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Abstract

Large Language Models (LLMs) often pro-001
duce outputs that reflect social biases, toxic-002
ity, or unfair treatment of demographic groups,003
undermining trust and fairness. While prior004
mitigation strategies frequently rely on com-005
plex architectures, access to model internals,006
or costly fine-tuning, we argue that simplicity007
can be a strength. We introduce STARDTOX,008
a lightweight, critique-and-revise multi-agent009
framework that leverages the LLM’s own in-010
ternal knowledge, via a small number of coor-011
dinated prompts, to self-correct harmful out-012
puts. Dedicated agents independently assess013
bias and overall output quality, and their feed-014
back is integrated to guide prompt-based re-015
vision. Without modifying model weights or016
requiring any extra fine-tuning, STARDTOX017
offers strong bias mitigation and high-quality018
outputs across both open-ended text generation019
and structured tasks, outperforming other base-020
lines. For the text generation task, on the REAL-021
TOXICITYPROMPT dataset, it reduces toxicity022
by over 50% compared to other baselines, while023
maintaining over 90% fluency. In addition, in024
structured tasks, on the BBQ benchmark, it025
achieves the lowest bias scores across both am-026
biguous and disambiguated examples, without027
sacrificing accuracy.028

1 Introduction029

Large Language Models (LLMs) have revolution-030

ized Natural Language Processing (NLP), power-031

ing applications ranging from conversational agents032

to content generation. However, alongside their033

impressive capabilities lies a persistent challenge:034

LLMs often produce outputs that reflect toxic lan-035

guage, social stereotypes, and unfair treatment of036

demographic groups. These behaviors not only un-037

dermine user trust but also risk reinforcing systemic038

inequities [4, 8, 10].039

To mitigate these harms, researchers have pro-040

posed numerous techniques spanning the LLM041

lifecycle, including [4]: pre-processing (e.g., data 042

filtering) [11, 14, 19], in-training (e.g., fairness- 043

aware objectives) [6, 18], inference-time interven- 044

tions (e.g., decoding constraints) [7, 17], and post- 045

processing (e.g., output rewriting) [5, 16]. 046

While each of these strategies has merit, they 047

also come with notable limitations [4, 8]. Pre- 048

and in-training methods typically require access 049

to training data and model weights, making them 050

infeasible for proprietary or black-box systems [4]. 051

Inference-time interventions often involve modify- 052

ing decoding algorithms, which can be computa- 053

tionally expensive and may inadvertently degrade 054

the linguistic quality of the generated output [4]. 055

Post-processing techniques, by contrast, are gen- 056

erally model-agnostic and offer greater potential 057

for generalization across tasks. However, many ex- 058

isting post-hoc approaches rely on static heuristics 059

or handcrafted rules, which can limit their adapt- 060

ability and effectiveness in complex or dynamic 061

generation scenarios [4, 8]. 062

In this paper, we propose STARDTOX, a 063

lightweight post-hoc critique-and-revise frame- 064

work designed to overcome these limitations. 065

STARDTOX operates entirely at the output level 066

and does not require any access to model inter- 067

nals, making it compatible with both open-source 068

and proprietary black-box LLMs. It incrementally 069

improves responses through a modular team of 070

evaluator agents, each responsible for a specific 071

dimension of evaluation–such as detecting toxicity, 072

assessing fairness violations, or measuring linguis- 073

tic quality. These agents independently critique 074

the model’s output from different aspects, and their 075

feedback is integrated into a prompt-based revision 076

loop. This feedback-driven process enables adap- 077

tive self-correction while preserving simplicity and 078

scalability. As a post-hoc method, STARDTOX 079

can be flexibly applied to a variety of generation 080

and decision-making tasks without requiring fine- 081

tuning or access to model internals. 082
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We evaluate the performance of STARDTOX083

on two representative tasks: open-ended text gen-084

eration and multiple-choice Question Answering085

(QA). On the REALTOXICITYPROMPT dataset for086

text generation, STARDTOX reduces toxicity by087

over 50% compared to baseline methods, while088

maintaining over 90% fluency, demonstrating its089

ability to improve safety without compromising090

language quality. On the BBQ benchmark for091

multiple-choice QA, it achieves the lowest bias092

scores across both ambiguous and disambiguated093

examples, without sacrificing accuracy. These re-094

sults highlight not only the effectiveness of the095

framework but also its extensibility to a broad class096

of tasks that can be formulated as either text gener-097

ation or structured decision problems.098

Outline. Section 2 reviews related work and identi-099

fies the research gaps. Section 3 details the STARD-100

TOX methodology. Section 4 describes the experi-101

mental setup. The results are presented in Section 5102

and discussed in Section 6.103

2 Related Work & Research Gap104

We review prior work on bias and toxicity mitiga-105

tion in LLMs, focusing on the limitations that mo-106

tivate our proposed multi-agent critique-and-revise107

approach.108

2.1 Mitigation Stages109

Existing work addresses LLM harms at four main110

stages of the generation pipeline:111

Pre-processing. These methods modify training112

data or prompts to reduce bias (e.g., Counterfac-113

tual Data Augmentation (CDA) [19, 11], filtering114

strategies [14]). While data-level techniques are115

relatively simple, they suffer from scalability issues116

and task-specific tuning.117

In-training. These approaches adjust model118

weights or loss functions to embed fairness con-119

straints (e.g., adversarial debiasing [18], modular120

subnetworks [6]). These methods require access to121

model internals, making them unsuitable for pro-122

prietary or frozen models.123

Intra-processing. These techniques intervene dur-124

ing inference using constrained decoding, e.g.,125

FUDGE [17] and GeDi [7]. While effective, these126

approaches are tightly coupled to decoding algo-127

rithms and often reduce linguistic diversity.128

Post-processing. These methods modify model129

outputs after generation (e.g., rewriting toxic re-130

sponses [16], filtering completions [5]). These are131

efficient and black-box compatible but often lack 132

adaptive refinement or performance preservation. 133

2.2 Mitigation Approaches 134

A more recent line of work explores prompt- 135

based and agentic techniques that leverage LLMs’ 136

own reasoning abilities for self-regulation. Self- 137

debiasing [15] uses auxiliary prompts to steer gen- 138

eration away from stereotypes, but provides limited 139

adaptivity and no performance oversight. DeCAP 140

[2] explores critic-based ensembles or feedback- 141

guided rewriting, though it typically optimizes 142

for a single harm type and do not balance utility. 143

DeStein [9] and Goodtriever [13] offer more ad- 144

vanced detoxification pipelines, but still require 145

access to gradients or fine-tuning infrastructure. 146

2.3 Research Gap 147

Most of the existing approaches lack either modular 148

feedback integration, black-box compatibility, or a 149

mechanism for balancing harm reduction and help- 150

fulness. In contrast, STARDTOX is a lightweight, 151

post-hoc, black-box-compatible system that uses 152

a team of modular evaluator agents to iteratively 153

critique and revise LLM outputs. By separating 154

bias and toxicity from performance evaluators, and 155

coordinating these two types of feedback, STARD- 156

TOX supports adaptive revision without degrading 157

output quality. 158

In Table 1, we summarize the key differences be- 159

tween STARDTOX and representative prior meth- 160

ods. The comparison spans several important 161

dimensions: (1) Intervention Type, describes 162

whether the method operates during training, de- 163

coding (inference-time), or post-generation. (2) 164

LLM-agnostic, indicates whether the method 165

needs access to model internals, which limits ap- 166

plicability to black-box systems. (3) Modular 167

Feedback Integration indicates whether the frame- 168

work supports integrating different types of evalua- 169

tors (e.g., for fairness, toxicity, or output quality), 170

allowing adaptation to varied task requirements. 171

(4) Balances Toxicity & Performance, reflects 172

whether the method considers both harm reduction 173

and preservation of task relevance or fluency. (5) 174

Task Generalizable, indicates whether the method 175

works across diverse tasks like text generation and 176

QA. (6) Agentic, evaluates whether the system em- 177

ploys an agent-based or self-assessment feedback 178

loop for adaptive refinement. 179
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Table 1: Comparison of STARDTOX with prior LLM detoxification and bias mitigation methods

Method Intervention Stage LLM-agnostic? Feedback Modular? Balances Toxicity & Performance? Task Generalizable? Agentic?
GeDi [7] Intra-processing

FUDGE [17] Intra-processing
DeStein [9] In-training

Self-Debiasing [15] Intra-processing
DeCAP [2] Post-processing

STARDTOX (Ours) Post-hoc & Intra

3 STARDTOX180

In response to the challenges highlighted in Sec-181

tion 2.3, we present STARDTOX, a lightweight,182

post-hoc framework that incrementally improves183

LLM outputs through a team of specialized cri-184

tique agents. Each agent independently evaluates185

the output from a distinct perspective (e.g., bias,186

helpfulness, fluency), and their feedback is synthe-187

sized into a revision prompt. This enables adaptive188

self-correction without model fine-tuning or inter-189

nal access.190

Figure 1 illustrates the overall architecture of191

STARDTOX. It is designed as a modular, feedback-192

driven system that iteratively improves LLM re-193

sponses through structured agent collaboration. It194

consists of the following core components:195

• Response Generation Agent, which uses an196

off-the-shelf LLM to generate initial and re-197

vised responses based on the input prompt and198

any feedback.199

• Bias Evaluator Agent, which detects harmful200

or biased content using external tools such as201

the Perspective API [1] or fairness-specific202

classifiers.203

• Performance Evaluator Agent, which as-204

sesses the linguistic quality and helpfulness of205

responses using LLM-as-a-judge evaluations206

and scoring metrics.207

• Coordinator & Planner Module, which in-208

tegrates feedback from multiple evaluators,209

checks whether the response satisfies stopping210

criteria, and reformulates the prompt if refine-211

ment is needed.212

Each agent is structured around three key com-213

ponents: (1) a Brain, which governs reasoning and214

decision-making (either rule-based or LLM-based),215

(2) a Toolbox, which includes APIs, scoring tem-216

plates, and classifiers used in evaluation, and (3) a217

Memory, which tracks historical scores, critiques,218

and iteration progress.219

After each response is generated by Response220

Generation Agent, both the Bias Evaluator Agent221

and the Performance Evaluator Agent analyze the 222

output and return structured feedback. The Co- 223

ordinator then either (i) finalizes the response if 224

the stopping criteria are met or (ii) synthesizes the 225

critiques into a revised prompt for the next itera- 226

tion. This critique-and-revise cycle continues until 227

the response satisfies both safety and quality objec- 228

tives. 229

In the following subsections, we describe each 230

agent and module in detail, highlighting their roles, 231

tools, and interactions within the system. Also, to 232

illustrate how STARDTOX operates in practice, we 233

present a toy example in Figure 2 from sentence 234

completion, one of the tasks evaluated later in Sec- 235

tion 4. This example is simplified for illustrative 236

purposes; full task details and evaluation metrics 237

are provided in Section 4. 238

3.1 Response Generation Agent 239

The Response Generation Agent serves as the cen- 240

tral generative component in STARDTOX. It is 241

responsible for producing both the initial response 242

to the user input and all subsequent revisions us- 243

ing feedback-enriched prompts constructed by the 244

Coordinator. This agent is treated as a black-box 245

language model, enabling compatibility with both 246

open-source and proprietary LLMs. 247

Brain: The core of this agent is an LLM (e.g., 248

GPT-3.5), which generates outputs in response to 249

either the original task prompt or a revised prompt 250

that integrates feedback from the evaluator agents. 251

Toolbox: This agent does not rely on external tools. 252

Its capabilities are entirely encapsulated within the 253

LLM’s knowledge and its ability to conditionally 254

follow instructions in prompt form. 255

Memory: This agent maintains a history of its own 256

previously generated outputs. The memory enables 257

the agent to compare current and prior responses 258

and support iterative refinement. 259

3.2 Bias Evaluator Agent 260

The Bias Evaluator Agent is responsible for detect- 261

ing biased or toxic content in the LLM’s output. 262

Its primary objective is to assess whether the gen- 263
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Figure 1: An Overview of STARDTOX

erated response violates fairness norms, such as264

reinforcing stereotypes or promoting toxicity.265

Brain: The internal logic of the agent depends on266

the task and the evaluation strategy. It can operate267

in one of two modes:268

• In a rule-based setup, the agent uses external269

tools such as the Perspective API to obtain270

toxicity scores, and applies threshold-based271

logic to determine whether the response is272

harmful.273

• In an LLM-based setup, the agent uses the274

LLM-as-a-judge paradigm, prompting a lan-275

guage model to reason about whether a given276

response contains social biases or harmful277

language. This approach enables more con-278

textual, nuanced evaluations when structured279

metrics are insufficient.280

Toolbox: The agent can leverage a variety of tools281

depending on the task. For example, in toxicity282

detection in text generation task, we use the Per-283

spective API [1], which scores responses across284

dimensions such as toxicity, insult, and identity285

attack. Or, as another example, for fairness as-286

sessment in structured tasks like multiple-choice287

QA task, the agent can use task-specific heuristics,288

fairness classifiers, or statistical bias scorers.289

Memory: This agent is stateless. It independently290

evaluates each response without maintaining his-291

torical information across iterations.292

3.3 Performance Evaluator Agent293

In many LLM tasks, reducing social bias or toxi-294

city can unintentionally harm model performance295

(e.g., by producing overly cautious or generic out-296

puts). This trade-off motivates STARDTOX ’s in-297

clusion of a second evaluator agent, responsible for298

preserving output quality and task-specific perfor-299

mance. When fairness interventions are too aggres-300

sive, they may undermine important qualities such301

as fluency, informativeness, or logical consistency.302

The Performance Evaluator Agent is designed to303

detect and prevent such degradations. 304

To illustrate when this agent is most necessary, 305

consider two task types: 306

• In multiple-choice QA tasks (e.g., BBQ with 307

disambiguated contexts1), fairness and accu- 308

racy are typically aligned: the unbiased option 309

is often the correct answer. In such cases, per- 310

formance and harm reduction reinforce each 311

other, and the Performance Evaluator may 312

play a limited role. 313

• In contrast, for open-ended generation tasks 314

(e.g., sentence completion), these goals are 315

often not aligned. A fluent or contextually co- 316

herent completion may also contain stereotyp- 317

ical or toxic content. Here, the agent becomes 318

critical to ensuring that detoxification efforts 319

do not compromise the coherence, clarity, or 320

helpfulness of the output. 321

By keeping the Bias and Performance Evalu- 322

ators modular and independent, STARDTOX re- 323

mains flexible across a wide variety of task settings, 324

by applying task-aware quality control only when 325

needed. So, the Performance Evaluator Agent eval- 326

uates whether each revised response maintains or 327

improves key quality attributes, including fluency, 328

logical coherence, and helpfulness. 329

Brain: This agent uses an LLM-as-a-judge 330

paradigm. An LLM is prompted to evaluate a can- 331

didate response along relevant quality dimensions. 332

It returns both a scalar score and natural language 333

justification if necessary, which are parsed to deter- 334

mine whether the response satisfies performance 335

criteria. 336

Toolbox: This agent does not rely on external tools. 337

Its capabilities are entirely encapsulated within the 338

LLM’s knowledge. 339

Memory: The Performance Evaluator Agent is 340

stateless. It evaluates each response independently, 341

without maintaining history across iterations. 342

1It will be explained in Section 4.
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3.4 Coordinator and Planner Module343

The Coordinator and Planner Module is respon-344

sible for orchestrating the overall process. It in-345

tegrates feedback from both evaluator agents and346

determines whether the current response should be347

refined further or returned as the final output.348

This module operates as a rule-based controller.349

After receiving evaluations from the Bias Evaluator350

Agent and Performance Evaluator Agent, it checks351

whether the response satisfies task-specific thresh-352

olds (e.g., toxicity below 0.1, fluency above 0.8). If353

all criteria are met, the response is finalized and re-354

turned. Otherwise, the module sends the calculated355

feedback back to the Response Generation Agent356

for further refinement.357

The module also enforces stopping criteria, such358

as reaching a maximum number of iterations. It359

maintains a lightweight internal state to track the360

number of iterations and guide the refinement loop361

accordingly.362

4 Experiments363

In this section, we first briefly describe the task364

setup and evaluation metrics in Section 4.1, which365

is then followed by an overview of the baselines366

and ablation settings used for comparison in Sec-367

tion 4.2.368

4.1 Task Setup and Evaluation Metrics369

We evaluate STARDTOX on two tasks: sentence370

completion and multiple-choice QA, representing371

diverse text generation and decision-making sce-372

narios. Strong performance on these tasks indicates373

that STARDTOX generalizes across tasks reformu-374

lated in these formats, demonstrating its adaptabil-375

ity and scalability. We implement the framework376

in Python, and use GPT-3.5 via the OpenAI API377

as the black-box LLM throughout our experiments.378

This choice highlights STARDTOX ’s compatibil-379

ity with both proprietary and open-source models.380

The code is also publicly available on GitHub.2381

Sentence Completion Task. In the sentence com-382

pletion task, the model is given a partial sentence383

and must generate a continuation. This setting is384

particularly relevant for evaluating the ability of385

STARDTOX to mitigate social bias and reduce tox-386

icity in free-form text generation. An example387

illustrating this task is shown in Figure 2.388

In this task, we use the REALTOXICI-389

TYPROMPT [5] dataset, which is designed to assess390

2The repository link is hidden for double-blind review.

the likelihood of LLMs generating toxic outputs. 391

It contains half-sentence prompts for LLM com- 392

pletion. The dataset also provides toxicity scores 393

for the input prompts, calculated using Perspective 394

API [1]. From this dataset, we selected two sets of 395

100 random samples: one from items with toxic- 396

ity scores in [50, 60], referred to as REALTOXICI- 397

TYPROMPTmoderate, and another from items with 398

toxicity scores in [80, 100], referred to as REAL- 399

TOXICITYPROMPThigh. 400

During refinement, the Bias Evaluator Agent 401

uses the Perspective API to score toxicity in com- 402

pletions and flag outputs above a threshold. More- 403

over, this task is particularly challenging because 404

reducing bias or toxicity does not inherently align 405

with improving generation quality. In fact, detoxifi- 406

cation efforts may unintentionally lead to incoher- 407

ent or off-topic completions. To address this, we 408

leverage the Performance Evaluator Agent during 409

refinement. For this task, the Performance Evalua- 410

tor uses the LLM-as-a-Judge paradigm: it prompts 411

the model to evaluate each completion in terms 412

of fluency, coherence, and relevance, and returns 413

a scalar score between 0 and 100. These scores 414

are used by the Coordinator Module to ensure that 415

safety improvements do not come at the cost of 416

generation quality. 417

Finally, to evaluate the final performance of 418

STARDTOX, we follow the methodology as in [5]. 419

For each input prompt, which is a partially com- 420

pleted sentence, the LLM generates 25 completions. 421

Then, Perspective API [1] is leveraged to calculate 422

a toxicity score for each completion, ranging from 423

0 (non-toxic) to 1 (highly toxic). These scores are 424

aggregated to compute the average toxicity across 425

25 completions. 426

Multiple-choice QA. We use the Bias Benchmark 427

for Question Answering (BBQ) [12], a multiple- 428

choice dataset designed to evaluate social bias in 429

QA models. Each instance includes a context, 430

a question involving a demographic group (e.g., 431

gender, race, religion), and three answer options: 432

one stereotyped, one anti-stereotyped, and one un- 433

known. We randomly sample 100 examples from 434

each of the 11 categories, resulting in a total of 435

1100 examples that cover a wide range of demo- 436

graphic axes. These examples include both ambigu- 437

ous and disambiguated contexts. 438

To evaluate the bias in the generated response, 439

the Bias Evaluator Agent uses the LLM-as-a-judge 440

paradigm. It prompts the LLM to assess how well 441

the selected answer is supported by the given con- 442
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Figure 2: An Overview of STARDTOX

text and question, returning a confidence score443

from 0 to 100. This score guides whether a revision444

is needed. The Performance Evaluator Agent is not445

used for this task, as fairness and correctness are446

generally aligned: the correct answer is typically447

the one best supported by the context, or unknown448

otherwise.449

To evaluate the final effectiveness of STARD-450

TOX, we report two standard metrics from the BBQ451

benchmark [12]: (1) Bias Score, which quantifies452

the model’s tendency to prefer stereotyped answers,453

(2) Accuracy, which measures the proportion of cor-454

rect responses according to BBQ labeled answers.455

4.2 Baselines456

To benchmark STARDTOX against prior detoxi-457

fication strategies, we adopt several task-specific458

baselines. Notably, two of our baselines are both459

referred to as Self-Debiasing in the literature, but460

they apply to different tasks using distinct method-461

ologies. To avoid confusion, we refer to the one in462

[15] as Self-Debiasing (Gen) and the one in [3] as463

Self-Debiasing (QA).464

For open-ended and free-style text generation465

(e.g., the REALTOXICITYPROMPT dataset), we use466

Self-Debiasing (Gen) [15], which reduces toxicity467

by subtracting bias-conditioned logits during de-468

coding. While this method is not compatible with469

black-box LLMs, it remains a strong and widely470

adopted baseline for models that expose decoding471

controls and weights, such as GPT-2.472

For multiple-choice QA tasks, we use Self-473

Debiasing (QA) [3], which adapts the self-474

debiasing framework to structured prediction tasks 475

such as BBQ. It applies fairness-aware prompts to 476

each answer option and uses logit-based scoring 477

to suppress stereotyped completions during answer 478

selection. 479

In addition to these baselines, we evaluate the 480

inherent behavior of the language model (e.g., GPT- 481

3.5) by running experiments in two configurations: 482

(i) default prompting, and (ii) explicit fairness- 483

aware prompting, to assess the LLM’s capacity 484

to respond fairly without agent-based refinement. 485

To further analyze the contributions of STARD- 486

TOX ’s components, we add two ablation studies: 487

(1) With Performance Evaluator Agent: The re- 488

sponses are revised based on both harm metrics 489

(e.g., toxicity or fairness) and output quality feed- 490

back (e.g., fluency, coherence). (2) Without Per- 491

formance Evaluator Agent: The agent refines re- 492

sponses solely based on harm metrics (e.g., toxicity 493

or fairness), allowing us to assess the role of qual- 494

ity preservation in output refinement. These abla- 495

tions highlight the complementary roles of STARD- 496

TOX’s bias and performance evaluators and em- 497

phasize the importance of modular, multi-agent 498

critique in generating safe and effective responses. 499

5 Results and Analysis 500

This section presents evaluation results for 501

REALTOXICITYPROMPThigh and REALTOXICI- 502

TYPROMPTmoderate in Sections 5.1 and BBQ in 503

Section 5.2. 504
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Table 2: The results of sentence completion task over REALTOXICITYPROMPTmoderate and REALTOXICI-
TYPROMPThigh

REALTOXICITYPROMPTmoderate REALTOXICITYPROMPThigh

Performance (%) Performance (%)
Toxicity (↓)

Coherence (↑) Fluency (↑) Relevance (↑)
Toxicity (↓)

Coherence (↑) Fluency (↑) Relevance (↑)
GPT-3.5 Default 12.09 95.65 94.68 97.23 16.37 97.14 91.32 96.68

GPT-3.5 +
Fairness-aware Prompt

7.44 93.03 94.38 96.84 14.13 90.79 92.34 94.84

Standard 8.45 78.95 83.35 85.42 9.80 74.11 78.9 79.43
Medium 9.43 82.6 85.0 87.9 12.02 77.46 81.55 83.04

Large 8.78 84.95 86.95 90.05 9.29 79.0 82.77 84.9
Self-Debias

(Gen)
XL 9.3 84.65 87.2 90.25 9.59 77.12 80.96 81.83

Iter 1 5.5 91.11 92.51 95.56 11.09 89.29 90.83 93.57STARDTOX
w/ Performance Iter 2 5.1 90.7 92.3 95.18 10.29 88.39 90.31 93.22

Iter 1 5.4 90.12 93.78 95.47 10.16 89.64 90.81 94.27STARDTOX
w/o Performance Iter. 2 4.85 90.76 92.06 96.88 8.68 89.44 90.38 94.0

Table 3: The results of multiple-choice QA task over
BBQ

Ambiguous Disambiguated
Accuracy (↑) Bias Score (↓) Accuracy (↑) Bias Score (↓)

GPT-3.5 Default 32.70 58.07 83.97 9.47
GPT-3.5 +

Fairness-aware Prompt
26.41 30.39 72.00 7.57

STARDTOX
Iter. 1 28.23 20.96 71.15 7.62
Iter. 2 17.61 16.14 71.75 1.14

Self-Debias
(QA)

Explanation 35.74 20.69 44.44 9.16
Reprompting 36.72 18.02 59.18 8.51

BBQ

REALTOXICITYPROMPThig
h

REALTOXICITYPROMPTmod
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200
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Figure 3: Cost analysis for sentence completion and
multiple-choice tasks across datasets. Each bar repre-
sents a dataset, and the stacks within the bars correspond
to the percentage of sentences refined during each itera-
tion.

5.1 REALTOXICITYPROMPT505

Table 2 presents a comparative analysis of506

STARDTOX and the detoxification baselines507

(as discussed in Section 4.2) on the RE-508

ALTOXICITYPROMPTmoderate and REALTOXICI-509

TYPROMPThigh subsets. We report toxicity per-510

centages alongside generation quality metrics: flu-511

ency, coherence, and relevance. STARDTOX is512

evaluated under two settings: with and without the513

Performance Evaluator Agent. For each setting, the514

results are reported over two iterations of critique515

and refinement.516

Across both datasets, STARDTOX achieves the517

lowest toxicity levels among all methods. On518

REALTOXICITYPROMPTmoderate, it reduces toxi- 519

city to 5.1% with the Performance Evaluator and 520

4.85% without it. These scores represent a sub- 521

stantial improvement over both GPT-3.5 Default 522

(12.09%) and Self-Debiasing (Gen), whose best- 523

performing variant (standard) still leads to a tox- 524

icity score of 8.45% (nearly double of STARD- 525

TOX). Similarly, on REALTOXICITYPROMPThigh, 526

STARDTOX achieves 10.29% (w/ Performance) 527

and 8.68% (w/o Performance), while all Self- 528

Debiasing (Gen) variants remain above 9%. These 529

results underscore the framework’s effectiveness 530

in mitigating toxic content even under challenging 531

conditions. 532

Importantly, this reduction in toxicity does not 533

come at the expense of quality generation. STARD- 534

TOX maintains high levels of coherence and flu- 535

ency (above 90% across both iterations, as toxicity 536

decreases). In contrast, Self-Debiasing (Gen) ex- 537

hibits a notable drop in language quality, with co- 538

herence as low as 74.11% and fluency below 80% 539

in several variants. While the GPT-3.5 Default and 540

Fairness-aware Prompting baselines maintain rela- 541

tively high fluency, their toxicity scores remain con- 542

siderably higher than those achieved by STARD- 543

TOX, indicating a weaker effectiveness. 544

Comparing the two configurations of STARD- 545

TOX (w/ and w/o performance), we observe that the 546

variant without the Performance Evaluator achieves 547

slightly lower toxicity but at a minor cost to fluency 548

and coherence, especially in later iterations. This 549

confirms the value of including performance-based 550

feedback in preserving response quality, particu- 551

larly when detoxification pressure increases. 552

Overall, STARDTOX shows clear superiority 553

over existing baselines. It achieves better toxic- 554

ity reduction than other baselines, while retaining 555

strong language quality. These results validate the 556

7



utility of its modular multi-agent architecture and557

show that critique-driven revision offers a black-558

box-compatible alternative to white-box detoxifica-559

tion techniques.560

5.2 BBQ561

Table 3 presents accuracy and bias scores across562

ambiguous and disambiguated examples from the563

BBQ dataset. The results highlight the effective-564

ness of STARDTOX in mitigating social bias while565

maintaining competitive accuracy.566

In ambiguous contexts, where the correct answer567

is typically unknown, STARDTOX demonstrates568

the lowest bias score of all methods. After two569

refinement iterations, the bias score drops to 16.14,570

significantly lower than GPT-3.5 Default (58.07),571

Fairness-aware Prompting (30.39), and both Self-572

Debiasing (QA) variants, including Explanation573

(20.69) and Reprompting (18.02). The consistent574

decline in bias score across iterations further val-575

idates that STARDTOX successfully discourages576

stereotyped assumptions.577

On disambiguated context, where the context578

supports a clear answer, STARDTOX achieves high579

accuracy (71.75) while reducing bias score to just580

1.14, the lowest among all methods. This demon-581

strates that STARDTOX is able to suppress bias582

without compromising correctness. While GPT-583

3.5 Default achieves higher accuracy (83.97), it584

also shows a notably higher bias score (9.47), in-585

dicating a tendency to favor stereotyped answers586

even when context disambiguates against them.587

Compared to Self-Debiasing (QA), which achieves588

59.18 accuracy and 8.51 bias score under reprompt-589

ing, STARDTOX offers a superior balance of fair-590

ness and task performance.591

5.3 Cost Analysis592

Figure 3 shows the computational cost of the two593

tasks across datasets. Each bar represents a dataset,594

with stacks indicating the number of sentences re-595

fined per iteration. The total bar height reflects the596

overall cost for each dataset.597

The chart reveals that stacks shrink significantly598

after the first iteration, as most sentences meet599

quality thresholds early. For example, in RE-600

ALTOXICITYPROMPTmoderate and REALTOXICI-601

TYPROMPThigh, the majority of sentences converge602

after the first refinement, leaving few requiring fur-603

ther iterations. Substantial improvements after the604

first refinement minimize the need for additional605

iterations, reducing computational overhead. The606

smaller stacks in later iterations confirm STARD- 607

TOX’s scalability and practicality for mitigating 608

bias and toxicity. 609

6 Discussions 610

The results of two experiments on sentence com- 611

pletion and multiple-choice demonstrate STARD- 612

TOX’s flexibility, with improvements across all 613

evaluation metrics, highlighting its potential for 614

broader applications. 615

A key strength of STARDTOX is its indepen- 616

dence from LLM internal features, making it com- 617

patible with both open-source and proprietary mod- 618

els. Unlike fine-tuning, which requires access 619

to model weights and incurs high computational 620

costs, STARDTOX functions as a post-processing 621

method. This approach reduces complexity while 622

providing greater flexibility in scenarios where fine- 623

tuning is impractical. 624

Despite its iterative nature, STARDTOX 625

achieves significant improvements within just a 626

few iterations, keeping computational costs man- 627

ageable. In all experiments, the first refinement 628

yields substantial gains, with additional but smaller 629

enhancements in subsequent iterations. STARD- 630

TOX’s modular design further enhances its adapt- 631

ability, allowing it to address diverse tasks. By 632

selecting appropriate evaluators based on the task, 633

it can address bias and toxicity across different 634

contexts. 635

7 Conclusion 636

We introduced STARDTOX, a lightweight, critique- 637

and-revise multi-agent framework for mitigating 638

bias and toxicity in LLM outputs without relying 639

on model internals or fine-tuning. By coordinating 640

task-specific evaluators through prompt-based feed- 641

back, STARDTOX enables adaptive self-correction 642

across both open-ended and structured tasks. Our 643

experiments on the REALTOXICITYPROMPT and 644

BBQ benchmarks demonstrate that the framework 645

not only achieves substantial reductions in harmful 646

content but also preserves output quality and task 647

relevance. In future work, we plan to extend the 648

agent design to cover additional social harms or 649

incorporate user-specific fairness goals. 650

8 Limitations 651

STARDTOX is designed as a prompt-based, post- 652

processing framework to enable lightweight and 653

black-box-compatible bias mitigation. This design 654

8



intentionally avoids reliance on model internals655

or fine-tuning, prioritizing broad applicability and656

ease of integration with both proprietary and open-657

source models. However, this choice also means658

that STARDTOX may not provide the same low-659

level control or parameter-level optimization as in-660

training or decoding-based approaches that require661

access to model weights.662

Additionally, the effectiveness of evaluator663

agents depends on the underlying LLM’s reasoning664

ability and the quality of the prompts used. As with665

any other LLM-based task, the performance of the666

evaluation component may degrade if prompt de-667

sign is overlooked or poorly implemented. While668

we experimented with multiple prompt formats669

to ensure stable and reliable assessments, careful670

prompt engineering remains important to fully re-671

alize the benefits of the critique-and-revise loop.672
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