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Abstract

Pretraining transformers are generally time-
consuming. Fully quantized training (FQT) is
a promising approach to speed up pretraining.
However, most FQT methods adopt a quantize-
compute-dequantize procedure, which often leads
to suboptimal speedup and significant perfor-
mance degradation when used in transformers
due to the high memory access overheads and
low-precision computations. In this work, we pro-
pose Jetfire, an efficient and accurate INT8 train-
ing method specific to transformers. Our method
features an INT8 data flow to optimize memory
access and a per-block quantization method to
maintain the accuracy of pretrained transformers.
Extensive experiments demonstrate that our INT8
FQT method achieves comparable accuracy to
the FP16 training baseline and outperforms the
existing INT8 training works for transformers.
Moreover, for a standard transformer block, our
method offers an end-to-end training speedup of
1.42x and a 1.49x memory reduction compared to
the FP16 baseline.

1. Introduction
Recently, large-scale pre-trained transformer-based models
such as GPT-4 (OpenAI, 2023), LLAMA (Touvron et al.,
2023), and PaLM (Anil et al., 2023) have attained signif-
icant breakthroughs in multiple fields, including natural
language processing and computer vision. However, pre-
training transformers from scratch are extremely resource-
intensive since they require numerous computations and
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Figure 1. Visualization of INT8 data flow. (a) Floating point train-
ing with FP data flow. (b) Existing works on quantized training
with FP data flow. (c) Ours INT8 training forward process, with
INT8 data flow. X refers to the activation, and S refers to the
corresponding quantization scale factors.

high-bandwidth memory for updating weights and access-
ing huge amounts of training tokens, respectively.

To accelerate the pre-training of transformers, fully quan-
tized training (FQT) has emerged as a promising technique
to speed up both the forward and backward passes. FQT
integrates quantizers and dequantizers into the original full-
precision computational graph. In this way, the expensive
floating-point operations during training are replaced with
cheaper low-precision alternatives, and activations saved for
the backward pass are stored with fewer bits. Thus, both
computations and memory bandwidths are largely reduced.
Typical FQT works include (Banner et al., 2018; Wang et al.,
2018b; Micikevicius et al., 2018; Chen et al., 2020; Worts-
man et al., 2023; Xi et al., 2023; Sun et al., 2020; Chmiel
et al., 2021; Sun et al., 2019).

However, the existing FQT studies still have three limita-
tions: 1) Existing FQT methods are not accurate enough for
Transformer models. Previous FQT methods were mainly
designed for CNNs (Zhu et al., 2020; Zhao et al., 2021a),
and directly applying these methods to transformer models
will result in significant accuracy degradation. Those few
papers that focus on transformers often encounter signifi-
cant quantization errors when computing weight gradients.
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Therefore, they leave this part in floating-point precision,
which limits its overall speedup. 2) Most FQT methods
only focus on the reduction of computations, regardless
of data access overheads (Wortsman et al., 2023). Never-
theless, for a transformer block, only the linear layers are
compute-bounded; other layers, such as LayerNorm and ac-
tivation functions, are normally memory-bounded. Failing
to optimize the memory access leads to suboptimal training
acceleration. 3) Some FQT techniques require specialized
hardware and are not applicable to general computing plat-
forms. For instance, FP8 (Peng et al., 2023; Perez et al.,
2023) training is only supported on GPUs with Hopper archi-
tecture (nvi, 2022). Not to mention that those hybrid-format
quantized training methods rely on application-specific inte-
grated circuits to deliver the desired performance.

To address these limitations, in this work, we propose Jetfire,
an INT8 pretraining method for transformers. Specifically,
to improve training efficiency, we propose using INT8 data
flow. As shown in Fig. 1, the INT8 data flow simply refers
to the utilization of 8-bit integers for data movement among
operators. Compared to the FP16 data flow, the INT8 data
flow is 2x faster in theory. In particular, the INT8 data flow
considerably enhances the speed of memory-constrained
operators, including Layernorm and GELU.

In addition to INT8 flow, we propose per-block quanti-
zation that is specialized for transformer pretraining. On
one hand, compared to per-tensor or per-token quantization
(Wortsman et al., 2023), our per-block quantization better
preserves the accuracy of pretrained transformers. On the
other hand, per-block quantization brings practical training
speedup on tensor cores compared to per-channel quantiza-
tion. Furthermore, our method is applicable to a wide range
of computing platforms supporting INT8 matrix multiplica-
tions (MMs).

We validate our INT8 FQT method for transformers across
a diverse range of tasks, including machine translation, im-
age classification, and generative model pretraining. Jetfire
consistently attains comparable accuracy with the FP16
training baseline and has superior accuracy compared with
the existing works of INT8 training (Wortsman et al., 2023).
On NVIDIA RTX 4090 GPUs, our custom linear and non-
linear operators achieve speedups of 1.4x and 1.8x, respec-
tively, compared to the FP16 baselines. Besides, our Jetfire
achieves a speedup of 1.42x for a single transformer block
and 1.49x memory reduction compared with the FP16 base-
line.

2. Related Work
Post-Training Quantization and Quantization-Aware
Training Post-Training Quantization (PTQ) and
Quantization-Aware Training (QAT) aim to find a good

Table 1. Comparison with related works. SB refers to
SwitchBack (Wortsman et al., 2023), TE refers to Trans-
formerEngine (Nvidia, 2022).

SUPPORT JETFIRE (OURS) SB TE FP8-LM DAQ

TRANSFORMERS ✓ ✓ ✓ ✓ ×
INT8 QUANTIZATION ✓ ✓ × × ✓

8-BIT GRADIENT ✓ × × ✓ ×
8-BIT DATA FLOW ✓ × × × ×

low-precision representation for a full-precision model.
Post-Training Quantization (PTQ) (Chee et al., 2023; Xiao
et al., 2023; Dettmers et al., 2022; Kim et al., 2023; Lin
et al., 2023; Kim et al., 2021; Jacob et al., 2018; Liu et al.,
2021) converts the pre-trained model’s weights to lower-bit
representations directly. Quantization-Aware Training
(QAT) (Dong et al., 2019b;a; Shen et al., 2019; Zhang et al.,
2020; Bai et al., 2020; Tang et al., 2022; Esser et al., 2019)
involves retraining the model to adapt its weights and regain
accuracy after the quantization process.

Fully Quantized Training Fully Quantized Training
(FQT)(Wang et al., 2018b; Banner et al., 2018; Xi et al.,
2023; Perez et al., 2023; Wortsman et al., 2023; Zhu et al.,
2020; Zhao et al., 2021a; Micikevicius et al., 2018; Nvidia,
2022) has been introduced as a technique to accelerate the
training process of neural networks. FQT requires quantiz-
ing both the forward propagation and backward propagation
to actually accelerate the whole training process. Nowa-
days 16-bit quantization has been commonly employed with
float16 and bfloat16 data formats in training. It introduces
loss scaling to prevent underflow and overflow problem.

For INT8 training, the majority of the work focuses on
quantization of CNNs (Zhu et al., 2020; Zhao et al., 2021a;
Zhou et al., 2021). SwitchBack (Wortsman et al., 2023)
introduces per-token quantization and successfully applies
INT8 training to CLIP models for the first time, but still
leaves the calculation of weight gradient in FP. To be more
specific, in the forward process of Y = XW⊤, they apply
per-token quantization for X and per-channel quantization
for W⊤. In the backward process, for ∇X = ∇YW,
they apply per-token quantization for ∇Y and per-channel
quantization for W, and leave the calculation of ∇W =
∇Y⊤X in full precision. For LLM pre-training, per-token
quantization still results in significant accuracy loss due to

With the introduction of the Hopper architecture, FP8 train-
ing has also gained attention. TransformerEngine (Nvidia,
2022) incorporates per-layer scaling to reduce quantiza-
tion errors and proposes using E4M3 during forward and
E5M2 during backward passes to adapt. (Perez et al., 2023)
explores adjusting per-tensor scaling biases to improve ac-
curacy, while (Peng et al., 2023) investigates further quan-
tizing optimizer states and the weight’s master copy to FP8.
However, these methods rely on GPUs with the Hopper ar-
chitecture and cannot be applied to a wider range of GPUs.
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As summarized in Table. 1, our method supports INT8 quan-
tization, 8-bit gradient, and 8-bit data flow at the same time,
compared to other FQT methods.

3. INT8 Data Flow
In this section, we introduce our approach for INT8 training
with INT8 data flow. We begin by defining the concept of
Fully Quantized Training (FQT).

3.1. Fully Quantized Training

Consider a network consisting of linear and nonlinear layers.
In the forward pass, these layers can be represented as Y =
F(X,W), where X is the activation, W is the weight,
and Y is the output, also the next layer’s activation. In the
backward pass, each layer takes the gradient ∇Y, X, and W
as inputs and computes the activation gradient and weight
gradient by ∇X,∇W = dF(∇Y,X,W).

Quantization accelerates training by utilizing low-precision
computing units on hardware. One notable example is ma-
trix multiplication (MM) in the form of Y = XW⊤. When
both input matrices are in low-precision format, the MM
can have 2x theoretical flops relative to an MM with full-
precision inputs, where in this paper we assume that the
full-precision format is FP16 and the low-precision format
is INT8. Most FQT methods utilize such low-precision
MM by a quantize-compute-dequantize (QCD) approach:
(1) temporarily converting FP16 input matrices to INT8
with a quantizer Q(·); (2) perform the INT8 MM to get
an INT32 output; and (3) convert the output matrix back
to FP16 with a dequantizer Q−1(·). With QCD, a MM
operator can be formulized as Y = QCD-MM(X,W) =
Q−1(Q(X)Q(W⊤)). As the QCD-MM operator has iden-
tical interface to FP16 MMs (i.e., both input and output are
still in FP16), we can accelerate training by simply replacing
all FP16 MM operators with QCD MMs.

However, QCD only reduces the computing precision to
INT8, while leaving the data flow precision in FP16. That
is, MMs are performed under INT8, but the input, output,
and data transferred between layers are still in FP16, as
illustrated in Fig. 1. The practical speedup of QCD is limited
by the memory bandwidth. Modern GPUs have excessive
computational power, while the GPU memory bandwidth is
scarce. An algorithm must have a high arithmetic intensity
(i.e., ratio of computing operations to memory accesses)
to run fast on GPUs. Unfortunately, the QCD approach’s
arithmetic intensity is low: the computation is cut by half,
but the memory access is not reduced as much, since data
are still represented in FP16. More specifically, QCD has
three drawbacks:

1. Frequent quantization and dequantization operations in-
cur additional memory access overhead.
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Figure 2. (a) Channel-wise outliers in activation distribution. (b)
Non-linear operator is memory-bounded.

2. Nonlinear operators cannot be accelerated.
3. GPU memory consumption and communication costs
remain high.

3.2. FQT with INT8 Data Flow

To address these challenges, we directly utilize INT8 data
flow throughout the network. That is, we employ the INT8
data format for activations, weights, and gradients, and
both our linear and non-linear operators directly take INT8
matrices as inputs and get INT8 tensors as outputs.

To achieve this, we directly represent activation, weight,
and gradient tensors in a custom INT8 format defined in
Sec. 4. Then, we redesign and implement all operators used
in transformer training, including linear operators (Sec. 5)
and nonlinear operators (Sec. 6), allowing them to directly
use our custom INT8 format as inputs/outputs rather than
FP16. The custom INT8 format is carefully designed to
ensure that the operators can be implemented efficiently on
GPUs, while maintaining accuracy. Such INT8 data flow is
compared with QCD in Fig. 1.

With the INT8 data flow, we reduced the amount of mem-
ory access in the training algorithm, resulting in better ef-
ficiency. In a nutshell, our operators read/write INT8 data
from global memory in a block-wise fashion, and perform
the quantize/dequantize/compute operations on chip within
shared memory and registers. In this way, both computa-
tion and memory access can be reduced by half, and the
arithmetic intensity remains high. A direct consequence is
that, our method can accelerate nonlinear operators, since
their memory access is also cut by half. Finally, as the
data are stored in INT8 format, the activation memory con-
sumption and amount of communication (tensor / pipeline
parallelism) can be also cut by half, effectively avoiding
memory capacity and communication bottlenecks.

4. Per Block Quantization
In this section, we introduce our INT8 numerical format.
Typically, we can approximate an FP16 matrix with an
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INT8 matrix XINT8 and a FP16 scale factor SFP16
X , that is

XINT8,SFP16
X = Q(XFP16). Depending on the shape of the

scale factor, there are different quantization methods, in-
cluding per-tensor quantization, per-token quantization, and
per-channel quantization. The INT8 numerical format must
accurately support the following three MMs of a linear layer
in forward and back propagation:

Y = XW⊤, ∇X = ∇YW, ∇W = ∇⊤
YX.

Researchers have observed that activations in transformers
are difficult to quantize (Dettmers et al., 2022; Xiao et al.,
2023) due to the presence of channel-wise outliers. We
visualize this problem in Fig. 2a. Per-token quantization
assigns different scale factors for different tokens and of-
ten results in large quantization errors since outliers appear
channel-wise. On the other hand, per-channel quantization
assigns different scale factors for different channels and has
relatively lower quantization errors, as shown in Sec. 7.3.
In addition, gradient outliers also appear along the token
axis (Chen et al., 2020; Xi et al., 2023), which poses chal-
lenges for computing the weight gradient ∇W = ∇⊤

YX. In
this case, per-token quantization should be applied to the
output gradient ∇Y to avoid large quantization error.

However, applying per-channel quantization for forward
propagation or applying per-token quantization for com-
puting weight gradients both pose challenges in practical
hardware implementations. For a MM in the form C = AB,
we call the 0th axis of A and the 1st axis of B to be outer
axes, as C has them; the other two axes are inner axes. INT8
MMs are performed with tensor core WMMA (Warp Matrix
Multiply-Accumulate) operations (Markidis et al., 2018),
and scaling can only be performed at the outer axis of MM if
we want to utilize tensor core. As a compromise, (Wortsman
et al., 2023) only use per-token quantization for forward
propagation, sacrificing accuracy; and fall back to FP16
when computing weight gradients, sacrificing speed.

We propose per-block quantization to achieve computational
efficiency and preserve accuracy at the same time. For a ma-
trix X ∈ RN×C , we partition X into blocks Xij ∈ RB×B

along both row axis and column axis, where B is quantiza-
tion block size, i, j is the index of quantization block along
the token and channel axis. We assign a scale factor sij for
each block Xij that corresponds to the maximum absolute
value in the block. The method can be formulated as:

Q(Xij) =

⌈
Xij

sij

⌋
, Q−1(XINT8

ij , sij) = XINT8
ij sij , (1)

where ⌈·⌋ is the round operator. We visualize this method in
Fig. 3 for better understanding. Since our per-block quanti-
zation method partitions along the inner axis, it restricts the
impact of an outlier channel/token within a block. Therefore
the quantization error is controlled. We will demonstrate

= *

Y X SX
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B

B

L�
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Figure 3. Visualization of the per-block quantization methodology.
When the original tensor has some outliers, our method can restrict
its effect to a B ×B block.

in the next section that per-block quantization can be also
efficiently implemented on GPUs.

5. Linear Layer Operator
In this section, we mainly discuss how our per-block quan-
tization method should be applied to linear layers. We
highlight that our linear operator adopts INT8 data flow, that
takes INT8 as input and produces INT8 as output.

5.1. Notations

We consider the CUDA implementation of the following
MM as an example in this section:

Y = XW⊤,where X ∈ RN×C ,W ∈ RD×C ,Y ∈ RN×D, (2)

which dimensions are represented as N × C ×D.

In our MM operator, each input and output matrix is rep-
resented in per-block INT8 format: a INT8 matrix and a
FP16 scale matrix, as defined in Sec. 4. In this case, we
have INT8 input denoted as X and W, and we have scale
factors denoted as SX ∈ RLN×LC ,SW ∈ RLD×LC , where
LN = N

B , LC = C
B , LD = D

B is the number of quantization
blocks along every axis, and B is the quantization block
size in Eq. (1). We utilize tensor cores to perform INT8
WMMA. For a single INT8 WMMA instruction, the inputs
are two INT8 matrices of shape 16× 16 and the output is
an INT32 matrix of shape 16× 16.

5.2. 3-Level Tiling of MM

An efficient MM implementation must organize the compu-
tation into blocks (“tiling”) based on the GPU architecture.
We tile the computation in 3 levels. The block dimensions
are listed in Table 2.

CUDA block level When implementing our MM operator
in CUDA, we first parallelize the computation along the
N and D axis. Every time we only calculate a submatrix
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(a) per-tensor quantization
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Figure 4. Different quantization methods for linear layer.

BY ∈ RBN×BD of the output matrix Y. We further divide
C into small segments of size BC , and accumulate along this
axis. The CUDA block size BN ×BC ×BD is architecture
specific. Depending on shared memory capacity and number
of threads, typical values are 32, 64, 128, or 256. We define
TN = ⌈N/BN⌉ , TC = ⌈C/BC⌉ , TD = ⌈D/BD⌉ to be
the number of blocks along each axis of the MM.

For every iteration, we load submatrix Xik ∈ RBN×BC and
Wjk ∈ RBD×BC from global memory to shared memory
and compute the output submatrix Yij ∈ RBN×BD , where
1 ≤ i ≤ TN , 1 ≤ j ≤ TD, 1 ≤ k ≤ TC are the CUDA
block index along the N,D,C axis.

Quantization block level We set BN and BD to be mul-
tiples of the quantization block size B, and set BC = B.
In this case, Xik consists of RN = ⌈BN/B⌉ quantiza-
tion blocks along its 0th-axis, and we use Xik,p to denote
the p-th quantization block. Similarly, Wjk consists of
RD = ⌈BD/B⌉ quantization blocks along its 0th-axis with
Wjk,q as the q-th block.

We use two nested for loops to iterate over RN and RD, load
Xik,p ∈ RB×B and Wjk,q ∈ RB×B from shared memory
to register and performing INT8 WMMA separately to get
INT32 output Yij,pq ∈ RB×B , where 1 ≤ p ≤ RN , 1 ≤
q ≤ RD is the quantization block index along RN , RD axis.

WMMA operation level Within the computation of single
quantization blocks, we utilize the INT8 WMMA instruction
for computation on register. Therefore, when we set B =
32 as an example, we need to perform 23 = 8 WMMA
instructions to complete the computation, since a single
WMMA instruction can only compute 16× 16× 16 MM.

In summary, we divide the implementation of the MM op-
erator into three levels. First, at the CUDA block level, we
divide the operator into sizes of BN ×BC ×BD for com-
putation. Then, at the quantization block level, we further
divide each CUDA block into sizes of B ×B ×B. Finally,
at the WMMA operation level, we divide the computation
of each quantization block based on the dimensions of the
WMMA operation.

Table 2. Meaning of Key Constants.
BN/BC/BD CUDA block size in MM
TN/TC/TD Number of CUDA blocks along each axis
B Quantization block size
RN/RC/RD Number of quantization blocks

in a CUDA block along each axis

5.3. Quantize and Dequantize

We now discuss how to integrate the quantize and dequan-
tize operators in our algorithm. Since different quantiza-
tion blocks have different scale factors, after every INT8
WMMA operation, we need to dequantize the INT32 output
into FP32 and accumulate in FP32. By applying the same
index notation as the previous section, we have

YINT32
ij,pq = Xik,pW

⊤
jk,q, YFP32

ij,pq =

TC∑
k=1

sFP16
Xik,p

YINT32
ij,pq s

FP16
Wjk,q

,

where sX, sW is scale factor and both Ys are accumulators.

After the calculation of YFP32
ij,pq , we quantize it to get a INT8

submatrix YINT8
ij,pq and a scale factor sYij,pq

.

We formalize our algorithm in Algorithm 1. In the algorithm,
we have omitted the details of the quantization block level
and WMMA operation level for simplicity. We highlight
the overhead introduced by our method in red. We further
compare it with per-tensor quantization MM (Banner et al.,
2018) and per-token quantization MM (Wortsman et al.,
2023) in Fig. 4a.

Our algorithm accurately quantizes channel-wise outliers
while introducing only a small amount of overhead for de-
quantize and quantize operations. We calculate the overhead
within the computation of a submatrix Yij and compare
our method with basic INT8 MM and SwitchBack. Re-
sults are reported in Table 3. The time complexity of MM
is O(BN ∗ C ∗ BD). while our method’s overhead time
complexity is O(BN ∗ TC ∗BD) + (BN +BD)C. Since
C
TC

= BC is typically set to 32 or 64 and BN , BD is 128 or
256, the overhead is negligible.

6. Non-Linear Operator
In this section, we mainly discuss how our per-block quan-
tization method should be applied to non-linear layers. By
reducing the precision of the input and output to INT8, we
can achieve acceleration for these operators as well.

5



Jetfire: Efficient and Accurate Transformer Pretraining with INT8 Data Flow and Per-Block Quantization

Table 3. Time complexity of different operations in MM.
METHOD

OPERATION BASIC INT8 SWITCHBACK OURS

MM BNBDC BNBDC BNBDC

16-BIT LOAD/STORE (BN +BD)C +BNBD
BNBC

TD
+ BDBC

TN
+BNBD -

8-BIT LOAD/STORE - (BN +BD)C (BN +BD)C +BNBD

DEQUANTIZE - BNBD BNBDTC

QUANTIZE - BNBC
TD

+ BDBC
TN

BNBD

Algorithm 1 INT8 Linear Layer

Require: INT8 Matrices X ∈ RN×C ,W ∈ RD×C , FP16 scale
matrices SX ∈ RLN×LC ,SW ∈ RLD×LC , CUDA Block
size BN ×BC ×BD

1: Define TN =
⌈

N
BN

⌉
, TC =

⌈
C
BC

⌉
, TD =

⌈
D
BD

⌉
2: Define RN =

⌈
BN
B

⌉
, RC =

⌈
BC
B

⌉
RD =

⌈
BD
B

⌉
3: for 1 ≤ i ≤ TN do
4: for 1 ≤ j ≤ TD do
5: Initialize accumulator YFP32

ij , YINT32
ij

6: for 1 ≤ k ≤ TC do
7: Load INT8 Block Xik ∈ RBN×BC and scale factor

SXik ∈ RRN×RC

8: Load INT8 Block W⊤
jk ∈ RBC×BD and scale factor

SW⊤
jk
∈ RRC×RD

9: On chip, compute INT8 Matmul: YINT32
ij = XikW

⊤
jk

10: On chip, dequantize to FP32 and accumulate:
YFP32

ij ← YFP32
ij + SXikY

INT32
ij SW⊤

jk

11: end for
12: On Chip, quantize the output YFP32

ij to get YINT8
ij ∈

RBN×BD and scale Sij ∈ RRN×RD

13: Save YINT8
ij and SYij to global memory.

14: end for
15: end for

6.1. Non-Linear Operators are Memory-Bounded

We have observed that non-linear operators are memory-
bounded, which means that the speed of these operators
is primarily limited by memory bandwidth, rather than by
computation. We validate this by manipulating the data
format (INT8, FP16, FP32) for global memory read/write
operations in the GELU operator, while internally convert-
ing them to FP32 for computation. Fig. 2b illustrates that
even computations are kept in FP32, simply reducing the
read/write precision can already obtain near-linear speedup.
As our method reduces the data flow precision from FP16 to
INT8, we anticipate ∼2x speedup for all nonlinear operators.
In contrast, QCD cannot accelerate nonlinear operators.

6.2. Triton Implementation

Based on the observations above, our main idea is to load-
/write in INT8 and leave all calculations within the shared
memory through kernel fusion. Specifically, after loading
the INT8 input into shared memory, we dequantize it to
FP32 and apply the non-linear operators, then quantize the
FP32 output back to INT8 format before writing the data
into global memory.
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Figure 5. Quantization error for different quantization methods.
Per-Block refers to our Jetfire quantization method.

We primarily focus on non-linear operators like
GELU (Hendrycks & Gimpel, 2016), LayerNorm (Ba et al.,
2016), Dropout (Fan et al., 2019), and Add (He et al., 2016),
and implement them with Triton (Tillet et al., 2019).

We define f to be the element-wise operator, X,Y ∈
RN×C to be the INT8 input and output, SX,SY ∈
RLN×LC are scale factors, where LN = N

B , LC = C
B are

number of quantization blocks along each axis and B is
the quantization block size. Similar to CUDA, we also do
tiling to parallelize the computation. For a single block
(whose shape is defined as Triton Block Size) we denote
XINT8

ij to be the input tensor and SFP16
Xij

to be the scale. The
computation process can be represented as

YFP32
ij = f(Q−1(XINT8

ij , sFP16
Xij

)); YINT8
ij , sFP16

Yij
= Q(YFP32

ij ),

where Q−1 and Q is the dequantizer and quantizer, YINT8
ij

is the output tensor, and sFP16
Yij

is the scale factor. This
algorithm can be expressed as Algorithm 2, where we omit
the quantization block level for simplicity.

7. Experiments
7.1. Settings

We evaluate our INT8 training algorithm Jetfire on a wide
variety of tasks including machine translation, image classi-
fication, and generative model pretraining. We adopt default
architectures, optimizers, and schedulers for all the evalu-
ated models. We adopt the default hyperparameter except
for generative model pretraining.

We quantize all of the linear layers in the MLP and attention
module and non-linear layers (including GELU, LayerNorm
and Dropout) to INT8, and leave multi-head attention in
FP16 by employing FlashAttention (Dao et al., 2022). The
master copy of the weights is kept in FP32. We quantize
linear layers’ weights to INT8 prior to each matmul, but
leave layernorm’s weight and bias to floating-point since
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Table 4. Results on machine translation, deit pretraining, GPT2 pretraining, and GLUE fine-tuning result based on the pretrained model.
FP refers to floating-point, SwitchBack refers to per-token quantization. ’–’ means the model does not converge.

BASELINE OURS

MODEL #PARAMS(M) METRIC FP SWITCHBACK PER-TENSOR JETFIRE

TRANSFORMER-BASE 61 BLEU 26.49 26.46 26.04 26.49

DEIT-TINY 5
TOP1 ACC

64.08 63.55 – 63.95
DEIT-SMALL 22 73.43 72.80 – 73.31
DEIT-BASE 86 75.67 75.62 – 76.03

GPT2-BASE 124
VALID LOSS

2.9074 3.0796 3.1638 2.8597
GPT2-MEDIUM 350 2.6612 2.9141 3.1795 2.4195
GPT2-LARGE 774 2.5993 3.0512 2.9775 2.4696

GPT2-BASE 124
GLUE SCORE

78.500.45 78.150.15 76.330.94 78.180.34

GPT2-MEDIUM 350 82.000.50 80.030.15 79.190.22 81.600.26

GPT2-LARGE 774 83.010.24 78.740.24 75.880.35 82.940.70
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Figure 6. Speed test of GELU and GEMM operator. (a) Triton
kernel speedup with different Triton block sizes.(b) GEMM CUDA
kernel speed with different CUDA block sizes.

MODEL SWIN-TINY SWIN-SMALL SWIN-BASE

FP 77.55 80.39 80.45
JETFIRE 77.51 80.39 80.37

VIT-BASE VIT-LARGE

FP 83.45 85.72
JETFIRE 83.48 85.67

Table 5. Comparison of FP and Jetfire

they are relatively small. We compare our method with
floating point training baseline (denoted as FP), per-tensor
quantization, and SwitchBack (Wortsman et al., 2023)). We
do not compare with FP8 training algorithms as they require
specialized Hopper architecture GPU to run, making them
less accessible. We emphasize that only our method adopts
an INT8 data flow and quantizes non-linear layers.

We implement our linear operators with CUDA and imple-
ment non-linear operators with Triton. CUDA block size is
set to 128×32×128 and Triton block size is set to 64×64.
The quantization block size is set to B = 32.
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Figure 7. Speed comparision between our INT8 non-linear opera-
tor and pytorch FP16 implementation.

7.2. Converged Model Accuracy

Machine Translation We validate our Jetfire’s effective-
ness on the translation task. We train a Transformer-base
model on WMT 14 En-De dataset (Bojar et al., 2014) based
on Nvidia’s recipe 1. In Table 4 we report the BLEU (Pap-
ineni et al., 2002) score result. Our method has no degrada-
tion compared with the FP baseline, while the SwitchBack
baseline has 0.03% BLEU score degradation, and the per-
tensor quantization baseline has 0.4% degradation.

Image Classification - Deit We do pretraining for Deit-
Tiny, Deit-Small, and Deit-Base (Touvron et al., 2021)
model on ImageNet1K (Deng et al., 2009) for 90 epochs
based on facebook research’s recipe 2. Results are listed on
Table 4. In all experiments, Our method has less than 0.1%
accuracy degradation compared with the floating-point base-

1https://github.com/NVIDIA/DeepLearningExamples
/tree/master/PyTorch/Translation/Transformer

2https://github.com/facebookresearch/deit
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in different settings (B=Batch Size, N=Sequence Length).

line, and for Deit-base, our method shows 0.4% improve-
ment. For Deit-tiny and Deit-small models, Switchback has
over 0.5% accuracy degradation, and per-tensor quantiza-
tion does not converge. This indicates that our method can
accurately quantize channel-wise outliers. Comparison with
more baselines (Wang & Kang, 2023; Zhao et al., 2021b)
can be found in Appendix C

Image Classification - Swin Transformers and ViT We
do pretraining for Swin-Transformers(Swin-tiny, Swin-
small, Swin-base) for 90 epochs and fine-tuned ViT(ViT-
base, ViT-large) for 100 epochs without pre-training (MAE
includes pretraining and finetuning) on ImageNet1K. We
adopt the official training recipe 34 and default hyperpa-
rameters, and only compare with the full precision training
baseline. The results are shown in Figure 5. In all of the
experiments, our method achieves less than 0.1% accuracy
degradation, which proves the accuracy of our method.

Generative Model Pretraining We evaluate our method
by training three GPT2 (Radford et al., 2019) models with
different sizes: GPT2-base for 300k steps, GPT2-medium
for 200k steps, and GPT2-large for 120k steps on the Open-
WebText (Peterson et al., 2019) dataset based on NanoGPT5

(Hyperparameters: Learning Rate = 1.5 × 10−4, Weight
Decay = 10−1). We report the validation loss and the fine-
tuning average accuracy on the GLUE (Wang et al., 2018a)
dataset over 3 seeds. The results are shown in Table 4.

We found that SwitchBack resulted in 0.1 valid loss degra-
dation on GPT-base and led to 0.3-0.4 valid degradation on
GPT-medium and GPT-large. Our method achieves even
lower valid loss compared to the FP baseline, which may be

3https://github.com/microsoft/Swin-Transformer
4https://github.com/facebookresearch/mae?tab=readme-ov-

file
5https://github.com/karpathy/nanoGPT.

attributed to the regularization effect of quantization.

For fine-tuning, our method shows less than 0.3% degrada-
tion compared to baseline, while SwitchBack has a degrada-
tion of 0.3% on GPT2-base, 1.8% on GPT2-medium, and
4.3% on GPT2-large. This indicates that for LLM pretrain-
ing, the influence of channel-wise outliers is significant, and
our quantization method effectively preserves accuracy.

7.3. Ablation Study

Quantization Error We study the quantization error of
different quantization methods on four different sizes of
GPT2 models to show our method’s effectiveness. We focus
on the activation of the final layer and calculate the mean
squared error (MSE) and the mean error after quantization.
The results are shown in Fig. 5. For all models, per-channel
quantization consistently resulted in smaller quantization
errors compared to per-token quantization. Jetfire (ours)
achieves lower quantization error than per-token quantiza-
tion while performing on par with per-channel quantization.

CUDA kernel and Triton kernel block size We have
found that the selection of the block size for Triton and
CUDA kernels is crucial. A large block size leads to a
decrease in parallelism, while a small block size results in
low utilization of bandwidth and computational resources.
Both cases can result in low kernel speed. In Fig. 6a 6b, we
test the kernel’s speed under different block sizes and find
that optimal efficiency is achieved when we set Triton block
size = 64× 64 and CUDA block size = 128× 32× 128.

7.4. Operator and End-to-End experiments

Linear layer speedup We test the speedup of our custom
linear layer on RTX 4090. We analyzed the time consump-
tion of each component in forward and backward passes
and compared the speed of our implementation with FP16
and SwitchBack linear layers. The results are shown in
Fig. 8. Our MM operator provides about 60% speed im-
provement compared to FP16. Other overhead components
like quantizing and reshaping have a relatively minor im-
pact. Our method achieves 40% overall speedup (forward +
backward), which is comparable to the acceleration result
of SwitchBack, where SwitchBack leaves the calculation of
weight gradient in FP. The speedup becomes larger when
the matrix size increases since the overhead proportion de-
creases, which is demonstrated in Table 10. Acceleration
results on RTX 3090 can be found in Appendix D.2.

Non-linear operator speedup We also test the speedups
offered by our custom non-linear layers, which is the first
quantized training work to achieve acceleration for these
non-linear operators.

Our INT8 GELU operator achieves 80% speedup in both
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Table 6. Acceleration ratios for End-to-end comparison (SB refers
to SwitchBack basic version) on GPT2 model.

FORWARD BACKWARD OVERALL

HIDDEN SIZE SB OURS SB OURS SB OURS

4096 1.50 1.32 1.18 1.46 1.27 1.42

2048 1.53 1.29 1.24 1.41 1.32 1.37

1024 0.94 0.97 1.14 1.11 1.07 1.07

Table 7. Activation memory reduction ratios for End-to-end com-
parison (SB refers to SwitchBack Memeory Efficient version) on
GPT2 model.

BS=1 BS=2 BS=4

LAYER NUM SB OURS SB OURS SB OURS

12 1.19 1.33 1.14 1.31 1.11 1.29

24 1.24 1.49 1.18 1.47 1.14 1.45

forward and backward passes compared to PyTorch’s FP16
operators. Our INT8 LayerNorm operator achieves 40%
speed up in its forward pass and up to 90% speedup in its
backward pass when hidden size = 8192 but does not accel-
erate when the hidden size is small. These results indicate
that the global memory access is indeed the bottleneck for
these non-linear operators, and our INT8 data flow can effec-
tively solve the bottleneck, resulting in near-ideal speedup.

End-to-end speedup We experimented with GPT2 mod-
els and varied the network hidden size to show the end-to-
end speedup for our Jetfire method over PyTorch’s FP16
training on RTX 4090. We integrated all linear and non-
linear operators and reported the speedup of a transformer
layer. We compared the forward, backward, and overall
runtime speedup with the SwitchBack layer. Results in
Table 6 showed that our method achieved comparable or
improved acceleration compared to SwitchBack. This is
primarily because our linear operators in backpropagation
are faster than SwitchBack, and we can accelerate all of the
non-linear operators in both forward and backward propa-
gation. Acceleration results on RTX 3090 can be found in
Appendix 11.

End-to-End Memory Reduction We experimented with
GPT2 models and varied the network depth and batch size
to show the memory reduction of our method. We report the
reduction ratio of activation memory. The results are shown
in Table 7. Our method achieved up to 1.49x activation
memory reduction, which is better than SwitchBack since
we reduced the memory footprint of non-linear operators.

8. Conclusion
In this work, we propose Jetfire, an INT8 pretraining method
for transformer models. For the first time, we propose to use
INT8 data flow in pretraining to reduce computation, mem-

ory access, memory usage, and communication at the same
time. We also propose to use per-block quantization for
all of the activations, weights, and gradients for both linear
and non-linear layers to preserve accuracy. Extensive ex-
periments demonstrate that our proposed method performs
on par with FP baselines, and can effectively accelerate the
training speed and reduce the memory footprint.
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A. Triton Implementation of Non-Linear Operators
For the GELU function, its forward and backward operator is:

GELU(x) = x · Φ(x), dGELU(x)

dx
=

x√
2π

e−
x2

2 +Φ(x).

For Dropout, its forward and backward operator is:

Drop(x) =
1

1− p
x ◦m,

dDrop(x)

dx
=

1

1− p
m.

For Add, when we calculate the residual connection y = x + f(x), we also need to perform dx = df(y) + dy in the
backward process. This addition operator can be represented as:

Add(x1, x2) = x1 + x2.

Algorithm 2 INT8 Non-Linear Operator

Require: INT8 Matrix X ∈ RN×C , FP16 scale matrix SX ∈ RLN×LC , element-wise function f

1: Define TN =
⌈

N
BN

⌉
, TC =

⌈
C
BC

⌉
2: Define RN =

⌈
BN
B

⌉
, RC =

⌈
BC
B

⌉
3: for 1 ≤ i ≤ TN do
4: for 1 ≤ j ≤ TC do
5: Load INT8 block Xij ∈ RBN×BC , SXij ∈ RRN×RC

6: Dequantize Xij and SXij to get XFP32
ij

7: Operate: YFP32
ij = f(XFP32

ij )

8: Quantize YFP32
ij to get YINT32

ij ∈ RBN×BC and scale factor SYij ∈ RRN×RC

9: Save YINT32
ij and SYij to global memory.

10: end for
11: end for

Differing from non-linear operators above, LayerNorm involves interactions between elements. Therefore, performing
calculations separately for each BN × BC block is not feasible. In order to solve the problem, we observed that both
pre-norm and post-norm models encountered the ADD operator before LayerNorm.

We make the following modifications to our ADD operator: We will calculate the mean and sum of squares for each row of
the block (BN , BC) and store these values. We will then get the mean matrix and sum of squares matrix of size N × C

BC
,

which reduces the amount of data we need to load and store by 1
BC

. Before the LayerNorm operator, we use these values to
compute the mean and variance for each row, which size is N × 1. This allows the LayerNorm to directly access these
values. The implementation of the remaining part of LayerNorm is similar to that of GELU.
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B. Detailed Results of GLUE Fine-Tuning Test

Table 8. Detailed Results of GLUE fine-tuning test based on the pretrained model. FP refers to floating-point, SwitchBack refers to
per-token quantization. ’–’ means the model does not converge.

BASELINE OURS

MODEL #PARAMS(M) METRIC FP SWITCHBACK PER-TENSOR JETFIRE

GPT2-BASE 124

COLA 43.973.32 44.681.06 41.432.23 41.982.51
STSB 83.200.95 81.081.39 75.635.35 81.660.45

RTE 64.021.37 64.740.83 64.140.75 65.220.91

MRPC 85.480.78 84.300.49 83.680.61 85.010.49

SST2 91.400.30 92.090.50 90.790.26 91.930.35
QNLI 87.970.35 87.580.19 86.640.25 87.570.19
QQP 90.070.001 89.940.07 88.840.09 90.140.03

MNLI 81.840.22 80.760.24 79.510.36 81.920.18

GPT2-MEDIUM 350

COLA 53.552.89 50.970.58 48.821.43 53.381.08

STSB 86.170.78 83.211.61 81.660.50 84.980.32

RTE 68.231.44 63.780.91 67.270.21 68.470.21

MRPC 88.160.91 84.790.68 84.980.15 86.741.36

SST2 93.730.29 94.000.18 91.780.13 93.460.23
QNLI 90.490.14 89.610.20 88.050.16 90.150.17

QQP 90.980.15 90.540.15 90.020.08 90.930.08

MNLI 84.690.37 83.370.36 80.930.31 84.650.11

GPT2-LARGE 774

COLA 52.220.15 48.701.20 35.851.23 54.061.62

STSB 84.991.37 79.490.15 80.000.15 84.991.37

RTE 76.651.67 65.101.10 64.262.60 74.732.53

MRPC 86.700.92 83.751.00 83.090.45 87.061.21

SST2 94.840.50 92.470.07 90.860.24 94.650.18

QNLI 91.350.23 88.420.12 85.250.36 91.190.52

QQP 91.400.08 89.920.19 89.210.03 91.190.02

MNLI 85.880.14 82.050.20 78.530.15 85.610.30

C. Comparisons with methods targeting CNNs
In this section, We tested two INT8 training for CNN models (Wang & Kang, 2023; Zhao et al., 2021b) on the DeiT
pretraining experiment. As reported in Table 9, both of them showed significant accuracy degradation. This indicates that
these methods are not sufficient to be applied to transformer models.

Model FP SwitchBack Per-tensor Jetfire GDA DAQ

Deit-tiny 64.08 63.55 - 63.95 62.14 61.80
Deit-small 73.43 72.80 - 73.31 70.98 70.66
Deit-base 75.67 75.62 - 76.03 73.06 72.40

Table 9. Comparison of different methods on various Deit models

D. Acceleration Experiments
D.1. Overhead portion in Linear Layer

We tested the percentage of time taken by all quantization, dequantization, transpose, and other overhead processes during
the forward and backward passes in a linear layer. We find that in Table 10, the relative overhead from quantization/dequan-
tization diminishes with increasing model size, leading to more significant speed improvements.
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SEQUENCE LENGTH

BATCH SIZE PLACE 1024 2048 4096 6144 8192

4 FORWARD 44.5 22.1 10.2 6.8 5.5
4 BACKWARD 30.4 29.0 16.6 12.2 9.2
4 OVERALL 34.5 26.7 14.5 10.3 7.9

16 FORWARD 23.1 8.1 2.7 1.7 1.3
16 BACKWARD 24.6 26.4 8.7 7.3 6.2
16 OVERALL 23.7 18.3 11.5 9.9 8.9

Table 10. Percentage of overhead in a linear layer.

SIZE SETTINGS FWD-SB FWD-OURS BWD-SB BWD-OURS ALL-SB ALL-OURS

LINEAR LAYER, C=D=2048 1.60 1.53 1.38 1.31 1.45 1.38
LINEAR LAYER, C=D=4096 2.43 1.87 1.37 1.48 1.62 1.60
LINEAR LAYER, C=D=8192 2.56 1.70 1.24 1.40 1.51 1.49

END-TO-END, HIDDEN=1024 1.08 0.94 1.08 1.10 1.08 1.05
END-TO-END, HIDDEN=2048 1.34 1.18 1.15 1.36 1.21 1.29
END-TO-END, HIDDEN=4096 1.27 1.23 1.18 1.37 1.24 1.32

Table 11. Speed up result on the RTX 3090 GPUs. SB refers to SwitchBack, Ours refers to Jetfire.

D.2. Acceleration result on other hardware

Besides RTX 4090, we tested our linear operator and end-to-end speed up result on the RTX 3090 GPUs, as reported in
Table 11. The results indicate that our method can achieves significant speedups on multiple kinds of GPUs.
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