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ABSTRACT

Conformal prediction (CP) converts any model’s output to prediction sets with a
guarantee to cover the true label with (adjustable) high probability. Robust CP ex-
tends this guarantee to worst-case (adversarial) inputs. Existing baselines achieve
robustness by bounding randomly smoothed conformity scores. In practice, they
need expensive Monte-Carlo (MC) sampling (e.g. ∼ 104 samples per point) to
maintain an acceptable set size. We propose a robust conformal prediction that
produces smaller sets even with significantly lower MC samples (e.g. 150 for
CIFAR10). Our approach binarizes samples with an adjustable (or automatically
adjusted) threshold selected to preserve the coverage guarantee. Remarkably, we
prove that robustness can be achieved by computing only one binary certificate,
unlike previous methods that certify each calibration (or test) point. Thus, our
method is faster and returns smaller robust sets. We also eliminate a previous lim-
itation that requires a bounded score function.

1 INTRODUCTION

Despite their extensive applications, modern neural networks lack reliability as their output prob-
ability estimates are uncalibrated (Guo et al., 2017). Many uncertainty quantification methods are
computationally expensive, lack compatibility with black-box models, and offer no formal guaran-
tees. Alternatively, conformal prediction (CP) is a statistical post-processing approach that returns
prediction sets with a guarantee to cover the true label with high adjustable probability. CP only
requires a held-out calibration set and offers a distribution-free model-agnostic coverage guarantee
(Vovk et al., 2005; Angelopoulos & Bates, 2021). The model is used as a black box to compute con-
formity scores which capture the agreement between inputs x and labels y. These prediction sets are
shown to improve human decision-making both in terms of response time and accuracy (Cresswell
et al., 2024). CP assumes exchangeability between the calibration and the test set (a relaxation of the
i.i.d. assumption), making it broadly applicable to images, language models, etc. CP also applies on
graph node classification (Zargarbashi et al., 2023; Huang et al., 2023) where uncertainty quantifi-
cation methods are limited. However, exchangeability, and therefore the conformal guarantee, easily
breaks when the test data is noisy or subjected to adversarial perturbations.

Robust conformal prediction extends this guarantee to worst-case inputs x̃ within a maximum radius
around the clean point x, e.g. ∀x̃ s.t. ∥x̃− x∥2 ≤ r. In the evasion setting, we assume that the cali-
bration set is clean, and test datapoints can be perturbed. Building on the rich literature of robustness
certificates (Kumar et al., 2020), recent robust CP baselines (Gendler et al., 2021; Zargarbashi et al.,
2024; Jeary et al., 2024) use a conservative score at test time that is a certified bound on the con-
formity score of the clean unseen input. This maintains the guarantee even for the perturbed input
since “if CP covers x, then robust CP certifiably covers x̃”. However, the average set size increases,
especially if the bounds are loose. The certified bounds can be derived through model-dependent
verifiers (Jeary et al., 2024) or smoothing-based black-box certificates (Zargarbashi et al., 2024).

For the robustness of black-box models, an established approach is to certify the confidence score
through randomized smoothing (Kumar et al., 2020), obtaining bounds on the expected smooth
score. The tightness of these bounds depends on the information about the smooth score around the
given input, e.g. the mean Yan et al. (2024), or the CDF Zargarbashi et al. (2024). Such methods:
(i) assume the conformity score function has a bounded range, (ii) compute several certificates for
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Figure 1: [Left] Average set size with different MC sample rates, [Middle] empirical coverage of
vanilla and robust CPs under attack, and [Right] runtime of robust CP as a function of calibration
datapoints (after computing the MC samples which is the number of lower bound computations).

each calibration (or test) point, and (iii) need a large number of Monte-Carlo samples to get tight
confidence intervals. For the current SOTA method CAS (Zargarbashi et al., 2024), the accounting
for sample correction inflates the prediction sets significantly for sample rates below 2000 (see
Fig. 1-left). This inefficiency increases to trivially returning Y as the prediction set when we run with
higher coverage rates or higher radii (see § 6). In contrast, we obtain robust and small prediction sets
with only ∼ 150 MC samples. Additionally, these methods require computing certified bounds for
(at least) each calibration point which we further show is a wasteful computation.

BinCP. We observe that smooth inference is inherently more robust. Even without certificates, ran-
domized methods show a slower decrease in coverage under attack (see Fig. 6-right). Given any
score function s(x, y) capturing conformity, Zargarbashi et al. (2024) and Gendler et al. (2021) de-
fine the smooth score as s̄(x, y) = Eϵ∼N (0,σI)[s(x + ϵ, y)]. Instead, we perform binarization via
a threshold τ , i.e. s̄(x, y) = Eϵ∼N (0,σI)[I[s(x + ϵ, y) ≥ τ ]] = Prϵ∼N (0,σI)[s(x + ϵ, y) ≥ τ ].
Both are valid conformity scores, and both change slowly around any x, however, our binarized
CP (BinCP) method has several advantages. First, we define robust CP that only computes a single
certificate. In comparison, CAS requires at least one certificate per calibration (or test) point. Sec-
ond, our method can effortlessly use many existing binary certificates out of the box without any
additional assumptions or modifications. A direct consequence is that we can use de-randomization
techniques (Levine & Feizi, 2021) that completely nullify the need for sample correction under ℓ1
norm. Third, when we do need sample correction, working with binary variables allows us to use
tighter concentration inequalities (Clopper & Pearson, 1934) (see § D.2 for a detailed discussion).
Thus, even with significantly lower MC samples, our method still produces small prediction sets (see
Fig. 1-left). This improvement is even more pronounced for datasets with a large number of classes
(e.g. ImageNet shown in Fig. 5). Finally, BinCP does not require the score function to be bounded
which is a limitation in current methods. Our code is available on the BinCP Github repository.

2 BACKGROUND

We assume a holdout set of labeled calibration datapoints Dcal = {(xi, yi)}ni=1 which is exchange-
able with future test points (xn+1, yn+1), both sampled from some distribution D. We have black-
box access to a model from which we compute an arbitrary conformity1 score s : X × Y → R, e.g.
score s(x, y) = πy(x) where πy(x) is the predicted probability for class y (other scores in § A).

Vanilla CP. For a user-specified nominal coverage 1 − α, let qα = Q (α; {s(xi, yi)}ni=1 ∪ {∞})
where Q (·; ·) is the quantile function. The sets defined as C(xn+1) = {y : s(xn+1, y) ≥ qα} have
1−α guarantee to include the true label yn+1. Formally, Pr[yn+1 ∈ C(xn+1)] ≥ 1−α (Vovk et al.,
2005) where the probability is over Dcal ∼ D,xn+1 ∼ D. This guarantee, and later our robust
sets, are independent of the mechanics of the model and the score function – the model’s accuracy
or the quality of the score function is irrelevant. A score function that better reflects input-label
agreement leads to more efficient (i.e., smaller) prediction sets. For noisy or adversarial inputs, the

1Conformity scores quantify agreement and are equivalent up to a sign flip to non-conformity scores.
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exchangeability between the test and calibration set breaks, making the coverage guarantee invalid.
Fig. 1-middle, and Fig. 6-right show that an adversary (or bounded worst-case noise) can decrease
the empirical coverage drastically with imperceptible perturbations on each test point. As a defense,
robust CP extends this guarantee to the worst-case bounded perturbations.

Threat model. The adversary’s goal is to decrease the empirical coverage probability by perturbing
the input. Let B : X → 2X be a ball that returns all admissible perturbed points around an input. For
images a common threat model is defined by the ℓ2 norm: Br(x) = {x̃ : ∥x̃− x∥2 ≤ r} where the
radius r controls the perturbation magnitude. Similarly, we can use the ℓ1 norm. For binary data and
graphs, Bojchevski et al. (2020) define Bra,rd(x) = {x̃ :

∑d
i=1 I[x̃i = xi − 1] ≤ rd,

∑d
i=1 I[x̃i =

xi + 1] ≤ ra} where the adversary is allowed to toggle at most ra zero bits, and rd one bits.

Inverted ball B−1. At test time we are given a (potentially) perturbed x̃ ∈ B(x). However, to obtain
robust sets, we need to reason about (the score) of the unseen clean x. Naively, one might assume
that x ∈ B(x̃) – the clean point is in the ball around the perturbed point. However, this only holds
in special cases such as the ball defined by the l2 norm. For example, if a binary x̃ was obtained by
removing rd bits and adding ra bits, to able to reach the clean x from the perturbed x̃ we need to add
rd bits and remove ra bits instead since Bra,rd unlike Br is not symmetric. We define the inverted
ball B−1 as the smallest ball centered at x̃ ∈ B(x) that includes the clean x. Formally, B−1 should
satisfy ∀x̃ ∈ B(x) ⇒ x ∈ B−1(x̃). For symmetric balls like ℓp-norms, B−1 = B. For the binary
ball B−1

ra,rd
= Brd,ra we need to swap ra and rd to ensure this condition. Zargarbashi et al. (2024)

also discuss this subtle but important aspect without formally defining B−1.

Robust CP. Given a threat model, robust CP defines a conservative prediction set C̄ that maintains
the conformal guarantee even for worst-case inputs. Formally,

Pr
Dcal∪{xn+1}∼D

[yn+1 ∈ C̄(x̃n+1),∀x̃n+1 ∈ B(xn+1)] ≥ 1− α (1)

The intuition behind existing methods is as follows: (i) Vanilla CP covers xn+1 with 1 − α proba-
bility (ii) if y ∈ C(xn+1) then y ∈ C̄(x̃n+1). Thus, robust CP covers x̃n+1 with at least the same
probability. Here, (ii) is guaranteed via certified lower bounds c↓[s,x,B] or certified upper bounds
c↑[s,x,B−1].
Theorem 1 (Robust CP from Zargarbashi et al. (2024)). Define sy(·) = s(·, y). With
c↑[sy, x̃,B−1] ≥ maxx′∈B−1(x̃) s(x

′, y), let C̄test(x̃n+1) =
{
y : c↑[sy, x̃n+1,B−1] ≥ q

}
, then

C̄test satisfies Eq. 1 (test-time robustness). Alternatively, with c↓[sy,x,B] ≤ minx′∈B(x) s(x
′, y),

define q↓ = Q
(
α;

{
c↓[syi

,xi,B]
}n

i=1

)
. Then C̄cal(x̃n+1) =

{
y : s(x̃n+1, y) ≥ q↓

}
also satisfies

Eq. 1 (calibration-time robustness).

In Theorem 1 test-time robustness uses B−1 since it queries the clean point from the perspective of
the perturbed test input. Alternatively, calibration-time robustness uses B since the clean calibration
point is given and we are finding the lower bound for the unseen test point in the test. The intuition
is that the lower bound scores from the clean calibration points are exchangeable with the lower
bound of the clean test input. The perturbed test input will surely have a higher score compared to
this lower bound, hence it would be covered with higher probability.

We can obtain the c↓, c↑ bounds through neural network verifiers Jeary et al. (2024) or randomized
smoothing (Cohen et al., 2019). We focus on the latter since we get model-agnostic certificates with
black-box access. The coverage probability is theoretically proved in CP. Similarly, (adversarially)
robust CP also comes with a theoretical guarantee. In both cases we can compute the empirical
coverage as a sanity check. Another metric of interest in both cases is the average set size (the
efficiency) of the conformal sets.

Randomized smoothing. A smoothing scheme ξ : X → X maps any point to a random nearby
point. For continuous data Gaussian smoothing ξ(x) = x + ϵ adds an isotropic Gaussian noise to
the input ϵ ∼ N (0, σI). For sparse binary data Bojchevski et al. (2020) define sparse smoothing as
ξ(x) = x ⊕ ϵ where ⊕ is the binary XOR, and ϵ[i] ∼ Bernoulli(p = px[i]), where p1, and p0 are
two smoothing parameters to account for sparsity. To simplify the notation we write x + ϵ instead
of ξ(x) in the rest of the paper for both Gaussian and sparse smoothing, but our method works for
any smoothing scheme beyond additive noise. Regardless of how rapidly a score function s(x, y)
changes, the smooth score s̄(x, y) = Eϵ[s(x+ϵ, y)] changes slowly near x. This enables us to com-
pute tight c↓, c↑ bounds that depend on the smoothing strength. See § 4, § B, and § D.1 for details.
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3 BINARIZED CONFORMAL PREDICTION (BINCP)

We define conformal sets by binarizing randomized scores. We first show that this preserves the
conformal guarantee for clean data. Then in § 4 we extends the guarantee to worst-case adversarial
inputs. As we will see in § 6 our binarization approach has gains in terms of Monte-Carlo sampling
budget, computational cost, and average set size.
Proposition 1. For any two parameters p ∈ (0, 1), τ ∈ R, given a smoothing scheme x+ ϵ, define
the boolean function accept[·, ·; p, τ ] and the prediction set C(·; p, τ) as

accept[x, y; p, τ ] = I[Pr
ϵ
[s(x+ ϵ, y) ≥ τ ] ≥ p] and C(x; p, τ) = {y : accept(x, y; p, τ)}

For any fixed p, let

τα(p) = sup
τ

{
τ :

n∑
i=1

accept(xi, yi; p, τ) ≥ (1− α) · (n+ 1)

}
(2)

then the set C(xn+1; p, τα(p)) has 1− α coverage guarantee. Alternatively, for any fixed τ , let

pα(τ) = sup
p

{
p :

n∑
i=1

accept(xi, yi; p, τ) ≥ (1− α) · (n+ 1)

}
(3)

again the prediction set C(xn+1; pα(τ), τ) has 1− α coverage guarantee.

The correctness of Prop. 1 can be directly seen by noticing that we implicitly define new scores.

Quantile view. Let Si = s(xi + ϵ, yi) be the distribution of randomized scores for xi and the true
class yi. Let τi(p) = Q (p;Si), we have that τα(p) = Q (α; {τi(p)}ni=1) is a quantile of quantiles.
Similarly, define pi(τ) = Q−1 (τ ;Si) then pα(τ) = Q (α; {pi(τ)}ni=1) is a quantile of inverse quan-
tiles. Both τi(p) for a fixed p and pi(τ) for a fixed τ are valid conformity scores for the instance xi,
since exchangeability is trivially preserved. Therefore, τα(p) and pα(τ) are just the standard quantile
thresholds from CP on some new score functions. This directly gives the 1− α coverage guarantee.
This view via the implicit scores is helpful for intuition, but we keep the original formulation since it
is more directly amenable to certification as we show in § 4. We provide an additional formal proof
of Prop. 1 via conformal risk control (Angelopoulos et al., 2022) in § C.

Using either variant from Prop. 1 let (pα, τα) equal (p, τα(p)) or (pα(τ), τ) as the final pair of
parameters. For test points xn+1 we accept labels whose smooth score distribution has at least
pα proportion above the threshold τα, i.e. accept(xn+1, y; pα, τα) = 1. The term “binarization”
refers to mapping each score sample above τ to 1 and all others 0. For distributions with a strictly
increasing and continuous CDF (e.g. isotropic Gaussian smoothing) both variants are equivalent.
Lemma 1. Given distributions {Si}ni=1 with strictly increasing and continuous CDFs, let τα(p) be
obtained from Eq. 2 with fixed p and pα(·) be as defined in Eq. 3. We have pα(τα(p)) = p.

We defer all proofs to § C. For fixed p, Prop. 1 yields (p, τα(p)). Fixing τ = τα(p) we get sets
with (pα(τ), τ) = (pα(τα(p)), τα(p)) which also equals (p, τα(p)) from Lemma 1. Fig. 2 shows the
accept(x, y; p, τ) function for several examples. This function is non-increasing in both parameters
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Figure 2: [Left] Function accept(xi, yi; p, τ) for different (p, τ) pairs for four random CIFAR-10
instances. Black equals 1 and white equals 0. [Right] Empirical coverage for different (p, τ) pairs.
Any (p, τ) pair on the dashed black line (the 0.9 contour) gives conformal sets with 90% coverage.
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p and τ . In general, any arbitrary assignment of p, and τ , results in some expected coverage –
accept(·, ·, p, τ) equals to 1 for some number of (xi, yi)s (Fig. 2-right). Pairs (pα, τα) obtained
from Prop. 1 are placed on the 1− α contour of this expectation. The empirical coverage is close to
this expectation due to exchangeability (Berti & Rigo, 1997).

Remarks. The scores τi(p) (and similarly pi(τ) remain exchangeable whether the quantile over the
smoothing distribution is computed exactly or estimated from any number of Monte-Carlo samples.
That is, Prop. 1 holds regardless. However, when need to be more careful when we consider the
certified upper and lower bounds. In § 4 we first derive robust conservative sets that maintain worst-
case coverage, assuming that we can compute probabilities and expectations exactly. Since this is
not always possible, in § 5 we provide the appropriate sample correction that still preserves the
robustness guarantee when using Monte-Carlo samples. We also discuss a de-randomized approach
that does not need sample correction.

4 ROBUST BINCP

From Prop. 1 (either variant) we compute a pair (pα, τα). Following Prop. 1, for clean xn+1, we
have Pr[s(xn+1 + ϵ, yn+1) ≥ τα] ≥ pα with probability 1−α. We will exploit this property. Define
fy(x) = I[s(x, y) ≥ τα], we have f̄y(x) = Eϵ[I[s(x+ ϵ, y) ≥ τα]] = Prϵ[s(x+ ϵ, y) ≥ τα].

Conventional robust CP. One way to attain robust prediction sets is to apply the same recipe as
Zargarbashi et al. (2024) (CAS) by finding upper or lower bounds on the new score function. CAS
uses the smooth score s̄y(x) = Eϵ[s(x + ϵ, y)]. Instead, we can bound f̄y(x) which is a smooth
binary classifier. Note that as discussed in § 3 (quantile of inverse quantiles), f̄y(x) is a conformity
score function itself. Therefore, following Theorem 1, the test-time, and calibration-time robust
prediction sets are

C̄test(x̃n+1) = {y : c↑[f̄y, x̃n+1,B−1] ≥ pα}, C̄cal(x̃n+1) = {y : f̄y(x̃n+1) ≥ q↓} (4)

where q↓ = Q
(
α; {c↓[f̄yi

,xi,B]}ni=1

)
. In short, we replace the clean f̄yn+1

(xn+1) with either its
certified upper c↑ or lower c↓ bound. We elaborate on this approach before improving it.

Computing c↓ and c↑. Computing exact worst-case bounds on f̄ (f̄y for all y) is intractable and
requires white-box access to the score function and therefore the model. Following established tech-
niques in the randomized smoothing literature (Lee et al., 2019) we relax the problem. Formally,

c↓[f̄ ,x,B] = min
x̃∈B(x)
h∈H

Pr
ϵ
[h(x̃+ ϵ)] s.t. Pr

ϵ
[h(x+ ϵ)] = Pr

ϵ
[f(x+ ϵ)] = f̄(x) (5)

where H is the set of all measurable functions h. Since f ∈ H we have c↓[f̄ ,x,B] ≤ f̄(x̃) for all
x̃ ∈ B(x). The upper bound c↑[f̄ ,x,B−1] is the solution to a similar maximization problem.

Closed form. For ℓ2 ball with Gaussian smoothing, Eq. 5 has a closed form solution
Φσ(Φ

−1
σ (f̄y(x))− r) where Φσ is the CDF of the normal distributionN (0, σI)(Cohen et al., 2019;

Kumar et al., 2020). The upper bound is similarly computed by changing the sign of r. Yang et al.
(2020) show the same closed-form applies solution for the ℓ1 ball, and additionally, discuss other
perturbation balls and smoothing schemes most of which are applicable. For sparse smoothing we
can compute the bounds with a simple algorithm with O(ra + rd) runtime (Bojchevski et al., 2020),
which we discuss in § C. For ℓ1 ball and uniform smoothing the lower bound equals f̄y(x)−1/(2λ)
where ϵ ∼ U [0, 2λ]d (Levine & Feizi, 2021). This bound can also be de-randomized (see § 5).

Single Binary Certificate. From the closed-form solutions we see that the bounds are independent
of the definition of f , and the test point x; i.e. their output is a function of the scalar p := f̄y(x).
We defer the discussion for why this holds to § B, and § D.1; in short the solution for any x can
be obtained from alternative canonical points u, and ũ. Therefore, we write c↓[p,B] = c↓[f̄y,x,B]
to show that c↓ depends only on p and B, and the same for c↑. We also notice that in common
smoothing schemes and perturbation balls, it holds that c↓[c↑[p,B−1],B] = p which allows us
to reduce both calibration-time and test-time robustness to solving a single binary certificate. We
formalize this in Lemma 2.
Lemma 2. If c↓[c↑[p,B−1],B] = p for all p, then C̄test(x̃n+1) = C̄cal(x̃n+1) = C̄bin(x̃n+1) where
C̄bin(x̃n+1) = {y : accept(x̃n+1, y; c

↓[pα,B], τα)} = {y : Prϵ[s(xn+1 + ϵ, yn+1) ≥ τα] ≥
c↓[pα,B]}.
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Figure 3: [From left to right] Certified bounds for sparse smoothing, ℓ1 ball with de-randomized
uniform smoothing (Levine & Feizi, 2021), and ℓ2 (same as ℓ1) ball with Gaussian smoothing.

To see why, let p̃n+1 = f̄yn+1(x̃n+1). The test-time robust coverage requires c↑[p̃n+1,B−1] ≥ pα.
Since both c↓, and c↑ are non-decreasing w.r.t. p, we have c↓[c↑[p̃n+1,B−1],B] ≥ c↓[pα,B]. We
have the equivalent condition p̃n+1 ≥ c↓[pα,B]. This implies that we only need to compute a single
certificate c↓[pα,B] once with the single pα value given by Prop. 1. This also allows us to seamlessly
integrate other existing binary certificates in a plug and play manner. In contrast, with Theorem 1 for
C̄test or C̄cal we need at least one certificate per test (or calibration) point. Notably, these prediction
set are identical to our cheaper C̄bin. For illustration, Fig. 3 shows the certified lower and upper
bounds for various pα values and various smoothing schemes.

Intuitively c↓[c↑[p,B−1],B] = p holds due to symmetry of the smoothing scheme w.r.t. B, and B−1

and is satisfied by most smoothing schemes. In Lemma 3 we prove that Gaussian, uniform, and
sparse smoothing all have this property.
Lemma 3. For Gaussian, and uniform smoothing under ℓ1, and ℓ2 balls Br = B−1

r . For sparse
smoothing and Bra,rd we have B−1

ra,rd
= Brd,ra . In all three cases we have c↓[c↑[p,B−1],B] = p.

To summarize, for robust BinCP, we first compute conformal thresholds (pα, τα) from Prop. 1. Then
for a perturbation ball B that satisfies c↓[c↑[p,B−1],B] = p, we compute c↓[pα,B] and compute the
prediction sets with (c↓[pα,B], τα) instead. The resulting sets have 1− α robust coverage.
Corollary 1. With (pα, τα) from Prop. 1 on a calibration set Dcal, let xn+1 be exchangeable with
Dcal and x̃n+1 ∈ B(xn+1). If for the smoothing scheme ξ and the threat model B and for all p
we have c↓[c↑[p,B−1],B] = p, then the set C̄bin(x̃n+1) = {y : Pr[s(x̃n+1 + ϵ, yn+1) ≥ τα] ≥
c↓[pα,B]} has 1− α coverage (the pseudocode is in § A).

5 ROBUST BINCP WITH FINITE SAMPLES

The certificate in Corollary 1 relies on exact probabilities Pr[s(xn+1 + ϵ, yn+1) ≥ τα] which is of-
ten intractable to compute. Instead, we can either apply de-randomization techniques or estimate
high-confidence bounds of these probabilities. We first describe the latter approach. For each cal-
ibration point (xi, yi) we compute qi = 1

m

∑m
i=1 I[s(xi + ϵ, yi) ≥ τα] where m is the number

of Monte-Carlo (MC) samples. For each label of the (potentially perturbed) test point we compute
q̃n+1,y = 1

m

∑m
i=1 I[s(x̃n+1 + ϵ, y) ≥ τα]. We use the Clopper-Pearson confidence interval (Clop-

per & Pearson, 1934) to bound the exact probabilities via the MC estimates. To ensure the sets are
conservative we compute a lower bound for calibration points and an upper bound for test points.
Collectively, all bounds are valid with adjustable 1 − η probability. To account for this, we set the
nominal coverage level to 1−α+η such that we have 1−α coverage in total. Similar to Zargarbashi
et al. (2024), we compute each bound with 1− η/(|Dcal + k|) probability where k is the number of
classes. Let pi = Pr[s(xi + ϵ, yi) ≥ τα] for i ∈ {1, . . . , n+ 1} be the exact probabilities. The final
sample-corrected robust predictions sets are given in Prop. 2.

Proposition 2. Let q↓i ≤ pi hold with 1 − η/(Dcal + k) for each calibration point i ∈ {1, . . . , n}
where k is the number of target classes. For a given test point x̃n+1 let q̃↑n+1,y ≥ p̃n+1,y with

1 − η/(Dcal + k) where p̃n+1,y = Pr[s(x̃n+1 + ϵ, y) ≥ τα]. With p↓α = Q
(
α− η; {q↓i }ni=1

)
,
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Figure 4: [Left to right] Average prediction set size of robust CP for CIFAR-10, and ImageNet with
Gaussian smoothing (σ = 0.5), and CoraML with sparse smoothing. All results are for 2000 Monte-
Carlo samples. We set 1− α = 0.85 for ImageNet, and 1− α = 0.9 for CIFAR-10 and CoraML.

we set the robust conformal threshold pair as (c↓[p↓α,B], τα). Then the prediction set defined as
C̄+(x̃n+1; c

↓[p↓α,B], τα) = {y : q̃↑n+1,y ≥ c↓[p↓α,B]} has 1− α coverage probability.

Such sample correction is a crucial step for smoothing-based robust CP, since the robustness certifi-
cate is probabilistic. The failure of the certificate depends to the failure of the confidence intervals.
In contrast, for deterministic and de-randomized certificates such as DSSN (Levine & Feizi, 2021),
we do not need sample correction since we can exactly compute pi and pα = Q (α; {pi}ni=1). Note,
vanilla (non-robust) BinCP does not need sample correction to maintain the guarantee (see § 3).

6 EXPERIMENTS

We show that: (i) We can return guaranteed and small sets for both image classification and node
classification, with a significantly lower number of Monte Carlo samples. (ii) Our sets are computa-
tionally efficient. (iii) There is an inherent robustness in randomized methods. (iv) We can also use
de-randomized smoothing-based certificates that do not require finite sample correction.

Setup. We evaluate our method on two image datasets: CIFAR-10 (Krizhevsky, 2009) and Ima-
geNet (Deng et al., 2009), and for node-classification (graph) dataset we use Cora-ML McCallum
et al. (2004). For the CIFAR-10 dataset we use ResNet-110 and for the ImageNet dataset we
use ResNet-50 pretrained models with noisy data augmentation from Cohen et al. (2019). For the
graph classification task we similarly train a GCN model Kipf & Welling (2017) on CoraML with
noise augmentation. The GCN is trained with 20 nodes per class with stratified sampling as the
training set (and similarly sampled validation set). The size of the calibration set is between 100 and
250 (sparsely labeled setting) unless specified explicitly. Our reported results on conformal predic-
tion performance are averaged over 100 runs with different calibration set samples. We calibrated
BinCP with a p = 0.6 fixed value, however small changes in p do not influence the result. For the
graph dataset we calibrated BinCP with p = 0.9. Intuitively as c↓[p,B] has a sharp decay for sparse
smoothing (see Fig. 10-left), we set p to a number such that c↓[p,B] still remains high.

We conducted our experiment using three different smoothing schemes. (i) Smoothing with isotropic
Gaussian noise, σ = 0.12, 0.25, and 0.15. Our reported results for BinCP are valid for both ℓ1, and
ℓ2 perturbation balls. (ii) De-randomized smoothing with splitting noise (DSSN) from Levine &
Feizi (2021) from which we attain ℓ1 robustness. We examine two smoothing levels λ = 0.25/

√
3,

and 0.5/
√
3. (iii) Sparse smoothing from Bojchevski et al. (2020) with p+ = 0.01, and p− = 0.6

on node attributes. We report robustness across ra ∈ {0, 1}, and rd ∈ {0, 1, 2, 3}. We compare our
the result from BinCP to the SOTA method CAS (Zargarbashi et al., 2024). Previously it was shown
that CAS significantly outperforms RSCP (Gendler et al., 2021) both with and without finite sample
correction. In § 7 we discuss the other related works in detail. In the standard setup, we estimate the
statistics (mean and CDF, or Bernoulli parameters) with 2 × 103 Monte-Carlo samples, and we set
1−α = 0.9. This setup is picked in favor of the baseline since by increasing the nominal coverage or
decreasing the sample size BinCP outperforms the baseline with an even higher margin. Throughout
the paper we report different nominal coverages and MC sampling budgets.
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Figure 5: On ImageNet dataset, [left] average set size for 1 − α = 0.85 with various MC sampling
budgets. [Middle] Set size across various levels of 1−α for 2×103 samples. [Right] Set size without
sample correction (asymptotically valid assumption). The sample-corrected variants are shown with
a dotted line. In all plots y-axis is log-scaled.

Smaller set size. Fig. 4 shows that for all datasets, and both smoothing schemes (isotropic Gaussian
and sparse smoothing), BinCP produces smaller prediction sets compared to CAS. Our prediction
sets computed with Gaussian noise are robust to both ℓ1, and ℓ2 perturbation balls with the same
radius (Yang et al., 2020). In Fig. 5, compare to CAS on ImageNet dataset over various sample
rates, coverages, and radii. Since CAS with sample correction returns trivial sets for 1 − α = 0.9
(see Fig. 5-middle), in Fig. 5-left we compare the results for 1 − α = 0.85. By increasing the
Monte Carlo sample rate, the average set sizes of CAS and BinCP become closer – Fig. 1-left for
CIFAR-10, Fig. 5-left for ImageNet, and Fig. 7-left for CoraML depict the impact of higher sam-
pling budget. Intuitively as the number of classes increase (e.g. ImageNet dataset) the union bound
over classes result in larger prediction sets (looser confidence intervals). In § E (Fig. 9) we show
that BinCP is also consistently better for smaller radii (a setup similar to verifier based robust CP
(Jeary et al., 2024)). For the same reported set size, we attain robust CP of significantly larger radii.

Note that Fig. 4-right, and Fig. 7-left show the performance on the transductive node classification
setting where perfect robustness is achievable for free through memorization (see discussion by
Gosch et al. (2023)). Nonetheless, comparing BinCP to CAS is still meaningful. Constructing robust
conformal sets for GNNs in a realistic (inductive) setup is more challenging as discussed in § D.3.

Exact ℓ1 robustness. Using the de-randomized DSSN certificate for ℓ1 perturbation ball (Levine
& Feizi, 2021) we derive the first smoothing-based de-randomized robust CP. As shown in Fig. 6-
middle the de-randomized robust BinCP with uniform noise results in a significantly smaller set size
across all radii compared to Gaussian noise (Fig. 4-left). Notably due to exactness of the computed
statistics, for randomized DSSN-based certificate we bypass the finite samples correction.
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Figure 6: [Left] Performance of BinCP on different score functions under Gaussian smoothing with
σ = 0.25. [Middle] Set size of BinCP with ℓ1 robustness and derandomized DSSN smoothing
(σ = λ/

√
3). [Right] Vanilla non-smooth and smooth (σ = 0.25) prediction (solid and dashed

colored lines show TPS and APS score function) under attack. All results are on CIFAR-10.
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Figure 7: Comparison between BinCP and CAS for [Left] the effect of higher MC sample budget in
CoraML dataset (sparse smoothing), [Middle] effect of low samples without finite samples correc-
tion for CIFAR-10 dataset (σ = 0.25), and [Right] various smoothing strengths σ.

Ignoring sample correction. While unrealistic in practice, Gendler et al. (2021) report results with-
out applying finite sample correction. Zargarbashi et al. (2024) maintain small set sizes (with large
MC sample rate) for CIFAR-10. However, for ImageNet and CoraML they only report the results
without correction, and therefore with an “asymptomatically valid” coverage guarantee – valid when
sample rate approaches infinity. In Fig. 5-left applying sample correction to CAS on datasets like Im-
ageNet, inflates the prediction sets up to Y , likely due to union bound on a large number of classes.
Fig. 5-right shows that on ImageNet, both methods show similar prediction sets for asymptotically
valid setup. Notably BinCP with sample correction is not far from the non-corrected setup, while
CAS shows a large gap. Similarly Fig. 7-left shows that for sparse smoothing, increasing sample rate
helps CAS considerably while its effect on BinCP is almost negligible. In § D.2 we explore the intu-
ition behind how binarization can mitigate the impact of finite sample correction with fewer samples.

Number of samples. The upperbound in CAS is obtained through a two step process. First given
the corrected CDF, we compute the worst case (adversarial) CDF. Then using upper bounded (or
lower bounded) CDF, we apply the Anderson bound to obtain a bound on the mean from the CDF
(Zargarbashi et al., 2024). Increasing the number of bins increases the computation slightly but
produces tighter bounds. To observe this effect, without sample correction, we decrease the number
of samples to a very low number (∼ 10, however unrealistic) and in Fig. 7-middle we see that set
size in CAS slightly increases even without accounting for finite sample estimation.

Effect of σ, and score function. The strength of Gaussian smoothing is controlled by σ in ξ(x) =
x+ϵ, ϵ ∼ N (0, σ2I). In Fig. 7-right we observe a trade-off in choosing σ for both methods. Higher
smoothing intensity results in larger set sizes in the beginning, but by increasing the robustness radius
the set size increases slowly. Still in all cases BinCP outperforms CAS. It is best practice to compute
smooth prediction probabilities using a model trained with similar noise augmentation. We reported
this result in § E (Table 2). Interestingly, when training and inference σ does not match, BinCP
shows good results while CAS is more sensitive.

We mainly focus on TPS score function, in addition Fig. 6-left compares APS, and logit as score
functions. Here across all radii TPS is more efficient. We further report results for APS in § E. Since
logits are unbounded, CAS is not applicable to it.

Benefits of smoothing. The guarantee of robust CP breaks for adversarial (or noisy) inputs. In Fig. 6-
right we compare vanilla prediction and smooth prediction sets under adversarial attack. Notably,
smooth models even without a conservative certificate show an inherent robustness. As illustrated,
the non-smooth model quickly breaks to near 0 coverage guarantee for very small r. Relatedly,
recent verifier-based robust CP (Jeary et al., 2024) report comparably larger prediction sets even for
one order of magnitude smaller radius (compared to the certified radii by BinCP). This intuitively
suggests that for robust CP it seems that randomization is inherently beneficial.

Limitations. While BinCP reduce the required MC sample rate significantly (e.g. from 2000 to 150
on CIFAR-10), still this number of inferences is computationally intensive. The robustness in the
input space X is not yet linked to robustness w.r.t. distribution shift. Although BinCP applies on
sparse smoothing, a realistic threat model for graphs (inductive GNNs) is still not addressed.
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7 RELATED WORK

Robust CP via smoothing. Gendler et al. (2021) introduced the problem and defined a baseline
robust CP method, RSCP (randomly smoothed conformal prediction), which applies Theorem 1 in
combination with the mean-constrained upper bound for ℓ2 perturbations and Gaussian smoothing.
This upper bound has a closed form solution: s(x̃, y) = Φ(Φ−1(p) + r) where p = E[s(x+ ϵ, y)].
Originally, RSCP did not account for finite sample correction making its coverage guarantee only
asymptomatically valid. Yan et al. (2024) show that correcting for finite samples in RSCP leads to
trivial prediction sets C̄(x) = Y . As a remedy, they define a new score function based on temperature
scaling which in combination with conformal training (Stutz et al., 2021) improves the average set
size. So far both methods use test-time robustness. In § E, we show that BinCP outperforms RSCP+.

In contrast Zargarbashi et al. (2024) utilizes the CDF structure of the score and instead apply the
tighter CDF-based bound defining CDF aware sets (CAS). In combination with calibration-time
robustness, they show that only |Dcal| certificate bounds should be computed to maintain a robust
coverage guarantee as in Eq. 1. In addition to a gain in computational efficiency, they show that in
the calibration-time robustness, the error correction budget can be used more efficiently. On CIFAR-
10 they return a relatively small conformal set size. In all aforementioned methods, a large MC
sampling budget (e.g. 104 samples) is assumed which is challenging for real-time applications. This
issue is exacerbated for datasets like ImageNet where the large number of classes amplifies the effect
of multiple testing corrections.

Robust CP via verifiers. Outside the scope of randomized smoothing Jeary et al. (2024) use neural
network verification to compute upper (or lower) bounds. This requires white-box access to the
model weights, while our proposed method works for any black-box model and randomized or exact
smoothing-based certificate. Interestingly, in (Jeary et al., 2024) (Table 1) the empirical evaluation
is for r = 0.02 which is smaller than the minimum radius we reported. For completeness, we
evaluated BinCP on very small radii in § E (Fig. 9-left), and for the same r our sets are 2× smaller.
As discussed in § 6 (Fig. 6) in general, smooth prediction, even without accounting for the adversary,
shows to have an inherent robustness.

Other robustness results. Alternatively Ghosh et al. (2023) introduce probabilistic robust cov-
erage which intuitively accounts for average adversarial inputs. This is in contrast with our core
assumption of worst-case adversarial inputs. In other words, instead of 1−α coverage for any point
within the perturbation ball around xn+1, “probabilistically robust coverage” guarantees that the
probability to cover the true label remains above 1 − α on average over all x̃ ∈ B(x), while we
consider the worst-case x̃. Their “quantile of quantiles” method looks superficially similar to BinCP
as they also compute n+k+1 quantiles. However there are two notable differences. Their first order
of quantiles (on true calibration scores and the score for each class of the test point) is over random
draws from the perturbation set. BinCP computes the first order quantiles (τi(p) in fixed τ setup)
over the smooth score distribution. Their conservative quantile index is based on a user-specified
hyperparameter that accounts for conservativeness while BinCP finds the certified probability
c↓[pα,B] for the worst case adversarial example. BinCP guarantees that any x̃ ∈ B(x) is covered if
x is covered. Furthermore, there are other works addressing distribution or covariate shift in general
beyond the score of worst-case noise robustness (Barber et al., 2022; Tibshirani et al., 2019).

8 CONCLUSION

We introduce BinCP, a robust conformal prediction method based on randomized smoothing that
produces small prediction sets with a few Monte-Carlo samples. The key insight is that we bina-
rize the distribution of smooth scores, by a threshold (or thresholds) that maintains the coverage
guarantee. We show that both calibration and test-time robustness approaches (discussed in § 2) are
equivalent to computing a single binary certificate. This directly enables us to use any certificate that
returns a certified lower-bound probability right out of the box; including de-randomized certificate
for ℓ1 norm. The binarization enables us to use tighter Clopper-Pearson confidence intervals. This
leads directly to faster computation of prediction sets with a significantly lower Monte Carlo sample-
rate (compared to the SOTA), and therefore less forward passes per input. Interestingly, we show that
even without accounting for an adversarial setup, CP with smooth score shows more robustness to
adversarial examples in comparison with the conventional vanilla CP.
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A ALGORITHM FOR ROBUST (AND VANILLA) BINCP

Here we provide the algorithm for BinCP in both p-fixed, and τ -fixed setups. The two setups differ
in calibration and finite sample correction, while computing the certificate, and returning prediction
sets is similar in both. Note that in p-fixed version after computing the quantile τα we correct for
finite samples which results in a lower p↓α.

Note that in both algorithms we set m, and η as fixed hyper-parameters defining the number of
random samples per each datapoint and the collective failure probability of the confidence intervals.
Therefore ClopperPearson(p) actually refers to the Clopper-Pearson interval with p ·m success out
of m samples and failure probability of η/(k + |Dcal|).

Algorithm 1: BinCP with τ -fixed setup
Input: Score function s : X × Y → R; Calibration set D = {xi, yi}ni=1; Smoothing scheme ξ;

Threat model B satisfying the assumption in Lemma 2; Fixed threshold τ , and
(potentially perturbed) test point x̃n+1.

Output: A prediction set C̄bin(x̃n+1) with 1− α robust coverage probability
for each calibration point (xi, yi) ∈ Dcal do

Sample from xi + ϵ for m times;
Compute qi =

1
m

∑m
j=1 I[s(xi + ϵ, yi) ≥ τ ];

if Exact Certificate then
q↓i := qi;

else
q↓i := ClopperPearsonlow(qi);

end
end
Set p↓α = Q

(
α; {q↓i }ni=0

)
;

Compute c↓[p↓α,B] from Eq. 5 (Lower bound minimization);
for each class y ∈ Y do

Sample from ξ(x̃n+1) for m times;
Compute qn+1,y = 1

m

∑m
j=1 I[s(x̃n+1 + ϵ, y) ≥ τ ];

if Exact Certificate then
q↑n+1,y := qn+1;

else
q↑n+1,y := ClopperPearsonhigh(qn+1,y);

end
end
return C̄{y : q↑n+1,y ≥ c↓[p↓α,B]}

Score functions. Throughout the paper we reported results for TPS score – directly setting the
softmax values as the score s(x, y) = π(x, y) (Sadinle et al., 2018). In vanilla CP (r = 0), TPS tends
to over-cover easy examples and under-cover hard ones (Angelopoulos & Bates, 2021). Alternatively
“adaptive prediction sets” (APS) aiming for conditional coverage uses the score function defined as
s(x, y) := − (ρ(x, y) + u · π(x)y) where ρ(x, y) :=

∑K
c=1 π(x)c1 [π(x)c > π(x)y] is the sum of

all classes predicted as more likely than y, and u ∈ [0, 1] is a uniform random value that breaks the
ties between different scores to allow exact 1−α coverage (Romano et al., 2020). Another approach
is to directly use the logits of the model as the score. This is not applicable in CAS and RCSP+
(Zargarbashi et al., 2024; Yan et al., 2024) as they work with bounded scores. BinCP can also work
with unbounded score, hence, we also report the results on CP with logits. All three score functions
are reported in Fig. 6-left for BinCP. Interestingly we do not see any significant difference in set size
between APS and TPS when smoothed. We report BinCP with APS score in § E over all σ, and radii.
Orthogonally, while RSCP with either scores quickly breaks to returning trivial sets, RSCP+ refines
the score function through a biased temperature scaling. This can also be considered as another score
function (or transformation over any score function) tailored for robust setup. We compare BinCP
with RSCP+ in Fig. 14 (§ E).
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Algorithm 2: BinCP with p-fixed setup
Input: Data, score function, smoothing, and B same as algorithm 1. Fixed probability pα
Output: Same as algorithm 1
Update pα ← ⌈pα ·m⌉/m (accounting for discrete samples);
for each calibration point (xi, yi) ∈ Dcal do

Sample from xi + ϵ for m times;
Compute τi = Q

(
pα; {s(xi + ϵ, yi)}mj=1

)
;

if Exact Certificate then
p↓α := pα;

else
p↓α := ClopperPearsonlow(pα);

end
end
Set τα = Q (α; {τi}ni=0);
Compute c↓[p↓α,B] from Eq. 5 (Lower bound minimization);
for each class y ∈ Y do

Sample from ξ(x̃n+1) for m times;
Compute q↑n+1,y = 1

m

∑m
j=1 I[s(x̃n+1 + ϵ, y) ≥ τα];

q↑n+1,y := same as algorithm 1;
end
return C̄{y : q↑n+1,y ≥ c↓[p↓α,B]}

B COMPUTING CERTIFICATE OPTIMIZATION

Canonical view. Turns out that for isotropic Gaussian and sparse smoothing, we can always attain
this minimum at canonical points – for any test point xn+1 we can translate the function, and the
points to the origin, and the worst case to the border of B(xn+1). Formally, there is a pair (u, ũ)
such that ρu,ũ = ρxn+1,x̃n+1 for any xn+1, and x̃n+1 ∈ B(xn+1). Namely for the continuous
ball Br the canonical vectors are u = 0 and ũ = [r, 0, 0, . . . ]. For the binary Bra,rd we have the
canonical u = [0, . . . , 0, 1, . . . , 1] and ũ = 1−u where ∥u∥0 = rd and ∥ũ∥0 = ra. Intuitively it is
due to the symmetry of the ball and the smoothing distribution. To avoid many notations, we again
use the x, and x̃ in the rest of the discussion that refers to the canonical points.

To obtain an upper or lower bound (Eq. 5 as maximization or minimization) we partition the spaceX
to regions where the likelihood ratio between (x, x̃) is constant; formally X = ∪ki=1Ri where ∀z ∈
Ri : Pr[ξ(x) = z]/Pr[ξ(x̃) = z] = ci. For any function h we can find an equivalent piecewise-
constant ĥ where inside each region it is assigned to the expected value of h in that region. Let ti =
Pr[ξ(x) = z], and t̃i = Pr[ξ(x̃) = z] then Eq. 5 simplifies to the following linear programming

min
h∈[0,1]k

h⊤t̃ s.t. h⊤t = pα (6)

Where h, t, and t̃ are vectors that include the values hi, ti, t̃i for each region. The optimum solution
to the simplified linear programming is obtained by sorting regions based on the likelihood ratio and
greedily assigning h to the possible maximum in each region until the budget h⊤t = pα is met. The
rest of the regions are similarly assigned to zero. This problem is equivalent to fractional knapsack.
For isotropic Gaussian smoothing Cohen et al. (2019) show that the optimal solution has a closed
form ρα = Φσ(Φ

−1
σ (pα)− r) where Φσ is the Gaussian CDF function of the Gaussian distribution

with standard deviation σ. For sparse smoothing, following Bojchevski et al. (2020) we solve the
greedy program on at most ra + rd + 1 distinct regions. The runtime is linear w.r.t. to the add and
delete budget. For more detailed explanation see (Lee et al., 2019; Bojchevski et al., 2020).
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C SUPPLEMENTARY TO THEORY

C.1 VANILLA BINCP

Conformal risk control. We use conformal risk control (CRC) (Angelopoulos et al., 2022) to prove
the coverage guarantee in BinCP. Here we succinctly recall it before the proof of Prop. 1.

Theorem 2 (Conformal Risk Control - rephrased). Let λ be a parameter (larger λ yields more
conservative output), and Li : Λ → (−∞, B] for i = 1, . . . , n + 1 be exchangeable random
functions. If (i) Lis are non-increasing right-continuous w.r.t. λ, (ii) for λmax = supΛ we have
Li(λmax) ≤ α, and (iii) supλ Li ≤ B <∞, then we have:

E[Ln+1(λ̂)] ≤ α for λ̂ = inf

{
λ :

∑n
i=1 Li(λ)

n+ 1
+

B

n+ 1
≤ α

}
(7)

In case that B = 1, by simplifying Eq. 7, we have λ̂ = inf {λ :
∑n

i=1 Li(λ) ≤ α(n+ 1)− 1}We
use this framework to prove the guarantee in BinCP.

Proof to Prop. 1. We prove the theorem through re-parameterizing of the conservativeness variable
in each case. For fixed p we set τ = 1 − λ; similarly for fixed τ we set p = −λ. In both cases, the
risk is defined as

Li(τ, p) = 1− accept(xi, yi; p, τ)

which for simplicity we define reject(xi, yi; p, τ) = 1 − accept(xi, yi; p, τ) and by definition we
have reject(xi, yi; p, τ) = I[Pr[s(x+ ϵ, y) < τ ] > 1− p] = I[Pr[s(x+ ϵ, y) ≥ τ ] < p]. We show
that the risk function satisfies the properties for a risk function feasible to the setup in Theorem 2.

1. Non-increasing to λ. In both cases the risk Li is non-inscreasing to λ; for fixed p we have

λ1 < λ2 ⇒ 1− λ1 > 1− λ2

⇒ Pr[s(x+ ϵ, y) < 1− λ1] ≥ Pr[s(x+ ϵ, y) < 1− λ2]

⇒ reject(x, y; p, 1− λ1) ≥ reject(x, y; p, 1− λ2)

Now for fixed τ , let px = Pr[s(x+ ϵ, y) ≥ τ ] then we have

λ1 < λ2 ⇒ p1 > p2 means that I[px ≤ p1] ≥ I[px ≤ p2]

⇒ reject(x, y;−λ1, τ) ≥ reject(x, y;−λ2, τ)

Intuitively by adapting the definition of the rejection (risk) function reject(xi, yi; p, τ) =
I[Pr[s(x+ ϵ, y) ≥ τ ] < p], if we increase λ which means decreasing p, the chance of
rejecting a label decreases. This is because, we require the same probability mass to be
lower than a smaller value.

2. Right continuous. Formally the function accept is

accept(x, y; p, τ) =

{
1 if Pr[s(x+ ϵ, y) ≥ τ ] ≥ p

0 otherwise

Across the domain (for either p or τ ) this function has two values and it is just non-
continuous in the jump between the values. For both p and τ this function is left continuous
due to the ≥ comparison. Therefore for fixed p the function reject(x, y; p, 1 − λ) is right
continuous to λ = 1− τ . Similar argument follows for fixed τ .

3. Feasibility of risks less than α. For fixed p > 0 if we set λ = 1 − τ to ∞ (τ = −∞),
for all xi, we have accept(xi, yi; p, 0) = 1; i.e. the risk is 0 for every data. Similarly by
approaching p to zero in fixed τ setup, we decrease the risk to 0 for everyone. To avoid
corner cases we can restrict τ to max s(x+ ϵ, y) for x ∈ X from above.

4. Limited upperbound risk. For any parameter and any input the highest possible risk is in
case of rejection which is 1 (B = 1).
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Fixed p. The risk function Li(λ) = reject(xi, yi; p, 1 − λ) which means that the prediction set
C(xi; p, 1− λ) excludes yi. We have

E[reject(xn+1, yn+1; p, 1−λ̂)] ≤ α for λ̂ = inf
λ

{
λ :

n∑
i=1

reject(xi, yi; p, 1− λ) ≤ α(n+ 1)− 1

}
Setting back the τ = 1− λ, and rewriting the expectation as a probability form, we have

Pr[yn+1 ∈ C(xn+1; p, τp)] ≥ 1−α for τp = sup
τ

{
τ :

n∑
i=1

accept(xi, yi; p, τ) ≥ (1− α)(n+ 1)

}

In the above, we used the fact that if a test fails on α(n + 1) − 1 variables among the total of n
variables, it passes on n− [α(n+ 1)− 1] and (1− α)(n+ 1) = n− [α(n+ 1)− 1].

Fixed τ . Similarly, we define the risk function as Li(λ) = reject(xi, yi;−λ, τ). We have

E[reject(xn+1, yn+1; pτ , τ)] ≤ α for pτ = inf
λ

{
λ :

n∑
i=1

reject(xi, yi;−λ, τ) ≤ α(n+ 1)− 1

}

Proof to Lemma 1. The function accept(x, y; p, τ) is non-increasing in both p and τ . Therefore the
term

∑n
i=1 accept(xi, yi; p, τ) is also non-increasing in p and τ and its range is the integer numbers

between 0 and n (or [n]). For a fixed p, let τα(p) be the solution to Eq. 2, then by definition it satisfies
that

n∑
i=1

accept(xi, yi; p, τα(p)) ≥ (1− α)(n+ 1)

This implies that p satisfies the same condition for pα(τα(p)). Therefore pα(τα(p)) ≥ p as p is a
feasible solution in Eq. 3. The supremum search for τα(p) directly implies that for any positive δ we
have

n∑
i=1

accept(xi, yi; p, τα(p)) ≥
n∑

i=1

accept(xi, yi; p, τα(p) + δ)− 1

which intuitively means that increasing the τ(p) by any small margin fails at least in one more
accept for calibration points. Since

∑n
i=1 accept(xi, yi; p, τα(p)) is the sum of n non-increasing

functions, there is one index i for which

accept(xi, yi; p, τα(p)) = 1 and accept(xi, yi; p, τα(p) + δ) = 0

For any small positive δ. Using the definition of the accept function we have

Pr[s(xi + ϵ, yi) ≥ τα(p)] ≥ p and Pr[s(xi + ϵ, yi) ≥ τα(p) + δ] < p

Due to the continuous strictly increasing CDF for Si we have Pr[s(xi + ϵ, yi) ≥ τ(p)] = p. There-
fore for any small positive δ

accept(xi, yi; p, τα(p)) = 1 and accept(xi, yi; p+ δ, τα(p)) = 0

which means that the accept function for xi fails by adding a small number to p. Since all other
accept functions are also non-increasing we have

∑n
i=1 accept(xi, yi; p, τα(p)) ≤ (1−α)(n+1)−1.

This implies that p is also the supremum for Eq. 2 with parameter pα(τ).

C.2 ROBUST BINCP

Proof to Lemma 2. With ftrue(xi) = I[s(xi, yi) ≥ τα] for true yi, the calibration-time robust
prediction set is defined as C̄cal(x̃n+1) = {p(x̃n+1, y; τα) ≥ Q

(
α; {c↓[f̄true(xi),B]}ni=1

)
}. By

definition we have pα = Q
(
α; {f̄true(x)}ni=1

)
}. Both lower bound and upper bound functions

are non-decreasing. As a result, the ranks, and hence the quantile index in {f̄true(xi)}ni=1 and
{c↓[f̄true(xi),B]}ni=1 are the same. Therefore, Q

(
α; {c↓[f̄true(xi),B]}ni=1

)
} = c↓[pα,B].
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Figure 8: Illustration of likelihood ratio in sparse smoothing for both Bra,rd , and Brd,ra

The test-time robust prediction set is defined as C̄test = {y : c↑[f̄y(x̃n+1),B−1] ≥ pα}, let p̃y =
f̄y(x̃n+1) then it follows

c↑[f̄y(x̃n+1),B−1] ≥ pα ⇔ c↓[c↑[f̄y(x̃n+1),B−1],B] ≥ c↓[pα,B]
⇔ f̄y(x̃n+1) ≥ c↓[pα,B]

By definition accept(x̃n+1, y; c
↓[pα,B], τα) = I[f̄y(x̃n+1) ≥ c↓[pα,B]].

In the above, we proved that BinCP results in a valid conformal prediction. Here we prove the
validity of robust BinCP to adversarial data within the bounded threat model.

Proof to Lemma 3. For each of the mentioned smoothing schemes we have:

Gaussian smoothing. In both cases since p norm is symmetric for any point x̃ it holds that ∥x̃ −
x∥p ≤ r. In other words, from any perturbed point the clean point is within Br(x̃). Therefore
B−1
r = Br.

For simpler notation let p = c↑[p,Br]. Given the closed from solution c↓[p,Br] = Φσ(Φ
−1
σ (p)− r),

and c↑[p,Br] = Φσ(Φ
−1
σ (p) + r) we have

p = Φσ(Φ
−1
σ (p) + r)⇔ Φ−1

σ (p) = Φ−1
σ (p) + r ⇔ Φ−1

σ (p)− r = Φ−1
σ (p)

⇔ Φσ(Φ
−1
σ (p)− r) = p⇔ c↓[p,B] = p

Uniform smoothing. For the uniform smoothing from Levine & Feizi (2021) we have that the
smooth classifier is 1/(2λ)-Lipschitz continuous. From that the certified lower and upper bounds
are defined as c↓[p,Br] = p− r · 1/(2λ), and c↑[p,Br] = p+ r · 1/(2λ) Therefore

c↓[c↑[p,B−1
r ],Br] = c↓[p+

r

2λ
,Br] = p+

r

2λ
− r

2λ
= p

A similar argument can be applied to any certificate that directly adds (or subtracts) the Lipschitz
constant of the smooth classifier to the base probability.

Sparse smoothing. Any x̃ ∈ Bra,rd(x) has at most ra zero bits, and rd one bits toggled from x. By
toggling those bit back we can reconstruct x. The maximum needed toggles is therefore rd zero bits
and ra one bits which is the definition of Brd,ra .

As discussed in § B, canonical points for Bra,rd are x = [0, . . . , 0, 1, . . . , 1] and x̃ = 1 − x
where ∥x∥0 = rd and ∥x̃∥0 = ra. For B−1

ra,rd
the canonical points are u, ũ where ∥u∥0 = ra.

By applying a permutation over u, x̃ and every other point in all regions we can set u = x̃, and
ũ = x. For computing both Bra,rd , and B−1

ra,rd
there are ra + rd + 1 regions of constant likelihood

ratio, each including all points that have the same number of total flips from the source x, or u;
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formally Rq = {z : ∥x − z∥0 = q}. The same region can also defined to preserve rd + ra − q
bits from x̃. With sq

s̃q
as the likelihood ratio of a point z in Bra,rd and q = qa + qd as the number

of changes in 1 and 0 bit, we have sq = (p+)
qa(1 − p+)

ra−qa(p−)
qd(1 − p−)

rd−qd , and similarly
s̃q = (p−)

qa(1− p−)
ra−qa(p−)

qd(1− p−)
rd−qd . Then the likelihood ratio is simplified to

sq
s̃q

=

[
p+

1− p−

]q−rd [ p−
1− p+

]q−ra

(8)

As illustrated in Fig. 8 regions for B−1
ra,rd

are same as Bra,rd only with reverse order. In other word,
let ti, t̃i be the probability of visiting region Rq from u and ũ, then ti = s̃ra+rd+1−q , and t̃i =
sra+rd+1−q . For a fixed z the probability to visit z from x is the probability of toggling q = ∥z−x∥0
bits which is the same as toggling q bits from ũ as ũ = x.

Solutions to c↓[p,Bra,rd ] and c↑[p,B−1
ra,rd

] are obtained from the following optimization functions:

c↓[p,Bra,rd ] = min
h∈[0,1]ra+rd+1

h⊤t̃ s.t. h⊤t = p

c↑[p,B−1
ra,rd

] = max
h∈[0,1]ra+rd+1

h⊤s̃ s.t. h⊤s = p

The solution to the lower bound optimization is obtained by a greedy algorithm. We visit each in
increasing order w.r.t. sq

s̃q
, we assign hq = 1 until the budget h⊤s is met and we set hq = 0 for

the remaining regions (fractional knapsack problem). For the maximization we do the same but in a
decreasing order.

We want to prove c↓[c↑[p,B−1
ra,rd

],Bra,rd ] = p. This is the solution to

min
h∈[0,1]ra+rd+1

h⊤t̃ s.t. h⊤t = c↑[p,B−1
ra,rd

] = h′⊤s̃

Let
←−̃
s be the vector s̃ in reverse order. Then t =

←−̃
s . From the problem definition we have that

←−
h′ (the solution from maximization problem in reverse order) is a feasible solution. Given that
the solution of the optimization (reduced to fractional knapsack problem) is always in form of
[1, . . . , 1, δ, 0, . . . , 0] for some δ ∈ [0, 1], any vector of this form that satisfies the constraint is
optimal. Therefore

←−
h′ is the solution to the maximization greedy problem. So the optimal solution

is
←−
h′⊤t̃ =

←−
h′⊤←−s = p.

For any ℓp with the same argument as ℓ2 ball we have B−1
r = Br. Similar to isotropic Gaussian

smoothing, the Lipschitz continuity in DSSN-smoothed distribution shows that Lemma 3 applies to
ℓ1 ball and this distribution as well.

C.3 CORRECTION FOR FINITE SAMPLE MONTE-CARLO ESTIMATION

Proof to Prop. 2. With pi = Pr[s(xi + ϵ, yi) ≥ τα] as the true probability of crossing τα for each
true score distribution in calibration set. We have pα = Q (α; {pi}ni=1). For all i we have q↓i ≤ pi
from which follows p↓α ≤ pα. The probability of failure in each calibration datapoint is η/(|Dcal|+
k); as a result, from the union bound the probability of failure q↓i ≤ pi for all i ∈ {1, ..., n} and
therefore the quantile is |Dcal|η/(|Dcal|+ k).

For all classes of the test point we have q̃↑n+1,y ≥ p̃n+1,y with η/(|Dcal|+k). Therefore, for the true
class we have q̃n+1 ≥ p̃n+1 with kη/(|Dcal|+ k).

Conformal guarantee implies that with 1 − α + η probability we have pn+1 ≥ pα. The robustness
certificate implies that p̃n+1 ≥ c↓[pα,B]. Following holds by using the mentioned inequality:

q̃↑n+1 ≥
1− kη

n+k

p̃n+1 ≥
1−α+η

c↓[pα,B] ≥
1− nη

n+k

c↓[p↓α,B]

From the union bound it follows that the total failure probability is less than α.
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Figure 9: Comparison between BinCP and CAS on CIFAR-10 dataset with σ = 0.25 and small
values of r. The nominal coverage 1− α is set to [From left to right] 85%, 90%, and 95%.

We estimate the probabilities in algorithm 1 following Prop. 2 directly. There, we estimate the pi =
Prϵ[s(xi + ϵ, yi) ≥ τ ] via Monte Carlo samples resulting in qi = 1

m I[s(xi + ϵ, yi) ≥ τ ]. Via
Clopper Pearson bounds we find q↓i for which we have q↓i ≤ pi with adjusted 1− η probability.

For the p-fixed approach (algorithm 2), we compute the discrete quantile τi = Q(⌈pα ·
m⌉/m; {s(xi + ϵ, yi)}mi=1 over the randomly sampled scores. By definition of discrete quantile
function, without counting again, we have 1

m I[s(xi+ϵ, yi) ≥ τi] ≥ pα (pα proportion of the binary
variables I[s(xi + ϵ, yi) ≥ τi] are 1). Now, we bound a Bernoulli parameter that is the proportion
of the distribution exceeding τi. Again we use Clopper Pearson bound but this time on pα which is
known. Therefore after computing τα we use p↓α instead which is a minimum support for all τi-s set
as the pα quantile of the sampled scores (with adjusted 1− η confidence).

D SUPPLEMENTARY DISCUSSION

D.1 HIGH-LEVEL UNDERSTANDING OF ROBUSTNESS CERTIFICATES

A certificate of robustness is a formal guarantee that the model predicts the same class for any
perturbation within the specified threat model - within the ball around the input. In other words,
if the function f is certified to be robust for the point x w.r.t. B, for any x̃ ∈ B(x) we have
argmaxy fy(x) = argmaxy fy(x̃). This certificate ensures that the top label remains the same
within the threat model (binary certificate). A similar (confidence, or soft) certificate guarantees
a lower (and upper) bound on the model confidence within the threat model given the predictive
probability. One way to attain such certificates is through verifiers. Verifiers need white-box access
(knowledge about the model structure and weights) and they work efficiently only on a limited class
of models. However, our robust conformal guarantee is black-box.

A common approach for black-box certification is through randomized smoothing. A randomly
smoothed classifier results from inference given the input augmented with random noise. For ex-
ample g(x) = Eϵ∼N (0,σ2I)[f(x + ϵ)] – model g returns the expected output of f given randomly
augmented x where the noise comes from an isotropic Gaussian distribution with scale σ. The ran-
domization function is smooth even if the original function changes rapidly, which is the effect of
the expectation. It is also Lipschitz continuous, meaning that we can bound the output based on the
distance of x̃ from x. The latter allows us to provide formal guarantees that the top class probability
(or confidence) remains high (changes slowly) even if x̃ ∈ B is passed to the model instead of x.

Ultimately a randomized smoothing-based certificate returns a lower (or upper) bound probability
(or score) on the expected output (given the randomized x). In robust CP we use these bounds to
answer “if instead of the clean input xn+1 which is already exchangeable with the calibration set,
the model received the worst case x̃n+1 ∈ B(xn+1) how much lower the conformity score has
become”. Or in other words “if the model is queried with x̃n+1 ∈ B(xn+1) (which has a lower
conformity score in order not to be covered) how much higher the conformity score of the clean
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Figure 10: [Left] Confidence lower bound and the corresponding certified lower bound for scores
derived from Beta and Bernoulli distributions. [Middle and right] Correction error (lower bound
subtracted from the theoretical mean) of the scores distributed from the Gaussian distribution both
in continuous case (mean lower bound) and binarized case (lower bound on the Bernoulli parameter)
for [Middle] 100 and [Right] 1000 samples. Details of the experiments are in § D.2.

input can be”. Technical details of smoothing-based certificates are mentioned in § 4. For a more
detailed discussion see (Cohen et al., 2019; Kumar et al., 2020).

D.2 COMPARISON OF CONFIDENCE INTERVALS

As discussed in § 5, BinCP, CAS, and RSCP, all require true probability, CDF, and mean from the
distribution of scores which is intractable to compute (except in the case of de-randomized BinCP).
Therefore we use confidence bounds that are lower (or higher) than the true values with collective
probability 1 − η (which is taken into account while calibrating). CAS, and RSCP are defined on
continuous scores that are bounded by Hoeffding, Bernstein, or DKW inequalities. BinCP is defined
through binarized scores, and the final parameter is the success probability of a Bernoulli distribution
which can bounded by the Clopper-Pearson interval which is exact (Clopper & Pearson, 1934). The
width of all mentioned confidence intervals is decreasing w.r.t. the sample size. Therefore a tighter
interval can result in the same or better efficiency (correction error) with fewer samples; e.g. For
scores sampled from a Gaussian N (0.5, 0.1) Clopper Pearson error (for z ≥ 0.6) with 100 samples
is still lower than Bernstein’s error with 250 samples.

To illustrate this we conducted two experiments. First, to compare the tightness of each concen-
tration inequality, we sampled from a Beta distribution with mean p to have continuous score
values between [0, 1]. The distribution for a fixed β is Beta( p

β(1−p) , β). Then for the continuous
score, we computed both Hoeffding’s and Bernstein’s lower bound on the mean, alongside the
Clopper-Pearson bound for the given parameter p and the same sample size. As shown in Fig. 10-left
(with β = 1) the binary lower bound is always higher (better). Since the certified lower bound is an
increasing function of the given probability, the certified lower bound for the binary values is again
higher.

In another experiment shown in Fig. 10-middle and right we sample scores from a Gaussian dis-
tribution N (0.5, 0.1), and computed the lower-bound mean given both Hoeffding and Bernstein’s
inequalities. Then for various thresholds, we computed the probability of scores passing that thresh-
old and lower bounded this probability by Clopper Pearson concentration inequality. As shown in
the figure for lower sample rates, binarization results in less error compared to the theoretical mean.
Even with higher sample rates Clopper Pearson interval is significantly tighter than the other two for
low and high thresholds (which is a parameter of BinCP).

Proposition 3. Let X ∼ Beta(a, b) and x1, . . . , xm be m i.i.d. samples of X . Given the empirical
mean x̄ = 1

m

∑m
i=1 xi the upper bound for the true mean µ = E[X] is given by the Hoeffding’s

inequality as µ ≤ x̄ + bhoef , where bhoef =

√
ln( 1

η )
2m . For any user-specified τ ∈ (0, 1), let Y =
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Figure 11: Probability of observing higher upper bound from Clopper Pearson confidence interval
in comparison with Hoeffding’s interval. The result is for Beta(2, 2), and η = 0.01.

I[X > τ ]. The Clopper-Pearson upper bound pu for the true p = E[Y ] = Pr[X ≥ τ ] is:

pu = Φ−1
Beta(1− η; 1 +

m∑
i=1

I[xm > τ ],m−
m∑
i=1

I[xm > τµ])

Each upper bound holds with probability 1− η. For any number of samples m, and any significance
level η, the probability that the CP bound is tighther is Pr[pu − E[Y ] ≤ bhoef ] and equals:

Pr[pu − E[Y ] ≤ bhoef ] = ΦBinom(m̂;m,E[Y ]) (9)

where m̂ is defined in Eq. 11.

Proof. The variable Y is distributed as Y ∼ Bernoulli(p) where p = E[Y ] = 1 − ΦBeta(τ ; a, b)
and ΦBeta is the CDF of the beta distribution with parameters a and b.

Let m+ =
∑m

i=1 I[xm > τ ]. We will compute the probability that the inequality

pu − E[Y ] ≤

√√√√ ln
(

1
η

)
2m

(10)

holds. Substituting the definition of pu and E[Y ] we get:

Φ−1
Beta(1− η; 1 +m+,m−m+)− (1− ΦBeta(τ ; a, b)) ≤

√√√√ ln
(

1
η

)
2m

⇔

1− η ≤ ΦBeta


√√√√ ln

(
1
η

)
2m

+ 1− ΦBeta(τ ; a, b); 1 +m+,m−m+

⇔

η ≥ 1− ΦBeta


√√√√ ln

(
1
η

)
2m

+ 1− ΦBeta(τ ; a, b); 1 +m+,m−m+


Define m̂ as the break-point after which the Clopper-Pearson bound becomes looser than the Ho-
effding bound:

m̂ = sup

m+ : I

η ≥ 1− ΦBeta


√√√√ ln

(
1
η

)
2m

+ 1− ΦBeta(τ ; a, b); 1 +m+,m−m+




(11)
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In other words, m+ > m̂⇔ pu − E[E] > bhoef . Since Φ is monotonic, it follows that:

Pr[pu − E[Y ] > bhoef ] = Pr[m+ > m̂] = 1− ΦBinom(m̂;m,E[Y ]) (12)

Where ΦBinom is the CDF of the Binomial distribution with the specified parameters.

Similarly, we can compare Clopper-Pearson bound with the Bernstein bound we use µ ≤ x̄+ bbern
where

bbern =

√√√√
2σ2

m

ln
(

2
η

)
m

+
7 ln

(
2
η

)
3(m− 1)

By replacing bhoef with bbern in Prop. 3 we can derive a similar result. We choose a Beta distribu-
tion to simulate the fact that conformity scores such as TPS and APS are bounded. Moreover, we
need bounded scores to be able to apply Hoeffding’s inequality. Any other distribution (after some
transformation that ensures bounded scores) could be used, as long as we can compute its CDF.

In Fig. 11 we show the probability of Hoeffding bound being tighter than Clopper-Pearson bound
(it’s complement is defined in Eq. 12) for X ∼ Beta(2, 2) for different values of m and τ . There is
a choice of τ such that the probability is effectively 0 for all values of m, i.e. the CP bound is always
better. Interestingly, at worst, both in terms of the number of samples m and τ , we see that it is less
than 25%. That is, Clopper-Pearson bound is better on average for all configurations.

To get some additional intuition, instead of the exact Clopper-Pearson bound for p we can use the
following bound derived from a Normal approximation which approximately holds with probability
1− η:

p ≤ p̂+
zη√
m

√
p̂(1− p̂)

where p̂ = 1
m

∑m
i=1 I[xm > τ ] and zη is the 1− η quantile of the standard normal distribution. It is

not difficult to verify that for all values of p̂ ∈ [0, 1] we have that

zη√
m

√
p̂(1− p̂) ≤

√√√√ ln
(

1
η

)
2m

To see this, note that the
√
m term cancels, and for η = 0.05 zη ≈ 1.64,

√
ln( 1

η )
2 ≈ 1.22. Since√

p̂(1− p̂) ∈ [0, 0.5], even in the worst-case 1.64 ·0.5 ≤ 1.22. This analysis again confirms that CP
gives tighter bounds. Prop. 3 can be analogues extended to lower bounds.

Finite sample correction for fixed τ setup. What we showed in Prop. 2 adds MC sample correction
to BinCP with fixed τ computation. We can correct for finite samples in a fixed p setup in a similar
way. First, we compute the τi(p) for each of the calibration points. In an asymptomatically valid
setup this implies that for τi(p) we have Pr[s(xi + ϵ, yi) ≥ τi(p)] ≥ p. To account for finite samples
we reduce p to p↓ (p↓ ≤ p). Again this holds for each calibration with 1/(|Dcal| + k) probability,
and the conformal threshold is (τp, p↓). In the test time the setup is identical to the fixed-τ setup.

D.3 REALISTIC SETUP TO EVALUATE GNN ROBUSTNESS

Concurrent to our work Gosch et al. (2023) shows that transductive setup is flawed to evaluate
GNN robustness. This is since assuming that the clean graph is accessible to the defender during
training, can lead to perfect robustness by simply remembering the clean graph. Many robust- and
self-training GNNs proposed for robustness also exploit this flaw.

To evaluate GNN node-classification for robust CP, following prior works, we assumed the transduc-
tive setup where the clean graph is given during the training and calibration. Specifically, we assume
that the defender trains, and computes the calibration scores on the clean graph. Perturbations in test
nodes are then applied after calibration (in evasion setup). This again is based on similar assumption
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Figure 12: Comparison of coverage [Left] and worst-slice coverage [Right]. Here the STPS refers
to the smooth TPS which is the average of 2000 randomly smooth inferences per point. The results
are for CIFAR-10 dataset and r= 0 unless specified.

made by many other GNN robustness works. Therefore our robust node-classification results are
only representing the comparison of BinCP and other approaches on a sparse binary certificate.

A more realistic setup is the inductive setup where the defender is given a clean subgraph Gtr for
training (and calibration), and the adversary perturbs the rest of the graph upon arrival; i.e. the
defender does not know the clean test graph. In vanilla setup, the conformal guarantee is still valid in
the inductive setting via re-computing calibration nodes (Zargarbashi & Bojchevski, 2024). However
in evasion, robust CP is not as easily applicable by recomputing the quantile and computing upper
bounds on scores, since the calibration nodes are also affected by the adversarial test nodes through
the message passing. Therefore robustness in GNNs under realistic setups is challenging which we
leave it to future works.

E ADDITIONAL EXPERIMENTS

Various models and smoothing maginitudes (σ). In Table 2 we compare the result between SOTA
CAS and BinCP for CIFAR-10 dataset. The results are reported across various data smoothing σ
values, and models trained with different noise augmentations (data augmented during training with
different σ values). We call them smoothing σ, and model σ respectively. In the robustness certificate
for classification, it is considered best practice to use the same σ in both model’s noise augmentation,
and the smoothing process. Similarly, in robust conformal prediction mismatching smoothing and
model σ results in a larger prediction set. Interestingly this adverse effect is much less observed
in BinCP although it remains present. Overall, across all smoothing parameters, model σ values,
coverage rates, and perturbation radii, BinCP consistently outperforms CAS.

Performance on small radii. For completeness, in Fig. 9, we report the performance of BinCP on
small values of r. As Jeary et al. (2024) reports ∼ 4.45 average set size for r = 0.02 (Table 1 in
(Jeary et al., 2024)) our report shows more than twice smaller sets for the same r. As in Table 2 we
observe the same average set size for r ∼ 0.5 (≥ 20× higher radius) for smallest σ = 0.12. As
we discussed, one effect of this eye-catching difference is the inherent robustness of the randomized
smooth prediction. As shown in Fig. 6, the empirical coverage of non-smooth prediction drastically
decreases to 0 for small radii, while in smooth prediction the coverage decreases slowly.

APS score function. Although we observe similar comparison between CAS and BinCP given APS
score function, for completeness we report the performance of both methods in Table 1.

Conditional and class-conditional coverage. Following Romano et al. (2020), we approximated
the conditional coverage gap as the worst coverage among n different slices. Each slice is defined as
Xs = {xi ∈ D : a ≤ xi · v ≤ b} for the random vector v and random scalers a, b (Romano et al.,
2020). For that, we sampled 200 random vectors v and among all the scalers randomly sampled a, b

23



Published as a conference paper at ICLR 2025

Table 1: Comparison of smoothing-based robust CP methods on APS score
1− α = 0.9 1− α = 0.95

CAS BinCP CAS BinCP

σ r Coverage Set Size Coverage Set Size Coverage Set Size Coverage Set Size

0.12

0.06 0.954 1.635 0.946 1.529 0.990 4.022 0.980 2.151
0.12 0.971 1.939 0.963 1.757 0.996 6.435 0.985 2.389
0.18 0.987 2.879 0.978 2.076 1.000 9.745 0.991 2.876
0.25 0.998 7.454 0.986 2.510 1.000 10.000 0.995 3.405
0.37 1.000 10.000 1.000 10.000 1.000 10.000 1.000 10.000
0.50 1.000 10.000 1.000 10.000 1.000 10.000 1.000 10.000
0.75 1.000 10.000 1.000 10.000 1.000 10.000 1.000 10.000

0.25

0.06 0.955 2.108 0.944 1.894 0.986 3.316 0.976 2.677
0.12 0.964 2.309 0.954 2.054 0.989 3.682 0.980 2.857
0.18 0.970 2.495 0.961 2.227 0.993 5.038 0.986 3.181
0.25 0.980 2.900 0.972 2.537 0.997 6.004 0.989 3.444
0.37 0.991 3.795 0.982 3.047 1.000 9.360 0.994 4.035
0.50 0.999 7.430 0.991 3.729 1.000 10.000 0.997 4.850
0.75 1.000 10.000 1.000 10.000 1.000 10.000 1.000 10.000

0.50

0.06 0.956 2.738 0.942 2.479 0.981 3.864 0.975 3.342
0.12 0.962 2.890 0.951 2.635 0.984 4.077 0.978 3.508
0.18 0.968 3.078 0.959 2.801 0.986 4.277 0.981 3.658
0.25 0.973 3.304 0.966 2.994 0.989 4.546 0.984 3.899
0.37 0.980 3.684 0.974 3.302 0.993 5.193 0.988 4.300
0.50 0.986 4.153 0.979 3.663 0.996 5.868 0.991 4.733
0.75 0.995 5.441 0.989 4.584 0.999 8.026 0.995 5.542

from the set {xi · v,xi ∈ D}. We report the result over 100 different calibration samplings. In each
iteration of the experiment, we exclude the slices with less than 200 points of support.

BinCP has smoothing, binarization and accounting for perturbation radius. For a better intuition we
observe the effect of each step separately: vanilla TPS (without smoothing) as the baseline score,
vanilla smooth TPS (labeled as STPS) which is an average of TPS scores over randomized sampled
(same as CAS), BinCP without robustness (set r = 0) which reflects the effect of binarization (we
did not correct for finite sample due to validity in vanilla setup), and robust CP via BinCP. As shown
in Fig. 12, the smooth model has a better worst-slice coverage than vanilla TPS. Though binarization
although the average worst-slice coverage remains the same, there is a slight decrease in the variance
of this metric. Note that sampling correction and making CP robust increases the empirical coverage
guarantee, therefore the worst slice coverage is increased due to the inherent increase in marginal
coverage.

We also reported the result of the class-conditional coverage in Fig. 13. Empirically in almost all
classes, BinCP is closer to the nominal guarantee compared to normal smoothing. Ultimately both
smooth prediction and BinCP are not comparable with vanilla TPS.

Comparison with RSCP+. Yan et al. (2024) shows a flaw of RSCP (Gendler et al., 2021) indicating
that the score function is not corrected for finite sample estimation. They show that by adding finite
sample correction to RSCP, it becomes significantly inefficient and produces trivial sets C(xn+1) =
Y . They remedy that by designing a ranking-based transformation on top of the given score function
which defines a new score as

sppt(x, y) = σ

(
1

T |Dtune|
rank(s(x, y); {s(xj , yj)}(xj ,yj)∈Dtune

)− b

T

)
(13)

Where Dtune is a holdout tuning index, T is the temperature parameter, b is a bias parameter,
and σ is the sigmoid function. The original experiment from Yan et al. (2024) has several issues,
which we resolved and compared with it: (i) The scores have possible ties; i.e. two different data
points can have the same score value. To remedy that we added an unnoticeable random number
δ ∼ Uniform[0, 1/|Dtune|] to the scores. (ii) The tuning set and the calibration set in the exper-
iments are significantly large. Yan et al. (2024) use 5250/10000 test datapoints as a tuning and
calibration set. This unrealistic holdout labeled set contradicts the sparse labeling assumption. In
our reproduction of their results we used a total of ∼ 380 datapoints where 200 of them are for
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Figure 13: Comparison of methods in class-conditional coverage for all classes of CIFAR-10, note
that here BinCP is used without sampling correction. That is because the correction slightly increases
empirical coverage which can be misleading.

0.06 0.25 0.50 0.75
r

0.94

0.96

0.98

1.00

C
ov

er
ag

e

0.06 0.25 0.50 0.75
r

2.5

5.0

7.5

10.0

A
vg

.S
et

Si
ze

RSCP+(PTT) BinCP BinCP(PTT)

Figure 14: Comparison between BinCP and RSCP+ (PPT, Eq. 13) and BinCP with Eq. 13. The result
is on CIFAR-10 dataset with σ = 0.25.

tuning. As shown in Fig. 14, BinCP still outperforms RSCP+(PPT). As the score function in Eq. 13
is also a valid score, we can use BinCP on top which shows slightly better efficiency for larger radii
compared to BinCP combined with TPS score. Here we set b = 1 − α, and T = 0.001, and report
the results on 2000 MC samples. The reported result is on CIFAR-10 dataset.
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1− α = 0.9 1− α = 0.95
CAS BinCP CAS BinCP

Model σ Data σ r Coverage Set Size Coverage Set Size Coverage Set Size Coverage Ave Set Size

0.12 0.12 0.06 0.950 1.581 0.942 1.483 0.987 3.353 0.976 2.009
0.12 0.968 1.839 0.959 1.671 0.996 6.731 0.986 2.387
0.18 0.985 2.761 0.974 1.946 0.999 9.417 0.990 2.666
0.25 0.997 7.078 0.985 2.369 1.000 10.000 0.994 3.213

0.25 0.06 1.000 10.000 0.943 4.911 1.000 10.000 0.977 6.500
0.12 1.000 10.000 0.953 5.328 1.000 10.000 0.984 6.880
0.18 1.000 10.000 0.961 5.711 1.000 10.000 0.991 7.366
0.25 1.000 10.000 0.974 6.323 1.000 10.000 0.994 7.628
0.37 1.000 10.000 0.988 7.133 1.000 10.000 0.998 8.387
0.50 1.000 10.000 0.996 7.990 1.000 10.000 0.999 9.049
0.75 1.000 10.000 1.000 10.000 1.000 10.000 1.000 10.000

0.50 0.06 1.000 10.000 0.950 8.836 1.000 10.000 0.980 9.310
0.12 1.000 10.000 0.960 8.985 1.000 10.000 0.984 9.402
0.18 1.000 10.000 0.965 9.075 1.000 10.000 0.986 9.450
0.25 1.000 10.000 0.974 9.222 1.000 10.000 0.990 9.535
0.37 1.000 10.000 0.983 9.403 1.000 10.000 0.996 9.656
0.50 1.000 10.000 0.991 9.557 1.000 10.000 0.999 9.789
0.75 1.000 10.000 0.999 9.820 1.000 10.000 1.000 9.947

0.25 0.12 0.06 0.954 2.570 0.937 2.232 0.991 7.016 0.968 2.992
0.12 0.969 3.049 0.949 2.395 0.998 9.042 0.976 3.301
0.18 0.984 4.573 0.956 2.562 1.000 9.845 0.981 3.567
0.25 0.999 9.510 0.969 2.908 1.000 10.000 0.986 3.895

0.25 0.06 0.953 2.051 0.941 1.836 0.984 3.307 0.974 2.551
0.12 0.960 2.183 0.950 1.951 0.991 4.077 0.981 2.832
0.18 0.969 2.411 0.959 2.126 0.994 5.242 0.984 3.054
0.25 0.979 2.790 0.969 2.394 0.997 6.749 0.988 3.295
0.37 0.991 3.867 0.981 2.858 1.000 9.660 0.994 3.888
0.50 0.999 7.824 0.989 3.480 1.000 9.948 0.996 4.564

0.50 0.06 1.000 10.000 0.947 6.762 1.000 10.000 0.979 7.837
0.12 1.000 10.000 0.956 7.024 1.000 10.000 0.983 8.016
0.18 1.000 10.000 0.960 7.212 1.000 10.000 0.988 8.221
0.25 1.000 10.000 0.969 7.523 1.000 10.000 0.992 8.430
0.37 1.000 10.000 0.981 7.935 1.000 10.000 0.996 8.763
0.50 1.000 10.000 0.990 8.350 1.000 10.000 0.998 9.040
0.75 1.000 10.000 0.997 9.008 1.000 10.000 0.999 9.494

0.50 0.12 0.06 0.948 3.701 0.923 3.060 0.994 8.485 0.965 4.196
0.12 0.961 4.230 0.929 3.159 0.999 9.564 0.971 4.457
0.18 0.980 5.843 0.937 3.330 1.000 9.960 0.973 4.538
0.25 0.998 9.329 0.947 3.550 1.000 10.000 0.977 4.753

0.25 0.06 0.943 3.152 0.925 2.792 0.990 7.254 0.969 4.013
0.12 0.951 3.417 0.933 2.929 0.995 7.818 0.973 4.172
0.18 0.961 3.771 0.942 3.112 0.996 8.476 0.976 4.276
0.25 0.970 4.095 0.948 3.246 0.998 8.916 0.978 4.416
0.37 0.987 5.773 0.959 3.586 1.000 9.958 0.984 4.753
0.50 0.999 9.121 0.970 3.952 1.000 10.000 0.988 5.171

0.50 0.06 0.957 2.767 0.943 2.428 0.984 3.995 0.974 3.288
0.12 0.964 2.948 0.949 2.558 0.986 4.165 0.977 3.405
0.18 0.968 3.071 0.955 2.673 0.988 4.351 0.980 3.542
0.25 0.974 3.272 0.962 2.835 0.991 4.850 0.983 3.806
0.37 0.982 3.721 0.973 3.182 0.993 5.160 0.986 4.044
0.50 0.987 4.215 0.980 3.524 0.997 6.439 0.990 4.511
0.75 0.996 5.708 0.987 4.285 1.000 9.287 0.994 5.316

Table 2: Comparison of CAS and BinCP for model trained with various smoothing σ, and input data
with different smoothing σ. Results are for CIFAR-10 dataset.
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