⊤/
√
d) ∈ RL×L ▷ Time

complexity O(L2d)

4: Compute approximating summation of exponential matrix D̂ ← diag(Â1L + Φ(Q)k) ∈
RL×L ▷ Time complexity O(L2 + Lr)

5: Compute approximation of prefix attention output T ← D̂−1(ÂV +Φ(Q)ZA ·ZB) ∈ RL×d

▷ This step implements Z := ZA · ZB first, compute ÂV +Φ(Q)Z secondly, then implements
D̂−1 · (ÂV +Φ(Q)ZA · ZB), time complexity O(2L2d+ Lr2 + rsd)

6: return T
7: end procedure

E EXPERIMENTAL DETAILS

E.1 SETUP DETAILS

Here, we give the details of the setup for the experiments in Section C.

• Learning rate η = 0.001 (default).

• Learning rate scheduler: Cosine.

• Adam hyper-parameter β1 = 0.9 (default).

• Adam hyper-parameter β2 = 0.999 (default).

• Adam hyper-parameter ϵ = 1× 10−8 (default).

• Platform: PyTorch (Paszke et al., 2019) and Huggingface (Wolf et al., 2019).

• GPU device information: 8 V100 GPUs, 8 4090 GPUs and 4 H800 GPUs.

• Number of training epochs 30.

• Batch size for vision tasks: 256 (for best effort).

• Batch size for natural language task: 32 (for best effort).

• Max input length for natural language task: 128 for each feature, e.g. BoolQ has two dataset
features: question and passage, for each data, we select the first 128 tokens in question and
passage of the data respectively, and concatenate them to be the input.

• Quantization: fp16 and bf16.

E.2 ADDITIONAL EMPIRICAL COMPLEXITY ANALYSIS

We state an additional empirical complexity analysis here to support our claim practically. We
evaluate the complexity reduction on one layer to show how much efficiency our NTK-Attention will
demonstrate per layer.

Setup. Firstly, we choose d = 32 and r = d, and randomly initialize attention weights
WQ,WK ,WV ∈ Rd×d. For the trainable parameters in NTK-Attention and Prefix Attention, we
initialize P ∈ Rm×d, Z ∈ Rd×d and k ∈ Rd randomly, either. We then scale the prefix length,
denotes m, within the range {20, 21, · · · , 216} for comparison. The input length L is chosen from
{32, 64, 128, 256}. For computation, we initialize a new input matrix X ∈ RL×d and compute
NTK-Attention and Prefix Attention respectively. We repeat each computation with a different setup

23

Published as a workshop paper at SCOPE - ICLR 2025

Figure 3: Run time and the number of parameters of one-layer NTK-Attention and Prefix Attention
(on random input data). x-axis: the number of parameters; y-axis: run time. Input length L is chosen
from {32, 64, 128, 256}, dimension d = 32 and prefix length m is chosen from {20, 21, · · · , 216}.

0M 0.2M 0.4M 0.6M 0.8M 1M
number of parameters (scale with prefix length, per layer)

0 s

0.02 s

0.04 s

0.06 s

0.08 s

0.1 s

0.12 s

0.14 s

0.16 s
ru

nn
in

g
tim

e

prefix-attn, L=32
prefix-attn, L=64
prefix-attn, L=128
prefix-attn, L=256
ntk-attn, L=32
ntk-attn, L=64
ntk-attn, L=128
ntk-attn, L=256

3K 3.5K 4K 4.5K 5K 5.5K 6K
1e-4 s

2e-4 s

3e-4 s

4e-4 s

5e-4 s

6e-4 s

7e-4 s

10000 times and record the maximum, minimum, and mean values. The inference is run on an AMD
CPU to compare FLOPS fairly between two algorithms (this also works on GPU devices).

Results. We demonstrate our result in Figure 3. The x-axis is the number of parameters (representing
memory usage), and the y-axis shows the run time in seconds. Note that the number of parameters is
computed by the summation of every number in NTK-Attention or Prefix Attention. For example,
m = 1024, d = 32, the number of parameters of Prefix Attention is md+ 3d2 = 35840; the number
of parameters if NTK-Attention is 4d2 + d = 4128.

As expected, the number of parameters of Prefix Attention increases linearly with the prefix length
m, and its running time increases quadratically with m. While our method, NTK-Attention, has
computational costs unaffected by the prefix length. It maintains a small running time and low
memory usage as shown in the figure. Roughly speaking, the cost of NTK-Attention is close to Prefix
Attention with a very small prefix length m = 32.

E.3 ADDITIONAL ABLATION STUDY

Setup. We provide an additional ablation study for the sensitivity of the hyper-parameters of NTK-
Attention r and s here and the results are given in Table 4. In particular, this experiment is run
on pretrained LLAMA-3.1-8B-Instruct model (d = 128 for each head in attention) (Touvron et al.,
2023a;b) with dataset WikiText-103 (Merity et al., 2016). We utilize 4 H800 GPU devices to train the
model with different settings within 2 epochs on the training dataset and evaluate them on the test
dataset. The metric is cross-entropy loss and its smaller value stands for better performance.

Results. We show the NTK-Attention with the weakest setting r = 128, s = 4 is able to achieve
competitive performance with r = 256, r = 64. This further ensures the parameter efficiency of
NTK-Attention.

Moreover, Table 4 also demonstrates that choosing a big value for hyper-parameter r primarily
will lead to better evaluation loss since NTK-Attention with (r, s) = (256, 32) requires 12.85M
parameters but achieve superior performance compared to NTK-Attention with (r, s) = (128, 64)
(requires 16.91M parameters).

24

Published as a workshop paper at SCOPE - ICLR 2025

However, we discover that an increased value for r might cause huge complexity - when setting
r = 512, the computational complexity 4Ld will lead the GPU out-of-memory (OOM) since it’s
usually unaffordable even for H800 (80GiB memory). Thus, we also suggest using r = d or r = 2d
to make LLMs to learn downstream tasks.

Table 4: The results of ablation study to the NTK-Attention hyper-parameters r and s with pretrained
LLM LLAMA-3.1-8B-Instruct and dataset WikiText-103 on H800 GPUs (80GiB).

Hyper-parameters Num Parameters Evaluation Loss Training Loss

(r, s)=(128, 4) 1.18M 2.48 2.38
(r, s)=(128, 8) 2.23M 2.57 2.50
(r, s)=(128, 16) 4.33M 2.74 2.72
(r, s)=(128, 32) 8.52M 2.47 2.38
(r, s)=(128, 64) 16.91M 2.41 2.31

(r, s)=(256, 4) 1.84M 2.47 2.39
(r, s)=(256, 8) 3.41M 2.43 2.36
(r, s)=(256, 16) 6.55M 2.51 2.53
(r, s)=(256, 32) 12.85M 2.28 2.33
(r, s)=(256, 64) 25.43M 2.21 2.15

(r, s)=(512, 4) 3.15M (OOM since 4Ld complexity) - -

F NAIVE NTK-ATTENTION IMPLEMENTATION WITH FLASH-ATTENTION

Below, we provide a naive Python code to implement our NTK-Attention that is written in only
10 lines, which supports the simplicity of implementation. Our code utilizes the function of Flash
Attention function (Dao et al., 2022; Dao, 2023; Shah et al., 2024).

1 def ntk_attn_forward(self, query_states, key_states, value_states,
attention_mask):

2 attn_outputs, lse = _flash_attention_forward(
3 query_states, key_states, value_states, attention_mask,
4 is_causal=self.is_causal, return_attn_probs=True
5) # Call flash-attn function to get attn_output and logsumexp
6

7 Z = torch.matmul(self.Z_A, self.Z_B) # Low-rank approximate Z
8 k = self.k
9 phi_query_states = self.phi(query_states)

10

11 se = lse.exp() # Compute sumexp
12 scale_factor = (se + torch.matmul(phi_query_states, k)) / se
13

14 attn_output = scale_factor * (attn_output * se + torch.matmul(
phi_query_states, Z))

15

16 return attn_output

G FURTHER DISCUSSIONS

Prior works (Arora et al., 2019; Alemohammad et al., 2020; Hron et al., 2020) had already given
exact algorithms for computing the extension of NTK to neural nets and conducted experiments
showing enhanced performance from adding NTK into models, while in this paper, our contributions
are not limited to this. Our theory about NTK of attention with the infinite-long prefix provides more
insights. We clarify this further in the following.

Can LLMs master any advanced reasoning skill through self-planning and prompting? We
will answer that it may be possible. Since an attention network can converge on any dataset with the
infinite-long prefix, we can tell that for any advanced reasoning skill that is equivalent to training on

25

Published as a workshop paper at SCOPE - ICLR 2025

a well-constructed dataset, there exists an ultra-long prefix matrix satisfying the training objective
smaller than any positive value ϵ > 0. It’s noteworthy that this conclusion is not only suitable for
LLMs with outstanding performance but also can be worked on those small language models with
common performance.

What is NTK-Attention used for? What is the meaning of proposing this method? The attention
with an infinite-long prefix is superior due to its over-parameterization phenomenon, whereas it
is nearly impossible to implement practically, our NTK-Attention method gives us a chance to
approximate the infinite-long prefix and makes it possible for us to study its empirical properties in
experiments. Besides, any form of prefix learning can be formulated into the training of Z ∈ Rd×d

and k ∈ Rd in NTK-Attention, we can compress prompts into Z and k if ϕ(·) by utilizing Lemma N.7,
hence, the approaches in Prefix Learning would be much more efficient.

Comparison between NTK-Attention and LoRA. LoRA in (Hu et al., 2021; Zeng & Lee, 2023;
Hu et al., 2024) is a popular efficient fine-tuning method for large base models. Usually, LoRA
makes adaptation on Query and Value projections WQ,WV ∈ Rd×d; denote the adaptation as
W∆Q,W∆V ∈ Rd×d. Given an input X ∈ RL×d, LoRA computes D̃−1ÃX(WV +W∆V), where
Ã := exp(X(WQ + W∆Q)W

⊤
KX⊤), D̃ := diag(Ã1L), and WK ∈ Rd×d is the Key projection

weights. So LoRA updates query and value weights during training, while our NTK-Attention
compresses the additional prefix P into Z and k (Algorithm 2), which is a completely different
mechanism. Our method also achieves comparable performance to LoRA in our experiments in
Section C. Also, note that the two methods are orthogonal to each other and can be used together.

Connection to the newest SOTA LLM on math inference tasks, GPT-o1 1. On September 12-th,
2024, OpenAI released the newest SOTA LLM on math inference tasks, GPT-o1, which is trained
by Reinforcement Learning (RL) methods to enhance the Chain-of-Thought (CoT) ability. Li et al.
(2024c) explained the necessity of CoT for LLM on complicated inference tasks, meanwhile, they
also emphasized how the embedding size and the CoT length affect the capability to solve high-order
problems. Connecting to our work, we believe that these empirical and theoretical results support the
conclusion of our work since we consider CoT as a specific application of Prefix Learning. Moreover,
we think our scaling law in prefix learning is more universal for explaining the LLMs’ context-based
advanced skills. However, even when we present our theory, we still have a limited understanding
of prefix learning, for example, what is the relationship between prefix length and complexity of
problems that aim to solve; if we want to solve an NP problem by LLM, how long is the prefix needed
for inference? We don’t know the answers. Thus, explaining prefix learning, or particularly, CoT, is
still a fascinating and challenging problem for future work.

Societal impact. This paper presents work whose goal is to advance the understanding of context-
based fine-tuning methods (prefix learning) theoretically. There are many positive potential societal
consequences of our work, such as inspiring new algorithm design. Since our work is theoretical in
nature, we do not foresee any potential negative societal impacts which worth pointing out.

H PRELIMINARY OF ANALYSIS

We provide our notations for this paper as follows:

Notations In this paper, we use integer d to denote the dimension of networks. We use integer m to
denote the prefix length in prefix learning, we think m is an ultra-big number. We use L to denote
the input length in language models. ∇xf(x) and df(x)

dx are both means to take the derivative of
f(x) with x. Let a vector z ∈ Rn. We denote the ℓ2 norm as ∥z∥2 := (

∑n
i=1 z

2
i)

1/2, the ℓ1 norm as
∥z∥1 :=

∑n
i=1 |zi|, ∥z∥0 as the number of non-zero entries in z, ∥z∥∞ as maxi∈[n] |zi|. We use z⊤

to denote the transpose of a z. We use ⟨·, ·⟩ to denote the inner product. Let A ∈ Rn×d, we use vec(A)
to denote a length nd vector. We denote the Frobenius norm as ∥A∥F := (

∑
i∈[n],j∈[d] A

2
i,j)

1/2. For
any positive integer n, we use [n] to denote set {1, 2, · · · , n}. We use E[] to denote the expectation.
We use Pr[] to denote the probability. We use ϵ to denote the error. We define λmin(·) as a function
that outputs the minimum eigenvalues of the input matrix, e.g. matrix A ∈ Rn×n has eigenvalues
{λ1, λ2, · · · , λn}, λmin(A) = min{λ1, λ2, · · · , λn}.

1https://openai.com/o1/

26

https://openai.com/o1/

Published as a workshop paper at SCOPE - ICLR 2025

H.1 FACTS

Fact H.1. For any x ∈ (−0.01, 0.01), we have

exp(x) = 1 + x+Θ(1)x2.

Fact H.2. For any x ∈ (0, 0.1), we have
n∑

i=1

xi ≤ 1

1− x
.

H.2 PROBABILITY

Here, we state a probability toolkit in the following, including several helpful lemmas we’d like to
use. Firstly, we provide the lemma about Chernoff bound in (Chernoff, 1952) below.
Lemma H.3 (Chernoff bound, (Chernoff, 1952)). Let X =

∑n
i=1 Xi, where Xi = 1 with probability

pi and Xi = 0 with probability 1− pi, and all Xi are independent. Let µ = E[X] =
∑n

i=1 pi. Then

• Pr[X ≥ (1 + δ)µ] ≤ exp(−δ2µ/3), ∀δ > 0;

• Pr[X ≤ (1− δ)µ] ≤ exp(−δ2µ/1), ∀0 < δ < 1.

Next, we offer the lemma about Hoeffding bound as in (Hoeffding, 1994).
Lemma H.4 (Hoeffding bound, (Hoeffding, 1994)). Let X1, · · · , Xn denote n independent bounded
variables in [ai, bi] for ai, bi ∈ R. Let X :=

∑n
i=1 Xi, then we have

Pr[|X − E[X]| ≥ t] ≤ 2 exp(− 2t2∑n
i=1(bi − ai)2

)

We show the lemma of Bernstein inequality as (Bernstein, 1924).
Lemma H.5 (Bernstein inequality, (Bernstein, 1924)). Let X1, · · · , Xn denote n independent zero-
mean random variables. Suppose |Xi| ≤M almost surely for all i. Then, for all positive t,

Pr[

n∑
i=1

Xi ≥ t] ≤ exp(− t2/2∑n
j=1 E[X2

j] +Mt/3
)

Then, we give the Khintchine’s inequality in (Khintchine, 1923; Haagerup, 1981) as follows:
Lemma H.6 (Khintchine’s inequality, (Khintchine, 1923; Haagerup, 1981)). Let σ1, · · · , σn be i.i.d
sign random variables, and let z1 · · · , zn be real numbers. Then there are constants C > 0 so that
for all t > 0

Pr[|
n∑

i=1

ziσi| ≥ t∥z∥2] ≤ exp(−Ct2).

We give Hason-wright inequality from (Hanson & Wright, 1971; Rudelson & Vershynin, 2013)
below.
Lemma H.7 (Hason-wright inequality, (Hanson & Wright, 1971; Rudelson & Vershynin, 2013)). Let
x ∈ Rn denote a random vector with independent entries xi with E[xi] = 0 and |xi| ≤ K Let A be
an n× n matrix. Then, for every t ≥ 0

Pr[|x⊤Ax− E[x⊤Ax]| > t] ≤ 2 exp(−cmin{t2/(K4∥A∥2F), t/(K2∥A∥)}).

We state Lemma 1 on page 1325 of Laurent and Massart (Laurent & Massart, 2000).
Lemma H.8 (Lemma 1 on page 1325 of Laurent and Massart, (Laurent & Massart, 2000)). Let
X ∼ X 2

k be a chi-squared distributed random variable with k degrees of freedom. Each one has zero
mean and σ2 variance. Then

Pr[X − kσ2 ≥ (2
√
kt+ 2t)σ2] ≤ exp(−t)

Pr[X − kσ2 ≥ 2
√
ktσ2] ≤ exp(−t).

27

Published as a workshop paper at SCOPE - ICLR 2025

Here, we provide a tail bound for sub-exponential distribution (Foss et al., 2011).

Lemma H.9 (Tail bound for sub-exponential distribution, (Foss et al., 2011)). We say X ∈ SE(σ2, α)
with parameters σ > 0, α > 0, if

E[eλX] ≤ exp(λ2σ2/2),∀|λ| < 1/α.

Let X ∈ SE(σ2, α) and E[X] = µ, then:

Pr[|X − µ| ≥ t] ≤ exp(−0.5min{t2/σ2, t/α}).

In the following, we show the helpful lemma of matrix Chernoff bound as in (Tropp, 2011; Lu et al.,
2013).

Lemma H.10 (Matrix Chernoff bound, (Tropp, 2011; Lu et al., 2013)). Let X be a finite set of
positive-semidefinite matrices with dimension d× d, and suppose that

max
X∈X

λmax(X) ≤ B.

Sample {X1, · · · , Xn} uniformly at random from X without replacement. We define µmin and µmax

as follows:

µmin := n · λmin(E
X∈X

(X))

µmax := n · λmax(E
X∈X

(X)).

Then

Pr[λmin(

n∑
i=1

Xi) ≤ (1− δ)µmin] ≤ d · exp(−δ2µmin/B) for δ ∈ (0, 1],

Pr[λmax(

n∑
i=1

Xi) ≥ (1 + δ)µmax] ≤ d · exp(−δ2µmax/(4B)) for δ ≥ 0.

I DEFINITIONS OF NTK ANALYSIS

This section provides the fundamental definitions of our NTK analysis in this paper.

To begin with, we re-denote our weight of prefix in attention as W ∈ Rd×m and a ∈ {−1,+1}m as
follows2:

Definition I.1. We choose a ∈ {−1,+1}m to be weights that each entry ar is randomly sampled
from −1 with probability 1/2 and +1 with probability 1/2.

Let W ∈ Rd×m denote random Gaussian weights, i.e., each entry independently draws fromN (0, σ2).
For each r ∈ [m], we use wr ∈ Rd to denote the r-th column of W .

Since we have established the equivalence between the ultra-long prefix matrix in attention and our
theory in Section B.1, it’s reasonable we utilize the following definition of F to decompose the model
function and facilitate our analysis.

Definition I.2. We define function F : Rd×m × Rd × Rm → Rd

F(W,x, a) = m

∑
r∈[m] ar exp(w

⊤
r x)wr∑

r∈[m] exp(w
⊤
r x)

Here we use wr ∈ Rd to denote the r-th column of W ∈ Rd×m.

To further break down the complicated F for more convenience analysis. We give an operator function
α as follows:

2Note that the proof of the case with a and without a are similar. We mainly focus on the proofs under the
setting that includes a.

28

Published as a workshop paper at SCOPE - ICLR 2025

Definition I.3. We define α(x) as follows

α(x) := ⟨exp(W⊤︸︷︷︸
m×d

x︸︷︷︸
d×1

),1m⟩

Thus, we can rewrite F in the following claim.
Claim I.4. We can rewrite F(W,x, a) ∈ Rd as follows

F(W,x, a) = mα(x)−1︸ ︷︷ ︸
scalar

W︸︷︷︸
d×m

(a︸︷︷︸
m×1

◦ exp(W⊤x)︸ ︷︷ ︸
m×1

)

Proof. We can show

F(W,x, a) =m

∑
r∈[m] ar exp(w

⊤
r x)wr∑

r∈[m] exp(w
⊤
r x)

=mα(x)−1
∑
r∈[m]

ar exp(w
⊤
r x)wr

=mα(x)−1W (a ◦ exp(W⊤x))

where the first step follows from Definition I.2, the second step follows from Definition I.3 and simple
algebras, the third step follows from wr ∈ Rd is denoting the r-th column of W ∈ Rd×m and simple
algebras.

In the following Definition I.6 and Definition I.5, we further derive and define two operator functions
to convenient our analysis.
Definition I.5. We define β as follows

βk := Wk,∗ ◦ a,∀k ∈ [d]

Let β ∈ Rd×m be defined as β︸︷︷︸
d×m

= W︸︷︷︸
d×m

diag(a)︸ ︷︷ ︸
m×m

Here, we define softmax.
Definition I.6. We define S ∈ Rm as follows

S := α(x)−1︸ ︷︷ ︸
scalar

· exp(W⊤x)︸ ︷︷ ︸
m×1

.

Here, we use β and S to re-denote the model function F.
Definition I.7. For each k ∈ [d], let W⊤

k,∗ denote the k-th row of W , we define

Fk(W,x, a) := mα(x)−1︸ ︷︷ ︸
scalar

⟨Wk,∗︸ ︷︷ ︸
m×1

◦ a︸︷︷︸
m×1

, exp(W⊤x)︸ ︷︷ ︸
m×1

⟩

Then, we can rewrite it as

Fk(W,x, a) := m⟨βk,S⟩.

I.1 LOSS FUNCTION

Here, we state the training objective that we aim to solve in the analysis.
Definition I.8. Given a datasetD = {(xi, yi)}ni=1 ⊂ Rd×Rd. Let function F : Rd×m×Rd×Rm →
Rd be defined as Definition I.2, we define the training objective L : Rm×d → R as follows:

L(W) := 0.5

n∑
i=1

∥F(W,xi, a)− yi∥22

29

Published as a workshop paper at SCOPE - ICLR 2025

J GRADIENT COMPUTATION

In this section, we first compute the gradients that we need for the analysis of NTK. Then we define
the training dynamic of our model in the process of gradient descent.

J.1 COMPUTING GRADIENT

We give our computation of the gradients as the following lemma.

Lemma J.1. If the following conditions hold

• Let W ∈ Rd×m and a ∈ Rm be defined as Definition I.1.

• Let α(x) ∈ R be defined as Definition I.3

• Let S ∈ Rm be defined as Definition I.6

• Let F ∈ Rd be defined as Definition I.7

Then, we can show that for each r ∈ [m]

• Part 1. For k1 ∈ [d], we have

dW⊤x

dwr,k1

= xk1
er

• Part 2. For k1 ∈ [d], we have

d exp(W⊤x)

dwr,k1

= (xk1er) ◦ exp(W⊤x)

• Part 3. For k1 ∈ [d], we have

dα(x)

dwr,k1

= ⟨xk1
er, exp(W

⊤x)⟩

• Part 4. For k1 ∈ [d], we have

dα(x)−1

dwr,k1

= −α(x)−1⟨xk1er,S⟩

• Part 5. For k1 ∈ [d], we have

dS

dwr,k1

= − ⟨xk1
er,S⟩ · S+ (xk1

er) ◦ S

• Part 6. For k1, k ∈ [d] and k1 ̸= k, we have

dF(W,x, a)k
dwr,k1

= + 0−mxk1 · Sr · ⟨βk,S⟩+mxk1Srβk,r

• Part 7. For k1, k ∈ [d] and k1 = k, we have

dF(W,x, a)k
dwr,k

= +m⟨a ◦ er,S⟩ −mxk · Sr · ⟨βk,S⟩+mxkSrβk,r

• Part 8. For k ∈ [d], we have

dF(W,x, a)k
dwr

=marSr · ek −m⟨βk,S⟩Sr · x+mβk,rSr · x

30

Published as a workshop paper at SCOPE - ICLR 2025

Proof. Proof of Part 1.

dW⊤x

dwr,k1

= xk1er

where this step follows from simple differential rules.

Proof of Part 2.

d exp(W⊤x)

dwr,k1

= exp(W⊤x) ◦ dW
⊤x

dwr,k1

= (xk1
er) ◦ exp(W⊤x)

where the first step follows from chain rules, the second step follows from Part 1 of this Lemma.

Proof of Part 3.

dα(x)

dwr,k1

= ⟨d exp(W
⊤x)

dwr,k1

,1m⟩

= ⟨xk1
er, exp(W

⊤x)⟩

where the first step follows from Definition I.3 and simple algebras, the second step follows from
Part 2 of this Lemma.

Proof of Part 4.

dα(x)−1

dwr,k1

= − α(x)−2 dα(x)

dwr,k1

= − α(x)−1⟨xk1er,S⟩

where this step follows from chain rules, the second step follows from Part 3 of this Lemma.

Proof of Part 5.

dS

dwr,k1

=
dα(x)−1

dwr,k1

· exp(W⊤x) + α(x)−1 · d exp(W
⊤x)

dwr,k1

= − α(x)−1⟨xk1
er,S⟩ · exp(W⊤x) + α(x)−1 · (xk1

er) ◦ exp(W⊤x)

= − ⟨xk1er,S⟩ · S+ (xk1er) ◦ S

where the first step follows from Definition I.6 and differential rules, the second step follows from
Part 2 and Part 4 of this Lemma, the last step follows from simple algebras.

Proof of Part 6. For k1 ̸= k

dF(W,x, a)k
dwr,k1

= +m⟨ dβk

dwr,k1

,S⟩+m⟨βk,
dS

dwr,k1

⟩

= −m⟨xk1er,S⟩ · ⟨βk,S⟩+m⟨βk, (xk1er) ◦ S⟩
= + 0−mxk1

· Sr · ⟨βk,S⟩+mxk1
Srβk,r

where the first step follows from Definition I.7 and simple algebras, the second step follows from
Definition I.5, simple algebras and Part 5 of this Lemma, the last step follows from simple algebras.

Proof of Part 7. For k1 = k

dF(W,x, a)k
dwr,k

= +m⟨ dβk

dwr,k
,S⟩+m⟨βk,

dS

dwr,k
⟩

= +m⟨a ◦ er,S⟩ −m⟨xker,S⟩ · ⟨βk,S⟩+m⟨βk, (xker) ◦ S⟩

31

Published as a workshop paper at SCOPE - ICLR 2025

= +m⟨a ◦ er,S⟩ −mxk · Sr · ⟨βk,S⟩+mxkSrβk,r

where the first step follows from Definition I.7 and simple algebras, the second step follows from
Definition I.5, simple algebras and Part 5 of this Lemma, the last step follows from simple algebras.

Proof of Part 8.

This part of proof follows from the combination of Part 6 and Part 7 of this Lemma.

J.2 GRADIENT DESCENT

After we computed the gradient of the model function above, we are now able to define the training
dynamic of F by updating weight using gradient descent.

We use er to denote a vector where the r-th coordinate is 1 and everywhere else is 0. ∀r ∈ [m],∀k ∈
[d], we have dF(W,x,a)k

dwr
∈ Rd can be written as

dFk(W,x, a)

dwr︸ ︷︷ ︸
d×1

= marSr · ek −m⟨βk,S⟩Sr · x+mβk,rSr · x. (9)

Hence, by defining several following dynamical operator functions, we can further convenient our
proofs.

We first define ui(τ) ∈ Rm for simplification as follows:
Definition J.2. For each i ∈ [n], we define ui(τ) ∈ Rm as

ui(τ)︸ ︷︷ ︸
m×1

:= exp(W (τ)⊤︸ ︷︷ ︸
m×d

xi︸︷︷︸
d×1

)

Secondly, we re-denote αi(τ) ∈ R below, which holds due to the definition of α(x) and the updating
of W ∈ Rd×m.
Definition J.3. For each i ∈ [n], we define αi(τ) ∈ R as

αi(τ)︸ ︷︷ ︸
scalar

:= ⟨ui(τ)︸ ︷︷ ︸
m×1

, 1m︸︷︷︸
m×1

⟩.

We define βk(τ) ∈ Rm for convenience.
Definition J.4. For each k ∈ [d], we define βk(τ) ∈ Rm as

βk(τ)︸ ︷︷ ︸
m×1

= (Wk,∗(τ))︸ ︷︷ ︸
m×1

◦ a︸︷︷︸
m×1

Remark J.5. The purpose of defining notation β is to make our proofs more aligned with softmax
NTK proofs in previous work (Li et al., 2024a).

We define θk,i(τ) ∈ Rm for convenience as follows :
Definition J.6. For each i ∈ [n], for each k ∈ [d], we define θk,i(τ) ∈ Rm as follows

θk,i(τ)︸ ︷︷ ︸
m×1

:= βk(τ)︸ ︷︷ ︸
m×1

·αi(τ)
−1︸ ︷︷ ︸

scalar

We denote Sr(τ).
Definition J.7. For each i ∈ [n]. Let Si(τ) ∈ Rm be defined as

Si(τ)︸ ︷︷ ︸
m×1

:= αi(τ)
−1︸ ︷︷ ︸

scalar

· ui(τ)︸ ︷︷ ︸
m×1

for integer τ ≥ 0. For r ∈ [m], we denote Si,r(τ) ∈ R as the r-th entry of vector Si(τ).

32

Published as a workshop paper at SCOPE - ICLR 2025

Now, we can define F at different timestamps.
Definition J.8 (F(τ), dynamic prediction). For each k ∈ [d], for each i ∈ [n], we define Fi(τ) ∈ Rd,
for any timestamp τ , as

Fk,i(τ) := m⟨u(τ),1m⟩−1⟨W (τ)k,∗ ◦ a, u(τ)⟩.

Here xi ∈ Rd. It can be rewritten as

Fk,i(τ) = m · ⟨βk(τ)︸ ︷︷ ︸
m×1

,Si(τ)︸ ︷︷ ︸
m×1

⟩.

and also

Fk,i(τ) = m · ⟨θk,i(τ)︸ ︷︷ ︸
m×1

, ui(τ)︸ ︷︷ ︸
m×1

⟩

We consider d-dimensional MSE loss.
Definition J.9 (Loss function over time). We define the objective function L as below:

L(W (τ)) :=
1

2

∑
i∈[n]

∑
k∈[d]

(Fk,i(τ)− yk,i)
2.

Thus, we define the gradient of w.
Definition J.10 (∆wr(τ)). For any r ∈ [m], we define ∆wr(τ) ∈ Rd as below:

∆wr(τ)

:=m

n∑
i=1

d∑
k=1

(Fk,i(τ)− yk,i) ·
(
arSi,r(τ) · ek − ⟨βk(τ),Si(τ)⟩Si,r(τ) · x+ βk,rSi,r(τ) · x

)
Here, we utilize v to simplify ∆wr(τ), we have the following:
Definition J.11. For each k ∈ [d], for each r ∈ [m], we define vk,r(τ) ∈ Rm as follows

vk,r(τ) := βk,r(τ) · 1m − βk(τ).

Note that we can simplify the gradient calculation by the fact 1 = ⟨1m,Si(τ)⟩ for i ∈ [n]. Thus, we
have the following claim.
Claim J.12. We can rewrite ∆wr(τ) as follows

∆wr(τ) = m

n∑
i=1

d∑
k=1

(Fk,i(τ)− yk,i) ·
(
⟨vk,r(τ),Si(τ)⟩ · Si,r(τ) · xi + arSi,r(τ)ek

)
Proof. We have

∆wr(τ)

=m

n∑
i=1

d∑
k=1

(Fk,i(τ)− yk,i) ·
(
arSi,r(τ) · ek − ⟨βk(τ),Si(τ)⟩Si,r(τ) · x+ βk,rSi,r(τ) · x

)
=m

n∑
i=1

d∑
k=1

(Fk,i(τ)− yk,i)

·
(
arSi,r(τ) · ek − ⟨βk(τ),Si(τ)⟩Si,r(τ) · x+ βk,r⟨1m,Si(τ)⟩Si,r(τ) · x

)
=m

n∑
i=1

d∑
k=1

(Fk,i(τ)− yk,i)

·
(
arSi,r(τ) · ek − ⟨βk(τ),Si(τ)⟩Si,r(τ) · x+ ⟨βk,r · 1m,Si(τ)⟩Si,r(τ) · x

)
33

Published as a workshop paper at SCOPE - ICLR 2025

=m

n∑
i=1

d∑
k=1

(Fk,i(τ)− yk,i) ·
(
arSi,r(τ) · ek + ⟨βk,r · 1m − βk(τ),Si(τ)⟩Si,r(τ) · x

)
=m

n∑
i=1

d∑
k=1

(Fk,i(τ)− yk,i) ·
(
arSi,r(τ) · ek + ⟨vk,r(τ),Si(τ)⟩Si,r(τ) · x

)
where the first step follows from Definition J.10, the second step follows from the fact 1 =
⟨1m,Si(τ)⟩ for i ∈ [n], the third and fourth steps follow from simple algebras, the last step follows
from Definition J.11.

We use the gradient descent (GD) algorithm with the learning rate η to train the network. As we only
train the hidden layer W and fix a, we have the following gradient update rule.

Definition J.13 (Gradient descent). The gradient descent algorithm for optimizing the weight matrix
W is defined as:

W (τ + 1) = W (τ)− η∆W (τ).

where ∆W (τ) ∈ Rd×m and ∆wr(τ) ∈ Rd is the r-th column of ∆W (τ) defined in Definition J.10.

K NEURAL TANGENT KERNEL

Now in this section, we give the exact computation of NTK in our analysis below.

Definition K.1 (Kernel function, Definition 3.6 in (Li et al., 2024a)). For simplicity, we denote
S(W⊤xi) as Si ∈ Rm

≥0 and vk,r = βk,r · 1m − βk ∈ Rm. We define the function (Gram matrix)
H : Rd×m → Rnd×nd as following

H(W) :=

H1,1 H1,2 · · · H1,d

H2,1 H2,2 · · · H2,d

...
...

. . .
...

Hd,1 Hd,2 · · · Hd,d

 ,

and for each k1, k2 ∈ [d], we have Hk1,k2
∈ Rn×n is defined as

[Hk1,k2]i,j(W) :=
1

m
x⊤
i xj

m∑
r=1

⟨vk1,r,Si⟩ ·mSi,r · ⟨vk2,r,Sj⟩ ·mSj,r.

For any timestamp τ , for simplicity, we denote H(τ) := H(W (τ)) and denote H(0) as H∗.

K.1 KERNEL PERTURBATION

The purpose of this section is to prove Lemma K.3. In the proof, we do not use concentration
inequality. Please see Remark K.2 for more details.

Remark K.2. In the proof of Lemma K.3, we do not use concentration bound as previous work (Song
& Yang, 2019; Munteanu et al., 2022; Gao et al., 2023a). The reason is that we consider the worst
case. In general, E[H(W)−H(W̃)] ̸= 0nd×nd. Thus, using the concentration bound may not gain
any benefits.

Lemma K.3. If the following conditions hold

• Let C > 10 denote a sufficiently large constant

• Let B := max{Cσ
√
log(nd/δ), 1}.

• Let R ∈ (0, 0.01).

• Let xi ∈ Rd and ∥xi∥2 ≤ 1 for all i ∈ [n].

34

Published as a workshop paper at SCOPE - ICLR 2025

• Let W̃ = [w̃1, · · · , w̃m] ∈ Rd×m, where w̃1, · · · , w̃m are are i.i.d. draw from N (0, σ2Id).

• Let W = [w1, · · · , wm] ∈ Rd×m and satisfy ∥w̃r − wr∥2 ≤ R for any r ∈ [m].

• Let vk,r = βk,r · 1m − βk ∈ Rm, for any k ∈ [d] and for any r ∈ [m]. Note that βk,r is the
r-th in βk.

• Let αi = ⟨1m, exp(W⊤xi)⟩ and α̃i = ⟨1m, exp(W̃⊤xi)⟩, ∀i ∈ [n].

• Let H be defined as Definition K.1.

Then, we have

• Part 1. Then with probability at least 1− δ/poly(nd),

|[Hk1,k2]i,j(W)− [Hk1,k2]i,j(W̃)| ≤ 8R · exp(22B).

• Part 2. Then with probability at least 1− δ, we have

∥H(W)−H(W̃)∥F ≤ 8R
√
nd · exp(22B).

Proof. For simplicity, we give the following notations:

• Note that S̃i := exp(W̃ (τ)⊤xi) · α̃−1
i .

• Note that β̃k := W̃k,∗ ◦ a.

• Note that ṽk,r := β̃k,r · 1m − β̃k.

Proof of Part 1. We have

|[Hk1,k2
]i,j(W)− [Hk1,k2

]i,j(W̃)| =mx⊤
i xj

m∑
r=1

(B1,r +B2,r +B3,r +B4,r +B5,r +B6,r)

here, we define:

B1,r := ⟨vk1,r,Si⟩ · Si,r · ⟨vk2,r,Sj⟩ · Sj,r − ⟨vk1,r,Si⟩ · Si,r · ⟨vk2,r,Sj⟩ · S̃j,r
B2,r := ⟨vk1,r,Si⟩ · Si,r · ⟨vk2,r,Sj⟩ · S̃j,r − ⟨vk1,r,Si⟩ · Si,r · ⟨vk2,r, S̃j⟩ · S̃j,r
B3,r := ⟨vk1,r,Si⟩ · Si,r · ⟨vk2,r, S̃j⟩ · S̃j,r − ⟨vk1,r,Si⟩ · Si,r · ⟨ṽk2,r, S̃j⟩ · S̃j,r
B4,r := ⟨vk1,r,Si⟩ · Si,r · ⟨ṽk2,r, S̃j⟩ · S̃j,r − ⟨vk1,r,Si⟩ · S̃i,r · ⟨ṽk2,r, S̃j⟩ · S̃j,r
B5,r := ⟨vk1,r,Si⟩ · S̃i,r · ⟨ṽk2,r, S̃j⟩ · S̃j,r − ⟨vk1,r, S̃i⟩ · S̃i,r · ⟨ṽk2,r, S̃j⟩ · S̃j,r
B6,r := ⟨vk1,r, S̃i⟩ · S̃i,r · ⟨ṽk2,r, S̃j⟩ · S̃j,r − ⟨ṽk1,r, S̃i⟩ · S̃i,r · ⟨ṽk2,r, S̃j⟩ · S̃j,r

Before we bound all terms, we provide a tool as follows:

∥vk,r − ṽk,r∥22 =

m∑
r1=1

(vk,r,r1 − ṽk,r,r1)
2

=

m∑
r1=1

(βk,r − βk,r1 − β̃k,r + β̃k,r1)
2

=

m∑
r1=1

(arWk,r − ar1Wk,r − arW̃k,r + ar1W̃k,r)
2

=

m∑
r1=1

(ar(Wk,r − W̃k,r) + ar1(W̃k,r1 −Wk,r1))
2

35

Published as a workshop paper at SCOPE - ICLR 2025

≤
m∑

r1=1

(|Wk,r − W̃k,r|+ |W̃k,r1 −Wk,r1 |)2

≤
m∑

r1=1

4R2

≤m4R2 (10)

where the first step follows from the definition of ℓ2 norm, the second step follows from the definition
of vk,r, the third step follows from Definition I.5, the fourth and fifth steps follow from simple
algebras, the sixth step follows from ∥wr − vr∥∞ ≤ ∥wr − vr∥2 ≤ R, the last step follows from
simple algebras.

To bound B1,r, we have

|B1,r| := |⟨vk1,r,Si⟩ · Si,r · ⟨vk2,r,Sj⟩ · Sj,r − ⟨vk1,r,Si⟩ · Si,r · ⟨vk2,r,Sj⟩ · S̃j,r|

= |⟨vk1,r,Si⟩ · Si,r · ⟨vk2,r,Sj⟩ · (Sj,r − S̃j,r)|

≤ exp(15B)

m
· |Sj,r − S̃j,r|

≤ R exp(19B + 3R)

m2

where the first step follows from the definition of B1,r, the second step follows from simple algebras,
the third step follows from Part 6 of Lemma O.2 and 0 ≤ Si,r ≤ exp(3B)

m by Part 11 of Lemma O.1,
the last step follows from Part 12 of Lemma O.1.

To bound B2,r, we have

|B2,r| := |⟨vk1,r,Si⟩ · Si,r · ⟨vk2,r,Sj⟩ · S̃j,r − ⟨vk1,r,Si⟩ · Si,r · ⟨vk2,r, S̃j⟩ · S̃j,r|

= |⟨vk1,r,Si⟩ · Si,r · ⟨vk2,r,Sj − S̃j⟩ · S̃j,r|

≤ 2B exp(12B)

m2
· |⟨ 1

2B
vk2,r,Sj − S̃j⟩|

≤ 2BR exp(16B + 3R)

m2

where the first step follows from the definition of B2,r, the second step follows from simple algebras,
the third step follows from Part 6 of Lemma O.2 and 0 ≤ Si,r ≤ exp(3B)

m by Part 11 of Lemma O.1,
the last step follows from Part 13 of Lemma O.1 and ∥vk,r∥∞ ≤ 2B by simple algebras.

To bound B3,r, we have

|B3,r| := |⟨vk1,r,Si⟩ · Si,r · ⟨vk2,r, S̃j⟩ · S̃j,r − ⟨vk1,r,Si⟩ · Si,r · ⟨ṽk2,r, S̃j⟩ · S̃j,r|

= |⟨vk1,r,Si⟩ · Si,r · ⟨vk2,r − ṽk2,r, S̃j⟩ · S̃j,r|

≤ exp(12B)

m2
· |⟨vk2,r − ṽk2,r, S̃j⟩|

≤ 2R exp(15B)

m2

where the first step follows from the definition of B3,r, the second step follows from simple algebras,
the third step follows from Part 6 of Lemma O.2 and 0 ≤ Si,r ≤ exp(3B)

m by Part 11 of Lemma O.1,
the last step follows from Cauchy-Schwarz inequality, Eq. (10) and ∥Si∥2 ≤ exp(3B)√

m
.

The proof of bounding B4,r is similar to the proof of bounding B1,r, we have |B4,r| ≤ R exp(19B+3R)
m2 .

The proof of bounding B5,r is similar to the proof of bounding B2,r, we have |B5,r| ≤
2BR exp(16B+3R)

m2 .

The proof of bounding B6,r is similar to the proof of bounding B3,r, we have |B6,r| ≤ 2R exp(15B)
m2 .

36

Published as a workshop paper at SCOPE - ICLR 2025

Now we combine all terms, we have

|[Hk1,k2
]i,j(W)− [Hk1,k2

]i,j(W̃)| =mx⊤
i xj

m∑
r=1

(B1,r +B2,r +B3,r +B4,r +B5,r +B6,r)

≤m

m∑
r=1

(B1,r +B2,r +B3,r +B4,r +B5,r +B6,r)

≤m

m∑
r=1

(|B1,r|+ |B2,r|+ |B3,r|+ |B4,r|+ |B5,r|+ |B6,r|)

≤m

m∑
r=1

8R exp(22B)

m2

≤ 8R · exp(22B)

where the second step follows from ∥xi∥2 ≤ 1, the third step follows from simple algebras, the fourth
step follows from R ≤ B, B ≤ exp(B) and the combination of all terms, the last step follows from
simple algebras.

Proof of Part 2. This proof follows from Part 1 of this Lemma and the definition of Frobenius
norm.

K.2 KERNEL PSD DURING TRAINING PROCESS

Claim K.4. If the following conditions hold:

• Let λ = λmin(H
∗)

• Let C > 10 denote a sufficiently large constant

• Let B := max{Cσ
√
log(nd/δ), 1}.

• Let δ ∈ (0, 0.1).

• Let timestamp τ ≥ 0 denotes as a integer.

• Denote H∗ as H(W) in Definition K.1.

• Denote H(τ) as H(W̃) in Definition K.1.

• Let D := 2λ−1 · exp(20B)
√
nd
m ∥Y − F(0)∥F

• Let ∥wr(t)− wr(0)∥2 ≤ D < R = λ/ poly(n, d, exp(B)), ∀r ∈ [m], ∀t ≥ 0

Then, with a probability at least 1− δ, we have

λmin(H(τ)) ≥ λ/2

Proof. By Lemma K.3, with a probability at least 1− δ, we have

∥H∗ −H(τ)∥F ≤ 8R
√
nd exp(22B)

≤ λ/2 (11)

where the first step follows from Part 2 of Lemma K.3, the second step follows by choice of R.

By eigenvalue perturbation theory, we have

λmin(H(τ)) ≥ λmin(H
∗)− ∥H(τ)−H∗∥

≥ λmin(H
∗)− ∥H(τ)−H∗∥F

≥ λmin(H
∗)− λ/2

≥ λ/2

where the first step comes from triangle inequality, the second step is due to Frobenius norm, the
third step is due to Eq. (11), the last step follows from λmin(H∗) = 2.

37

Published as a workshop paper at SCOPE - ICLR 2025

L LOSS DECOMPOSITION

In this section, we provide the lemma below to decompose it into five terms, and then we will give
bounds to four terms.

Lemma L.1. Assuming the following condition is met:

• Let W ∈ Rd×m and a ∈ Rm as Definition I.1.

• Let λ = λmin(H
∗)

• For i, j ∈ [n] and k1, k2 ∈ [d].

• Let θk,i(τ) ∈ Rm be defined as Definition J.6.

• Let ui(τ) ∈ Rm be defined as Definition J.2.

• Denote F(τ) ∈ Rn×d as Definition J.8.

• Let Y ∈ Rn×d denote the labels.

• Let η > 0 denote the learning rate.

• Let scalar v0,k,i ∈ R be defined as follows

v0,k,i :=m
∑
r∈[m]

(θk,i,r(τ + 1)− θk,i,r(τ)) · ui,r(τ + 1)

• Let scalar v1,k,i ∈ R be defined as follows

v1,k,i :=m

m∑
r=1

θk,i,r(τ) · ui,r(τ) · (−η⟨∆wr(τ), xi⟩)

• Let scalar v2,k,i ∈ R be defined as follows

v2,k,i :=m

m∑
r=1

θk,i,r(τ) · ui,r(τ) · η2 ·Θ(1) · ⟨∆wr(τ), xi⟩2

• Gradient Property. η∥∆wr(i)∥2 ≤ 0.01, ∀r ∈ [m], ∀i ∈ [τ]

• C0 = 2⟨vec(F(τ)− Y), vec(v0)⟩

• C1 = 2⟨vec(F(τ)− Y), vec(v1)⟩

• C2 = 2⟨vec(F(τ)− Y), vec(v2)⟩

• C3 = ∥F(τ + 1)− F(τ)∥2F

Then, we can show

∥F(τ + 1)− Y ∥2F = ∥F(τ)− Y ∥2F + C0 + C1 + C2 + C3.

Proof. The expression ∥Y −F(τ +1)∥2F = ∥ vec(Y −F(τ +1))∥22 can be rewritten in the following:

∥ vec(Y − F(τ + 1))∥22
= ∥ vec(Y − F(τ)− (F(τ + 1)− F(τ)))∥22
= ∥ vec(Y − F(τ))∥22 − 2 vec(Y − F(τ))⊤ vec(F(τ + 1)− F(τ))

+ ∥ vec(F(τ + 1)− F(τ))∥22.
(12)

where the first step follows from simple algebra, the last step follows from simple algebra.

38

Published as a workshop paper at SCOPE - ICLR 2025

Recall the update rule (Definition J.13),

wr(τ + 1) = wr(τ)− η ·∆wr(τ)

In the following manner, ∀k ∈ [d], we can express Fk(τ + 1)− Fk(τ) ∈ Rn:

Fk,i(τ + 1)− Fk,i(τ)

=m
∑
r∈[m]

(θk,i,r(τ + 1)ui,r(τ + 1)− θk,i,r(τ)ui,r(τ))

= +
∑
r∈[m]

(θk,i,r(τ + 1)− θk,i,r(τ)) · ui,r(τ + 1)

+m
∑
r∈[m]

θk,i,r · (ui,r(τ + 1)− ui,r(τ))

= +
∑
r∈[m]

(θk,i,r(τ + 1)− θk,i,r(τ)) · ui,r(τ + 1)

+m
∑
r∈[m]

θk,i,r(τ) · ui,r(τ) · (exp(−η⟨∆wr(τ), xi⟩)− 1)

= +
∑
r∈[m]

(θk,i,r(τ + 1)− θk,i,r(τ)) · ui,r(τ + 1)

+m
∑
r∈[m]

θk,i,r(τ)ui,r(τ) · (−η⟨∆wr(τ), xi⟩+Θ(1)η2⟨∆wr(τ), xi⟩2)

= v0,k,i + v1,k,i + v2,k,i (13)

where the first step is due to the definition of Fk,i(τ), the second step is from the simple algebra, the
third step is due to |η∆wr(τ)

⊤xi| ≤ 0.01 (due to Gradient Property and ∥xi∥2 ≤ 1), the fourth
step follows from the Taylor series approximation, the last step follows from

v0,k,i :=m
∑
r∈[m]

(θk,i,r(τ + 1)− θk,i,r(τ)) · ui,r(τ + 1)

v1,k,i :=m

m∑
r=1

θk,i,r(τ) · ui,r(τ) · (−η⟨∆wr(τ), xi⟩)

v2,k,i :=m

m∑
r=1

θk,i,r(τ) · ui,r(τ) · η2 ·Θ(1) · ⟨∆wr(τ), xi⟩2

Here v0,k,i and v1,k,i are linear in η and v2,k,i is quadratic in η. Thus, v0,k,i and v1,k,i are the first
order term, and v2,k,i is the second order term.

We can rewrite the second term in the Eq. (12) above as below:

⟨vec(Y − F(τ)), vec(F(τ + 1)− F(τ))⟩
= ⟨vec(Y − F(τ)), vec(v0 + v1 + v2)⟩
= ⟨vec(Y − F(τ)), vec(v0)⟩+ ⟨vec(Y − F(τ)), vec(v1)⟩+ ⟨vec(Y − F(τ)), vec(v2)⟩

where the first step follows from Eq.(13), the second step follows from simple algebras.

Therefore, we can conclude that

∥F(τ + 1)− Y ∥2F = ∥F(τ)− Y ∥2F + C0 + C1 + C2 + C3.

The below lemma analyzes the first-order term that is making progress.
Lemma L.2 (Progress terms). If the following conditions hold

39

Published as a workshop paper at SCOPE - ICLR 2025

• Let λ = λmin(H
∗)

• Let C > 10 denote a sufficiently large constant

• Let B := max{Cσ
√
log(nd/δ), 1}.

• Let δ ∈ (0, 0.1).

• Let m ≥ Ω(λ−2n2d2 exp(30B)
√
log(nd/δ))

• Let r ∈ [m], let i, j ∈ [n], let k, k2 ∈ [d].

• Let βk(τ) ∈ Rm be defined as Definition I.5.

• Let θk,i(τ) ∈ Rm be defined as Definition J.6.

• Let ui(τ) ∈ Rm be defined as Definition J.2.

• Let Si(τ) ∈ Rm be defined as Definition J.7.

• Let vk,r := βk,r(τ) · 1m − βk(τ) ∈ Rm

• Denote F(τ) ∈ Rn×d as Definition J.8.

• Let Y ∈ Rn×d denote the labels.

• Let η > 0 denote the learning rate.

• Let scalar v1,1,k,i ∈ R be defined as follows (we omit (τ) in the following terms)

v1,1,k,i =m2
∑
r∈[m]

θk,i,r(τ) · ui,r(τ)

· (−η
n∑

j=1

d∑
k2=1

(Fk2,j(τ)− yk2,j) ·
(
(⟨vk2,r,Sj(τ)⟩) · Sj,r(τ)

)
· x⊤

j)xi

• Let C1,1 := 2⟨vec(F(τ)− Y), vec(v1,1)⟩

Then, we have

• C1,1 ≤ −1.6mη vec(F(τ)− Y)⊤H(τ) vec(F(τ)− Y)

Proof. We have

v1,1,k,i =m2
∑
r∈[m]

θk,i,r(τ) · ui,r(τ)

· (−η
n∑

j=1

d∑
k2=1

(Fk2,j(τ)− yk2,j) ·
(
(⟨vk2,r,Sj(τ)⟩) · Sj,r(τ)

)
· x⊤

j)xi

=m2
∑
r∈[m]

βk,r(τ) · αi(τ)
−1 · ui,r(τ)

· (−η
n∑

j=1

d∑
k2=1

(Fk2,j(τ)− yk2,j) ·
(
(⟨vk2,r,Sj(τ)⟩) · Sj,r(τ)

)
· x⊤

j)xi

=m2
∑
r∈[m]

βk,r(τ) · Si,r(τ)

· (−η
n∑

j=1

d∑
k2=1

(Fk2,j(τ)− yk2,j) ·
(
(⟨vk2,r,Sj(τ)⟩) · Sj,r(τ)

)
· x⊤

j)xi

40

Published as a workshop paper at SCOPE - ICLR 2025

=m2
∑
r∈[m]

⟨βk,r(τ) · 1m,Si(τ)⟩ · Si,r(τ)

· (−η
n∑

j=1

d∑
k2=1

(Fk2,j − yk2,j) ·
(
(⟨vk2,r,Sj(τ)⟩) · Sj,r(τ)

)
· x⊤

j)xi

=m2
∑
r∈[m]

(⟨vk,r,Si(τ)⟩+ ⟨βk(τ),Si(τ)⟩) · Si,r

· (−η
n∑

j=1

d∑
k2=1

(Fk2,j(τ)− yk2,j) ·
(
(⟨vk2,r,Sj(τ)⟩) · Sj,r(τ)

)
· x⊤

j)xi

=m2(Q1,1,k,i +Q1,2,k,i)

where the first step follows from the definition of v1,1,k,i, the second step follows from Definition J.6,
the third step follows from Definition J.7, the fourth step follows from ⟨βk,r(τ) · 1m,Si⟩ = βk,r(τ),
the fifth step follows from the definition of vk for k ∈ [d] and simple algebras, the last step holds
since we define

Q1,1,k,i :=
∑
r∈[m]

⟨vk,r,Si(τ)⟩ · Si,r(τ)

· (−η
n∑

j=1

d∑
k2=1

(Fk2,j(τ)− yk2,j) ·
(
(⟨vk2,r,Sj(τ)⟩) · Sj,r(τ)

)
· x⊤

j)xi,

Q1,2,k,i :=
∑
r∈[m]

⟨βk(τ),Si(τ)⟩ · Si,r(τ)

· (−η
n∑

j=1

d∑
k2=1

(Fk2,j(τ)− yk2,j) ·
(
(⟨vk2,r,Sj(τ)⟩) · Sj,r(τ)

)
· x⊤

j)xi.

Bounding first term. Then for the first term Q1,1,k,i, we have its quantity
n∑

i=1

d∑
k=1

Q1,1,k,i(Fk,i(τ)− yk,i) = −
1

m
η vec(F(τ)− Y)⊤H(τ) vec(F(τ)− Y)

where this step follows from Definition K.1.

Bounding second term. On the other hand, for the second term Q1,2,k,i, we have its quantity,

|
n∑

i=1

d∑
k=1

Q1,2,k,i(Fk,i(τ)− yk,i)|

≤ η|exp(9B)

m3

n∑
i=1

n∑
j=1

m∑
r=1

d∑
k=1

d∑
k2=1

σrCk,k2,r(Fk,i(τ)− yk,i)(Fk2,j(τ)− yk2,j)|

≤ η
exp(9B)

m3
· |

m∑
r=1

σr max
k,k2∈[d]

Ck,k2,r| · ∥(F(τ)− Y)⊗ (F(τ)− Y)∥1

≤ η
exp(9B)

m3
· |

m∑
r=1

σr max
k,k2∈[d]

Ck,k2,r| · ∥F(τ)− Y ∥21

≤ η
nd exp(9B)

m3
· |

m∑
r=1

σr max
k,k2∈[d]

Ck,k2,r| · ∥F(τ)− Y ∥2F

≤ η
exp(9B)

m3λ
|

m∑
r=1

σr max
k,k2∈[d]

Ck,k2,r| · vec(F(τ)− Y)⊤H(τ) vec(F(τ)− Y)

where the first step follows from 0 ≤ Si,r ≤ exp(3B)
m by Part 11 of Lemma O.1, ∥Si∥2 ≤ exp(3B)√

m
,

∥xi∥ ≤ 1 and
Ck,k2,r := ∥βk(τ)∥2 · ∥vk2,r∥2, σr ∈ {+1,−1}

41

Published as a workshop paper at SCOPE - ICLR 2025

the second and third steps follow from the definition of Kronecker product, the fourth step follows
from ∥U∥1 ≤

√
nd∥U∥F for U ∈ Rn×d, the last step follows from vec(F(τ)−Y)⊤H(τ) vec(F(τ)−

Y) ≥ λ∥F− Y ∥2F .

Thus, by following Part 2 and Part 3 of Lemma O.2, we have

Ck,k2,r = ∥βk(τ)∥2 · ∥vk2,r∥2 ≤ 2mB2.

Besides, we apply Hoeffding inequality (Lemma H.4) to all random variables σr maxk,k2∈[d] Ck,k2,r

for r ∈ [m], especially E[
∑m

r=1 σr maxk,k2∈[d] Ck,k2,r] = 0 due to the symmetry of ar, we have

|
n∑

i=1

d∑
k=1

Q1,2,k,i(Fk,i(τ)− yk,i)|

≤ Cη
nd exp(9B)

m3λ
· vec(F(τ)− Y)⊤H(τ) vec(F(τ)− Y) ·mB2

√
m log(nd/δ)

with probability at least 1− δ/poly(nd).

Note that by Lemma condition, we have

C
nd exp(9B)

m3λ
·mB2

√
m log(nd/δ) ≤ 0.2

1

m
.

Finally, we complete the proof with the result

C1,1 ≤ −1.6mη vec(F(τ)− Y)⊤H(τ) vec(F(τ)− Y)

Below, we prove all other terms are small when m is large enough compared to the progressive term.
Lemma L.3 (Minor effects on non-progress term). If the following

• Let m ≥ Ω(λ−2n2d2 exp(30B)
√
log(nd/δ)).

• Let r ∈ [m], let i, j ∈ [n], let k, k2 ∈ [d]

• Let scalar v0,k,i ∈ R be defined as follows

v0,k,i :=m
∑
r∈[m]

(θk,i,r(τ + 1)− θk,i,r(τ)) · ui,r(τ + 1)

• Let scalar v1,2,k,i ∈ R be defined as follows (we omit (τ) in the following terms)

v1,2,k,i = m2
∑
r∈[m]

θk,i,r(τ) · ui,r(τ) · (−η
n∑

j=1

d∑
k2=1

(Fk2,j(τ)− yk2,j) · arSj,r(τ)e⊤k2
)xi

• Let scalar v2,k,i ∈ R be defined as follows

v2,k,i :=m

m∑
r=1

θk,i,r(τ) · ui,r(τ) · η2 ·Θ(1) · ⟨∆wr(τ), xi⟩2

• Let C0 := 2⟨vec(F(τ)− Y), vec(v0)⟩

• Let C1,2 := 2⟨vec(F(τ)− Y), vec(v1,2)⟩

• Let C2 := 2⟨vec(F(τ)− Y), vec(v2)⟩

• Let C3 := ∥F(τ + 1)− F(τ)∥2F

Then, we have

42

Published as a workshop paper at SCOPE - ICLR 2025

• |C0| ≤ 0.1mηλ · ∥F(τ)− Y ∥2F
• |C1,2| ≤ 0.1mηλ · ∥F(τ)− Y ∥2F
• |C2| ≤ η2m · n2d2 exp(16B) · ∥F(τ)− Y ∥2F
• |C3| ≤ η2m2 · ∥F(τ)− Y ∥2F

Proof. This proof follows from Lemma L.4, Lemma L.5, Lemma L.6 and Lemma L.7.

L.1 BOUNDING C0

Lemma L.4. If the following conditions hold

• Let λ = λmin(H
∗)

• Let C > 10 denote a sufficiently large constant

• Let B := max{Cσ
√
log(nd/δ), 1}.

• Let δ ∈ (0, 0.1).

• Let m ≥ Ω(λ−2n2d2 exp(30B)
√
log(nd/δ)).

• Let r ∈ [m], let i, j ∈ [n], let k, k1 ∈ [d].

• Let βk(τ) ∈ Rm be defined as Definition I.5.

• Let αi(τ) ∈ R be defined as Definition I.3.

• Let θk,i(τ) ∈ Rm be defined as Definition J.6.

• Let ui(τ) ∈ Rm be defined as Definition J.2.

• Let Si(τ) ∈ Rm be defined as Definition J.7.

• Let vk := βk,r(τ) · 1m − βk(τ) ∈ Rm

• Denote F(τ) ∈ Rn×d as Definition J.8.

• Let Y ∈ Rn×d denote the labels.

• Let η ∈ (0, 1/m) denote the learning rate.

• Let scalar v0,k,i ∈ R be defined as follows (we omit (τ) in the following terms)

v0,k,i =m
∑
r∈[m]

(θk,i,r(τ + 1)− θk,i,r(τ)) · ui,r(τ + 1)

• Let C0 := 2⟨vec(F(τ)− Y), vec(v0)⟩

Then, with a probability at least 1− δ/poly(nd), we have

|C0| ≤ 0.1ηmλ∥F(τ)− Y ∥2F .

Proof. By Claim J.12, we have

∆wr(τ) = m

n∑
i=1

d∑
k=1

(Fk,i(τ)− yk,i) ·
(
⟨vk,r(τ),Si(τ)⟩ · Si,r(τ) · xi + arSi,r(τ)ek

)
Then the k1-th entry ∆wr,k(τ) for k1 ∈ [d] should be

∆wr,k1(τ) = m

n∑
i=1

d∑
k=1

(Fk,i(τ)− yk,i) ·
(
⟨vk,r(τ),Si(τ)⟩ · Si,r(τ) · xi,k1 + arSi,r(τ)ek,k1

)
(14)

43

Published as a workshop paper at SCOPE - ICLR 2025

We have

v0,k,i =m
∑
r∈[m]

(θk,i,r(τ + 1)− θk,i,r(τ)) · ui,r(τ + 1)

=m
∑
r∈[m]

(βk,r(τ + 1)αi(τ + 1)−1 − βk,r(τ)αi(τ)
−1) · ui,r(τ + 1)

= m
∑
r∈[m]

(βk,r(τ + 1)αi(τ + 1)−1 − βk,r(τ + 1)αi(τ)
−1

+ βk,r(τ + 1)αi(τ)
−1 − βk,r(τ)αi(τ)

−1) · ui,r(τ + 1)

= m
∑
r∈[m]

(βk,r(τ + 1) · (αi(τ + 1)−1 − αi(τ)
−1)

+ (βk,r(τ + 1)− βk,r(τ)) · αi(τ)
−1) · ui,r(τ + 1)

= m(Q0,1,k,i +Q0,2,k,i)

where the first step follows from the definition of v0,k,i, the second step follows from Definition J.6,
the third and fourth steps follow from simple algebras, the last step hold since we define

Q0,1,k,i :=
∑
r∈[m]

βk,r(τ + 1) · (αi(τ + 1)−1 − αi(τ)
−1) · ui,r(τ + 1),

Q0,2,k,i :=
∑
r∈[m]

(βk,r(τ + 1)− βk,r(τ)) · αi(τ)
−1) · ui,r(τ + 1).

Bounding first term. For the first term Q0,1,k,i, we have its quantity

|
n∑

i=1

d∑
k=1

Q0,1,k,i(Fk,i(τ)− yk,i)|

≤ |
n∑

i=1

d∑
k=1

m∑
r=1

βk,r(τ + 1) · (αi(τ + 1)−1 − αi(τ)
−1) · ui,r(τ + 1)(Fk,i(τ)− yk,i)|

≤ exp(B) · |
n∑

i=1

d∑
k=1

m∑
r=1

βk,r(τ + 1) · (αi(τ + 1)−1 − αi(τ)
−1)(Fk,i(τ)− yk,i)|

≤ B exp(B) · |
n∑

i=1

d∑
k=1

m∑
r=1

ar(αi(τ + 1)−1 − αi(τ)
−1) · (Fk,i(τ)− yk,i)|

≤ B exp(B) · |
m∑
r=1

ar(αi(τ + 1)−1 − αi(τ)
−1)| ·

√
nd∥F(τ)− Y ∥F (15)

where the first step follows from the definition of Q0,1,k,i, the second step follows from Part 4
of Lemma O.1 and Definition J.2, the third step follows from Part 1 of Lemma O.1 and ∥U∥1 ≤√
nd∥U∥F for U ∈ Rn×d.

By Part 2 of Lemma L.9, we have

αi(τ + 1)−1 − αi(τ)
−1 ≤ η

√
nd exp(15B)

m3
· ∥F(τ)− Y ∥F + η2

nd exp(27B)√
m

· ∥F(τ)− Y ∥F .

Then we apply Hoeffding inequality (Lemma H.4) to random variables ar(αi(τ + 1)−1 − αi(τ)
−1)

for r ∈ [m], and by E[
∑m

r=1 ar(αi(τ + 1)−1 − αi(τ)
−1)] = 0, we have

|
m∑
r=1

ar(αi(τ + 1)−1 − αi(τ)
−1)|

≤ (η

√
nd exp(15B)

m3
+ η2

nd exp(27B)√
m

) · ∥F(τ)− Y ∥F ·
√
m log(nd/δ). (16)

44

Published as a workshop paper at SCOPE - ICLR 2025

with probability at least 1− δ/poly(nd).

Through combining Eq. (16) and Eq.(15), we can show that

|
n∑

i=1

d∑
k=1

Q0,1,k,i(Fk,i(τ)− yk,i)|

≤ (η
nd exp(17B)

m3
· ∥F(τ)− Y ∥2F + η2

nd
√
nd exp(29B)√

m
· ∥F(τ)− Y ∥2F) ·

√
m log(nd/δ)

with a probability at least 1− δ/poly(nd).

Thus, by Lemma condition, we can show

η
nd exp(17B)

m3
·
√

m log(nd/δ) ≤ 0.01ηλ,

η2
nd
√
nd exp(29B)√

m
·
√
m log(nd/δ) ≤ η

nd
√
nd exp(29B)

m
·
√

log(nd/δ) ≤ 0.01ηλ.

Bounding second term. On the other hand, for the second term Q0,2,k,i, we have its quantity

|
n∑

i=1

d∑
k=1

Q0,2,k,i(Fk,i(τ)− yk,i)|

≤ |
n∑

i=1

d∑
k=1

m∑
r=1

(βk,r(τ + 1)− βk,r(τ)) · αi(τ)
−1) · ui,r(τ + 1) · (Fk,i(τ)− yk,i)|

≤ exp(B) · |
n∑

i=1

d∑
k=1

m∑
r=1

(βk,r(τ + 1)− βk,r(τ)) · αi(τ)
−1) · (Fk,i(τ)− yk,i)|

≤ exp(2B)

m
· |

n∑
i=1

d∑
k=1

m∑
r=1

(βk,r(τ + 1)− βk,r(τ)) · (Fk,i(τ)− yk,i)|

≤ exp(2B)

m
· |

n∑
i=1

d∑
k=1

m∑
r=1

(Wk,r(τ + 1) · ar −Wk,r(τ) · ar) · (Fk,i(τ)− yk,i)|

≤ η
exp(2B)

m
· |

n∑
i=1

d∑
k=1

m∑
r=1

ar ·m ·
n∑

j=1

d∑
k1=1

(Fk1,j(τ)− yk1,j)

·
(
⟨vk1,r(τ),Sj(τ)⟩ · Sj,r(τ) · xj,k + arSj,r(τ)ek1,k

)
· (Fk,i(τ)− yk,i)|

≤ η
exp(5B)

m
· |

m∑
r=1

σr max
j,k,k1∈[d]

Cj,k,k1,r| · ∥(F(τ)− Y)⊗ (F(τ)− Y)∥1

≤ η
exp(5B)

m
· |

m∑
r=1

σr max
j,k,k1∈[d]

Cj,k,k1,r| · ∥F(τ)− Y ∥21

≤ η
nd exp(5B)

m
· |

m∑
r=1

σr max
j,k,k1∈[d]

Cj,k,k1,r| · ∥F(τ)− Y ∥2F

where the first step follows from the definition of Q0,2,k,i, the second and third steps follow from
Part 4 of Lemma O.1, the fourth step follows from Definition I.5, the fifth step follows from Eq.(14),
the sixth step follows from the definition of Kronecker product, 1 ≤ Si,r ≤ exp(3B)

m by Part 11 of
Lemma O.1, ∥xi∥2 ≤ 1 and defining

Cj,k,k1,r := ⟨Sj , vk1,r⟩+ ek1,k, σr ∈ {+1,−1},

the seventh step follows from the definition of ℓ1 norm, the last step follows from ∥U∥1 ≤
√
nd∥U∥F

for U ∈ Rn×d.

45

Published as a workshop paper at SCOPE - ICLR 2025

Thus, by following Part 6 of Lemma O.2, we have

Cj,k,k1,r = ⟨Sj , vk1,r⟩+ ek1,k

≤ exp(6B) + 1

≤ exp(7B)

where the last step follows from simple algebras.

We apply Hoeffding inequality (Lemma H.4) to σr maxj,k,k1∈[d] Cj,k,k1,r for r ∈ [m].

By E[
∑m

r=1 σr maxj,k,k1∈[d] Cj,k,k1,r] = 0, we have

|
n∑

i=1

d∑
k=1

Q0,2,k,i(Fk,i(τ)− yk,i)| ≤ η
nd exp(5B)

m
· ∥F(τ)− Y ∥2F · exp(6B)

√
m log(nd/δ).

with probability at least 1− δ/poly(nd).

Then, by Lemma condition, we have

η
nd exp(5B)

m
· exp(7B)

√
m log(nd/δ) ≤ 0.01ηλ.

Now we can complete the proof by combining all terms, we have

|C0| ≤ 0.1ηmλ∥F(τ)− Y ∥2F .

L.2 BOUNDING C1,2

Lemma L.5. If the following conditions hold

• Let λ = λmin(H
∗)

• Let C > 10 denote a sufficiently large constant

• Let B := max{Cσ
√
log(nd/δ), 1}.

• Let δ ∈ (0, 0.1).

• Let m ≥ Ω(λ−2n2d2 exp(30B)
√
log(nd/δ)).

• Let r ∈ [m], let i, j ∈ [n], let k, k1 ∈ [d].

• Let βk(τ) ∈ Rm be defined as Definition I.5.

• Let αi(τ) ∈ R be defined as Definition I.3.

• Let θk,i(τ) ∈ Rm be defined as Definition J.6.

• Let ui(τ) ∈ Rm be defined as Definition J.2.

• Let Si(τ) ∈ Rm be defined as Definition J.7.

• Let vk := βk,r(τ) · 1m − βk(τ) ∈ Rm

• Denote F(τ) ∈ Rn×d as Definition J.8.

• Let Y ∈ Rn×d denote the labels.

• Let η > 0 denote the learning rate.

• Let scalar v1,2,k,i ∈ R be defined as follows (we omit (τ) in the following terms)

v1,2,k,i = m2
∑
r∈[m]

θk,i,r(τ) · ui,r(τ) · (−η
n∑

j=1

d∑
k2=1

(Fk2,j(τ)− yk2,j) · arSj,r(τ)e⊤k2
)xi

46

Published as a workshop paper at SCOPE - ICLR 2025

• Let C1,2 := 2⟨vec(F(τ)− Y), vec(v1,2)⟩

Then, with a probability at least 1− δ/poly(nd), we have
|C1,2| ≤ 0.1ηmλ∥F(τ)− Y ∥2F

Proof. We have the quantity of v1,2,k,i

|
n∑

i=1

d∑
k=1

v1,2,k,i(Fk,i(τ)− yk,i)|

≤ |
n∑

i=1

d∑
k=1

m2
m∑
r=1

θk,i,r(τ) · ui,r(τ)

· (−η
n∑

j=1

d∑
k2=1

(Fk2,j(τ)− yk2,j) · arSj,r(τ)e⊤k2
)xi · (Fk,i(τ)− yk,i)|

≤ |
n∑

i=1

d∑
k=1

m2
m∑
r=1

βk,r(τ)αi(τ)
−1 · ui,r(τ)

· (−η
n∑

j=1

d∑
k2=1

(Fk2,j(τ)− yk2,j) · arSj,r(τ)e⊤k2
)xi · (Fk,i(τ)− yk,i)|

≤ |
n∑

i=1

d∑
k=1

m2
m∑
r=1

βk,r(τ)Si,r(τ)

· (−η
n∑

j=1

d∑
k2=1

(Fk2,j(τ)− yk2,j) · arSj,r(τ)e⊤k2
)xi · (Fk,i(τ)− yk,i)|

≤ ηm2|
n∑

i=1

d∑
k=1

m∑
r=1

βk,r(τ)Si,r(τ)

· (−
n∑

j=1

d∑
k2=1

(Fk2,j(τ)− yk2,j) · arSj,r(τ)e⊤k2
)xi · (Fk,i(τ)− yk,i)|

≤ η exp(6B)

m∑
r=1

|ar ·max
k∈[d]

βk,r(τ)| · ∥(F(τ)− Y)⊗ (F(τ)− Y)∥1

≤ η exp(6B)

m∑
r=1

|ar ·max
k∈[d]

βk,r(τ)| · ∥F(τ)− Y ∥21

≤ ηnd exp(6B)

m∑
r=1

|ar ·max
k∈[d]

βk,r(τ)| · ∥F(τ)− Y ∥2F

where the first step follows from the definition of v1,2,k,i, the second step follows from Definition J.6,
the third step follows from Definition I.5, the fourth step follows from Definition J.7, the fifth step
follows from simple algebras, the sixth step follows from 0 ≤ Sj,r ≤ exp(3B)

m , ∥xi∥2 ≤ 1 and the
definition of Kronecker product, the seventh step follows from the definition of ℓ1 norm, the last step
follows from ∥U∥1 ≤

√
nd∥U∥F for U ∈ Rn×d.

Then by Part 1 of Lemma O.1, we have
|max
k∈[d]

βk,r(τ)| ≤ B

We apply Hoeffding inequality (Lemma H.4) to random variables ar ·maxk∈[d] βk,r(τ) for r ∈ [m].
By E[

∑m
r=1 ar ·maxk∈[d] βk,r(τ)] = 0, we have

|
n∑

i=1

d∑
k=1

v1,2,k,i(Fk,i(τ)− yk,i)| ≤ ηnd exp(6B)B∥F(τ)− Y ∥2F

47

Published as a workshop paper at SCOPE - ICLR 2025

with a probability at least 1− δ/poly(nd).

By the Lemma condition, we have

nd exp(6B)B ≤ 0.1mλ

L.3 BOUNDING C2

Lemma L.6. If the following conditions hold

• Let λ = λmin(H
∗)

• Let C > 10 denote a sufficiently large constant

• Let B := max{Cσ
√
log(nd/δ), 1}.

• Let δ ∈ (0, 0.1).

• Let m ≥ Ω(λ−2n2d2 exp(30B)
√
log(nd/δ)).

• Let r ∈ [m], let i, j ∈ [n], let k, k1 ∈ [d].

• Let βk(τ) ∈ Rm be defined as Definition I.5.

• Let αi(τ) ∈ R be defined as Definition I.3.

• Let θk,i(τ) ∈ Rm be defined as Definition J.6.

• Let ui(τ) ∈ Rm be defined as Definition J.2.

• Let Si(τ) ∈ Rm be defined as Definition J.7.

• Let vk := βk,r(τ) · 1m − βk(τ) ∈ Rm

• Denote F(τ) ∈ Rn×d as Definition J.8.

• Let Y ∈ Rn×d denote the labels.

• Let η > 0 denote the learning rate.

• Let scalar v2,k,i ∈ R be defined as follows (we omit (τ) in the following terms)

v2,k,i :=m
m∑
r=1

θk,i,r(τ) · ui,r(τ) · η2 ·Θ(1) · ⟨∆wr(τ), xi⟩2

• Let C2 := 2⟨vec(F(τ)− Y), vec(v2)⟩

Then, with a probability at least 1− δ/poly(nd), we have

|C2| ≤ η2m · n2d2 exp(16B)∥F(τ)− Y ∥2F

Proof. We have

⟨∆wr(τ), xi⟩2

≤
(
m

n∑
j=1

d∑
k=1

(Fk,i(τ)− yk,i) ·
(
⟨vk,r(τ),Sj(τ)⟩ · Sj,r(τ) · x⊤

j + arSj,r(τ)e
⊤
k

)
xi

)2

≤ exp(12B) · ∥F(τ)− Y ∥21
≤ nd exp(12B) · ∥F(τ)− Y ∥2F (17)

48

Published as a workshop paper at SCOPE - ICLR 2025

where the first step follows from Claim J.12, the second step follows from the definition of ℓ1 norm,
0 ≤ Sj,r ≤ exp(3B)

m by Part 11 of Lemma O.1 and Part 6 of Lemma O.2, last step follows from
∥U∥1 ≤

√
nd∥U∥F for U ∈ Rn×d.

Then, we can show that

|
n∑

i=1

d∑
k=1

v2,k,i(Fk,i(τ)− yk,i)|

≤ |
n∑

i=1

d∑
k=1

m

m∑
r=1

θk,i,r(τ) · ui,r(τ) · η2 ·Θ(1) · ⟨∆wr(τ), xi⟩2 · (Fk,i(τ)− yk,i)|

≤ η2|
n∑

i=1

d∑
k=1

m

m∑
r=1

θk,i,r(τ) · ui,r(τ) · ⟨∆wr(τ), xi⟩2 · (Fk,i(τ)− yk,i)|

≤ η2|
n∑

i=1

d∑
k=1

m

m∑
r=1

βk,r(τ) · αi(τ)
−1 · ui,r(τ) · ⟨∆wr(τ), xi⟩2 · (Fk,i(τ)− yk,i)|

≤ η2|
n∑

i=1

d∑
k=1

m

m∑
r=1

βk,r(τ) · Si,r(τ) · ⟨∆wr(τ), xi⟩2 · (Fk,i(τ)− yk,i)|

≤ η2 exp(3B)|
n∑

i=1

d∑
k=1

m∑
r=1

βk,r(τ) · ⟨∆wr(τ), xi⟩2 · (Fk,i(τ)− yk,i)|

≤ η2 exp(4B)|
n∑

i=1

d∑
k=1

m∑
r=1

ar⟨∆wr(τ), xi⟩2 · (Fk,i(τ)− yk,i)|

≤ η2 exp(4B)|
m∑
r=1

ar max
i∈[n]
⟨∆wr(τ), xi⟩2| ·

√
nd∥F(τ)− Y ∥F

≤ η2
√
mnd exp(4B)|

m∑
r=1

ar max
i∈[n]
⟨∆wr(τ), xi⟩2|

where the first step follows from the definition of v2,k,i, the second step follows from simple algebras,
the third step follows from Definition J.6, the fourth step follows from Definition J.7, the fifth
step follows from 0 ≤ Si,r ≤ exp(3B)

m by Part 11 of Lemma O.1, the sixth step follows from
Part 1 of Lemma O.1 and Definition I.5, the seventh step follows from definition of ℓ1 norm and
∥U∥1 ≤

√
nd∥U∥F for U ∈ Rn×d, the last step follows from Lemma L.8.

Next, by Eq.(17), applying Hoeffding inequality (Lemma H.4) to ar maxi∈[n]⟨∆wr(τ), xi⟩2 for
r ∈ [m] and E[

∑m
r=1 ar maxi∈[n]⟨∆wr(τ), xi⟩2] = 0, we have

|
n∑

i=1

d∑
k=1

v2,k,i(Fk,i(τ)− yk,i)| ≤ η2
√
mn2d2 exp(16B) · ∥F(τ)− Y ∥2F ·

√
m log(nd/δ)

with a probability at least 1− δ/poly(nd).

By the Lemma condition, we have

η2
√
mn2d2 exp(16B) ·

√
m log(nd/δ) ≤ η2m · n2d2 exp(16B)

Then we complete the proof.

L.4 BOUNDING C3

Lemma L.7. If the following conditions hold

• Let λ = λmin(H
∗)

49

Published as a workshop paper at SCOPE - ICLR 2025

• Let C > 10 denote a sufficiently large constant

• Let B := max{Cσ
√
log(nd/δ), 1}.

• Let δ ∈ (0, 0.1).

• Let m ≥ Ω(λ−2n2d2 exp(30B)
√
log(nd/δ)).

• Let r ∈ [m], let i, j ∈ [n], let k, k1 ∈ [d].

• Let βk(τ) ∈ Rm be defined as Definition I.5.

• Let αi(τ) ∈ R be defined as Definition I.3.

• Let θk,i(τ) ∈ Rm be defined as Definition J.6.

• Let ui(τ) ∈ Rm be defined as Definition J.2.

• Let Si(τ) ∈ Rm be defined as Definition J.7.

• Let vk := βk,r(τ) · 1m − βk(τ) ∈ Rm

• Denote F(τ) ∈ Rn×d as Definition J.8.

• Let Y ∈ Rn×d denote the labels.

• Let η > 0 denote the learning rate.

• Let C3 := ∥F(τ + 1)− F(τ)∥2F

Then, with a probability at least 1− δ/poly(nd), we have

|C3| ≤ η2m2∥F(τ)− Y ∥2F

Proof. We have

|C3| = ∥F(τ + 1)− F(τ)∥2F

=

n∑
i=1

d∑
k=1

(Fk,i(τ + 1)− Fk,i(τ))
2

=

n∑
i=1

d∑
k=1

m2(⟨βk(τ + 1),Si(τ + 1)⟩ − ⟨βk(τ),Si(τ)⟩)2

=

n∑
i=1

d∑
k=1

m2
(m∑

r=1

(βk,r(τ + 1) · Si,r(τ + 1)− βk,r(τ) · Si,r(τ))
)2

=

n∑
i=1

d∑
k=1

m2
(m∑

r=1

(βk,r(τ + 1) · Si,r(τ + 1)− βk,r(τ + 1) · Si,r(τ)

+ βk,r(τ + 1) · Si,r(τ)− βk,r(τ) · Si,r(τ))
)2

=

n∑
i=1

d∑
k=1

m2
(m∑

r=1

(βk,r(τ + 1) · (Si,r(τ + 1)− Si,r(τ))

+ (βk,r(τ + 1)− βk,r(τ)) · Si,r(τ))
)2

=

n∑
i=1

d∑
k=1

m2(Q3,1,i,k +Q3,2,i,k)
2

where the first step follows from the definition C2, the second step follows from the definition of
Frobenius norm, the third step follows from Definition J.8, the fourth, fifth and sixth steps follow

50

Published as a workshop paper at SCOPE - ICLR 2025

from simple algebras, the last step follows from defining

Q3,1,i,k =

m∑
r=1

βk,r(τ + 1) · (Si,r(τ + 1)− Si,r(τ)),

Q3,2,i,k =

m∑
r=1

(βk,r(τ + 1)− βk,r(τ)) · Si,r(τ).

Bounding first term. For the first term, we have

|Q3,1,i,k| = |
m∑
r=1

βk,r(τ + 1) · (Si,r(τ + 1)− Si,r(τ))|

= |
m∑
r=1

ar · wr,k(τ + 1) · (Si,r(τ + 1)− Si,r(τ))|

≤ |B ·
m∑
r=1

ar · (Si,r(τ + 1)− Si,r(τ))|

≤ | exp(3B) ·
m∑
r=1

ar ·max
i∈[n]

(αi(τ + 1)−1 − αi(τ)
−1)|

where the first step follows from the definition of Q3,1,i,k, the second step follows from Definition I.5,
the third step follows from Part 1 of Lemma O.1, last step follows from Part 4 of Lemma O.1,
Definition J.7 and B ≤ exp(B).

Then by Part 2 of Lemma L.9, applying Hoeffding inequality (Lemma H.4) to the random variables
ar·maxi∈[n](αi(τ+1)−1−αi(τ)

−1 for r ∈ [m] and E[
∑m

r=1 ar·maxi∈[n](αi(τ+1)−1−αi(τ)
−1] =

0, we have

|Q3,1,i,k| ≤ (η

√
nd exp(18B)

m3
· ∥F(τ)− Y ∥F + η2

nd exp(30B)√
m

· ∥F(τ)− Y ∥F) ·
√

m log(nd/δ)

with a probability of at least 1− δ/poly(nd).

By the Lemma condition, we have

(η

√
nd exp(18B)

m3
+ η2

nd exp(30B)√
m

) ·
√
m log(nd/δ) ≤ 1

2
√
nd

η

Bounding second term. On the other hand, for the second term Q3,2,k,i, we have

|Q3,2,k,i| = |
m∑
r=1

(βk,r(τ + 1)− βk,r(τ)) · Si,r(τ)|

= η|
m∑
r=1

ar∆wr,k(τ) · Si,r(τ)|

≤ η
exp(3B)

m
|

m∑
r=1

ar∆wr,k(τ)|

≤ η exp(3B)
∣∣∣ m∑
r=1

ar

n∑
j=1

d∑
k1=1

(Fk1,j(τ)− yk1,j)

·
(
⟨vk1,r(τ),Sj(τ)⟩ · Sj,r(τ) · xi,k + arSj,r(τ)ek,k1

)∣∣∣
≤ η

exp(6B)

m
|

m∑
r=1

ar max
j∈[n],k,k1∈[d]

Cj,k,k1,r| · ∥F(τ)− Y ∥1

≤ η

√
nd exp(6B)

m
|

m∑
r=1

ar max
j∈[n],k,k1∈[d]

Cj,k,k1,r| · ∥F(τ)− Y ∥F

51

Published as a workshop paper at SCOPE - ICLR 2025

where the first step follows from the definition of Q3,2,k,i, the second step follows from Definition J.13,
the third step follows from 0 ≤ Si,r ≤ exp(3B)

m by Part 11 of Lemma O.1, the fourth step follows
from Claim J.12, the fifth step follows from 0 ≤ Si,r ≤ exp(3B)

m by Part 11 of Lemma O.1, ∥xi∥2 ≤ 1
and defining

Cj,k,k1,r := ⟨vk1,r(τ),Sj(τ)⟩+ ek,k1 ,

the last step follows from ∥U∥1 ≤
√
nd∥U∥F for U ∈ Rn×d.

Now we follow from Part 6 of Lemma O.2, applying Hoeffding inequality (Lemma H.4) to random
variables ar maxj∈[n],k,k1∈[d] Cj,k,k1,r for r ∈ [m] and E[

∑m
r=1 ar maxj∈[n],k,k1∈[d] Cj,k,k1,r] = 0,

we have

|Q3,2,k,i| ≤ η

√
nd exp(13B)

m
· ∥F(τ)− Y ∥F ·

√
m log(nd/δ) ≤ 1

2
√
nd

η

Finally, we combine all terms, we have

|C3| =
n∑

i=1

d∑
k=1

m2((
1

2
√
nd

η +
1

2
√
nd

η) · ∥F(τ)− Y ∥F)2

≤ η2m2∥F(τ)− Y ∥2F

L.5 BOUNDING LOSS DURING TRAINING PROCESS

Lemma L.8. If the following conditions hold

• Denote F(τ) ∈ Rn×d as Definition J.8.

• Let Y ∈ Rn×d denote the labels.

Then we have

∥F(τ)− Y ∥F ≤ O(
√
nmd)

Proof. This proof follows from ∥yi∥ ≤ 1 for i ∈ [n] and Definition J.8.

L.6 HELPFUL LEMMA

Lemma L.9. If the following conditions hold

• Let λ = λmin(H
∗).

• Let C > 10 denote a sufficiently large constant.

• Let B := max{Cσ
√
log(nd/δ), 1}.

• Let δ ∈ (0, 0.1).

• Let m ≥ Ω(λ−2n2d2 exp(30B)
√
log(nd/δ)).

• Let r ∈ [m], let i, j ∈ [n], let k, k1 ∈ [d].

• Let αi(τ) ∈ R be defined as Definition I.3.

• Let βk(τ) ∈ Rm be defined as Definition I.5.

• Let θk,i(τ) ∈ Rm be defined as Definition J.6.

• Let ui(τ) ∈ Rm be defined as Definition J.2.

• Let Si(τ) ∈ Rm be defined as Definition J.7.

52

Published as a workshop paper at SCOPE - ICLR 2025

• Let vk := βk,r(τ) · 1m − βk(τ) ∈ Rm.

• Denote F(τ) ∈ Rn×d as Definition J.8.

• Let Y ∈ Rn×d denote the labels.

Then with a probability at least 1− δ/poly(nd), we have

• Part 1.

αi(τ + 1)− αi(τ) ≤ η

√
nd exp(9B)

m
· ∥F(τ)− Y ∥F + η2m1.5 · nd exp(21B) · ∥F(τ)− Y ∥F

• Part 2.

αi(τ + 1)−1 − αi(τ)
−1 ≤ η

√
nd exp(15B)

m3
· ∥F(τ)− Y ∥F + η2

nd exp(27B)√
m

· ∥F(τ)− Y ∥F

Proof. Proof of Part 1.

We have

αi(τ + 1)− αi(τ)

= ⟨ui(τ + 1),1m⟩ − ⟨ui(τ),1m⟩
= ⟨ui(τ + 1)− ui(τ),1m⟩
= ⟨exp(W (τ + 1)⊤xi)− exp(W (τ)⊤xi),1m⟩
= ⟨exp(W (τ)⊤xi) ◦ (exp(−η∆W (τ)⊤xi)− 1m),1m⟩
= ⟨exp(W (τ)⊤xi) ◦ (−η∆W (τ)⊤xi +Θ(1)η2 · (∆W (τ)⊤xi)

2),1m⟩
= ⟨−η∆W (τ)⊤xi +Θ(1)η2 · (∆W (τ)⊤xi)

2, exp(W (τ)⊤xi)⟩
≤ exp(B) · ⟨−η∆W (τ)⊤xi +Θ(1)η2 · (∆W (τ)⊤xi)

2,1m)⟩

≤ η

√
nd exp(9B)

m
· ∥F(τ)− Y ∥F + η2m1.5 · nd exp(21B) · ∥F(τ)− Y ∥F

where the first step follows from Definition I.3, the second step follows from simple algebras, the
third step follows from Definition J.2, the fourth step follows from simple algebra, the fifth step
follows from Fact H.1, the sixth step follows from simple algebras, the seventh step follows from
Part 4 of Lemma O.1, last step follows from Part 1 and Part 2 of Lemma L.10.

Proof of Part 2. We have

αi(τ + 1)−1 − αi(τ)
−1 = αi(τ + 1)−1αi(τ)

−1 · (αi(τ + 1)− αi(τ))

≤ exp(6B)

m2
· (αi(τ + 1)− αi(τ))

≤ η

√
nd exp(15B)

m3
· ∥F(τ)− Y ∥F + η2

nd exp(27B)√
m

· ∥F(τ)− Y ∥F

where the first step follows from simple algebras, the second step follows from Part 4 of Lemma O.2,
the last step follows from Part 1 of this Lemma.

Lemma L.10. If the following conditions hold

• Let λ = λmin(H
∗).

• Let W (τ) ∈ Rm×d be defined as Definition J.13, let a ∈ Rm be defined as Definition I.1.

• Let C > 10 denote a sufficiently large constant.

• Let B := max{Cσ
√
log(nd/δ), 1}.

• Let δ ∈ (0, 0.1).

53

Published as a workshop paper at SCOPE - ICLR 2025

• Let m ≥ Ω(λ−2n2d2 exp(30B)
√
log(nd/δ)).

• Let r ∈ [m], let i, j ∈ [n], let k, k2 ∈ [d].

• Let Si(τ) ∈ Rm be defined as Definition J.7.

• Let vk,r := βk,r(τ) · 1m − βk(τ) ∈ Rm.

• Denote F(τ) ∈ Rn×d as Definition J.8.

• Let Y ∈ Rn×d denote the labels.

• Let η = λ/(m · poly(n, d, exp(B))) denote the learning rate.

Then with a probability at least 1− δ/poly(nd), we have

• Part 1.

|⟨η∆W (τ)⊤xi,1m⟩| ≤ η

√
nd exp(8B)

m
· ∥F(τ)− Y ∥F

• Part 2.

|⟨η2(∆W (τ)⊤xi)
2,1m⟩| ≤ η2m1.5 · nd exp(20B) · ∥F(τ)− Y ∥F

Proof. Proof of Part 1. We have

|⟨η∆W (τ)⊤xi,1m⟩|

= η|
m∑
r=1

⟨∆wr(τ), xi⟩|

≤ η
∣∣∣ m∑
r=1

m

n∑
j=1

d∑
k=1

(Fk,i(τ)− yk,i) ·
(
⟨vk,r(τ),Sj(τ)⟩ · Sj,r(τ) · x⊤

j + arSj,r(τ)e
⊤
k

)
xi

∣∣∣
≤ η

∣∣∣ m∑
r=1

m

n∑
j=1

d∑
k=1

(Fk,i(τ)− yk,i) ·
(
⟨βk,r(τ) · 1m − βk(τ),Sj(τ)⟩ · Sj,r(τ) · x⊤

j + arSj,r(τ)e
⊤
k

)
xi

∣∣∣
≤ η

∣∣∣ m∑
r=1

m

n∑
j=1

d∑
k=1

(Fk,i(τ)− yk,i) ·
(
arwr,k + ⟨−a ◦Wk,∗(τ),Sj(τ)⟩ · Sj,r(τ) · x⊤

j + arSj,r(τ)e
⊤
k

)
xi

∣∣∣
≤ η

exp(3B)

m

m∑
r=1

σr max
j∈[n],k∈[d]

Cj,k,r∥F(τ)− Y ∥1

≤ η

√
nd exp(3B)

m

m∑
r=1

σr max
j∈[n],k∈[d]

Cj,k,r∥F(τ)− Y ∥F

where the first step follows from simple algebras, the second step follows from Claim J.12, the
third step follows from the definition of vk,r, the fourth step follows from Definition I.5 and simple
algebras, the fifth step follows from ∥xi∥2 ≤ 1, 1 ≤ Si,r ≤ exp(3B)

m by Part 11 of Lemma O.1,
definition of ℓ1 norm and defining

Cj,k,r := |wr,k|+ |⟨−Wk,∗(τ),Sj(τ)⟩|+ ∥ek∥, σr ∈ {+1,−1},

the last step follows from ∥U∥1 ≤
√
nd∥U∥F for U ∈ Rn×d.

Thus, by following Part 1 and Part 11 of Lemma O.2 and Hoeffding inequality (Lemma H.4), we have

|⟨η∆W (τ)⊤xi,1m⟩| ≤ η

√
nd exp(8B)

m
· ∥F(τ)− Y ∥F

with a probability at least 1− δ/poly(nd).

54

Published as a workshop paper at SCOPE - ICLR 2025

Proof of Part 2. We have

|⟨η2(∆W (τ)⊤xi)
2,1m⟩|

≤ η2
m∑
r=1

(⟨∆wr(τ), xi⟩)2

≤ η2
m∑
r=1

(
m

n∑
j=1

d∑
k=1

(Fk,i(τ)− yk,i) ·
(
⟨vk,r(τ),Sj(τ)⟩ · Sj,r(τ) · x⊤

j + arSj,r(τ)e
⊤
k

)
xi

)2

≤ η2 exp(6B)

m∑
r=1

(n∑
j=1

d∑
k=1

(Fk,i(τ)− yk,i) ·
(
⟨vk,r(τ),Sj(τ)⟩ · x⊤

j + are
⊤
k

)
xi

)2

≤ η2m exp(20B) · ∥F(τ)− Y ∥21
≤ η2m

√
nmd exp(20B) · ∥F(τ)− Y ∥1

≤ η2m1.5 · nd exp(20B) · ∥F(τ)− Y ∥F
where the first step follows from simple algebras, the second step follows from Claim J.12, the
third step follows from 0 ≤ Si,r ≤ exp(3B)

m by Part 11 of Lemma O.1, the fourth step follows
from ⟨vk,r(τ),Sj(τ)⟩ ≤ exp(6B) by Part 6 of Lemma O.2, ∥xi∥2 ≤ 1, exp(6B) + 1 ≤ exp(7B)
and the definition of ℓ1 norm, the fifth step follows from Lemma L.8, the last step follows from
∥U∥1 ≤ ∥U∥F for U ∈ Rn×d.

M CONVERGENCE OF PREFIX LEARNING

Here, we provide all the properties we need for math induction for NTK happening.
Definition M.1 (Properties). We state the following properties

• General Condition 1. Let λ = λmin(H
∗) > 0

• General Condition 2. Let B := max{Cσ
√
log(nd/δ), 1}.

• General Condition 3. Let η be defined as

η := λ/(m poly(n, d, exp(B))).

• General Condition 4. Let D := 2λ−1 · exp(20B)
√
nd
m ∥Y − F(0)∥F

• General Condition 5. Let wr and ar be defined as Definition I.1.

• General Condition 6. D < R = λ/poly(n, d, exp(B))

• General Condition 7. m = λ−2 poly(n, d, exp(B))

• Weight Condition. ∥wr(t)− wr(0)∥2 ≤ D < R, ∀r ∈ [m]

• Loss Condition. ∥ vec(F(i)− Y)∥22 ≤ ∥ vec(F(0)− Y)∥22 · (1−mηλ/2)i, ∀i ∈ [t]

• Gradient Condition. η∥∆wr(i)∥2 ≤ 0.01 ∀r ∈ [m], ∀i ∈ [t]

M.1 MAIN RESULT

Our main result is presented as follows.
Theorem M.2 (Main result, formal version of Theorem B.2). For any ϵ, δ ∈ (0, 0.1), if the following
conditions hold

• Let λ = λmin(H
∗) > 0

• Let B = max{Cσ
√
log(nd/δ), 1}

55

Published as a workshop paper at SCOPE - ICLR 2025

• Let m = λ−2 poly(n, d, exp(B))

• Let η = λ/(m poly(n, d, exp(B)))

• Let T̂ = Ω((mηλ)−1 log(nd/ϵ))

Then, after T̂ iterations, with probability at least 1− δ, we have

∥F(T̂)− Y ∥2F ≤ ϵ.

Proof. We have ∥F(0)− Y ∥2F ≤ nd as Lemma M.6. Using the choice of T̂ , it follows directly from
the alternative application of Lemma M.3 and Lemma M.4.

M.2 INDUCTION PART 1. FOR WEIGHTS

In this section, we introduce the induction lemma for weights.

Lemma M.3 (Induction Part 1 for weights). If the following conditions hold

• Suppose properties in Definition M.1 are true

For t+ 1 and ∀r ∈ [m], it holds that:

∥wr(t+ 1)− wr(0)∥2 ≤ D.

Proof. We have

η

∞∑
i=0

(1−mηλ/2)i ≤ η
4

mλ
(18)

where this step follows from Fact H.2.

∥wr(t+ 1)− wr(0)∥2 ≤ η

t∑
τ=0

∥∆wr(τ)∥2

≤ η

t∑
τ=0

√
nd exp(11B) · ∥F(t)− Y ∥F

≤ η
√
nd exp(11B) ·

t∑
τ=0

(1−mηλ/2)i · ∥F(0)− Y ∥F

≤ 2η
1

mλ

√
nd exp(11B) · ∥F(0)− Y ∥F

≤ D

where the third step follows from the triangle inequality, the second step follows from Eq. (22), the
third step follows from Lemma M.4, the fourth step follows from Eq. (18), the last step follows from
General Condition 4. in Definition M.1.

M.3 INDUCTION PART 2. FOR LOSS

Now, we present our next induction lemma.

Lemma M.4 (Induction Part 2 for loss). Let t be a fixed integer.

If the following conditions hold

• Suppose properties in Definition M.1 are true

56

Published as a workshop paper at SCOPE - ICLR 2025

Then we have

∥F(t+ 1)− y∥2F ≤ (1−mηλ/2)t+1 · ∥F(0)− y∥2F .

Proof. We have

∥F(t+ 1)− y∥2F
≤ ∥F(t)− y∥2F + C0 + C1 + C2 + C3

= ∥F(t)− y∥2F + C0 + C1,1 + C1,2 + C2 + C3

≤ ∥F(t)− y∥2F · (1 + 0.1ηmλ− 1.6ηmλ+ 0.1ηmλ+ η2m · n2d2 exp(16B) + η2m2)

≤ ∥F(t)− y∥2F · (1− 1.4ηmλ+ η2m · n2d2 exp(16B) + η2m2) (19)

where the first step follows from Lemma L.1, the second step follows from the definitions of C1, C1,1

and C1,2, the third step follows from Lemma L.2 and Lemma L.3.

Choice of parameter. Here, we explain the condition setting in Definition M.1:

• To get our results in Lemma L.2 and Lemma L.3, we have to let m ≥ Ω(λ−2n2d2 ·
exp(30B) ·

√
log(nd/δ)).

• If we let η ≤ O(λ/(mn2d2 exp(16B))), we can have

η2m · n2d2 exp(16B) + η2m2 ≤ 0.9ηmλ. (20)

Thus, combining Eq. (19) and Eq. (20), we have

∥F(t+ 1)− y∥2F ≤ (1−mηλ/2) · ∥F(t)− y∥2F (21)

Then by Eq. (21), we conclude all ∥F(τ)− y∥2F for τ ∈ [t], we have

∥F(t+ 1)− y∥2F ≤ (1−mηλ/2)t+1 · ∥F(0)− y∥2F

M.4 INDUCTION PART 3. FOR GRADIENT

In this section, we present the induction lemma for gradients.
Lemma M.5 (Induction Part 3 for gradient). Let t be a fixed integer.

If the following conditions hold

• Suppose properties in Definition M.1 are true

Then we have

η∥∆wr(t)∥2 ≤ 0.01,∀r ∈ [m]

Proof. Firstly, we have

∥∆wr(t)∥2 ≤ ∥∆wr(t)∥1

≤
d∑

k1=1

∣∣∣m n∑
i=1

d∑
k=1

(Fk,i(t)− yk,i) ·
(
⟨vk,r(t),Si(t)⟩ · Si,r(t) · xi,k1

+ arSi,r(t)ek,k1

)∣∣∣
≤
√
nd exp(11B)∥F(t)− Y ∥F (22)

where the first step follows from ∥U∥F ≤ ∥U∥1 for U ∈ Rn×d, the second step follows from
Claim J.12, the last step follows from the definition of 4 ℓ1 norm, 0 ≤ Si,r ≤ exp(3B)

m by Part 11 of
Lemma O.1, ∥xi∥2 ≤ 1 and Part 6 of Lemma O.2.

Then by the property of η in Definition M.1, we have

η∥∆wr(t)∥2 ≤ 0.01,∀r ∈ [m]

57

Published as a workshop paper at SCOPE - ICLR 2025

M.5 BOUNDING LOSS AT INITIALIZATION

Lemma M.6. If the following conditions hold

• Denote F(τ) ∈ Rn×d as Definition J.8.

• Let Y ∈ Rn×d denote the labels.

Then we have

∥F(0)− Y ∥F ≤ O(
√
nd)

Proof. This proof follows from ∥yi∥ ≤ 1 for i ∈ [n] and Definition J.8.

N NTK-ATTENTION

In this section, we compute the error bound of our NTK-Attention in approximating prefix matrix P ∈
Rm×d. In Appendix N.1, we provide the formal definition of our NTK-Attention. In Appendix N.2,
we give our main theorem of error bound. In Appendix N.3, we state tools from (Alman & Song,
2023).

N.1 DEFINITIONS

Definition N.1. If the following conditions hold:

• Given input X ∈ RL×d, prefix matrix P ∈ Rm×d.

• Let S :=

[
P
X

]
∈ R(m+L)×d.

• Given projections WQ,WK ,WV ∈ Rd×d

• Let Q := XWQ ∈ RL×d.

• Let KP := SWQ ∈ R(m+L)×d

• Let VP := SWV ∈ R(m+L)×d

• Let A := exp(QK⊤
P) ∈ RL×(m+L).

• Let D := diag(A1(m+L)) ∈ RL×L.

We define:

Attn(Q,K, V) := D−1AVP .

N.2 ERROR BOUND

Here, we provide our two statements about error bound.
Theorem N.2 (Formal version of Theorem 3.1). Given an input matrix X ∈ RL×d and prefix
matrix P ∈ Rm×d, we denote Q = XWQ, KC = PWK and VC = PWV . If the condition Eq. (4),
∥Q∥∞ ≤ o(

√
logm), ∥KC∥∞ ≤ o(

√
logm), ∥VC∥∞ ≤ o(

√
logm) and d = O(logm) holds, then

Algorithm 2 outputs a matrix T ∈ RL×d within time complexity of O(L2d) that satisfies:

∥T − PrefixAttn(X,P)∥∞ ≤ 1/ poly(m).

Proof. Following Definition N.1, we can have matrix A ∈ RL×(m+L) as follows:

A = QK⊤

=
[
exp(XWQW

⊤
KX⊤) exp(XWQW

⊤
KP⊤)

]
58

Published as a workshop paper at SCOPE - ICLR 2025

where the second step follows from K = SWK and S =

[
P
X

]
.

Our Algorithm 2 actually implement on using Q = XWQ and PWK to approximate
exp(XWQW

⊤
KP⊤) by Lemma N.7.

Trivially, this proof follows from Theorem N.5 and Lemma N.7.

Corollary N.3. Given an input matrix X ∈ RL×d and prefix matrix P ∈ Rm×d, we denote Q =
XWQ, KC = PWK and VC = PWV . If the condition Eq. (4), ∥Q∥∞ ≤ o(

√
logm), ∥KC∥∞ ≤

o(
√
logm), ∥VC∥∞ ≤ o(

√
logm) and d = O(logm) holds, then there exists an algorithm that

outputs a matrix T ∈ RL×d within time complexity of O(L1+o(1)d) that satisfies:

∥T − PrefixAttn(X,P)∥∞ ≤ 1/ poly(m).

Proof. The algorithm and proof can trivially follow from Algorithm 1, 2, 3 and Theorem 1 in
HyperAttention (Han et al., 2024).

N.3 TOOLS FROM FAST ATTENTION

In this section, we introduce some tools from previous work which we have used.

Definition N.4 (Approximate Attention Computation AAttC(n, d,B, ϵa), Definition 1.2 in (Alman
& Song, 2023)). Let ϵa > 0 and B > 0 be parameters. Given three matrices Q,K, V ∈ Rn×d, with
the guarantees that ∥Q∥∞ ≤ B, ∥K∥∞ ≤ B, and ∥V ∥∞ ≤ B, output a matrix T ∈ Rn×d which is
approximately equal to D−1AV , meaning,

∥T −D−1AV ∥∞ ≤ ϵa.

Here, for a matrix M ∈ Rn×n, we write ∥M∥∞ := maxi,j |Mi,j |.
Theorem N.5 (Upper bound, Theorem 1.4 in (Alman & Song, 2023)). There is an algorithm that
solves AAttC(n, d = O(log n), B = o(

√
log n), ϵa = 1/ poly(n)) in time n1+o(1).

Definition N.6 (Definition 3.1 in (Alman & Song, 2023)). Let r ≥ 1 denote a positive integer. Let
ϵ ∈ (0, 0.1) denote an accuracy parameter. Given a matrix A ∈ Rn×n

≥0 , we say Ã ∈ Rn×n
≥0 is an

(ϵ, r)-approximation of A if

• Ã = U1 · U⊤
2 for some matrices U1, U2 ∈ Rn×r (i.e., Ã has rank at most r), and

• |Ãi,j −Ai,j | ≤ ϵ ·Ai,j for all (i, j) ∈ [n]2.

Lemma N.7 (Lemma 3.4 in (Alman & Song, 2023)). Suppose Q,K ∈ Rn×d, with ∥Q∥∞ ≤ B,
and ∥K∥∞ ≤ B. Let A := exp(QK⊤/d) ∈ Rn×n. For accuracy parameter ϵ ∈ (0, 1), there is a
positive integer g bounded above by

g = O
(
max

{ log(1/ϵ)

log(log(1/ϵ)/B2)
, B2

})
,

and a positive integer r bounded above by

r ≤
(
2(g + d)

2g

)
such that: There is a matrix Ã ∈ Rn×n that is an (ϵ, r)-approximation (Definition N.6) of A ∈ Rn×n.
Furthermore, we can construct the matrices U1 := ϕ(Q) and U2 := ϕ(K) through a function ϕ(·)
defining Ã = U1U

⊤
2 can be computed in O(n · r) time.

O TAYLOR SERIES

In this section, we provide some perturbation analysis for NTK analysis.

Lemma O.1 (Lemma B.1 in (Li et al., 2024a)). If the following conditions hold

59

Published as a workshop paper at SCOPE - ICLR 2025

• Let C > 10 denote a sufficiently large constant

• Let B := max{Cσ
√
log(nd/δ), 1}.

• Let W = [w1, · · · , wm] and wr be random Gaussian vectors from N (0, σ2Id).

• Let V = [v1, · · · , vm] and vr denote the vector where ∥vr − wr∥2 ≤ R, ∀r ∈ [m].

• Let xi ∈ Rd and ∥xi∥2 ≤ 1, ∀i ∈ [n].

• Let R ∈ (0, 0.01).

• Let Si and S̃i be the softmax function corresponding to W and V respectively.

• Let αi = ⟨1m, exp(W⊤xi)⟩ and α̃i = ⟨1m, exp(V ⊤xi)⟩, ∀i ∈ [n].

Then, with probability at least 1− δ/poly(nd), we have

• Standard inner product

– Part 1. |⟨wr, xi⟩| ≤ B, ∀i ∈ [n], ∀r ∈ [m]

– Part 2. |⟨vr, xi⟩| ≤ B +R, ∀i ∈ [n], ∀r ∈ [m]

– Part 3. |⟨wr − vr, xi + xj⟩| ≤ 2R, ∀i, j ∈ [n], ∀r ∈ [m]

• exp function

– Part 4. exp(−B) ≤ exp(⟨wr, xi⟩) ≤ exp(B), ∀i ∈ [n], ∀r ∈ [m]

– Part 5. exp(−B −R) ≤ exp(⟨vr, xi⟩) ≤ exp(B +R), ∀i ∈ [n], ∀r ∈ [m]

– Part 6. | exp(⟨wr − vr, xi + xj⟩)− 1| ≤ 4R, ∀i, j ∈ [n], ∀r ∈ [m]

– Part 7. | exp(⟨wr, xi⟩)− exp(⟨vr, xi⟩)| ≤ R exp(B +R), ∀i ∈ [n], ∀r ∈ [m]

• softmax S function

– Part 8. |αi − α̃i| ≤ mR exp(B +R),∀i ∈ [n]

– Part 9. |α−1
i − α̃−1

i | ≤ R
m exp(3B + 2R),∀i ∈ [n]

– Part 10. |Si,r| ≤ exp(2B)/m,∀i ∈ [n],∀r ∈ [m]

– Part 11. |S̃i,r| ≤ exp(2B + 2R)/m,∀i ∈ [n],∀r ∈ [m]

– Part 12. |Si,r − S̃i,r| ≤ R
m exp(4B + 3R),∀i ∈ [n],∀r ∈ [m]

– Part 13. for any z ∈ Rm and ∥z∥∞ ≤ 1, we have |⟨z,Si⟩ − ⟨z, S̃i⟩| ≤ R exp(4B +
3R),∀i ∈ [n]

Lemma O.2. If the following conditions hold

• Let C > 10 denote a sufficiently large constant

• Let B := max{Cσ
√

log(nd/δ), 1}.

• Let W = [w1, · · · , wm] and wr be random Gaussian vectors from N (0, σ2Id).

• wr for r ∈ [m] satisfies ∥wr∥2 ≤ B with probability at least 1 − δ/poly(nd) as in
Lemma O.1.

• Let a ∈ Rm be defined as Definition I.1.

• Define βk := Wk,∗ ◦ a ∈ Rm for k ∈ [d] as Definition I.5.

• Define vk,r := βk,r · 1m − βk ∈ Rm for k ∈ [d] and r ∈ [m] as Definition K.1.

• Define αi for i ∈ [n] as Definition I.3.

Then, with probability at least 1− δ/poly(nd), we have

• Part 1. |βk,r| ≤ B

60

Published as a workshop paper at SCOPE - ICLR 2025

• Part 2. ∥βk∥2 ≤ B
√
m

• Part 3. ∥vk,r∥2 ≤ 2
√
mB

• Part 4. |α−1| ≤ exp(B)/m

• Part 5. ⟨βk,Si⟩ ≤ exp(4B)

• Part 6. ⟨vk,r,Si⟩ ≤ exp(6B)

Proof. Proof of Part 1. We can get the proof by Gaussian tail bound.

Proof of Part 2. We have

∥βk∥2 =

√√√√ m∑
r=1

β2
k,r

≤

√√√√ m∑
r=1

B2

≤
√
m ·B

where the first step follows from the definition of ℓ2 norm, the second step follows from Part 1 of this
Lemma, the last step follows from simple algebras.

Proof of Part 3. We have

∥vk,r∥2 =

√√√√ m∑
r1=1

(βk,r − βk,r1)
2

≤

√√√√ m∑
r1=1

β2
k,r + β2

k,r1
+ |2βk,rβk,r1 |

≤

√√√√ m∑
r1=1

4B2

≤ 2
√
m ·B

where the first step follows from the definition of ℓ2 norm, the second step follows from simple
algebras, the third step follows from Part 1 of this Lemma, the last step follows from simple algebras.

Proof of Part 4. This proof follows from Part 4 of Lemma O.1 and Definition I.3.

Proof of Part 5. We have

⟨βk,Si⟩ ≤ ∥βk∥2 · ∥Si∥2
≤
√
mB · ∥Si∥2

≤
√
mB ·

√√√√ m∑
r=1

S2i,r

≤
√
mB ·

√√√√ m∑
r=1

exp(6B)

m2

≤
√
mB ·

√
exp(6B)

m
≤ B exp(3B)

≤ exp(4B)

61

Published as a workshop paper at SCOPE - ICLR 2025

where the first step follows from Cauchy-Schwarz inequality, the second step follows from Part 2
of this Lemma, the third step follows from the definition of ℓ2 norm, the fourth step follows from
Part 11 of Lemma O.1, the fifth step follows from triangle inequality, the sixth step follows from
B ≤ exp(B), last step follows from simple algebras.

Proof of Part 6. This proof follows from Part 3 of this Lemma, B ≤ exp(B) and Part 11 of
Lemma O.1.

62

	Introduction
	Preliminary: General Prefix Learning
	NTK-Attention: Approximate Infinite-Long Prefix Attention
	Derivation: Replacing Prefix with Trainable Parameters
	Algorithm
	Error Bound and Complexity Reduction

	Conclusion
	Related Work
	Theoretical Analysis of Prefix Learning via NTK
	Problem Setup
	Neural Tangent Kernel
	Main Result: Loss Convergence Guarantee

	Empirical Evaluations
	Algorithm Details and Computational Complexity Analysis
	Experimental Details
	Setup Details
	Additional Empirical Complexity Analysis
	Additional Ablation Study

	Naive NTK-Attention Implementation with Flash-Attention
	Further Discussions
	Preliminary of Analysis
	Facts
	Probability

	Definitions of NTK Analysis
	Loss function

	Gradient Computation
	Computing Gradient
	Gradient Descent

	Neural Tangent Kernel
	Kernel Perturbation
	Kernel PSD during Training Process

	Loss Decomposition
	Bounding
	Bounding
	Bounding
	Bounding
	Bounding Loss during Training Process
	Helpful Lemma

	Convergence of Prefix Learning
	Main Result
	Induction Part 1. For Weights
	Induction Part 2. For Loss
	Induction Part 3. For Gradient
	Bounding Loss at Initialization

	NTK-Attention
	Definitions
	Error Bound
	Tools from Fast Attention

	Taylor Series

