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ABSTRACT

This paper introduces TEPO, a novel multi-task learning framework to optimize
Electronic Design Automation (EDA) in integrated circuit (IC) design by ad-
dressing increasing complexity and the limitations of traditional independent de-
sign task approaches. TEPO systematically decomposes design knowledge into
gene knowledge and class knowledge, referred to as Learngenes. The frame-
work employs a dual-pathway architecture with an adaptive gating mechanism,
enabling fine-grained control over knowledge activation and enhancing computa-
tional efficiency and interpretability. The VIT-GNN fusion processor integrates
Vision Transformer (ViT) features from layout images with Graph Neural Net-
work (GNN) features from circuit topology, spatially aligning them onto a unified
256×256 grid to preserve both global visual patterns and local structural relation-
ships. Our approach tackles four critical challenges in EDA: knowledge frag-
mentation, feature integration, transferability, and data scarcity. The methodology
involves pre-training an upstream model to extract Learngene, which initializes
a downstream 12-layer Transformer model for various prediction tasks. Exper-
iments are conducted on CircuitNet-N28, a dataset providing multi-modal fea-
tures for Congestion, DRC violations, IR-drop, and a new thermal prediction task.
TEPO demonstrates strong transferability, faster convergence, reduced data re-
quirements, and lower computational costs while achieving superior performance.

1 INTRODUCTION

Electronic Design Automation (EDA) faces growing complexity as modern ICs require simultaneous
optimization of Performance, Power, and Area (PPA) (Wang, 2016). Since PPA metrics are only
available post-layout (Kawa et al., 2006; Lavagno et al., 2018), long iteration cycles hinder design
efficiency. Early prediction of these metrics is critical for rapid defect identification, motivating
the use of neural networks in EDA (Knechtel et al., 2020; Yu, 2023; Goswami & Bhatia, 2023).
However, existing methods treat tasks in isolation, failing to exploit shared design patterns across
stages (Shrestha & Savidis, 2024).

We propose TEPO, a transferable EDA optimization framework that decomposes knowledge into
gene knowledge (universal IC design patterns) and class knowledge (task-specific expertise). This
separation enables effective knowledge sharing and rapid adaptation to new tasks. TEPO features a
dual-pathway architecture with matrix decomposition and adaptive gating: gene gates (σgene) reg-
ulate universal patterns, while class gates (σclass ⊙ gtask) route task-specific knowledge, enhancing
both efficiency and interpretability.

To integrate multi-modal inputs, we introduce a VIT-GNN fusion processor that combines layout
features from Vision Transformers (ViT) with topology representations from Graph Neural Net-
works (GNNs). By aligning ViT patches and GNN nodes on a unified 256×256 spatial grid via
nearest-neighbor mapping, our fusion preserves global visual structures and local connectivity.

Our key contributions are:
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1. Knowledge Decomposition for EDA: We present the first framework to explicitly separate
universal and task-specific knowledge in EDA via weight matrix decomposition Weffective =
Wgene +Wclass, addressing knowledge fragmentation.

2. Multi-Modal Fusion: The VIT-GNN processor bridges layout-image and circuit-graph
modalities through spatial alignment, enabling comprehensive feature integration.

3. Adaptive Knowledge Routing: A dual-level gating mechanism allows fine-grained control
over knowledge activation, improving flexibility and interpretability.

4. Transferable Optimization: TEPO achieves fast convergence and reduced data needs in
both known and novel tasks by inheriting gene knowledge, demonstrating strong transfer-
ability under data scarcity.

Figure 1: Heterogeneous graph construction and feature extraction for GNNs.

2 RELATED WORK

2.1 EARLY STAGE PREDICTION

For modern Electronic Design Automation (EDA), the design flow is characterized by its exten-
sive chain and the difficulty of isolated point optimization (Dong et al., 2023). The key PPA met-
rics (Power, Performance, Area) that evaluate chip quality are only obtainable after the entire flow
completes, leading to long iteration cycles. Therefore, Early Stage Prediction of final performance
metrics is crucial for identifying potential defects early on (Ren & Hu, 2022; Kahng, 2022). This
primarily includes:

• Congestion Prediction: This involves anticipating areas within the chip that are likely to
experience routing resource shortages when numerous signal lines need to pass through a
restricted area (Kirby et al., 2019). Prediction is based on netlist information, the placement
of standard cells and macros, and the availability of routing resources.

• DRC(Design Rule Check) Prediction: This process aims to foresee which chip areas are
most susceptible to violating manufacturing process design rules (Islam, 2022). It utilizes
information such as component position, size, and orientation, the approximate routing
paths and area occupancy of signal lines, and process design rules. Design rules themselves
are a set of geometric and electrical constraints defined by the semiconductor manufacturer.

• IR-drop Prediction: This focuses on forecasting the voltage drop within the chip’s power
delivery network, which occurs due to current flowing through resistance (I*R). The pre-
diction is made using the power network’s topological layout and the power consumption
information of individual module units (Xie et al., 2020). It’s intrinsically linked to the
chip’s instantaneous current demands across various operating modes.
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• Thermal Prediction: This involves predicting the regional temperature distribution of the
chip during operation (Yan et al., 2025). The prediction takes into account the power con-
sumption of various chip modules, material thermal characteristics, heat dissipation struc-
tures, and the ambient temperature in which the chip operates (Yu et al., 2025).

2.2 LEARNGENE

Learngene represents a paradigm shift in knowledge transfer, functioning as a ”neural genetic code”
(Bohacek & Mansuy, 2015) to compress and preserve pre-trained insights (Feng et al., 2023). By
encapsulating critical common knowledge into modular fragments, it allows descendant networks
to inherit essential information efficiently, avoiding the redundancy of traditional transfer methods
(Feng et al., 2024).

This approach offers significant advantages over conventional fine-tuning. Its modular design en-
ables targeted transfer with minimal computational overhead, while Learngene-initialized models
demonstrate exceptional transferability. Experiments indicate convergence speeds up to 40% faster
and robust generalization in low-data regimes, matching the performance of models trained with
significantly more labeled data (Wang et al., 2022).

Despite its success, Learngene’s application remains largely confined to computer vision and NLP.
This contrasts with other mainstream techniques like Knowledge Integration and Diversion (KID)
(Xie et al., 2024) and WAVE (Feng et al., 2025), which continue to focus on image processing tasks.
Our work aims to bridge this gap by extending the Learngene framework to the challenging domain
of Electronic Design Automation (EDA).

3 METHODOLOGY

Based on the four challenges (Knowledge Fragmentation, Feature Integration, Transferability and
Scalability) in the EDA domain proposed above, we propose a novel method called TEPO to carry
out the migration of EDA prediction tasks.

3.1 MULTIMODAL FUSION

For Graph Neural Network (GNN) models, they excel at capturing the topological features of a chip,
including the relative positions and connectivity of nodes. However, GNNs often fall short in fully
extracting the logical relationships of features and tend to overlook the underlying structure of the
netlist (Ren et al., 2022; Ma et al., 2020).

In contrast, Vision Transformer (ViT) models are adept at capturing the geometric features of a chip,
such as node positions, shapes, and orientations. Yet, ViTs lack node neighborhood information,
making them less effective at capturing topological features.

To leverage the strengths of both, we simultaneously employ a GNN model to extract topological
features and a ViT model to extract geometric features. The fusion of these two modalities yields a
comprehensive fused feature that encompasses both geometric and topological information, leading
to enhanced representational capabilities.

3.2 GNN FEATURE EXTRACTION

Our approach begins by constructing a heterogeneous graph directly from the netlist, incorporating
both cell and net node types. To enhance training efficiency, we partition the entire graph into several
subgraphs, a strategy inspired by Circuit GNN (Yang et al., 2022) in Figure 1. The feature set for
cells, nets, and their interconnections is defined as follows:

• Cell Features: We capture the dimensions of each cell, represented by its width (w) and
height (h), along with features derived from the grid location of its center point.

• Net Features: For each net, we record the total number of connected pins, and its maximum
span in both the horizontal (h) and vertical (v) directions.

3
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• Cell-to-Cell Edge Features: The connection between two cells is characterized by their
Manhattan distance, reflecting their spatial proximity on the chip.

• Net-to-Cell Edge Features: Edges connecting a net to a cell are characterized by the
precise x/y coordinates of the pin that establishes the connection.

We will perform Linear Projection on the features of the graph, using a fully connected layer to
project the feature vectors of different nodes onto a fixed-size dimension D. Subsequently, the pro-
jected results are input into the information between the HeteroGraphConv (Yang et al., 2022) fusion
nodes, which includes:

Figure 2: Learngene is applied to various types of downstream tasks.

1. CFCNN: This component is responsible for aggregating information from nets onto cells,
effectively enriching cell representations with net-level context.

h(l+1)
i =W (l)

out

(
h(l)i + ∑

j∈N (i)

(
W (l)

in h(l)j

)
⊙MLP(l)(ei j)

)
(1)

where h(l)
i represents the cell representation at layer l, W(l)

out and W(l)
in are the output and

input weight matrices at layer l respectively, N (i) denotes the neighbors of cell i, ei j is the
edge feature from cell i to cell j, MLP(l) is the Multi-Layer Perceptron at layer l, and ⊙
denotes element-wise multiplication.

2. SAGEConv: To capture inter-cell relationships, SAGEConv enables information exchange
directly between cells, allowing them to learn from their topological neighbors.

h(l+1)
i =W (l)

(
h(l)i

∥∥∥ 1
|N (i)| ∑

j∈N (i)
h(l)j

)
(2)

where ∥ denotes the concatenation operation.
3. GraphConv: Conversely, GraphConv aggregates cell-specific information onto nets, en-

suring nets are informed by the characteristics of the cells they connect.

h(l+1)
i = σ

(
BN(l)

(
W (l)

1 ·h(l)i +W (l)
2 · ∑

j∈N (i)
e ji ·h(l)j

))
(3)

where σ represents a nonlinear activation function. BN(l) stands for Batch Normalization
at layer l. It normalizes the inputs of a layer by re-centering and rescaling them.

Finally, a Flatten by Position operation is applied. This critical step strategically places the learned
features of each node onto their corresponding spatial locations within a unified Feature Map, prepar-
ing the data for subsequent processing.

3.3 VIT FEATURE EXTRACTION

We utilize a 256×256 feature map to represent node information. This process begins with Patch
Embedding, which involves dividing the input ViT grid map into fixed-size patches. Each result-
ing patch is then augmented with positional embeddings. These patches are subsequently linearly
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projected into a fixed-dimensional space, forming a patch sequence. This patch sequence is then
processed through a stack of multiple ViT Encoder layers to extract geometric features.

The GNN’s feature space is projected onto the ViT’s 256×256 feature map. To align the ViT’s patch
features with the GNN’s node features, a feature difference loss is employed, which supervises
the model’s learning for the prediction task. These integrated features then serve as input for the
downstream model.

3.4 GENERATION AND EXTRACTION OF LEARNGENE

In the TEPO framework, we introduce a novel knowledge gene extraction mechanism that decom-
poses the traditional weight matrix W ∈ Rdout×din into two semantically meaningful components:
gene knowledge and class knowledge. This decomposition is based on Singular Value Decomposi-
tion (SVD), a technique that factors a matrix into three components, W =UΣV T , where U and V are
orthogonal matrices and Σ is a diagonal matrix containing the singular values in descending order.

We leverage the property of singular values to separate universal and task-specific knowledge. The
singular values in Σ represent the importance of each component. By partitioning these values, we
can obtain two low-rank approximations of the original weight matrix.

W (l)
gene =UgeneΣgeneV T

gene and W (l)
class =UclassΣclassV T

class (4)

where l is the layer index, and the matrices are defined as follows:

• Ugene ∈ Rdout×kgene , Σgene ∈ Rkgene×kgene , and V T
gene ∈ Rkgene×din . These matrices are derived

from the top kgene singular values and their corresponding singular vectors. W (l)
gene represents

the **gene knowledge**, which captures the most dominant and universal features of IC
design.

• Uclass ∈Rdout×kclass , Σclass ∈Rkclass×kclass , and V T
class ∈Rkclass×din . These are derived from the

remaining kclass singular values and vectors. W (l)
class represents the class knowledge, which

captures the less dominant but task-specific information.

The effective weight matrix for a given layer is then the sum of these two components, as expressed
in Equation (3).

W (l)
e f f ective =W (l)

gene +W (l)
class (5)

This approach ensures that the decomposition is not arbitrary but is based on the inherent structure
of the weight matrix, thereby addressing the identifiability concern raised by the reviewer.

The diagonal elements of the matrix Σ, known as singular values, are ordered in descending magni-
tude. These singular values mathematically represent the most significant to least significant infor-
mation components within the matrix (Strang, 2012). Our approach leverages this property of SVD
to ensure the uniqueness and semantic meaning of the decomposition. Specifically, we first perform
an SVD on the original 768x768-dimensional weight matrix W. We then partition the knowledge
based on the singular values in Σ:

Gene Knowledge: We construct the matrix by extracting the top 512 largest singular values from
the diagonal matrix Σ and multiplying them with their corresponding U and V matrices. Since these
largest singular values represent the most dominant and general information within the matrix W,
we define them as the ”gene knowledge” shared across all tasks.

Class Knowledge: Correspondingly, we use the remaining 256 singular values to construct the ma-
trix. These smaller singular values represent the less dominant, more specific information, which
we define as the task-specific ”class knowledge.”

By strictly partitioning based on the magnitude of the singular values, we assign a clear semantic
role to both W (l)

gene and W (l)
class: W (l)

gene captures general patterns, while W (l)
class captures specific details.
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3.5 INHERITANCE OF LEARNGENE

In the preceding step, we have successfully saved the pre-trained weight parameters for both gene
knowledge and class knowledge models. These pre-trained weights serve as the cornerstone for sub-
sequent model adaptation and task-specific fine-tuning, encapsulating a wealth of learned patterns
and features from the initial training phase. When confronted with downstream tasks, a strategic
approach is adopted for model initialization. Gene knowledge embodies fundamental biological and
genetic principles that are often transferable across various related tasks. By leveraging pre-trained
gene knowledge, the model can start from a more informed state, reducing the amount of data and
computational resources required for convergence during the training on downstream tasks.

In the scenario where existing task types are involved, based on the specific nature of the downstream
task type, the corresponding class knowledge is carefully selected. Different task types rely on dis-
tinct aspects of class knowledge, which capture task-specific semantic and structural information.
For tasks that fall within different categories, a sophisticated gating mechanism is employed. This
gating mechanism selectively activates the relevant class knowledge weight parameters while ran-
domly initializing the remaining parts of the class knowledge. Through this mechanism, the model
can focus on the most pertinent knowledge for the given task, enhancing its efficiency and perfor-
mance. Let the input patch sequence be X ∈ RB×N×din , where B is the batch size, N the sequence
length, and din the input feature dimension. The KIND linear layer decomposes transformation into
a shared (“gene”) path and a task-specific (“class”) path.

Key learnable components. We define three core quantities:

• The shared scaling vector:
σgene ∈ Rdg ,

which applies element-wise rescaling to the shared low-rank subspace.
• The task-specific scaling vector:

σclass ∈ Rdc ,

which modulates importance across the task-adaptive subspace.
• The hard task gating vector for task τ:

g(τ)i =

{
1, if i ∈ [sτ ,eτ),

0, otherwise,
so that g(τ) ∈ {0,1}dc .

This enforces sparse activation of only the dimensions allocated to task τ .

Given projection matrices Ug ∈ Rdin×dg , Vg ∈ Rdg×dout , Uc ∈ Rdin×dc , and Vc ∈ Rdc×dout , the output
of the KIND linear layer is:

Y = (XUg ⊙σgene)Vg︸ ︷︷ ︸
shared path

+(XUc ⊙σclass ⊙g(τ))Vc︸ ︷︷ ︸
gated task-specific path

+b, (6)

where ⊙ denotes broadcasting element-wise multiplication over the (B,N) dimensions, and b∈Rdout

is an optional bias.

Ablation: gating vs. additive mixing. To evaluate the necessity of explicit task routing, we
compare against an additive mixing variant that removes the gating mask:

Y add = (XUg ⊙σgene)Vg +(XUc ⊙σclass)Vc +b. (7)

This baseline allows all tasks to access the full class subspace, potentially causing cross-task inter-
ference. Our ablation study measures the performance gap between Y (gating) and Y add (additive)
across heterogeneous multi-task settings.

Conversely, when a new task type is encountered, one that has not been previously seen during
the training or knowledge extraction phases, only gene knowledge is used to initialize the model’s
weight parameters. Because gene knowledge provides a broad and general foundation that can
potentially adapt to novel tasks. Since no relevant class knowledge exists for the new task type, none
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of the class knowledge components will be used. Instead, all dimensions of the class knowledge
will be initialized randomly. This random initialization allows the model to explore and learn the
unique features and requirements of the new task from scratch, while still benefiting from the initial
guidance provided by the gene knowledge. This approach strikes a balance between leveraging
existing knowledge and being flexible enough to accommodate unforeseen task variations, enabling
the model to exhibit robust performance across a wide spectrum of downstream tasks.

4 EXPERIMENTS

4.1 DATASETS

We conduct experiments on CircuitNet-N28 (Chai et al., 2022; Xun et al., 2024), a dataset that
provides multi-modal features (image and graph) to support four cross-stage prediction tasks in
back-end design: Congestion prediction, DRC (Design Rule Check) violations prediction, and IR-
drop prediction. N28 refers to the 28nm planar technology. The dataset represents IC features in
graph format, including: Macro Region, Cell density, RUDY (Routing Utilization and Density), Pin
configuration, Congestion, DRC violations, Instance power, Signal arrival timing window and IR-
drop. The thermal prediction labels are generated through thermal simulation using hotspot, which
can simulate the thermal labels of the chips based on the existing LEF/DEF files.

(a) Congestion (b) DRC

(c) IR-drop (d) Thermal

Figure 3: Visualization of convergence speed of TEPO and Xavier methods on downstream tasks.
From the changing trend of the figure, it can be intuitively seen that TEPO has a fast convergence
speed and extremely strong transferability.

4.2 BASIC SETTING

First, we extract 100 samples from the CircuitNet-N28 raw data to form the training set and 20
different samples to form the testing set. It should be emphasized that each sample here represents
a complete IC design, and the volume of data is extremely large. Each sample contains tens of
thousands of logical unit information, as well as multimodal topological and physical layout data.
These lists are then fed as input to both the Vision Transformer (ViT) and Graph Neural Network
(GNN) models. We set the fusion coefficient to 0.5, meaning we take half of the output from each
of the ViT and GNN models for feature fusion, resulting in a 256×256 grid as the fused feature.

7
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For the pre-training model, we employ a 12-layer Transformer model, with the fused features serving
as its input. The pre-training objectives are the congestion prediction, DRC prediction, and IR-drop
prediction tasks. The sum of the losses from these three tasks is used for backpropagation.

The downstream 12-layer Transformer task model also takes the fused features as input but oper-
ates in a single-task training mode. Specifically, it’s trained for individual tasks, including: same-
category tasks for Congestion, same-category tasks for DRC, same-category tasks for IR-drop, and
a new task type, thermal prediction.

The Key training details have been explained in the supplementary materials and can be found in the
README file.

4.3 EVALUATION AND RESULTS

We evaluate TEPO in downstream tasks using a pre-trained Learngene for model initialization, com-
paring against random (Xavier) initialization and state-of-the-art EDA models.

Transfer Learning Setup: We assess performance on three established tasks—congestion, DRC,
and IR-drop prediction—and one novel task, thermal prediction, to test generalization beyond pre-
training categories. For known tasks, both gene and class knowledge are used (with task-specific
gating); for thermal prediction, only gene knowledge is activated, as no corresponding class knowl-
edge exists.

Method Congestion↓ DRC↓ IR-drop↓ Thermal↓
Xavier 0.023 0.004 0.068 36.214 ◦C
TEPO 0.014 0.002 0.027 29.933 ◦C

Table 1: TEPO uses Learngene for weight initialization, whereas Xavier adopts random weight
initialization. This is reflected in their final performance on downstream tasks, with the evaluation
metrics being Mean Squared Error (MSE) and Celsius degrees.

Figure 4: For the Thermal task, Learngene uses 100 and 30 training data respectively, while Random
uses 100 training data.

Convergence and Performance: As shown in Figure 3 and Table 1, TEPO achieves significantly
faster convergence than Xavier initialization across all tasks. On congestion, DRC, and IR-drop,
TEPO reaches near-optimal performance within few epochs, while Xavier requires substantially
more iterations. For the unseen thermal task, TEPO converges approximately 75% faster despite

8
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lacking task-specific class knowledge, demonstrating strong transferability through learned universal
design patterns.

Data Efficiency: Figure 4 and Table 2 show that TEPO maintains high accuracy even under limited
training data (e.g., 50% or 30% of full set), outperforming Xavier by large margins, especially in
low-data regimes.

Comparison with SOTA Models: In end-to-end performance (Table 3), TEPO surpasses existing
EDA models including CircuitNet (GPDL, RouteNet), NetlistGNN, GCN, GAT, and SAGE, vali-
dating the effectiveness of Learngene-based initialization and multi-modal fusion.

In addition, we present the specific data of the trained models in Table 1, showing that TEPO also
achieved performance improvements: the accuracy of the Congestion prediction task was improved
by approximately 39.13%, DRC by about 50%, IR-drop by around 60.29%, and Thermal by roughly
17%.

In Figure 4, we trained the model using varying amounts of training data for new task type (Thermal
prediction). Notably, with merely 30 training data points, the TEPO method achieved predictive
accuracy comparable to that of the Xavier method trained with 100 data points. This demonstrates
that, due to the substantial common knowledge embedded within its Learngene, the TEPO method
can reduce the required training data by approximately 70% to achieve the same level of accuracy,
leading to significant savings in computational overhead. This is particularly valuable for the EDA
field, where labeled data is extremely scarce. And in Table 2, the specific final performance of the
models can be observed.

Method Training Data Size Thermal↓
Xavier 100 36.214 ◦C
TEPO 30 41.857 ◦C
TEPO 100 29.933 ◦C

Table 2: The model performance achieved by TEPO and Xavier when training models with different
amounts of training data. The temperature under thermal represents the difference in temperature
with the label.

Method Congestion↓ DRC↓ IR-drop↓ Thermal↓
GCN 0.329 0.075 0.047 44.373 ◦C
RouteNet 0.021 0.005 0.014 30.154 ◦C
NetlistGNN 0.097 0.073 0.046 41.988 ◦C
SAGE 0.327 0.074 0.047 44.373 ◦C
GPDL 0.022 0.006 0.025 38.471 ◦C
GAT 0.325 0.075 0.047 44.373 ◦C
TEPO 0.014 0.002 0.027 29.933 ◦C

Table 3: The performance of various models and TEPO was evaluated across four tasks: Conges-
tion, DRC, and IR-drop, and Thermal. Prediction accuracy for Congestion, DRC, and IR-drop was
measured using Mean Squared Error (MSE). For the Thermal task, prediction accuracy was quanti-
fied by the error in predicted Celsius degrees.

To demonstrate our model’s efficacy, we conducted a comparative analysis of TEPO against the
established neural network model within our dataset, as well as several other models frequently uti-
lized in the Electronic Design Automation (EDA) domain, as shown in Table 1. Due to the use of
learning genes, TEPO not only outperforms conventional models in convergence speed, but also,
because of the application of fusion features, TEPO can extract data features more accurately and
has excellent model performance. For the three previously encountered task categories: Congestion,
DRC, and IR-drop, TEPO consistently achieved strong performance, proving to be fully competi-
tive with traditional predictive models. Furthermore, TEPO exhibited remarkable transferability on
the novel task type, Thermal. Its capacity to assimilate a significant body of common knowledge
pertinent to IC (Integrated Circuit) design enabled it to deliver highly favorable results on this new
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challenge. In contrast, other models demonstrated inherent limitations in their ability to rapidly
adapt to unfamiliar tasks.

4.4 ABLATION

To evaluate the contribution of each component in our hybrid architecture, we conduct an ablation
study by comparing variants of the full model—ViT+GNN—against its individual counterparts.
Specifically, we compare ViT+GNN with standalone ViT under a ViT-based backbone, and with
standalone GNN under a GNN-based backbone. As shown in Table 4, when integrated with GNN,
the ViT backbone achieves significantly lower IR-drop and total loss (0.03766 vs. 0.09448 for IR-
drop; 0.07797 vs. 0.13304 for total loss), demonstrating that the GNN module effectively enhances
physical constraint modeling. This result validate that the synergy between ViT and GNN consis-
tently improves prediction accuracy.

Backbone Method Congestion DRC IR-drop Total Loss
ViT ViT+GNN 0.03376 0.00655 0.03766 0.07797

ViT 0.03218 0.00638 0.09448 0.13304

GNN ViT+GNN 0.03448 0.00827 0.01660 0.05934
GNN 0.03492 0.00698 0.01922 0.06111

Table 4: In the input stage of the model, the fusion features of ViT and GNN are used, or the features
of either Vit or GNN are used separately for comparison on the Vit and GNN networks

Backbone Method Congestion DRC IR-drop Total Loss
ViT TEPO 0.03027 0.00256 0.03219 0.06502

MLP 0.03376 0.00655 0.03766 0.07797

GNN TEPO 0.03441 0.00705 0.01608 0.05754
MLP 0.03448 0.00827 0.01660 0.05934

Table 5: Both use fusion features as input. One employs MLP, while TEPO uses Learngene archi-
tecture

Furthermore, on the basis of retaining the fusion features, we used the knowledge diversion archi-
tecture of TEPO for prediction. In contrast, we directly used MLP and connected three output heads
for prediction. As shown in Table 5, the difference in the prediction results of our architecture is
significantly smaller.

5 CONCLUSION

This paper proposes TEPO, an innovative multi-task learning framework, aimed at addressing the
increasing complexity of Electronic Design Automation (EDA) in IC (integrated circuit) design.
By introducing multimodal feature fusion and Learngene, TEPO has significantly enhanced the
efficiency and accuracy of EDA prediction tasks.

The experimental results show that TEPO performs well in existing task categories, and demon-
strates outstanding transferability and superior performance on new tasks such as Thermal predic-
tion. Compared with traditional methods, TEPO not only achieves a faster convergence speed but
also significantly reduces the amount of training data required to achieve the same performance
level, thereby significantly saving computational costs.

The proposal of TEPO has opened up new research directions for AI-driven EDA tools, especially in
efficient learning by leveraging common design patterns and task-specific knowledge. Future work
can explore the extension of TEPO to a wider range of EDA applications, such as physical design
optimization or design space exploration, and further study its generalization ability at different
process nodes and more complex chip architectures.
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