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ABSTRACT

Recent work on visual learning in people finds that human infants often experi-
ence extended bouts of experience with a small number of familiar objects (e.g.,
toy ducks at home), with a very long tail of less frequent exposures to less familiar
objects (e.g., real ducks at the park). When facing this type of distribution shift
between toy ducks and real ducks, learners trying to build coherent representa-
tions that bridge these two distributions can leverage at least two distinct types
of learning signals: (1) categorical learning signals, which explicitly assign two
inputs to the same class (e.g., hearing adults label both toy ducks and real ducks
with the same word, “duck;” and (2) perceptual learning signals, which implicitly
assign two inputs to the same class because of perceived similarities (e.g., both
toy ducks and real ducks have bills, wings, and webbed feet). In this paper, we
examine how these two types of learning signals interact to impact a learner’s
cross-domain classification performance, through the lens of feature alignment as
an interim goal for the learner. We propose new cluster-based metrics to quan-
tify feature alignment in an infant-inspired two-domain learning problem, and we
describe a series of experiments that systematically vary these learning signals to
observe impacts on feature alignment and overall learning outcomes.

1 INTRODUCTION

Human infants are powerful learners. A slew of recent work in developmental psychology finds that
the distributions of learning experiences that infants receive in their daily lives are often highly non-
uniform in content, space, and time, which raises interesting questions about how robust learning
can arise from such distributions. In the case of visual learning about object categories, one salient
distributional property is that infants often experience extended bouts of experience with a small
number of familiar objects (e.g., toy ducks at home) Herzberg et al. (2022), with a very long tail of
less frequent exposures to less familiar objects (e.g., real ducks at the park).

This particular pattern is even more interesting because of the substantial visual differences in the
two types of experiences—a distribution shift between toy ducks and real ducks. Learners trying to
build coherent representations that bridge these two distributions can leverage at least two distinct
types of learning signals: (1) Categorical learning signals, which explicitly assign two inputs to the
same class (e.g., hearing adults label both toy ducks and real ducks with the same word, “duck;”
and (2) Perceptual learning signals, which implicitly assign two inputs to the same class because of
perceived similarities (e.g., both toy ducks and real ducks have bills, wings, and webbed feet).

In ML research on distributions shifts, e.g., in domain adaptation, it is often assumed that a learner
can succeed in bridging two domains by developing features that are aligned across domains. Both
categorical learning signals and perceptual learning signals can contribute to feature alignment, but
it is not always obvious how the two signals contribute, and especially how they might interact to
strengthen or weaken learning outcomes. In this paper, we aim to disentangle and characterize these
learning processes in the context of an infant-inspired distribution shift. Our contributions are:

• We propose new cluster-based metrics to quantify feature alignment across category and domains
in a two-domain learning problem, particularly to look at per-category density as well as per-
category and full-domain overlap.
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• Through our first set of experiments, we show that varying the perceptual learning signal does not
influence the network’s ability to effectively classify unseen images from both datasets. In fact,
the performance remains comparable for many different configurations of the feature space.

• In our second experiments, we show that there is a key difference in the way the network treats
inconsistent perceptual vs category signals. While the network learns to apply the inconsistent
labelings to unseen images, the network ignores inconsistent perceptual labelings.

• Third, we show that the network learns some form of relationship between corresponding classes
from the two datasets even when no such information has been presented to the network.

2 INFANT-INSPIRED DISTRIBUTION SHIFT

Humans are experts at recognizing and categorizing thousands of object classes very effectively and
robustly. Developmental psychology research have suggested that the visual experience of infants
plays a crucial role for learning to distinguish between visual categories Yurovsky et al. (2013).
Specifically, these studies suggest that the visual experience infants get when playing with objects
provides the foundation on which robust object recognition abilities are developed. A recent line
of research has looked at identifying key properties of an infant’s visual experience when they are
playing with objects — they find that repeated experiences with a small number of individual objects
forms a major part of their visual experience Herzberg et al. (2022). Further research suggests that
these patterns of visual experience with individual objects during playing is seen in subsistence
communities as well Casey et al. (2022).

When playing with their toys and other household objects, infants gain a lot of experience with these
individual objects. They see each object from a large number of viewpoints and under many kinds of
varying conditions. In contrast, adult visual experience of the world is filled with numerous objects,
but the range of viewpoints from which each object is seen is very limited. On the other hand,
infants play with a relatively small number of objects, while the outside world is filled with different
kinds of object instances. In machine learning terms, this can be characterized as a distribution
shift — while the infant’s visual experience is viewpoint-rich, but limited in instances, adult visual
experience is more limited in viewpoints, but we see a much larger number of instances.

This type of distribution shift is highly relevant not just for understanding human learning but also
for the study of any learning agent that is embodied. The reason that infants receive an instance-
limited and viewpoint-rich distribution of visual experience is due to the constraints and affordances
of having a physical body. While only a small number of objects are within reach (relative to all that
exist in the world), an embodied agent can get lots of experience with each of those nearby objects.

2.1 DATASETS

We now describe the datasets we use to operationalize the distribution shift. To represent the charac-
teristics of infant visual experience, we use the Toybox dataset (Wang et al., 2018). To represent the
instance-rich visual experience of the world, we curate a dataset using images from the ImageNet
(Deng et al., 2009) and the MS-COCO (Lin et al., 2014) datasets. Specifically, we extract a set
of images from these datasets corresponding to the classes in the Toybox dataset. We call this the
IN-12 dataset.

Toybox dataset The Toybox dataset contains short egocentric videos of objects being manipulated
in different ways. The dataset contains 360 objects from 12 categories; each category is among the
early learned nouns among children in the US (Fenson et al., 2007). The categories in the dataset
can be grouped into 3 super-categories: vehicles (airplanes, cars, helicopters, trucks), animals (cat,
duck, giraffe, horse) and household objects (balls, cups, mugs, spoons).

We use the Toybox dataset in our experiments for the following reasons: (1) The fact that the object
categories correspond to the early learned nouns in children increases the developmental relevance
of the object set considered. (2) The videos in the dataset are captured using head-mounted cameras.
Additionally, the videos capture different kinds of object manipulations, such as rotation and random
manipulation (called hodgepodge in the dataset). Thus, for each object, there exists a wide range of
viewpoints from which that object is seen.
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(a) example of infant-like distribution shift for visual object recognition

(b) distribution shift in the Toybox-IN12 object recognition task

Figure 1: The Toybox → IN-12 distribution shift problem. The distribution shift mimics the distri-
bution shift encountered in an infant’s visual experience.

IN-12 dataset We have curated the IN-12 dataset from the ImageNet (Deng et al., 2009) and the
MS-COCO (Lin et al., 2014) datasets. Our target images are extracted from the ImageNet and
MS-COCO datasets for the 12 Toybox classes. To do this, we first manually extract all ImageNet
classes which correspond to the 12 categories in Toybox. From among these extracted candidate
classes, we select a few synsets which describe the category at a general level. For example, we
select the ’car’ class and disregard the ’police car’ category. Then, from these chosen synsets, we
extract 1600 images per class to form our target dataset. While selecting the images, we ensured
that each candidate synset was equally represented among the selected images. We have provided
the list of the selected ImageNet synsets for each Toybox class in the appendix. However, we
found that the chosen synsets for giraffes and helicopters did not have enough images, so for these
classes, we added images from the MS-COCO dataset. This combined dataset containing images
from ImageNet and MS-COCO for the Toybox classes, which we call the IN-12 dataset, serves as
our target dataset.

2.2 COMPARISON WITH OTHER DISTRIBUTION-SHIFT DATASETS

Despite the success of deep learning methods at several computer vision tasks, these methods still
remain susceptible to distribution shift, i.e. they fail to generalize when the test distribution dif-
fers from the training distribution (Torralba & Efros, 2011). Thus, addressing the distribution shift
problem has received a lot of focus in recent years. Several visual tasks exist which look at han-
dling different kinds of distribution shift; within the image classification paradigm, tasks like do-
main adaptation (Ben-David et al., 2010) and domain generalization (Blanchard et al., 2011) look at
bridging this problem in different ways.

Several datasets have been proposed that consider different kinds of distribution shift. Datasets such
as Office-31 (Saenko et al., 2010), Office-Caltech (Gong et al., 2012), PACS (Li et al., 2017), Office-
Home (Venkateswara et al., 2017), VisDA-2017c (Peng et al., 2017), DomainNet (Peng et al., 2019),
ImageNet-R (Hendrycks et al., 2021)are some of the datasets commonly used in distribution shift
problems. However, the distribution shift we consider in this paper is qualitatively very different
from those considered previously. For example, the Office-31 dataset handles differences in camera
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and image source. Similarly, datasets like PACS and DomainNet consider changes in the rendition
styles of the images (clipart, catoon, painting, etc.). However, these are quite different from the
distribution shift we are considering in this paper. The distribution shift in the VisDA-2017c dataset
is closer to what we are considering in this paper; however, a key distinction is that the source
dataset in the VisDA-2017c dataset contains 2d renderings of simple 3d models. As such, they do
not capture the rich variety of texture and color as seen during an infant’s visual experience.

3 OUR APPROACH

In our experiments, we want to investigate the interactions between categorical and perceptual learn-
ing signals in shaping the feature space and enabling effective classification of images belonging to
both datasets. We do this by training convolutional neural networks (CNNs) (LeCun et al., 1998)
jointly using images from both datasets. Through our experiments, we systematically vary the na-
ture of the category and perceptual signals used to train the network. Category signals are presented
as ground truth labels to the network and as such are used to compute the cross-entropy loss for
the training images. In different experiments, we vary whether the category signal given to images
from the two datasets are consistent or not. Specifically, the different settings encode answers to
the following question: given a Toybox car image and an IN-12 car image, does the ground truth
knowledge presented to the network classify both images as cars? In the Consistent setting, the
answer is yes. In the Inconsistent setting, the answer is no — in this case, the labels for the IN-12
images are shuffled so all IN-12 cars would be labeled the same as some other Toybox class, say
giraffes. In the Different setting, Toybox and IN-12 cars have distinct labels attached to them and
IN-12 images are not mislabeled. In the Agnostic setting, the network has no knowledge about the
relative correspondences of the Toybox and IN-12 images.

The perceptual signals, on the other hand express equivalences between groups of images from the
two datasets. During training, we utilize the perceptual signal as a means of encouraging alignment
between two sets of images, one from the Toybox dataset and the other from the IN-12 dataset. In
this case, the different settings encode answers to the question: over which sets of images from the
two datasets does the equivalence exist? In the None setting, no equivalence is encouraged between
any sets of images between the two datasets. In the Global setting, the network is encouraged to
align the feature-space representations of the Toybox images in a minibatch with the representations
of the IN-12 images in the minibatch. In the Class setting, the network tries to align images from
the corresponding classes together in the feature space. The exact form of the alignment signals are
discussed in Sections 4 and 5. Finally, in the Diverged setting, the network is explicitly encouraged
to separate the two datasets in the feature space. Fig 2 provides a comprehensive overview of the
variations in the learning signal that we use in our experiments and which experiments contain which
variations. More details about the exact form of both the category learning signal and the perceptual
learning signal are presented in the relevant sections later. Note that in the (*) case shown in the
table, the learning signal explicitly tries to align different categories from the two datasets in the
feature space.

Figure 2: We train our model jointly using images from the Toybox and IN-12 datasets. Two kinds of
learning signals are presented to the model during training: category signals and perceptual signals.
This table shows the different variants of both signals used in our experiments as well as which
experiments they are used in.
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3.1 RECOGNIZING PATTERNS IN THE FEATURE SPACE

We are interested in investigating the local structure that develops in the feature space of the network
during training. To do this, we use the UMAP technique (McInnes et al., 2018) to reduce the
dimensionality of the feature space. UMAP is a manifold learning technique that tries to find low-
dimensional embeddings for each data point while maintaining the local structure of the dataset as
seen in the high-dimensional space. UMAP is commonly used to visualize the local structure in
high-dimensional data in several scientific applications (Sun et al., 2022). Next, we use the UMAP
embeddings to calculate different metrics which capture different properties of the feature space.

Preprocessing Before computing the metrics, we first normalize the UMAP embeddings to fit
them in the range [-1, 1]. The purpose of this step is to make the calculated metrics from UMAP
embeddings comparable across different models.

Outlier Removal The calculated metrics are often sensitive to the presence of outliers in the
dataset, thus necessitating the detection and removal of these outliers. We want to clarify here
that the outlier detection steps are done for every category for each dataset separately. For this, after
normalizing the embeddings, we build a minimum spanning tree for the relevant datapoints. Subse-
quently, we remove some of the longer edges of this MST, thus leading to the formation of several
disconnected components. We then select the points in the largest of these connected components
as the core cluster points for which the metrics are calculated. We apply an adaptive threshold to
select which edges will be dropped from the minimum spanning tree. Specifically, we calculate q2.5
and q97.5 and set the threshold as thresh = q97.5 + 1.5 ∗ (q97.5 − q2.5). Any edge that has a weight
greater than this threshold is dropped from the MST. This threshold ensures that less than 5% of the
edges are dropped.

Measuring density Given the core datapoints for a particular class and dataset, we define the
density of that embedding set as the quotient between the number of corepoints remaining after
pruning and the area of the convex hull for the corepoints.

Measuring overlap We use kernel density estimation to measure the overlap between two sets
of datapoints. Specifically, given two sets of datapoints C1 = {x1, x2, . . . , xn} and C2 =
{y1, y2, . . . , yn}, we first fit a kernel density estimator to C1, f1(x) given by:

f1(x) =
1

n

n∑
i=1

K(
x− xi

h
)

where K is the kernel and h is the width of the kernel, known as the bandwidth. Finally, given the
learned density model, we then define the log likelihood of points C2 under the density model f1(x)
as D2|1 =

∏n
i=1 p(yi|f1). Similarly, we construct another measure D1|2 in the reverse direction. We

then compute the mean of these two values and use this as a measure for the overlap between the two
clusters. In our experiments, we have used the Gaussian kernel to compute the kernel densities. The
kernel density estimation method is sensitive to the bandwidth parameter. We performed a 5-fold
cross-validation on the training set to select the optimal bandwidth value.

4 EXPERIMENT 1

In Experiment 1, we fix the category learning signal — the network has access to the correct class
labels for images from both datasets. We use a joint supervised training framework: we train a
CNN using a supervisory signal that evaluates the network’s ability to classify training images from
both datasets. We note here that during the forward propagation through the network, each mini-
batch contains equal number of images from each dataset. We empirically found that this approach
generalizes better than separate forward propagations for each dataset.

In addition to the category signal, we use additional perceptual signals to encourage or discourage
alignment between the features in the representation space. We systematically vary the perceptual
signal to encourage different kinds of organization of the feature space. The variations on the learn-
ing signal we have are described below:
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• TB + IN-12: This setting is the baseline setting where we do not use any kind of additional
learning signal other than the joint supervisory signal. Specifically, the loss function used to train
the network is given by Ljoint = lce tb + lce in12, where lce tb is the cross-entropy loss for the
Toybox images and lce in12 is the cross-entropy loss for the IN-12 images in a minibatch.

• TB + IN-12 + Aligned: In this setting, we encourage the CNN to learn representations where
the representations for images from the Toybox and IN-12 dataset are aligned. We do this by
computing a discrepancy metric between images from the two datasets and minimizing this metric
in addition to lj . Specifically, we use the maximum mean discrepancy (mmd) metric (Gretton
et al., 2012) between the feature space representation of images from the two domains. The mmd-
loss function we use in our experiments is given by

lmmd =
1

n2
s

∑
x∈Xs

∑
y∈Xs

k(x, y) +
1

n2
t

∑
x∈Xt

∑
y∈Xt

k(x, y)− 2

nsnt

∑
x∈Xs

∑
x∈Xt

k(x, y)

where Xs are the set of images from Toybox and Xt are the set of images from IN-12 in a mini-
batch and ns = |Xs|, nt = |Xt|. We then minimize a combined loss L = Ljoint+γlmmd to train
the network.

• TB + IN-12 + Class-aligned: In this setting, we modify the mmd loss function to encourage
explicit class alignment between corresponding classes from the two domains. The specific form
of the loss function is given by:

lcmmd =
1

n2
sc

∑
x∈Xsc

∑
y∈Xsc

k(x, y) +
1

n2
tc

∑
x∈Xtc

∑
y∈Xtc

k(x, y)− 2

nscntc

∑
x∈Xsc

∑
x∈Xtc

k(x, y)

where Xsc = {xi ∈ Xs|yi = c}, Xtc = {xi ∈ Xt|yi = c}, nsc = |Xsc| and ntc = |Xtc|.
The combined loss function used to train the network is given by L = Ljoint + γℓccmmd, where
ℓccmmd =

∑
c∈C l

c
mmd.

• TB + IN-12 + Diverged: Here, we put pressure on the network to learn representations so it is
possible to distinguish between images from the two datasets in the feature space using a multi-
layer perceptron. We used a separate classification head that predicts which dataset each image
belongs to using a multi-task learning approach. Given an image-source pair (x, y), where y ∈
{Toybox, IN-12}, the classification head produces an output y′. During training, in addition to the
classification loss, we also compute the loss ℓdomain =

∑
(x,y)∈D −y log(y′)−(1−y) log(1−y′).

The combined training loss thus is given by L = Ljoint + ℓdomain.

• TB + IN-12 + Class-Diverged: In this setting, we want to encourage the feature vectors for each
class-domain pair to be distinguishable in the feature space. This is relatively simpler to do than
the previous settings. We do this by considering a 24-way classification task, where each output
node corresponds to a specific category-domain pair.

4.1 ARCHITECTURE AND EXPERIMENTAL SETUP

We use a ResNet-18 He et al. (2016) backbone in our experiments. We initialize the network with
the Glorot initialization (Glorot & Bengio, 2010) and train the networks from scratch on each of the
different experimental settings. We use the Adam optimizer (Kingma & Ba, 2014) for training the
network. In every setting, we train the networks for 100 epochs with 500 minibatches per epoch.
During training, we linearly increase the learning rate for the first 2 epochs of training and then decay
the learning rate using a cosine decay schedule (Loshchilov & Hutter, 2016) without any restarts.

Other than these default settings, we needed some modifications for the TB+IN-12+Class-Diverged
and the TB+IN-12+Diverged setting. In the TB+IN-12+Diverged setting, we add a separate MLP
with 1000 hidden neurons to correctly recognize which dataset each image belongs to. The loss
function in this case is a linear sum of the cross-entropy losses and the logistic loss for identifying
the domain. For the TB+IN-12+Class-Diverged setting, we have 24 output classes instead of 12, so
the dimensions of the last linear layer were changed. 1

1Our code can be accessed at anonymized gdrive link.
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4.2 RESULTS

Fig 3 shows our results for these set of experiments. In addition to the experiments in the joint
supervised setting, we also report accuracy and metric values for the models which were trained
separately on the Toybox and IN-12 datasets. We note that all the joint supervised models outperform
the model trained solely on the Toybox dataset.

Looking at the joint supervised experiments, we see that all the different models achieve comparable
accuracy on both the datasets. This shows that the CNN models are powerful enough to organize the
feature space in different ways without any major drop in the accuracy. Secondly, we see that for all
the jointly trained models, the average cluster density for the IN-12 images is much higher than that
for the Toybox images. Thirdly, we can look at the average overlap between the classes to gauge how
well images from different domains overlap in the feature space. For example, the models (TB +
IN-12 + Diverged, TB + IN-12 + Class-Diverged) for which we encouraged the network to push the
two datasets apart show very large negative values for the metric. In contrast, the models where we
encourage alignment between the two domains show large positive values, showing that the features
for clusters for different classes effectively overlap in these cases. Similarly, the networks that were
trained individually on the two datasets show values in between these two extremes; this is likely
due to the distribution gap between the two datasets. It is a bit surprising that the TB + IN-12 model
shows such a low value for the overlap measure despite the presence of consistent category signals
for both datasets. The network seems to leverage the similarity between images from each dataset
to group them separately.

Figure 3: Results for Experiment 1

5 EXPERIMENT 2

In Experiment 1, we saw that the network generalizes to unseen images from both datasets almost
comparably, irrespective of what kind of perceptual learning signal is used to train the network.
This suggests that generalization performance is driven strongly by the category learning signals
presented to the network. In the current set of experiments, we seek to investigate whether the net-
work can learn to generalize from inconsistent class pairings between the two datasets. Specifically,
we randomly shuffle the labels of the IN-12 images, so that IN-12 cars now correspond to some
other category in the Toybox dataset, such as cups. How well can the network be trained in the case
of such inconsistent class labels? Previous work Zhang et al. (2021) has shown that deep networks
can fit random labelings of the training images. However, we are not interested in how well the
network memorizes the inconsistent labels. Instead, we are interested in answering the question:
to what extent can the network predict these inconsistent class labels for unseen images from the
two datasets? Further, we seek to understand how the presence(or absence) of perceptual learning
signals affects generalization performance in this case. To this end, we vary the perceptual learning
signals as shown in Fig 2. The different experimental settings are:

• TB + IN-12R: This is the baseline setting for this set of experiments. In this setting, we randomly
shuffle the IN-12 labels and train the network with the inconsistent labels. This setting is similar
to the TB + IN-12 setting, except that the IN-12 labels are randomized.

• TB + IN-12R + Aligned: In this setting, the network receives a perceptual signal to align the
feature vectors of all Toybox images in a minibatch with those of the IN-12 images.

• TB + IN-12R + Class Aligned: Here, the perceptual signal given to the network tries to align the
images associated with a particular label. Note that in this case, since the IN-12 labels have been
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randomized, the class alignment signal tries to align the inconsistent class pairings in the feature
space. For example, if the shuffling associated IN-12 cars with Toybox cups, the learning signal
would try to align Toybox cups with IN-12 cars in the feature space.

The experiments here also have a similar setting as those in the previous section, i.e. we train
networks with a ResNet-18 backbone using the Adam optimizer and following similar learning rate
schedules as in the previous set of experiments.

Results Fig 4 shows our results for Experiment 2. We see that there exists a key difference be-
tween how the network treats inconsistent category vs perceptual signals. In the first variant, despite
the inconsistencies in the class labels, the network successfully applies the inconsistent labels to
previously unseen images. The same pattern is seen in the second variant (TB + IN-12 + Aligned)
too. However, in the third variant, where the network gets the inconsistent perceptual signal, there
is a small drop in performance and large drop in the overlap between the two domains, showing that
the network effectively ignores the perceptual learning signal.

Figure 4: Experiment 2 Results

6 EXPERIMENT 3

In the previous experiments, we have considered the cases where the network during training had
some information about the correspondence between images from the Toybox and the IN-12 dataset.
In Experiment 1, the correspondence was consistent, i.e. both Toybox and IN-12 cars were labeled
as cars, whereas in experiment 2, it was inconsistent, i.e. Toybox cars and IN-12 ducks were labeled
as cars. In experiment 3, we look at the case where there is no known correspondence between the
Toybox and IN-12 images, i.e. given an image of a car from the Toybox dataset and another from
the IN-12 dataset, the network has no information about whether the ground truth labels for the
images are consistent or not. Are images from corresponding classes in the two datasets near each
other in the feature space? Does the network, during training, identify similarities in the semantic
information in images from the two domains and put them closer together?

Experimental Setup The experiments, in this case also follow the joint supervised training frame-
work. However, in this case, we have two classifiers, one for each dataset. During forward propaga-
tion, each minibatch contains images from both the datasets. However, after obtaining the features
from the ResNet-18 backbone, the minibatch is split — one classifier is fed the images from Toy-
box and its output is used to calculate the classification loss on the Toybox dataset, while the other
classifier is fed the IN-12 images and its output is used to calculate the loss on the IN-12 dataset.
Because the classifiers are separate for the two datasets, the network learns to organize the feature
space so the Toybox images can be classified effectively and the IN-12 images can be classified
effectively, but the network has no information about the relative correspondence between Toybox
and IN-12 images. How is the feature space organized in this case? Does the network organize
IN-12 images for a particular class close to Toybox images for that class? To measure this, after
training, we measure the accuracy of the Toybox classifier to classify IN-12 test images. Note that
these images are from the test set and were not presented to the network at any point during training.
Additionally, the Toybox classifier was never trained using labels for the IN-12 images.

In this setting too, we are interested in the effect of perceptual signals in the final performance. To do
this, we do a variant of this experiment where there is an additional loss to perform global alignment
between all Toybox images in a minibatch and all IN-12 images in a minibatch. Note that here we
are performing global alignment and the network does not know the correspondences between the
two sets of classes, only that they belong to the same label set.
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Results Table 5 shows our results for experiment 3. Looking at the first row, we see that the
Toybox classifier gets 42% accuracy on the IN-12 test images, despite the classifier never having
been trained using the IN-12 labels at all. This indicates that the neural network automatically
learns some correspondence between the Toybox and IN-12 images for the same class. This is
also seen in the overlap value, which achieves a much higher value than previous models where
alignment was not part of the training signal. Looking at the second row, we see that the accuracy of
the Toybox classifier on the IN-12 images increases further when a global alignment signal is given
to the network. Looking at the overlap value, we see that the metric achieves a small positive value,
showing some non-trivial overlap between the two datasets.

Figure 5: Results for Experiment 3

7 RELATED WORK

Domain Alignment Aligning different domains has been a popular approach addressing the distri-
bution shift ML problem. Ben-David et al. (2010) showed that divergence between the two domains
together with empirical error on the source domain is a good approximation of the target error; sub-
sequently, many approaches use this idea to address distribution shift. One popular approach has
been to use a distance metric based on the Maximum Mean discrepancy (Gretton et al., 2012); it is
a distance measure between two distributions defined as the distance between the mean embeddings
of the distribution in an RKHS. This metric has been used in several different variants to address
problems of domain adaptation (Long et al., 2015; 2017; Ghifary et al., 2014; Kang et al., 2019) and
domain generalization (Li et al., 2018).

Connections between deep learning and cognitive science Our work is related to other recent
work that leverage recent advances in deep learning to address important questions in the develop-
ment of visual abilities in human infants. Bambach et al. (2018) demonstrated that CNNs learn better
representations when they are trained on the visual experience of infants vs toddlers. In a similar
vein, Stojanov et al. (2019) considered the problem of catastrophic forgetting in ML systems and
showed that naturalistic patterns of repetition in an infant’s visual experience significantly reduce
the effect of catastrophic forgetting for visual object recognition. Orhan et al. (2020) looked at the
problem of learning representations from videos from infants’ play sessions and found that generic
self-supervised learning methods can learn powerful high-level visual representations from this data.
More recent work (Sanyal et al., 2023) has shown that an infant’s natural visual experience presents
stronger signals for learning representations than models which have no access to these experiences.

There is also research that takes insights from human visual development to try to build more ro-
bust and generalizable models of vision. For example, humans have a shape bias in their visual
learning (Landau et al., 1988), and recently, Stojanov et al. (2021) showed that incorporating shape
bias into the latent space of a vision system drastically improves generalizability in few-shot learn-
ing scenarios. Advances in ML have also helped address important questions about human visual
development. Vogelsang et al. (2018) proposed a new theory to explain deficits in configural face
processing in children born with congenital cataracts. Other work (Dobs et al., 2019; Jang & Tong,
2021) have used CNNs to investigate face perception and object recognition abilities in humans.

8 CONCLUSION

In this work, we investigate howw categorical and perceptual learning signals interact and enable the
learning of representations which bridge the distribution gap between the two datasets. We show that
the feature space in CNNs can be shaped in different ways without influencing the accuracy on the
two datasets. We further show that CNNs learn to apply inconsistent labelings to unseen images from
both datasets. Finally, we show that CNNs learn some relationship between corresponding classes
from the two datasets even when no such information has been presented through the learning signal.
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