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Abstract—As robotic systems become increasingly integrated
into the real world—ranging from autonomous vehicles to
household assistants—they inevitably encounter diverse and
unstructured failure scenarios. While such failures pose safety
and reliability challenges, they also provide rich perceptual
data for improving future performance. However, manually
analyzing large-scale failure datasets is impractical. In this work,
we present a method for automatically organizing large-scale
robotic failure data into semantically meaningful clusters, enabling
scalable learning from failure without human supervision. Our
approach leverages the reasoning capabilities of Multimodal Large
Language Models (MLLMs), trained on internet-scale data, to
infer high-level failure causes from raw perceptual data and
discover interpretable structure within uncurated failure logs.
These semantic clusters reveal latent patterns and hypothesized
causes of failure, enabling scalable learning from experience.
We demonstrate that the discovered failure modes can guide
targeted data collection for policy refinement, accelerating iterative
improvement in agent policies and overall safety. Additionally,
we show that these semantic clusters can be employed for online
failure detection, offering a lightweight yet powerful safeguard
at runtime. We demonstrate that this framework enhances robot
learning and robustness by transforming real-world failures into
actionable and interpretable signals for adaptation. Website:
https://mllm-failure-clustering.github.io/

I. INTRODUCTION

Autonomous systems—ranging from self-driving vehicles to
household robots—are increasingly deployed in open, dynamic
environments. In such unstructured settings, even state-of-the-
art robotic systems can fail due to unexpected interactions,
unmodeled dynamics, and long-tail edge cases. Traditional
validation pipelines grounded in simulation or controlled testing
struggle to capture the complexity of the real world, leaving
many failure modes undetected until actual operation.

A promising direction for improving robustness is to sys-
tematically learn from deployment failures. Robots collect
large volumes of perceptual data, including traces of successful
and failed interactions. These failure trajectories can provide
valuable insights about the underlying conditions that led to
safety violations, brittleness, and policy errors, but manually
curating and analyzing them is time-consuming and unscalable.

In this work, we propose a framework for automatically
organizing failure trajectories into semantically meaningful
clusters, enabling scalable, unsupervised learning from fail-
ures. Our method leverages the reasoning capabilities of
MLLMs—pretrained on internet-scale vision-language data, to
infer high-level failure causes directly from raw observations.
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Prompted reasoning over perceptual input sequences uncovers
latent structure in uncurated failure logs, grouping them into
interpretable categories described in natural language. Impor-
tantly, our framework operates in a completely unsupervised
manner, without requiring costly human annotation, yet isolates
nontrivial keywords and cues tied to specific error causes.

The resulting semantic clusters offer multiple downstream
benefits. First, they guide targeted data collection to focus policy
training on critical or underrepresented failure modes. Second,
these clusters can be used for the semantic detection of potential
system safety violations during online failure monitoring. There
can be many more use cases, e.g., targeted stress testing.

Our framework supports large-scale, structured analysis
of failure data and emphasizes interpretability – crucial for
deployment in safety-critical domains. Providing the failure
understanding in terms amenable to human interpretation, we
offer actionable insights helping stakeholders to assess the
weaknesses of deployed systems and iterate more effectively.

Key contributions: (a) a novel framework using MLLMs to
cluster robotic failure data into semantically meaningful groups;
(b) our method infers failure causes directly from raw perceptual
sequences, eliminating manual annotation or supervision; (c)
we demonstrate the effectiveness of our approach on large-scale
failure datasets and its potential for supporting downstream
applications, such as targeted data collection and online
failure detection; (d) our framework emphasizes interpretability,
generating natural language summaries and keywords for each
failure mode aiding human-in-the-loop diagnosis.

II. RELATED WORKS

a) Semantic Clustering of Images with LLMs: Recent
research has demonstrated the effectiveness of Vision Lan-
guage Models (VLMs) and Large Language Models (LLMs)
for semantic image grouping–whether using human-specified
language criteria [18] or by discovering clustering criteria
directly from unstructured image collections [19]. Others
highlight key semantic differences between image sets [10] or
focus on identifying important subpopulations or semantically
diverse training subsets [20, 26]. Building on this research, we
leverage VLMs for semantic clustering; however, using failure
trajectories in autonomous systems rather than static images,
introducing a temporal and causal structure to the task.

b) Failure Mining in Autonomous Systems: Falsification
has emerged as a prominent methodology to uncover failures
by testing the system in simulated environments with varied
conditions designed to provoke failures [17, 12, 7, 13, 9, 29].
However, while effective for failures tied to controlled variables,
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they fall short in capturing semantic failure modes that require
nuanced interpretation and human inspection. In contrast, our
approach leverages readily collected failure data to automati-
cally discover the failure modes, bypassing human review.

III. PROBLEM FORMULATION: FINDING FAILURE
CLUSTERS FROM PERCEPTION RECORDINGS

We consider the problem of discovering semantic failure
clusters from perception data collected during robotic failures.
These clusters provide interpretable structure over uncurated
failure logs and can be used for downstream tasks such as
(1) targeted data collection to improve safety, and (2) online
failure detection for real-time reliability.

Formally, we are given a dataset of N sequences, each
consisting of K perceptual observations leading up to a failure:

D = {on1:K}Nn=1

where on1:K = (on1 , o
n
2 , . . . , o

n
K) denotes the observation se-

quence for the n-th failure case. The final observation onK
corresponds to the failure event. For example, in autonomous
driving, onK might be an image showing a rear-end collision.

Our goal is to construct a system H that maps this dataset
to a set of L semantic clusters:

H : D 7→ {Cl = (sl, Dl)}Ll=1 ,

where each cluster Cl is characterized by a natural lan-
guage summary sl and a subset of sequences Dl ⊂ D
that share a common failure mode. These clusters reflect
high-level failure themes derived from raw observations. For
instance, a cluster might be: Cl = Rear-End Collisions:
Insufficient Following Distance, in which case
each sequence in Dl corresponds to a failure where the
autonomous car did not maintain a safe following distance
from the vehicle in front. This formulation enables unsuper-
vised discovery of interpretable failure modes directly from
perceptual logs, providing a scalable mechanism for structuring
real-world failure data and guiding robust, adaptive learning.

IV. METHOD

A. Failure Cluster Discovery
Inferring the cause of failure in a robot trajectory is a

complex task that requires understanding the robot’s envi-
ronment, agent’s actions, interactions with other agents, and
their consequences. Doing so at scale across diverse failure
episodes calls for automated systems capable of extracting
and reasoning over semantic patterns in raw failure data. Our
approach proceeds in three stages: (1) inferring failure reasons
from perception sequences, (2) discovering semantic failure
clusters via prompted reasoning over inferred causes, and (3)
assigning each trajectory to one of the discovered clusters (Fig.
1). The resulting clusters support both targeted retraining and
online failure detection (explained in Sec. IV-B).

a) Observation Downsampling: To represent the failure
event compactly, we downsample the tail of each sequence.
Specifically, from each failure trajectory on1:K , we select the
final T frames, sampled from oK−T :K at a reduced frame rate.

This balances the need to understand the temporal context of
the failure with the limitations of the MLLM’s context window.

Fig. 1. Overview of our method. (1) Failure reason inference: MLLM analyzes
sequences of perceptual observations to infer high-level failure reasons. (2)
Failure cluster discovery: An ensemble of prompts is used to group failure
reasons into interpretable semantic clusters. (3) Assignment: Each trajectory is
mapped to a discovered failure cluster based on its inferred failure reason.

b) Step 1: Inferring Failure Reasons with MLLMs:
Each downsampled sequence is fed to an MLLM along with a
structured prompt. The prompt first asks the model to describe
scene and agent behavior, then infer a plausible cause of failure.
We adopt a chain-of-thought (CoT) prompting strategy [28] to
improve grounding and interpretability of the inferred reasons.

c) Step 2: Discovering Semantic Failure Clusters: To
uncover structure across failures, we provide all N inferred
failure reasons to a reasoning model tasked with clustering
them into L semantic failure modes. Each cluster Cl is
annotated with: a natural language name sl for the cluster,
a short description of the failure type, keywords capturing
representative situations in the cluster, and estimated frequency
of occurrence in the dataset. These annotations serve both
interpretability and downstream usage in safety-critical settings.
To improve robustness, we get an LLM-generated ensemble
with diverse clustering prompts yielding multiple clustering
results further aggregated into a unified set (Appendix A1b).

d) Step 3: Assigning Trajectories to Failure Clusters:
Finally, each failure trajectory is assigned to one of the L
discovered clusters by prompting a reasoning model with the
cluster names sl, keywords, and descriptions from the previous
step, and asking it to map the inferred failure reason to a
cluster. Sequences that do not match any cluster are flagged as
outliers, which may indicate rare or complex failure modes.

B. Safety Enhancement

The discovered failure clusters support two key mechanisms
for enhancing safety in autonomous systems.

a) Online Failure Detection: Clusters, along with their
keywords and explanations, form the foundation for failure
monitoring in our MLLM-based failure detection system.
Rather than simple pattern matching, the monitor leverages
this structured taxonomy of failure types in the prompt to
semantically interpret perceptual inputs. When it recognizes
potential failure conditions aligning with known failure modes,



it can raise warnings or trigger safeguard policies. This semantic
understanding enables more nuanced and accurate failure
detection, enhancing the system’s safety and reliability.

b) Targeted Data Collection and Policy Refinement:
Semantic clusters enable targeted data augmentation by iden-
tifying failure classes that require additional supervision.
This allows practitioners to collect expert demonstrations or
counterfactual data in these high-risk regimes and retrain the
policy accordingly, which has shown to improve safety and
robustness in previously unsafe scenarios [6, 16, 8, 25].

V. EXPERIMENTS

We present two case studies spanning distinct robotic
domains to evaluate our framework. The first involves real-
world dashcam footage of car accidents, and the second focuses
on autonomous indoor navigation in office environments. In
both cases, we aim to extract interpretable clusters of failure
modes from raw perceptual sequences and demonstrate their
utility for downstream tasks such as runtime monitoring and
targeted data collection, followed by policy refinement.

We use the MLLMs, Gemini 2.5 Pro [14] for inferring
failure reasons from observation sequences, and OpenAI o4-
mini [23] for semantic cluster discovery, trajectory assignment,
and failure monitoring. Prompt structures and implementation
details for each subpart are provided in the Appendix.

A. Case Study 1: Real-World Car Dashcam Videos

We use the Nexar driving dataset [21], having 1500 dashcam
ego vehicle collisions or near-misses videos (40s, 1280×720, 30
fps). While these recordings are from human-driven vehicles,
they serve as a proxy for autonomous vehicle (AV) failures in
the absence of large-scale public AV failure datasets. However,
our framework is directly applicable to AV data logs.

1) Failure Cluster Discovery: Our system successfully
discovers a diverse set of interpretable failure clusters.

(35%) Rear-End Collisions: Insufficient Following Distance
(25%) Intersection Right-of-Way Violations
(18%) Unsafe Cut-In / Lane-Change Intrusions
(8%) Lane Departure & Lateral-Clearance Errors
(7%) Visibility-Impaired Perception Failures
(4%) Pedestrian & Cyclist Detection Failures
(1%) Static-Obstacle & Sudden Intrusion Collisions
(1%) Infrastructure & Clearance Errors
(1%) Other Rare / Long-Tail Cases

The box lists the discovered semantic failure clusters {C}
from Nexar dataset. Each cluster Cl includes a natural language
name sl, estimated frequency, representative keywords, and a
short description. See the full output list with keywords and
description in Appendix B3 and examples in Fig. 9.

Qualitative inspection shows that these clusters correspond
to meaningful and recurring traffic incident types, such as
rear-end collisions, unsafe lane changes,
or intersection misjudgments. Notably, the
discovered clusters closely align with the U.S. DOT Volpe
Center’s pre-crash typology [22], capturing most major failure

types observed in real-world driving. This highlights our
method’s ability to recover semantically grounded failure
categories, aligning with expert-defined taxonomies, directly
from unstructured video data (baselines in Appendix A1c).

2) Failure Monitoring Leveraging Discovered Clusters: We
evaluate runtime failure detection by prompting a multimodal
reasoning model with recent image history and the learned
failure clusters and reasoning about any possible near-future
collision. See Appendix A2 for more details.

a) Baselines: We compare our method against VLM-
Based Anomaly Detection (VLM-AD) methods [11]. These
methods provide scene descriptions to an LLM and ask it to
detect any possible anomalies in the current observation. We
also compare against Leaderboard Method – the top-performing
failure video classifier on Kaggle Nexar challenge, based on
fine-tuned VideoMAEv2-giant [27] (details in Appendix A2a).

b) Results: We evaluate on 200 held-out trajectories
(Table I). Our method consistently achieves the highest F1 score
and outperforms baselines in both True Positive Rate (TPR)
and False Negative Rate (FNR), showcasing its robust and
reliable failure detection ability. These results also indicate that
system failures are not always anomalies or out-of-distribution
inputs; in-distribution scenarios, like those specified in our
failure clusters, can also lead to system failures that are
hard to capture with VLM-AD. We also test on an unseen
dashcam dataset of 200 trajectories (Table I–Middle), and our
method demonstrates strong generalization. This suggests our
method captures structured semantic patterns beyond dataset-
specific cues, unlike the leaderboard classifier, which lacks
generalizability. Finally, we compare the lead failure detection
time of different methods (Table I–Right). Our method detects
failures earlier than others, indicating its ability to anticipate
failures by correlating scene observations with failure clusters.

c) Ablations: We compare the performance on removing
the failure cluster information from the prompt (NoContext),
keeping everything else intact. This results in significant
performance degradation, highlighting the utility of failure
clusters information in better detection across environments.

B. Case Study 2: Indoor Robot Navigation

We apply our framework to a vision-based ground robot,
navigating unknown indoor office environments [3]. It uses a
CNN-based policy that receives RGB images, velocities, and a
goal position and outputs acceleration commands for the robot.
We record robot rollouts in the Stanford office environment [2]
and extract front-view image sequences. Colliding trajectories
comprise our failure dataset D used for clustering.

1) Failure Cluster Discovery: Our method discovers a set
of interpretable failure clusters from the collision trajectories.
Notably, clusters such as walls and chairs were previously
identified by manual inspection and reachability analysis in [6].
This validates our method’s ability to automatically recover
known failure types and uncover new semantic patterns.

The box lists the discovered semantic failure clusters {C}
(detailed list in Appendix B3 and examples in Fig. 9).



TABLE I
FAILURE DETECTION METRICS (%AGE) FOR DASHCAM DRIVING DATASETS AND (AVERAGE) DETECTION TIME (MILLISECONDS).

In-Distribution Trajectories Out-of-Distribution Trajectories
Method TPR TNR FPR FNR F1 TPR TNR FPR FNR F1 Time

Ours 71.4 72.5 27.5 28.6 71.4 83.0 70.0 30.0 17.0 77.9 610
NoContext 42.8 85.3 14.7 57.2 54.1 64.0 80.0 20.0 36.0 69.6 473.3
VLM-AD 7.1 91.1 8.9 92.9 12.3 35.0 94.0 6.0 65.0 49.7 166.6
Leaderboard 52.0 93.1 6.9 48.0 65.3 18.0 75.0 25.0 82.0 25.2 506.6

TABLE II
FAILURE DETECTION METRICS (%AGE) FOR VISION-BASED INDOOR NAVIGATION AND (AVERAGE) DETECTION TIME (SECONDS).

In-Distribution Trajectories Out-of-Distribution Trajectories
Method TPR TNR FPR FNR F1 TPR TNR FPR FNR F1 Time

Ours 65.0 99.0 1.0 35.0 77.2 67.6 86.2 13.8 32.4 50.0 1.21
NoContext 51.7 99.6 0.4 48.3 67.37 45.9 89.0 10.1 54.1 40.5 0.76
VLM-AD 83.3 50.0 50.0 16.7 40.0 62.2 60.1 39.9 37.8 27.2 1.38
ENet-BC 65.0 100.0 0.0 35.0 78.8 100.0 6.3 93.7 0.0 22.4 1.01

(40–45%) Thin–Protruding Objects
(20–25%) Uniform/Featureless Surfaces
(15–20%) Narrow–Gap/Clearance Misjudgment
(9–12%) Low–Height Clutter & Small Floor Obstacles
(8–10%) Box–Like Equipment & Carts
(8–10%) Structural Edges
(5–7%) Bins & Waste Receptacles
(3–5%) Transparent & Reflective Surfaces
(<2%) Overhead & Ceiling Fixtures

2) Targeted Data Collection and Policy Fine-Tuning for
Enhanced Safety: We use the discovered clusters to guide
expert data collection in targeted regions of the environment
and fine-tune the policy on the augmented dataset (details in
Appendix B3). The failure rate in sampled trajectories drops
from 46% to 18%, demonstrating enhanced safety in previously
failure-prone situations. This forms a closed-loop pipeline of
failure discovery, targeted intervention, and policy refinement
for continuously enhancing the safety of an autonomous system.

3) Failure Monitoring: Due to the confined and cluttered
nature of the indoor environment (evident from Fig. 2), the
failure monitor can easily misinterpret static background
elements with prior failure contexts, leading to a high false
positive rate. To mitigate this, we introduce a simple temporal
consistency rule: a failure is flagged only if it persists for three
consecutive frames. This helps reduce conservativeness while
preserving responsiveness (refer Appendix B2 for details).

a) Baselines: We compare against VLM-AD, where we
adapt the prompt from [11] using system-relevant examples.
We also compare against ENet-BC, a vision-based runtime
failure monitor based on EfficientNet-B0, trained on labeled
collision data from the same environment [6] (Appendix B2a).

b) Results: On 326 IID trajectories test set, our method
outperforms all LLM-based baselines in F1 score. ENet-
BC achieves similar performance to the proposed method,
as expected given its environment-specific training. To test
generalization, we evaluate on 300 OOD trajectories from a
different building. The performance of all methods degrades

as expected, but the proposed method maintains the highest
F1 score, while ENet-BC, which requires environment-specific
training, fails entirely to generalize. This again reinforces the
generalization capabilities of our method. Our method also
detects failures earlier on average, highlighting its ability to
reason about impending collisions before impact. Full metrics
are in Table II. VLM-AD has a slightly higher average time
as it outputs many false failures, evident from its high FPR.

c) Engaging the Safeguard Policy: We integrate our
failure monitor with a reactive safeguard controller that activates
upon a failure detection. Fig. 2 shows an example where the
nominal policy leads to a collision, while the monitor detects the
failure and invokes the safeguard, enabling successful recovery.

Fig. 2. Front-view images along the trajectory while colliding under nominal
policy (top) and safely traversing under safeguarded policy (bottom). Red and
green borders denote failure and safe predictions by the runtime monitor.

VI. CONCLUSION AND LIMITATIONS

We present a closed-loop framework for interpretable failure
analysis in autonomous systems that discovers semantically
meaningful failure modes from perception recordings with-
out supervision. These failure clusters, annotated in natural
language, support targeted data collection, policy refinement,
and semantic failure detection, enabling continuous safety
improvement. Leveraging MLLMs, we provide a foundation
for understanding, organizing, and responding to failures in
complex environments. Future work could integrate formal
methods (e.g., STPA, FRAM) to complement unsupervised
clustering, since there is no single “correct” way to cluster fail-
ure trajectories. MLLMs can miss true reasons; counterfactual
testing or causal models could help refine explanations.
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APPENDIX

Fig. 3. A closed-loop framework for interpretable failure analysis of
autonomous systems. Our method automatically discovers semantically mean-
ingful failure modes from perception recordings without supervision, distilling
them into human-understandable clusters annotated with natural language.
These clusters support targeted data collection, policy fine-tuning, and real-
time semantic failure detection—enabling scalable and continuous safety
improvement.

The appendix offers additional details, such as prompts,
about our implementation. Sections A and B provide the details
for dashcam driving datasets and indoor ground navigation,
respectively.

A. Case Study 1: Real-World Car Dashcam Videos

Section A1 contains all the details of discovering the failure
clusters, and Section A2 lists all the details about runtime
monitoring for the driving case study. The grey boxes contain
prompts.

1) Failure Cluster Discovery:
a) Step 1: Inferring Failure Reasons with MLLMs:

Describe the trajectory of a car from
the sequence of images it observed along
its path, knowing that it undergoes
a collision. After that, provide the
visual semantic reason behind its
failure in brief. Pay attention to the
surrounding objects, other vehicles, and
environmental conditions.

You must provide your answer in the
following format --

trajectory: trajectory_description

failure_reason: semantic_failure_reason

where trajectory_description is the
description of its trajectory and
semantic_failure_reason is the semantic
reason behind failure.

b) Step 2: Discovering Semantic Failure Clusters: Since
LLM outputs are sensitive to prompt phrasing [30], we generate
an ensemble of prompts [24] from an LLM (OpenAI o4-mini) to

infer multiple failure clustering results. Given an initial prompt,
an LLM proposes three other prompts using good practices for
prompting. We use this ensemble of prompts to infer multiple
failure clustering results. The resulting clusterings are merged
by an aggregation model that consolidates overlapping clusters
and unifies labels and descriptions into a single set of failure
clusters C. This approach generates a more comprehensive set
of failure clusters by capturing diverse interpretations of the
failure reasons and compiling them into one set of clusters.
Here are the three prompts generated by the LLM (each is
appended with list of all inferred failure reasons):

Prompt 1:

These are semantic failure reasons
for different trajectories of a car.
Your job is to analyze all of them and
come up with clusters of different
semantic failure reasons. Generate
cluster centers based on the types of
visual semantic failures present so that
these reasons can be assigned to those
clusters.

Return the cluster names and the list of
characteristics, keywords which belong
to each cluster. Make sure to include
long tail/rare clusters. Report the
occurrence frequency of each cluster.

You are a domain expert in automotive
collision analysis. Given a list
of semantic failure reasons for car
trajectories that resulted in crashes,
perform the following steps:

1. Identify and define distinct clusters
of semantic failure types, covering
both common incidents and long{tail/rare
scenarios.

2. For each cluster, provide:

• cluster_name: a concise, descriptive
label

• keywords: a list of characteristic
terms or phrases

• frequency: the count or percentage of
occurrences in the input

• failure modes: a list of specific
failure modes or examples

3. Assign each failure reason to its
corresponding cluster.

4. Output the final result as a
JSON array of objects with keys
‘cluster_name’, ‘keywords’, and
‘frequency’.



Prompt 2:

You are an expert in automotive semantic
failure classification. Given a list of
trajectory failure reasons that resulted
in car crashes, perform the following:

1. Identify distinct clusters of
semantic failure types, including both
frequent and long{tail/rare cases.

2. For each cluster, define:

• cluster_name: concise label

• keywords: list of representative terms

• count: number of occurrences

• failure modes: specific examples

3. Assign each failure reason to one of
the clusters.

4. Output a single JSON object with two
keys:

• clusters: an array of cluster objects
({‘cluster_name’,‘keywords’, ‘count’})
• assignments: a mapping from each input
reason to its cluster_name

Prompt 3:

You are an AI{driven taxonomy engineer
for car collision analysis. Given
semantic failure descriptions of
trajectories that ended in crashes:

• Group descriptions into semantically
coherent clusters (include rare
edge{cases).

• For each cluster, provide:

• Name (short label)

• Key characteristics (list of keywords)

• Example descriptions (up to 3
representative samples)

• Frequency (% of total)

Present your results as a Markdown table
with columns: Cluster Name | Keywords |
Examples | Frequency

Each of these prompts is appended with a list of all the
failure reasons from the previous step. Finally, we query the
LLM again to consolidate these individual lists and generate
the final clusters.

c) Baselines and Results: To evaluate the quality of the
failure clusters discovered by our method, we compare against
BERTopic [15], a state-of-the-art topic modeling method that

combines transformer embeddings with unsupervised clustering
and keyword extraction. We apply BERTopic to the same set of
failure reasons produced in Step 1 of our pipeline to ensure a
direct and fair comparison. We also evaluate a stronger variant,
BERTopic-LLM, where a language model summarizes each
discovered topic using representative keywords and samples.

(83) lead, vehicle, to, failed, in, rearend
(62) suv, the, ego, into, lane, occurred
(46) safe, distance, maintain, following, rearend, andor
(40) to, lead, rearend, in, react, resulting
(39) parked, stationary, its, car, to, failed
(39) another, lane, ego, the, vehicle, collision
(38) ego, the, its, to, failed, vehicle
(32) light, the, green, occurred, because, vehicle
(25) safe, maintain, following, distance, failure, lead
(23) silver, the, lane, ego, occurred, of
(19) pedestrian, yield, who, crosswalk, crossing, car
(19) sun, glare, severe, drivers, the, impaired
(18) light, red, traffic, stop, intersection, with
(17) failure, conditions, nighttime, and, lead, during
(16) white, the, lane, ego, sedan, vehicles
(14) truck, pickup, the, occurred, into, collision

The box shows clusters by BERTopic represented by key-
words and item count in parentheses.

(192) Traffic accident causes
(108) Vehicle collision failures
(79) Rear-end collision mechanics
(48) Driving safety violations
(39) Autonomous vehicle failures
(19) Traffic signal violations
(19) Impact of Sun Glare
(13) Autonomous vehicle failures

The box shows clusters by BERTopic-LLM and item count
in parentheses.

Standard BERTopic struggles to generate semantically co-
herent and interpretable clusters. Key failure modes — e.g.,
Rear-End Collisions— are diluted across vague or syn-
tactically noisy topics (e.g., lead_vehicle_to_failed,
white_the_lane_ego). BERTopic-LLM partially im-
proves interpretability, recovering some valid modes such
as Rear-end collision mechanics, but still includes
vague or tautological categories such as Driving safety
violations, which do not add diagnostic value or clearly
differentiate failure modes. In contrast, our method consistently
yields sharper, failure-relevant clusters.

d) Step 3: Assigning Trajectories to Failure Clusters:



You are classifying car trajectory
descriptions into predefined clusters
based on failure types.

Assign the trajectory to one or more of
the following clusters:

{list_of_clusters}
Analyze the trajectory description and
identify which type(s) of failures
occurred. Consider the keywords and
notes for each cluster to help with
your classification. Use the "Other"
category only when the trajectory
doesn’t reasonably fit into any of the
existing clusters.

We compare the distribution of discovered clusters to their
actual assignments across trajectories (Fig. 4). Most frequencies
align closely. The largest discrepancies appear for the visibility
and sudden intrusion clusters. Visibility failures show higher
reported than assigned frequency in single-label settings, but
match under multi-label assignment—suggesting co-occurrence
with other failures. Similarly, sudden intrusions is under-
assigned due to ambiguity with intersection or cut-in cases.

Fig. 4. Reported cluster occurrence frequency during cluster discovery vs the
frequency of the assigned clusters with single cluster assignment and multiple
cluster assignment.

2) Failure Monitoring Leveraging Discovered Clusters: As
described in Sec. IV-B, we directly use the obtained failure
clusters to safeguard the system through runtime monitoring.
The reasoning model takes a history of past image observations
as input and tries to reason about any possible near-future
collision while leveraging the knowledge about the most
common failures of that system from given clusters in a Chain-
of-Thought (CoT) manner. Adding the cluster information
in the runtime monitor’s prompt helps in zero-shot failure
detection for timely executing a safe action, and generalizing
across different agents and environments without requiring any
specialized training. Here is the prompt:

You are a runtime failure monitor for
the ego car navigating outdoors.

Your task is to analyze a sequence of
forward-facing camera images ending
at the car’s current position, and
determine whether the car is:

a) SAFE | confidently following a
collision-free trajectory, or

b) UNSAFE | likely to collide with
another vehicle or an object

Operational Context:

- The car must keep on moving without
any physical collisions.

- You are provided with a time-ordered
sequence of image frames at 3 frames
per second, ending at the car’s current
position.

- Any collision is considered a failure.

Reasoning Procedure:

1. Trajectory Inference:

From the image sequence, estimate the
car’s likely near-future motion: Is it
continuing straight, braking, turning,
or maneuvering sharply?

2. Scene Understanding:

Examine the latest image for road
layout, obstacles, other vehicles,
pedestrians, and environmental
conditions.

Pay extra attention to:

- Objects within or near the ego
vehicle’s predicted path

- Occluded or partially visible road
users

- Adverse visibility (glare, fog, night)
affecting perception of relevant objects

3. Collision Risk Assessment:

Determine if a collision is likely.

- Prioritize risks that intersect the
ego path

- Ignore objects that are clearly
outside the trajectory or do not pose
an interaction risk

4. Semantic Failure Matching:

- You are given a list of Known Semantic
Failure Reasons of this car (list below)
that can lead to collisions.



- If the current scenario aligns with
any of the known failure reasons, mark
it unsafe and return the exact name of
known failure reason.

- If the failure reason does not match a
listed type but a collision is likely,
briefly describe the new semantic
reason.

- Return SAFE only if you are confident
that the car will safely pass through
the scene without any possible
collision.

- Err on the side of caution, i.e.,
failure, when you are not sure.

Known Semantic Failure Reasons:

{list of clusters}

Output Instructions:

Return only one of the following:

- Name of a known semantic failure
reason (exactly as written above)

- A brief description of a new failure
type

- The word SAFE Rules:

- Do not provide explanations,
justifications, or degrees of certainty.

- Output must be a single, definitive
label: one listed reason, a new concise
reason, or SAFE.

The prompt first outlines the main task for the LLM to act as
a runtime failure monitor and detect if the system is currently
SAFE or UNSAFE based on the observation history. Further,
it provides more information about the system, such as what is
meant by a failure here and the frequency of observations.
Then, we ask it to sequentially reason about the possible
future motion of the system, the surrounding environment,
and any possible risk of failure given the most common failure
modes of that system through clusters. list of clusters
contains all the generated clusters along with their keywords
and descriptions.

We report the failure detection metrics on both In-
Distribution (IID) Trajectories and Out-of-Distribution Tra-
jectories (OOD) in Table I. For IID testing, we took a held-out
set of 200 trajectories from the same Nexar dataset, which
we used for clustering analysis. For OOD testing, we took
another open-source dashcam dataset [4] containing ego car
crash videos.

Fig. 5 shows a few examples for True Positives and
False Negatives predictions from our method. Rows 1,2 are
successfully detected as unsafe. Rows 3,4 are failures, but

are detected as safe because the failure event is not evident
in those images. Note that the last image in the sequence is
taken 1 sec before the collision, and since car driving is a
high-speed system, the actual failure sometimes starts even
after that, which leads to false safe predictions.

Fig. 5. (Row-1,2) True Positives, i.e. failures detected correctly by our
method. (Row-3,4) False Negatives, i.e., actual failures detected as safe by
our method.

a) Baselines: VLM-AD is an LLM-based few-shot runtime
anomaly detection method, where the current image observation
is first processed through a scene descriptor, such as an object
detector, which further feeds into an LLM. The LLM is asked
to find any possible anomalous scenario in the current scene, by
providing it with a description of some Normal and Anomalous
examples in the prompt. For the driving case study, we directly
take the prompt from [11] and use the same reasoning LLM
as our method to prevent any model-specific performance
difference and perform a fair comparison of the methods.
It should also be noted that this method requires manually
writing few-shot examples in the prompt to provide contextual
information about the system, which in our method is automated
with the generated clusters.

For the Leaderboard-Method baseline, since the Nexar
dataset is also hosted as a Crash Prediction Challenge on
Kaggle, we take the best publicly available method [1] as per
leaderboard scores to compare with our method. It takes a
pre-trained VideoMAEv2-giant model as the backbone and
trains a Linear binary classification MLP layer to predict
crash. VideoMAEv2-giant [27] is trained on a large amount
of video datasets, such as action recognition datasets, sports
videos, instructional videos, etc. We tested their trained model
on our test dataset for both the IID and OOD cases. Being
a classical vision-based classification approach, this method
requires environment-specific training and fails to generalize.

B. Case Study 2: Indoor Robot Navigation

Section B1 contains all the details of discovering the failure
clusters, and Section B2 lists all the details about runtime
monitoring for the driving case study. The grey boxes contain
prompts.

1) Failure Cluster Discovery:
a) Step 1: Inferring Failure Reasons with MLLMs: We

randomly sample initial states in the environment and trajectory
rollouts with a fixed goal location. For each rollout, we record
the front-view image observations and a binary label denoting



Failure or Success. Further, we filter out the failure trajectories
for our purpose. The following clustering analysis is performed
on 228 failure trajectories.

Provide a description of the trajectory
of a robot from the sequence of images
it observed along its path, knowing
that it collides in the last image.
After that, provide the visual semantic
reasons behind its failure in brief. Pay
attention to the surrounding objects.

You must provide your answer in the
following format --

trajectory: trajectory_description

failure_reason: semantic_failure_reason

where trajectory_description is the
description of its trajectory and
semantic_failure_reason is the semantic
reason behind failure.

b) Step 2: Discovering Semantic Failure Clusters: Here
is the ensemble of prompts given by the LLM. Each of these
prompts is appended with a list of all the failure reasons from
the previous step.

Prompt 1:

These are semantic failure reasons of a
robot navigating indoors based on images
that fails due to collision. Generate
cluster centers based on the types of
visual semantic failures present so that
these reasons can be assigned to those
clusters. Return the cluster names and
the list of characteristics, keywords
which belong to each cluster. Make sure
to include long tail/rare clusters.
Report the occurrence frequency of each
cluster.

You are an expert in robotic vision
failure analysis. Below is a list of
semantic failure reasons for an indoor
robot navigation system that leads to
collisions.

Your tasks:

1. Identify distinct cluster centers
representing each type of visual
semantic failure.

2. Assign each failure reason to the
appropriate cluster.

3. Include long{tail/rare clusters as
separate entries.

4. For each cluster, report:

• cluster_name

• defining keywords or traits

• occurrence_frequency

• example descriptions (up to 3)

5. Present the output as a JSON array
of objects with fields ‘cluster_name’,
‘keywords’, and ‘frequency’.

Prompt 2:

Act as a taxonomy engineer analyzing
semantic failure reasons of an indoor
vision{based robot that collides. Given
the following descriptions, perform
these steps:

• Group reasons into clusters based on
shared semantic features. • Capture
both common patterns and rare/long{tail
failure types.

• For each cluster, provide:

{ name (a concise label)

{ terms (list of characteristic
keywords)

{ count (number of examples in that
cluster)

{ failure modes

• Output the final result as valid JSON:
an array of objects with keys ‘name’,
‘terms’, and ‘count’.

Prompt 3:

You are a domain expert in robotic
vision failure analysis. Given a list
of semantic failure reasons for an
indoor navigation robot that lead to
collisions, perform the following steps:

You are a domain expert in robotic
vision failure analysis. Given a list
of semantic failure reasons for an
indoor navigation robot that lead to
collisions, perform the following steps:

1. Identify and define distinct clusters
of semantic failure types, including
both common and long{tail/rare cases.

2. For each cluster, provide:



• cluster_name: a concise,
descriptive label

• keywords: list of characteristic terms
or phrases

• frequency: count or percentage of
occurrences in the input

• failure modes: list of specific
failure modes or examples

3. Assign each failure description to
its appropriate cluster.

4. Output the result as a JSON array
of objects with fields ‘cluster_name’,
‘keywords’, and ‘frequency’.

c) Step 3: Assigning Trajectories to Failure Clusters:

You are classifying robot trajectory
descriptions into predefined clusters
based on failure types.

Assign the trajectory to one or more of
the following clusters:

{list_of_clusters}
Analyze the trajectory description and
identify which type(s) of failures
occurred. Consider the keywords and
notes for each cluster to help with
your classification. Use the "Other"
category only when the trajectory
doesn’t reasonably fit into any of the
existing clusters.

We compare the distribution of discovered clusters to
their actual assignments across trajectories (Fig. 4). Most
frequencies align closely. The largest discrepancies appear
for the Narrow-Gap/Clearance Misjudgment and
Low-Height Clutter Small Floor Obstacles
clusters.

They show higher reported than assigned frequency in
single-label settings, but match under multi-label assignment–
suggesting co-occurrence with other failures. Similarly,
Bins Waste Receptacles is under-assigned due to
ambiguity with Low{Height Clutter Small Floor
Obstacles or Box–Like Equipment Carts.

2) Failure Monitoring Leveraging Discovered Clusters: We
perform runtime failure detection in the same way as described
in A2 for the indoor navigation robot. The prompt is tailored
to an indoor robot with its list of clusters. Here is the detailed
prompt:

Fig. 6. Reported cluster occurrence frequency during cluster discovery vs the
frequency of the assigned clusters with single cluster assignment and multiple
cluster assignment.

You are a runtime failure monitor for a
vision-based autonomous robot navigating
in an indoor environment.
Your task is to analyze a sequence of
recent image observations, ending at the
robot’s current position, and determine
whether the robot is:

- SAFE | confidently continuing in free
space on a collision-free path, or

- UNSAFE | no free space ahead and
at significant and credible risk of
collision, based on observable evidence.

Operational Context:

- The robot must reach a predefined goal
without any physical collisions.

- You are provided with a time-ordered
sequence of image frames, each after 0.5
seconds, ending at the robot’s current
location.

- The robot is moving with a maximum
speed of 0.6 m/s.

Evaluation Procedure:

1. Predict Short-Term Trajectory

- Based on the image sequence, estimate
the robot’s likely immediate direction
of movement (e.g., straight, turning,
drifting).

- Incorporate temporal cues for better
motion understanding.

2. Identify Relevant Obstacles

- Inspect the final image for physical
objects that may intersect the predicted
path.



- Focus only on nearby, collision-range
elements that could plausibly interfere
with the robot’s trajectory.

3. Determine Collision Risk

- Mark the situation as unsafe if there
is a visual alignment between the
projected path and an obstacle, else
mark it SAFE.

4. Classify the Risk

- You are given the most common failure
modes of this robot in the list below.

- If the risk matches one of the Known
Semantic Failure Reasons listed below,
return name of that exact label.

- If a new type of visible risk is
present, briefly describe it in concise
terms.

- If no substantial risk is visible
along the projected path, mark it as
SAFE.

Known Semantic Failure Reasons:

{list_of_clusters}

Output Instructions:

Return only one of the following:

- Name of a known semantic failure
reason (exactly as written above)

- A brief description of a new failure
type

- The word SAFE

Rules:

- Do not provide explanations,
justifications, or degrees of certainty.

- Output must be a single, definitive
label: one listed reason, a new concise
reason, or SAFE.

We report the failure detection metrics on both IID and
OOD test sets II. The IID test set was taken from the same
environment, but the OOD test set was taken from a different
building with very different semantics, but an indoor office
environment in the dataset.

Fig. 7 shows a few examples for True Positives and
False Negatives predictions from our method. Rows 1,2 are
successfully detected as unsafe. Rows 3,4 are failures, but are
detected as safe because the monitor is getting confused seeing
some free space ahead, and the temporal consistency rule gives
false safe outputs.

a) Baselines: For the ENet-BC baseline, we follow [5]
and first compute the Backward Reach-Avoid Tube (BRAT)

Fig. 7. (Row-1,2) True Positives, i.e. failures detected correctly by our
method. (Row-3,4) False Negatives, i.e., actual failures detected as safe by
our method.

for our environment. Further, we collect a dataset of 3000
images with 1500 safe and 1500 unsafe images labeled using
the BRAT and follow [16] to train the EfficientNet-B0 model
for binary classification. Similar to the Leaderboard method
in the driving example, it is based on environment-specific
training, and there’s no opportunity for generalization across
environments, where LLM-based methods shine.

3) Targeted Data Collection and Policy Fine-Tuning for
Enhanced Safety: For targeted data collection around the
mined failure modes of the robot, we identify regions in the
environment corresponding to each cluster. In each failure
region, for some starting states and a goal state, we use a
Model Predictive Control (MPC) scheme to find a sequence
of dynamically feasible waypoints [3]. The collected dataset
around all the failure modes comprised approximately 40K
training samples, which were then augmented with the original
training data. Lastly, we fine-tuned the trained checkpoint for
only 20 iterations on the augmented dataset and compared the
performance on the previous policy and the retrained policy
by rolling out trajectories for 50 initial states in the same
environment.

Fig. 8 shows a few examples from the targeted dataset.

Fig. 8. Expert data collected around identified clusters.



Generated clusters with keywords and
their descriptions for driving dashcam
datasets.

1. Name: Rear-End Collisions:
Insufficient Following Distance
Keywords: rear-end, following distance,
tailgating, braking, delayed reaction,
deceleration ahead
Description: The vehicle ahead brakes
or stops and the ego car fails to leave
adequate gap or react in time, leading
to a rear-end impact|often exacerbated
by poor visibility or road conditions.

2. Name: Unsafe Cut-In / Lane-Change
Intrusions
Keywords: lane change, cut-in, merge,
encroachment, insufficient clearance,
drift, sideswipe
Description: Another vehicle abruptly
merges or drifts into the ego car’s lane
without providing room, cutting off the
ego car and causing a collision.

3. Name: Intersection Right-of-Way
Violations
Keywords: left turn, yield,
right-of-way, red light, signal
violation, cross-traffic, stop sign
Description: A vehicle fails to yield
when turning (especially unprotected
left turns) or runs a red/yellow light
or stop sign, colliding with lawful
through traffic.

4. Name: Lane Departure
Lateral-Clearance Errors
Keywords: lane departure, drift,
misjudged gap, narrow lane, lateral
clearance, sideswipe
Description: The ego car drifts out
of its lane or misjudges space beside
parked/static vehicles, grazing or
sideswiping them.

5. Name: Visibility-Impaired Perception
Failures

Keywords: glare, night, rain, fog,
wet road, low visibility, windshield
occlusion
Description: Sun glare, darkness,
heavy rain or other occlusions hide
a hazard|vehicle, pedestrian or
signal|delaying detection and proper
reaction.

6. Name: Pedestrian Cyclist Detection
Failures
Keywords: pedestrian, cyclist, bicycle,
crosswalk, jaywalking
Description: The car fails to detect or
yield to a vulnerable road user entering
or crossing the roadway, often in a
crosswalk or turning path.

7. Name: Static-Obstacle Sudden
Intrusion Collisions
Keywords: parked vehicle, door opening,
driveway pull-out, backing/reversing,
sudden obstacle
Description: A parked car door
opens or a vehicle emerges from a
driveway/parking stall unexpectedly into
the ego car’s path.

8. Name: Infrastructure Clearance
Errors
Keywords: pillar, attenuator, underpass,
overpass, vertical clearance, sign
structure
Description: The ego car clips or
crashes into fixed road or bridge
infrastructure, or a vehicle’s height
exceeds overhead clearance.

9. Name: Other Rare / Long-Tail Cases
Keywords: wrong-way, camera
tilt/misalignment, construction
equipment, forklift, oversized load,
extreme/edge-case
Description: Extremely infrequent
scenarios such as head-on wrong-way
collisions, sensor/camera failures, or
rare large obstacles.



Generated clusters with keywords and
their descriptions for indoor robot
navigation.

1. Name: Thin-Protruding Objects
Keywords: folding chair, foldable chair,
thin metal legs, chair frame, chair
legs, chair base, chair seat, office
chair, casters, wheels, central post,
desk leg, table leg, desk support
Description: Robot fails to detect or
underestimates thin, low-contrast legs
and bases, colliding with folding or
office chairs, table/desk legs, etc.

2. Name: Uniform/Featureless Surfaces
Keywords: white cabinet, filing cabinet,
locker/lockers, cabinet, uniform
surface, featureless wall, light-colored
surface, wall base, panel
Description: Robot treats large flat,
light-colored walls or cabinets as free
space due to poor depth cues and lack of
texture or edges.

3. Name: Narrow-Gap/Clearance
Misjudgment
Keywords: narrow space, tight passage,
narrow passage, misjudged gap,
insufficient clearance, turning radius,
misjudged space
Description: Robot squeezes through
tight passages|between obstacles or
underestimates turning radius|leading
to collisions in narrow spaces.

4. Name: Low-Height Clutter Small Floor
Obstacles
Keywords: backpack, cables, wires, power
brick, small debris, equipment debris,
low-lying object, floor clutter, soft
object
Description: Robot runs into low-profile
items on the floor (backpacks, cables,
small debris) that blend into the
background.

5. Name: Box-Like Equipment Carts

Keywords: computer tower, server,
server cabinet, grey box, box-like
object, equipment, pedestal, cart,
machinery
Description: Robot fails to detect or
underestimates clearance around bulky,
rectangular objects such as computer
towers, servers, carts or pedestal-type
furniture.

6. Name: Structural Edges: Door Frames,
Jambs Wall Corners
Keywords: door frame, door jamb, wooden
frame/panel, frame edge, threshold, open
door edge, corner, wall corner, external
corner, protruding corner
Description: Robot collides with rigid
vertical edges like door frames, jambs,
wooden panels or cuts corners too
sharply on wall intersections.

7. Name: Bins Waste Receptacles
Keywords: trash bin, recycling bin, bin
lid, blue-lidded bin, green bin, waste
receptacle
Description: Robot collides with trash
bins, recycling bins or their lids in
tight spaces.

8. Name: Transparent Reflective
Surfaces
Keywords: glass door, glass panel,
mirror, reflective surface, transparent
panel, reflection, deceptive surface
Description: Robot mistakes glass doors,
panels or mirrors for free space or is
deceived by reflections.

9. Name: Overhead Ceiling Fixtures
Keywords: ceiling, low ceiling, fixture,
overhead, overhead obstacle, piping,
ceiling fixture
Description: Robot drives into
low-hanging fixtures or ceiling
obstructions due to upward blind spots
in its sensors.



Fig. 9. Example recording for some clusters in (Row 1-4) driving dashcam dataset and (Row 5-8) indoor robot navigation.
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