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Abstract

Large Language Models (LLMs) often pro-
duce outputs that reflect social biases, toxic-
ity, or unfair treatment of demographic groups,
undermining trust and fairness. While prior
mitigation strategies frequently rely on com-
plex architectures, access to model internals,
or costly fine-tuning, we argue that simplicity
can be a strength. We introduce STARDTOX,
a lightweight, critique-and-revise multi-agent
framework that leverages the LLM’s own in-
ternal knowledge, via a small number of coor-
dinated prompts, to self-correct harmful out-
puts. Dedicated agents independently assess
bias and overall output quality, and their feed-
back is integrated to guide prompt-based re-
vision. Without modifying model weights or
requiring any extra fine-tuning, STARDTOX
offers strong bias mitigation and high-quality
outputs across both open-ended text generation
and structured tasks, outperforming other base-
lines. For the text generation task, on the REAL-
TOXICITYPROMPT dataset, it reduces toxicity
by over 50% compared to other baselines, while
maintaining over 90% fluency. In addition, in
structured tasks, on the BBQ benchmark, it
achieves the lowest bias scores across both am-
biguous and disambiguated examples, without
sacrificing accuracy.

1 Introduction

Large Language Models (LLMs) have revolution-
ized Natural Language Processing (NLP), power-
ing applications ranging from conversational agents
to content generation. However, alongside their
impressive capabilities lies a persistent challenge:
LLMs often produce outputs that reflect toxic lan-
guage, social stereotypes, and unfair treatment of
demographic groups. These behaviors not only un-
dermine user trust but also risk reinforcing systemic
inequities [4, 8, 10].

To mitigate these harms, researchers have pro-
posed numerous techniques spanning the LLM

lifecycle, including [4]: pre-processing (e.g., data
filtering) [11, 14, 19], in-training (e.g., fairness-
aware objectives) [6, 18], inference-time interven-
tions (e.g., decoding constraints) [7, 17], and post-
processing (e.g., output rewriting) [5, 16].

While each of these strategies has merit, they
also come with notable limitations [4, 8]. Pre-
and in-training methods typically require access
to training data and model weights, making them
infeasible for proprietary or black-box systems [4].
Inference-time interventions often involve modify-
ing decoding algorithms, which can be computa-
tionally expensive and may inadvertently degrade
the linguistic quality of the generated output [4].
Post-processing techniques, by contrast, are gen-
erally model-agnostic and offer greater potential
for generalization across tasks. However, many ex-
isting post-hoc approaches rely on static heuristics
or handcrafted rules, which can limit their adapt-
ability and effectiveness in complex or dynamic
generation scenarios [4, 8].

In this paper, we propose STARDTOX, a
lightweight post-hoc critique-and-revise frame-
work designed to overcome these limitations.
STARDTOX operates entirely at the output level
and does not require any access to model inter-
nals, making it compatible with both open-source
and proprietary black-box LLMs. It incrementally
improves responses through a modular team of
evaluator agents, each responsible for a specific
dimension of evaluation—such as detecting toxicity,
assessing fairness violations, or measuring linguis-
tic quality. These agents independently critique
the model’s output from different aspects, and their
feedback is integrated into a prompt-based revision
loop. This feedback-driven process enables adap-
tive self-correction while preserving simplicity and
scalability. As a post-hoc method, STARDTOX
can be flexibly applied to a variety of generation
and decision-making tasks without requiring fine-
tuning or access to model internals.



We evaluate the performance of STARDTOX

on two representative tasks: open-ended text gen-
eration and multiple-choice Question Answering
(QA). On the REALTOXICITYPROMPT dataset for
text generation, STARDTOX reduces toxicity by
over 50% compared to baseline methods, while
maintaining over 90% fluency, demonstrating its
ability to improve safety without compromising
language quality. On the BBQ benchmark for
multiple-choice QA, it achieves the lowest bias
scores across both ambiguous and disambiguated
examples, without sacrificing accuracy. These re-
sults highlight not only the effectiveness of the
framework but also its extensibility to a broad class
of tasks that can be formulated as either text gener-
ation or structured decision problems.
Outline. Section 2 reviews related work and identi-
fies the research gaps. Section 3 details the STARD-
ToX methodology. Section 4 describes the experi-
mental setup. The results are presented in Section 5
and discussed in Section 6.

2 Related Work & Research Gap

We review prior work on bias and toxicity mitiga-
tion in LLMs, focusing on the limitations that mo-
tivate our proposed multi-agent critique-and-revise
approach.

2.1 Mitigation Stages

Existing work addresses LLM harms at four main
stages of the generation pipeline:

Pre-processing. These methods modify training
data or prompts to reduce bias (e.g., Counterfac-
tual Data Augmentation (CDA) [19, 11], filtering
strategies [14]). While data-level techniques are
relatively simple, they suffer from scalability issues
and task-specific tuning.

In-training. These approaches adjust model
weights or loss functions to embed fairness con-
straints (e.g., adversarial debiasing [18], modular
subnetworks [6]). These methods require access to
model internals, making them unsuitable for pro-
prietary or frozen models.

Intra-processing. These techniques intervene dur-
ing inference using constrained decoding, e.g.,
FUDGE [17] and GeDi [7]. While effective, these
approaches are tightly coupled to decoding algo-
rithms and often reduce linguistic diversity.
Post-processing. These methods modify model
outputs after generation (e.g., rewriting toxic re-
sponses [16], filtering completions [5]). These are

efficient and black-box compatible but often lack
adaptive refinement or performance preservation.

2.2 Mitigation Approaches

A more recent line of work explores prompt-
based and agentic techniques that leverage LLMs’
own reasoning abilities for self-regulation. Self-
debiasing [15] uses auxiliary prompts to steer gen-
eration away from stereotypes, but provides limited
adaptivity and no performance oversight. DeCAP
[2] explores critic-based ensembles or feedback-
guided rewriting, though it typically optimizes
for a single harm type and do not balance utility.
DeStein [9] and Goodtriever [13] offer more ad-
vanced detoxification pipelines, but still require
access to gradients or fine-tuning infrastructure.

2.3 Research Gap

Most of the existing approaches lack either modular
feedback integration, black-box compatibility, or a
mechanism for balancing harm reduction and help-
fulness. In contrast, STARDTOX is a lightweight,
post-hoc, black-box-compatible system that uses
a team of modular evaluator agents to iteratively
critique and revise LLM outputs. By separating
bias and toxicity from performance evaluators, and
coordinating these two types of feedback, STARD-
TOX supports adaptive revision without degrading
output quality.

In Table 1, we summarize the key differences be-
tween STARDTOX and representative prior meth-
ods. The comparison spans several important
dimensions: (1) Intervention Type, describes
whether the method operates during training, de-
coding (inference-time), or post-generation. (2)
LLM-agnostic, indicates whether the method
needs access to model internals, which limits ap-
plicability to black-box systems. (3) Modular
Feedback Integration indicates whether the frame-
work supports integrating different types of evalua-
tors (e.g., for fairness, toxicity, or output quality),
allowing adaptation to varied task requirements.
(4) Balances Toxicity & Performance, reflects
whether the method considers both harm reduction
and preservation of task relevance or fluency. (5)
Task Generalizable, indicates whether the method
works across diverse tasks like text generation and
QA. (6) Agentic, evaluates whether the system em-
ploys an agent-based or self-assessment feedback
loop for adaptive refinement.



Table 1: Comparison of STARDTOX with prior LLM detoxification and bias mitigation methods

Method Intervention Stage | LLM-agnostic? | Feedback Modular? | Balances Toxicity & Performance? | Task Generalizable? | Agentic?
GeDi [7] Intra-processing X X X X X
FUDGE [17] Intra-processing X X X X X
DeStein [9] In-training X X X X X
Self-Debiasing [15] | Intra-processing v X X X v
DeCAP [2] Post-processing v X X X X
STARDTOX (Ours) | Post-hoc & Intra v v v v v

3 STARDTOX

In response to the challenges highlighted in Sec-
tion 2.3, we present STARDTOX, a lightweight,
post-hoc framework that incrementally improves
LLM outputs through a team of specialized cri-
tique agents. Each agent independently evaluates
the output from a distinct perspective (e.g., bias,
helpfulness, fluency), and their feedback is synthe-
sized into a revision prompt. This enables adaptive
self-correction without model fine-tuning or inter-
nal access.

Figure 1 illustrates the overall architecture of
STARDTOX. Itis designed as a modular, feedback-
driven system that iteratively improves LLM re-
sponses through structured agent collaboration. It
consists of the following core components:

* Response Generation Agent, which uses an
off-the-shelf LLLM to generate initial and re-
vised responses based on the input prompt and
any feedback.

 Bias Evaluator Agent, which detects harmful
or biased content using external tools such as
the Perspective API [1] or fairness-specific
classifiers.

¢ Performance Evaluator Agent, which as-
sesses the linguistic quality and helpfulness of
responses using LLM-as-a-judge evaluations
and scoring metrics.

¢ Coordinator & Planner Module, which in-
tegrates feedback from multiple evaluators,
checks whether the response satisfies stopping
criteria, and reformulates the prompt if refine-
ment is needed.

Each agent is structured around three key com-
ponents: (1) a Brain, which governs reasoning and
decision-making (either rule-based or LLM-based),
(2) a Toolbox, which includes APIs, scoring tem-
plates, and classifiers used in evaluation, and (3) a
Memory, which tracks historical scores, critiques,
and iteration progress.

After each response is generated by Response
Generation Agent, both the Bias Evaluator Agent

and the Performance Evaluator Agent analyze the
output and return structured feedback. The Co-
ordinator then either (i) finalizes the response if
the stopping criteria are met or (ii) synthesizes the
critiques into a revised prompt for the next itera-
tion. This critique-and-revise cycle continues until
the response satisfies both safety and quality objec-
tives.

In the following subsections, we describe each
agent and module in detail, highlighting their roles,
tools, and interactions within the system. Also, to
illustrate how STARDTOX operates in practice, we
present a toy example in Figure 2 from sentence
completion, one of the tasks evaluated later in Sec-
tion 4. This example is simplified for illustrative
purposes; full task details and evaluation metrics
are provided in Section 4.

3.1 Response Generation Agent

The Response Generation Agent serves as the cen-
tral generative component in STARDTOX. It is
responsible for producing both the initial response
to the user input and all subsequent revisions us-
ing feedback-enriched prompts constructed by the
Coordinator. This agent is treated as a black-box
language model, enabling compatibility with both
open-source and proprietary LLMs.

Brain: The core of this agent is an LLM (e.g.,
GPT-3.5), which generates outputs in response to
either the original task prompt or a revised prompt
that integrates feedback from the evaluator agents.
Toolbox: This agent does not rely on external tools.
Its capabilities are entirely encapsulated within the
LLM’s knowledge and its ability to conditionally
follow instructions in prompt form.

Memory: This agent maintains a history of its own
previously generated outputs. The memory enables
the agent to compare current and prior responses
and support iterative refinement.

3.2 Bias Evaluator Agent

The Bias Evaluator Agent is responsible for detect-
ing biased or toxic content in the LLM’s output.
Its primary objective is to assess whether the gen-
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Figure 1: An Overview of STARDTOX

erated response violates fairness norms, such as
reinforcing stereotypes or promoting toxicity.
Brain: The internal logic of the agent depends on
the task and the evaluation strategy. It can operate
in one of two modes:

* In a rule-based setup, the agent uses external
tools such as the Perspective API to obtain
toxicity scores, and applies threshold-based
logic to determine whether the response is
harmful.

e In an LLM-based setup, the agent uses the
LLM-as-a-judge paradigm, prompting a lan-
guage model to reason about whether a given
response contains social biases or harmful
language. This approach enables more con-
textual, nuanced evaluations when structured
metrics are insufficient.

Toolbox: The agent can leverage a variety of tools
depending on the task. For example, in toxicity
detection in text generation task, we use the Per-
spective API [1], which scores responses across
dimensions such as toxicity, insult, and identity
attack. Or, as another example, for fairness as-
sessment in structured tasks like multiple-choice
QA task, the agent can use task-specific heuristics,
fairness classifiers, or statistical bias scorers.
Memory: This agent is stateless. It independently
evaluates each response without maintaining his-
torical information across iterations.

3.3 Performance Evaluator Agent

In many LLM tasks, reducing social bias or toxi-
city can unintentionally harm model performance
(e.g., by producing overly cautious or generic out-
puts). This trade-off motivates STARDTOX ’s in-
clusion of a second evaluator agent, responsible for
preserving output quality and task-specific perfor-
mance. When fairness interventions are too aggres-
sive, they may undermine important qualities such
as fluency, informativeness, or logical consistency.
The Performance Evaluator Agent is designed to

detect and prevent such degradations.
To illustrate when this agent is most necessary,
consider two task types:

* In multiple-choice QA tasks (e.g., BBQ with
disambiguated contexts'), fairness and accu-
racy are typically aligned: the unbiased option
is often the correct answer. In such cases, per-
formance and harm reduction reinforce each
other, and the Performance Evaluator may
play a limited role.

* In contrast, for open-ended generation tasks
(e.g., sentence completion), these goals are
often not aligned. A fluent or contextually co-
herent completion may also contain stereotyp-
ical or toxic content. Here, the agent becomes
critical to ensuring that detoxification efforts
do not compromise the coherence, clarity, or
helpfulness of the output.

By keeping the Bias and Performance Evalu-
ators modular and independent, STARDTOX re-
mains flexible across a wide variety of task settings,
by applying task-aware quality control only when
needed. So, the Performance Evaluator Agent eval-
uates whether each revised response maintains or
improves key quality attributes, including fluency,
logical coherence, and helpfulness.

Brain: This agent uses an LLM-as-a-judge
paradigm. An LLM is prompted to evaluate a can-
didate response along relevant quality dimensions.
It returns both a scalar score and natural language
justification if necessary, which are parsed to deter-
mine whether the response satisfies performance
criteria.

Toolbox: This agent does not rely on external tools.
Its capabilities are entirely encapsulated within the
LLM’s knowledge.

Memory: The Performance Evaluator Agent is
stateless. It evaluates each response independently,
without maintaining history across iterations.

'Tt will be explained in Section 4.



3.4 Coordinator and Planner Module

The Coordinator and Planner Module is respon-
sible for orchestrating the overall process. It in-
tegrates feedback from both evaluator agents and
determines whether the current response should be
refined further or returned as the final output.

This module operates as a rule-based controller.
After receiving evaluations from the Bias Evaluator
Agent and Performance Evaluator Agent, it checks
whether the response satisfies task-specific thresh-
olds (e.g., toxicity below 0.1, fluency above 0.8). If
all criteria are met, the response is finalized and re-
turned. Otherwise, the module sends the calculated
feedback back to the Response Generation Agent
for further refinement.

The module also enforces stopping criteria, such
as reaching a maximum number of iterations. It
maintains a lightweight internal state to track the
number of iterations and guide the refinement loop
accordingly.

4 [Experiments

In this section, we first briefly describe the task
setup and evaluation metrics in Section 4.1, which
is then followed by an overview of the baselines
and ablation settings used for comparison in Sec-
tion 4.2.

4.1 Task Setup and Evaluation Metrics

We evaluate STARDTOX on two tasks: sentence
completion and multiple-choice QA, representing
diverse text generation and decision-making sce-
narios. Strong performance on these tasks indicates
that STARDTOX generalizes across tasks reformu-
lated in these formats, demonstrating its adaptabil-
ity and scalability. We implement the framework
in Python, and use GPT-3.5 via the OpenAl API
as the black-box LLM throughout our experiments.
This choice highlights STARDTOX ’s compatibil-
ity with both proprietary and open-source models.
The code is also publicly available on GitHub.?
Sentence Completion Task. In the sentence com-
pletion task, the model is given a partial sentence
and must generate a continuation. This setting is
particularly relevant for evaluating the ability of
STARDTOX to mitigate social bias and reduce tox-
icity in free-form text generation. An example
illustrating this task is shown in Figure 2.

In this task, we use the REALTOXICI-
TYPROMPT [5] dataset, which is designed to assess

*The repository link is hidden for double-blind review.

the likelihood of LLLMs generating toxic outputs.
It contains half-sentence prompts for LLM com-
pletion. The dataset also provides toxicity scores
for the input prompts, calculated using Perspective
API [1]. From this dataset, we selected two sets of
100 random samples: one from items with toxic-
ity scores in [50, 60], referred to as REALTOXICI-
TYPROMPToderate, and another from items with
toxicity scores in [80, 100], referred to as REAL-
TOXICITYPROMPTigh.

During refinement, the Bias Evaluator Agent
uses the Perspective API to score toxicity in com-
pletions and flag outputs above a threshold. More-
over, this task is particularly challenging because
reducing bias or toxicity does not inherently align
with improving generation quality. In fact, detoxifi-
cation efforts may unintentionally lead to incoher-
ent or off-topic completions. To address this, we
leverage the Performance Evaluator Agent during
refinement. For this task, the Performance Evalua-
tor uses the LLLM-as-a-Judge paradigm: it prompts
the model to evaluate each completion in terms
of fluency, coherence, and relevance, and returns
a scalar score between 0 and 100. These scores
are used by the Coordinator Module to ensure that
safety improvements do not come at the cost of
generation quality.

Finally, to evaluate the final performance of

STARDTOX, we follow the methodology as in [5].
For each input prompt, which is a partially com-
pleted sentence, the LLM generates 25 completions.
Then, Perspective API [1] is leveraged to calculate
a toxicity score for each completion, ranging from
0 (non-toxic) to 1 (highly toxic). These scores are
aggregated to compute the average toxicity across
25 completions.
Multiple-choice QA. We use the Bias Benchmark
for Question Answering (BBQ) [12], a multiple-
choice dataset designed to evaluate social bias in
QA models. Each instance includes a context,
a question involving a demographic group (e.g.,
gender, race, religion), and three answer options:
one stereotyped, one anti-stereotyped, and one un-
known. We randomly sample 100 examples from
each of the 11 categories, resulting in a total of
1100 examples that cover a wide range of demo-
graphic axes. These examples include both ambigu-
ous and disambiguated contexts.

To evaluate the bias in the generated response,
the Bias Evaluator Agent uses the LL.M-as-a-judge
paradigm. It prompts the LLM to assess how well
the selected answer is supported by the given con-



—

STARDTOX

That group of Muslim people were ignorant and causing trouble.

Toxicity ~70%

Fluency > 90%

Coordinator & Planner Module

&) Perspective
(Lb Bias Evaluator Agent

@ LLM-as-a-Judge

@ Performance Evaluator
Qo
= Agent

REST API Call to Perspective APL: That group of Muslim
people were ignorant and causing trouble.

®

Using the LLM-as-a-Judge Paradigm: “Rate its overall
quality in terms of fluency: That group of Muslim
people were ignorant and causing trouble”

®

The previous response was: ‘That group of Muslim people were ignorant and causing trouble? This was flagged
for high toxicity (score = 0.7). Please revise the completion to reduce harm while keeping it fluent.

That group of Muslim people were discussing the event.

®

REST API Call to Perspective API: That group of @
Muslim people were discussing the event.

13‘?3’1 Response Generation
= Agent

&) Perspective

Toxicity <2%

were discussing the event.”

Using the LLM-as-a-Judge Paradigm: “Rate its overall
quality in terms of fluency: That group of Muslim people

@5)  Bias Evaluator Agent

@ @ LLM-as-a-Judge

o“o Performance Evaluator Fluency >90%

That group of Muslim people were
discussing the event.

Agent

Coordinator & Planner Module
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text and question, returning a confidence score
from O to 100. This score guides whether a revision
is needed. The Performance Evaluator Agent is not
used for this task, as fairness and correctness are
generally aligned: the correct answer is typically
the one best supported by the context, or unknown
otherwise.

To evaluate the final effectiveness of STARD-
ToOX, we report two standard metrics from the BBQ
benchmark [12]: (1) Bias Score, which quantifies
the model’s tendency to prefer stereotyped answers,
(2) Accuracy, which measures the proportion of cor-
rect responses according to BBQ labeled answers.

4.2 Baselines

To benchmark STARDTOX against prior detoxi-
fication strategies, we adopt several task-specific
baselines. Notably, two of our baselines are both
referred to as Self-Debiasing in the literature, but
they apply to different tasks using distinct method-
ologies. To avoid confusion, we refer to the one in
[15] as Self-Debiasing (Gen) and the one in [3] as
Self-Debiasing (QA).

For open-ended and free-style text generation
(e.g., the REALTOXICITYPROMPT dataset), we use
Self-Debiasing (Gen) [15], which reduces toxicity
by subtracting bias-conditioned logits during de-
coding. While this method is not compatible with
black-box LLMs, it remains a strong and widely
adopted baseline for models that expose decoding
controls and weights, such as GPT-2.

For multiple-choice QA tasks, we use Self-
Debiasing (QA) [3], which adapts the self-

debiasing framework to structured prediction tasks
such as BBQ. It applies fairness-aware prompts to
each answer option and uses logit-based scoring
to suppress stereotyped completions during answer
selection.

In addition to these baselines, we evaluate the
inherent behavior of the language model (e.g., GPT-
3.5) by running experiments in two configurations:
(1) default prompting, and (ii) explicit fairness-
aware prompting, to assess the LLM’s capacity
to respond fairly without agent-based refinement.

To further analyze the contributions of STARD-
TOX ’s components, we add two ablation studies:
(1) With Performance Evaluator Agent: The re-
sponses are revised based on both harm metrics
(e.g., toxicity or fairness) and output quality feed-
back (e.g., fluency, coherence). (2) Without Per-
formance Evaluator Agent: The agent refines re-
sponses solely based on harm metrics (e.g., toxicity
or fairness), allowing us to assess the role of qual-
ity preservation in output refinement. These abla-
tions highlight the complementary roles of STARD-
TOX’s bias and performance evaluators and em-
phasize the importance of modular, multi-agent
critique in generating safe and effective responses.

5 Results and Analysis

This section presents evaluation results for
REALTOXICITYPROMPThign and REALTOXICI-
TYPROMPToderate 1N Sections 5.1 and BBQ in
Section 5.2.



Table 2: The results of sentence completion task over REALTOXICITYPROMPT oderate and REALTOXICI-

TYPROMPThigh
REALTOXICITY PROMPTyoderate REALTOXICITYPROMPThigh
.. Performance (%) .. Performance (%)
Toxicity (1) Coherence (1) | Fluency (1) | Relevance (1) Toxicity (1) Coherence (1) | Fluency (1) | Relevance (1)
GPT-3.5 Default 12.09 95.65 94.68 97.23 16.37 97.14 91.32 96.68
. GPT-3.5 + 7.44 93.03 94.38 96.84 14.13 90.79 92.34 94.84
Fairness-aware Prompt
Standard 8.45 78.95 83.35 85.42 9.80 74.11 78.9 79.43
Self-Debias | Medium 9.43 82.6 85.0 87.9 12.02 77.46 81.55 83.04
(Gen) Large 8.78 84.95 86.95 90.05 9.29 79.0 82.77 84.9
XL 9.3 84.65 87.2 90.25 9.59 77.12 80.96 81.83
STARDTOX Iter 1 55 91.11 92.51 95.56 11.09 89.29 90.83 93.57
w/ Performance Tter 2 5.1 90.7 92.3 95.18 10.29 88.39 90.31 93.22
STARDTOX Iter 1 5.4 90.12 93.78 95.47 10.16 89.64 90.81 94.27
wlo Performance | Iter. 2 4.85 90.76 92.06 96.38 8.68 89.44 90.38 94.0

Table 3: The results of multiple-choice QA task over
BBQ

Ambiguous Disambiguated
Accuracy (1) | Bias Score (]) | Accuracy (1) | Bias Score (])
GPT-3.5 Default 32.70 58.07 83.97 9.47
. GPT:3.5+ 26.41 30.39 72.00 7.57
Fairness-aware Prompt
n Teer. 1 2823 20.96 71.15 762
STARDTOX [— 75 17.61 16.14 7175 L14
Self-Debias | Explanation 35.74 20.69 44.44 9.16
(QA) Reprompting 36.72 18.02 59.18 8.51
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Figure 3: Cost analysis for sentence completion and

multiple-choice tasks across datasets. Each bar repre-
sents a dataset, and the stacks within the bars correspond
to the percentage of sentences refined during each itera-
tion.

5.1 REALTOXICITYPROMPT

Table 2 presents a comparative analysis of
STARDTOX and the detoxification baselines
(as discussed in Section 4.2) on the RE-
ALTOXICITYPROMPTyoderate and REALTOXICI-
TYPROMPThign subsets. We report toxicity per-
centages alongside generation quality metrics: flu-
ency, coherence, and relevance. STARDTOX is
evaluated under two settings: with and without the
Performance Evaluator Agent. For each setting, the
results are reported over two iterations of critique
and refinement.

Across both datasets, STARDTOX achieves the
lowest toxicity levels among all methods. On

REALTOXICITYPROMPT oderate, it reduces toxi-
city to 5.1% with the Performance Evaluator and
4.85% without it. These scores represent a sub-
stantial improvement over both GPT-3.5 Default
(12.09%) and Self-Debiasing (Gen), whose best-
performing variant (standard) still leads to a tox-
icity score of 8.45% (nearly double of STARD-
ToX). Similarly, on REALTOXICITYPROMPThjgh,
STARDTOX achieves 10.29% (w/ Performance)
and 8.68% (w/o Performance), while all Self-
Debiasing (Gen) variants remain above 9%. These
results underscore the framework’s effectiveness
in mitigating toxic content even under challenging
conditions.

Importantly, this reduction in toxicity does not
come at the expense of quality generation. STARD-
TOX maintains high levels of coherence and flu-
ency (above 90% across both iterations, as toxicity
decreases). In contrast, Self-Debiasing (Gen) ex-
hibits a notable drop in language quality, with co-
herence as low as 74.11% and fluency below 80%
in several variants. While the GPT-3.5 Default and
Fairness-aware Prompting baselines maintain rela-
tively high fluency, their toxicity scores remain con-
siderably higher than those achieved by STARD-
TOX, indicating a weaker effectiveness.

Comparing the two configurations of STARD-
ToX (w/ and w/o performance), we observe that the
variant without the Performance Evaluator achieves
slightly lower toxicity but at a minor cost to fluency
and coherence, especially in later iterations. This
confirms the value of including performance-based
feedback in preserving response quality, particu-
larly when detoxification pressure increases.

Overall, STARDTOX shows clear superiority
over existing baselines. It achieves better toxic-
ity reduction than other baselines, while retaining
strong language quality. These results validate the



utility of its modular multi-agent architecture and
show that critique-driven revision offers a black-
box-compatible alternative to white-box detoxifica-
tion techniques.

52 BBQ

Table 3 presents accuracy and bias scores across
ambiguous and disambiguated examples from the
BBQ dataset. The results highlight the effective-
ness of STARDTOX in mitigating social bias while
maintaining competitive accuracy.

In ambiguous contexts, where the correct answer
is typically unknown, STARDTOX demonstrates
the lowest bias score of all methods. After two
refinement iterations, the bias score drops to 16.14,
significantly lower than GPT-3.5 Default (58.07),
Fairness-aware Prompting (30.39), and both Self-
Debiasing (QA) variants, including Explanation
(20.69) and Reprompting (18.02). The consistent
decline in bias score across iterations further val-
idates that STARDTOX successfully discourages
stereotyped assumptions.

On disambiguated context, where the context
supports a clear answer, STARDTOX achieves high
accuracy (71.75) while reducing bias score to just
1.14, the lowest among all methods. This demon-
strates that STARDTOX is able to suppress bias
without compromising correctness. While GPT-
3.5 Default achieves higher accuracy (83.97), it
also shows a notably higher bias score (9.47), in-
dicating a tendency to favor stereotyped answers
even when context disambiguates against them.
Compared to Self-Debiasing (QA), which achieves
59.18 accuracy and 8.51 bias score under reprompt-
ing, STARDTOX offers a superior balance of fair-
ness and task performance.

5.3 Cost Analysis

Figure 3 shows the computational cost of the two
tasks across datasets. Each bar represents a dataset,
with stacks indicating the number of sentences re-
fined per iteration. The total bar height reflects the
overall cost for each dataset.

The chart reveals that stacks shrink significantly
after the first iteration, as most sentences meet
quality thresholds early. For example, in RE-
ALTOXICITYPROMPTpoderate and REALTOXICI-
TYPROMPTh;gh, the majority of sentences converge
after the first refinement, leaving few requiring fur-
ther iterations. Substantial improvements after the
first refinement minimize the need for additional
iterations, reducing computational overhead. The

smaller stacks in later iterations confirm STARD-
ToOX’s scalability and practicality for mitigating
bias and toxicity.

6 Discussions

The results of two experiments on sentence com-
pletion and multiple-choice demonstrate STARD-
ToX’s flexibility, with improvements across all
evaluation metrics, highlighting its potential for
broader applications.

A key strength of STARDTOX is its indepen-
dence from LLM internal features, making it com-
patible with both open-source and proprietary mod-
els. Unlike fine-tuning, which requires access
to model weights and incurs high computational
costs, STARDTOX functions as a post-processing
method. This approach reduces complexity while
providing greater flexibility in scenarios where fine-
tuning is impractical.

Despite its iterative nature, STARDTOX
achieves significant improvements within just a
few iterations, keeping computational costs man-
ageable. In all experiments, the first refinement
yields substantial gains, with additional but smaller
enhancements in subsequent iterations. STARD-
ToX’s modular design further enhances its adapt-
ability, allowing it to address diverse tasks. By
selecting appropriate evaluators based on the task,
it can address bias and toxicity across different
contexts.

7 Conclusion

We introduced STARDTOX, a lightweight, critique-
and-revise multi-agent framework for mitigating
bias and toxicity in LLM outputs without relying
on model internals or fine-tuning. By coordinating
task-specific evaluators through prompt-based feed-
back, STARDTOX enables adaptive self-correction
across both open-ended and structured tasks. Our
experiments on the REALTOXICITYPROMPT and
BBQ benchmarks demonstrate that the framework
not only achieves substantial reductions in harmful
content but also preserves output quality and task
relevance. In future work, we plan to extend the
agent design to cover additional social harms or
incorporate user-specific fairness goals.

8 Limitations

STARDTOKX is designed as a prompt-based, post-
processing framework to enable lightweight and
black-box-compatible bias mitigation. This design



intentionally avoids reliance on model internals
or fine-tuning, prioritizing broad applicability and
ease of integration with both proprietary and open-
source models. However, this choice also means
that STARDTOX may not provide the same low-
level control or parameter-level optimization as in-
training or decoding-based approaches that require
access to model weights.

Additionally, the effectiveness of evaluator
agents depends on the underlying LLM’s reasoning
ability and the quality of the prompts used. As with
any other LLM-based task, the performance of the
evaluation component may degrade if prompt de-
sign is overlooked or poorly implemented. While
we experimented with multiple prompt formats
to ensure stable and reliable assessments, careful
prompt engineering remains important to fully re-
alize the benefits of the critique-and-revise loop.
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