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Abstract

Designing de novo 3D molecules with desirable properties remains a fundamental
challenge in drug discovery and molecular engineering. While diffusion models
have demonstrated remarkable capabilities in generating high-quality 3D molecular
structures, they often struggle to effectively control complex multi-objective con-
straints critical for real-world applications. In this study, we propose an uncertainty-
aware Reinforcement Learning (RL) framework to guide the optimization of 3D
molecular diffusion models toward multiple property objectives while enhancing
the overall quality of the generated molecules. Our method leverages surrogate mod-
els with predictive uncertainty estimation to dynamically shape reward functions,
facilitating balance across multiple optimization objectives. We comprehensively
evaluate our framework across three benchmark datasets and multiple diffusion
model architectures, consistently outperforming baselines for molecular quality and
property optimization. Additionally, Molecular Dynamics (MD) simulations and
ADMET profiling of top generated candidates indicate promising drug-like behav-
ior and binding stability, comparable to known Epidermal Growth Factor Receptor
(EGFR) inhibitors. Our results demonstrate the strong potential of RL-guided
generative diffusion models for advancing automated molecular design. The imple-
mentation is available at https://github.com/Kyle4490/RL-Diffusion.

1 Introduction

The design of novel molecules with desirable properties is fundamental to drug discovery, materials
science, and molecular engineering [1, 2]. Deep generative models have emerged as promising
tools for automated molecular design, enabling efficient exploration of vast chemical spaces that are
difficult to navigate manually [3–5]. Among these, diffusion models have demonstrated remarkable
capabilities in capturing complex molecular distributions and generating diverse, high-quality samples
[6]. However, most existing studies have focused on satisfying basic chemical validity constraints
without explicitly controlling multiple drug-relevant property objectives [7]. Achieving reliable
multi-objective optimization remains a major challenge, particularly for therapeutically important
targets such as the Epidermal Growth Factor Receptor (EGFR), a key receptor protein involved in
cancer progression and drug resistance [8]. The ability to efficiently design molecules with optimal
combinations of drug-likeness, synthetic accessibility, and binding affinity to receptor proteins is
critical for advancing precision drug development.
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To address the challenges of property optimization, prior research has explored strategies such as flow
matching [9, 10] and energy-guided generation [11, 12]. Although these methods provide effective
solutions under specific conditions, they generally require explicit and differentiable reward functions,
making them poorly suited for handling black-box objectives, such as Quantitative Estimate of
Drug-likeness (QED) [13], Synthetic Accessibility Score (SAS) [14], and binding affinity [15], which
are predicted by external computational tools and are critical for the success of drug development. [7].
In contrast, Reinforcement Learning (RL) has emerged as a particularly versatile alternative due to its
strong flexibility in managing non-differentiable rewards and dynamically balancing multiple property
objectives [16]. RL has been widely applied to guide the optimization of molecular generation models
such as Recurrent Neural Networks (RNNs) [17], Variational Autoencoders (VAEs) [18–20], and
Transformers [21]. However, these advancements have largely focused on 1D string representations
such as Simplified Molecular Input Line Entry System (SMILES) [22] and 2D molecular graphs.
RL-guided optimization of diffusion models to directly generate de novo 3D molecules has not
yet been fully explored. Generating de novo 3D molecules with precise molecular geometries and
chemical interactions is essential for drug development-relevant downstream tasks like molecular
docking and Molecular Dynamics (MD) [23], which cannot be achieved using 1D or 2D molecular
representations.

In this study, we propose an uncertainty-aware multi-objective RL framework to guide the optimiza-
tion of 3D molecular generative diffusion models. Our approach leverages property uncertainties
predicted by surrogate models to guide reward assignment and stabilize optimization under complex
multi-objective constraints. We evaluate our method on three widely used molecular datasets: the
QM9 Quantum Chemistry Dataset, the ZINC15 Molecular Library, and the PubChem Compound
Database, comparing it against multiple strong baselines and conducting comprehensive ablation
studies. To further validate the scalability of our method, we also apply it to different diffusion
model architectures. Moreover, in addition to considering key molecular properties such as bind-
ing affinity, we further assess the practical drug development potential of the generated candidate
molecules through MD simulations and Absorption, Distribution, Metabolism, Excretion, and Toxic-
ity (ADMET) property assessments [24], benchmarking against known EGFR inhibitors. Our results
highlight the strong potential of RL-guided diffusion models to design candidate molecules with
superior stability and drug-likeness, providing a new paradigm for diffusion model-driven de novo
3D molecular design.

Our contributions are summarized as follows:

• We propose the first end-to-end framework that integrates RL, diffusion models, and uncer-
tainty quantification for 3D molecular generation with multi-objective optimization.

• We design a novel reward function that integrates uncertainty quantification with three
auxiliary components, including a reward boosting mechanism, a diversity penalty, and
a dynamic cutoff strategy. This design balances optimization trade-offs among multiple
objectives and addresses challenges such as reward sparsity and mode collapse when
applying RL to optimize diffusion models. As a result, both the overall quality of generated
molecules and the number of candidates that satisfy all property requirements are improved.

• We conduct extensive experiments on three benchmark datasets, comparing against multiple
State-Of-The-Art (SOTA) baselines and performing comprehensive ablation studies to assess
the contribution of each component. To validate the generality of our framework, we further
apply it to different 3D molecular diffusion model architectures.

• We demonstrate the real-world potential of our approach through MD simulations and
ADMET profiling of generated candidate molecules, benchmarking against known EGFR
inhibitors.

2 Related Works

De novo 3D molecular generation. Early approaches to 3D molecular generation, such as G-SchNet
[25] and E(3)-Normalizing Flows (E-NF) [26], applied autoregressive generation and equivariant
flows to model spatial symmetries. More recently, diffusion models have emerged as a promising
paradigm. Equivariant Diffusion Model (EDM) [27] introduced E(3)-equivariant denoising to better
capture molecular geometries. Geometric Latent Diffusion Model (GeoLDM) [28] extended this
by applying latent space diffusion. Molecular Diffusion Model (MDM) [29] and Generative Force
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Matching Diffusion Model (GFMDiff) [30] further incorporated physics-based constraints to improve
structural realism and diversity.

RL-guided generative model optimization. Prior works on RL-guided diffusion models have mainly
focused on image generation tasks with single-objective optimization. Fan et al. proposed Shortcut
Fine-Tuning with Policy Gradient (SFT-PG) [31] to reduce distributional mismatch and improve
sample quality. Denoising Diffusion Policy Optimization (DDPO) [32] treated denoising as a multi-
step decision process and introduced DDPO-Importance Sampling (IS) and DDPO-Score Fine-tuning
(SF) to incorporate preference-conditioned rewards. DPOK [33] further added Kullback-Leibler (KL)
[34] regularization to stabilize training and enhance alignment.

Multi-objective optimization methods. Existing multi-objective optimization methods can broadly
be grouped into scalarization-based, constraint-based, gradient-based, and uncertainty-based ap-
proaches. Scalarization methods, such as Weighted Sum (WS) [35], Product Of Objectives
(POO) [36], Max-Min Method (MMM) [37], and Linear Scalarization with Dynamic Weights
(LSDW) [38], convert the problem into single-objective optimization but require careful weight
tuning. Constraint-based methods, including Normalized Manhattan Distance (NMD) [39], NMD-
WS [40], Compromise Programming (CP) [41], and Penalty Function Methods (PFM) [42], enforce
objectives as constraints but can be unstable when conflicts arise. Gradient-based methods like
Singular Value Decomposition (SVD) [43], PCGrad [44], CAGrad [45], and GradVac [46] adjust
gradients to resolve conflicts locally, but cannot model the global Pareto front. Recently, uncertainty-
based methods have emerged. Chen et al. [47] proposed an uncertainty-quantified genetic algorithm
for molecular design. Other methods include Upper Confidence Bound (UCB) [48], Expected
Improvement (EI) [49], Maximum Variance Criterion (MVC) [50], and Bayesian Optimization by
density-Ratio Estimation (BORE) [51], which have shown promise but remain underexplored in
RL-guided generative modeling.

3 Methodology

This section presents the core components of our framework, including the diffusion model back-
bone, surrogate models, and RL-guided optimization. The overall architecture of our framework is
illustrated in Fig. 1. Detailed explanations, mathematical formulations, and derivations are deferred
to Appendix A.

Sample n trajectories
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Figure 1: Architecture diagram of the RL-guided diffusion model. (a) Conditional EDM is trained
to generate 3D molecules from random atoms, conditioned on target properties. The model learns a
forward noising process q(zt|zt−1, c) and a reverse denoising process pθ(zt−1|zt, c). (b) In the RL
phase, the pre-trained conditional EDM is used to generate n molecules by sampling full denoising
trajectories. The transition probabilities pθ at each timestep are recorded. For each generated 3D
molecule, structural diversity is computed, and a reward boost is applied if the molecule satisfies
validity, uniqueness, and novelty criteria. In parallel, surrogate models are used to estimate the
probability that each molecular property exceeds its cutoff. These probabilities are multiplied to
compute the overall success probability (termed “overall uncertainty”, i.e., the likelihood that the
molecule satisfies all desired property thresholds.) Rewards are constructed by combining the overall
uncertainty, the bonus, and the diversity. These rewards are multiplied along trajectories and used,
together with transition log-probabilities, to compute a clipped policy gradient loss for updating the
model.
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3.1 Conditional EDM Backbone

Since most current 3D molecular diffusion models build upon EDM, we select it as our backbone to
ensure compatibility with future architectural extensions. EDM consists of two core components:

Forward diffusion. The forward process adds Gaussian noise to the atomic coordinates and features
x = (r,h), where r ∈ RM×3 denotes atomic positions and h ∈ RM×d denotes atom features. At
each timestep t ∈ {1, . . . , T}, noisy latents are sampled via q(zt | x) = N (zt;αtx, σ

2
t I), where αt

and σt are schedule parameters. This defines a Markov chain of corrupted states {zt} used to train
the denoising model and establish a reverse sampling chain.

Backward diffusion. The reverse process approximates the denoising distribution p(zt−1 | zt, c)
using a parameterized Gaussian:

p(zt−1 | zt, c) = N
(
zt−1;µθ(zt, t, c), σ

2
t I
)
, (1)

where µθ(zt, t, c) =
1
αt
zt− σt

αt
ϵ̂θ(zt, t, c), c is the condition vector concatenated to the atom features,

and ϵ̂θ is the predicted noise from an E(n)-equivariant Graph Neural Network (EGNN) [52].

3.2 Surrogate Models for Multi-objective Uncertainty Quantification

The surrogate models quantify the uncertainty of molecular property satisfaction during RL-guided
optimization. Each model estimates the likelihood that a molecule exceeds a predefined threshold for
a specific property, providing a smooth reward signal for multi-objective policy learning.

Single-property uncertainty modeling. We employ Chemprop’s Directed Message Passing Neural
Network (D-MPNN) [53] as the surrogate predictor. Each surrogate model is trained to estimate
the predictive mean µ(m) and variance σ2(m) of a molecular property for a given molecule m.
Assuming the prediction follows a Gaussian distribution, we define the uncertainty-aware reward for
a single property as:

Usingle(m; δ) = η

∫ ∞

δ

1

σ(m)
√
2π

exp

(
−1

2

(
x− µ(m)

σ(m)

)2
)
dx, (2)

where δ is the target threshold, and η ∈ {+1,−1} indicates task directions, with η = +1 for
properties where higher values are preferred (e.g., QED) and η = −1 for properties where lower
values are preferred (e.g., SAS and binding affinity).

Multi-objective reward aggregation. Since each property is modeled independently and assumed to
be conditionally independent given the molecule, the overall multi-objective reward is defined as the
joint satisfaction probability:

Umulti(m; δ1, . . . , δk) =

k∏
i=1

U i
single(m; δi), (3)

where k is the number of target properties and U i
single is the reward for property i. The aggregated

score Umulti(m; ·) ∈ [0, 1] provides a smooth and interpretable signal that favors molecules likely to
satisfy all property objectives simultaneously.

3.3 RL-guided Optimization

RL-guided optimization process consists of three key components: trajectory sampling, reward
design, and policy update.

Trajectory sampling. At each episode, we sample n molecules and record their generation trajecto-
ries {zT , zT−1, . . . , z0}. In RL, an explicit probability density is required for gradient estimation.
Therefore, the reverse transition in Equation (1) is rewritten in its Probability Density Function (PDF)
[54] form as:

pθ(zt−1 | zt, c) =
1

(2πσ2
t )

d/2
exp

(
− 1

2σ2
t

∥zt−1 − µθ(zt, t, c)∥2
)
, (4)
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where σ2
t is the variance at timestep t, and d is the dimensionality of the latent representation. This

formulation defines the likelihood of each denoising step in the Markov chain and serves as the basis
for RL policy gradient estimation.

Reward design. We design an uncertainty-driven reward function. Considering Equation (3), the
total reward for each generated molecule m is defined as:

Rtotal(m; δ1, . . . , δk, tepisode) = Umulti(m; δ1, . . . , δk) ·Rbonus(m)− λ(tepisode) ·D(m), (5)

where tepisode denotes the RL training episode index, Rbonus(m) is determined by the validity, unique-
ness, and novelty of m (the more conditions satisfied, the higher bonus obtained), δi (1 ≤ i ≤ k) is a
property threshold dynamically updated based on a moving average of the corresponding property
values from previously generated molecules, and D(m) denotes the average Tanimoto similarity
between m and the other molecules within the same batch. To encourage early-stage exploration and
later-stage exploitation, the penalty weight decays over training episodes as:λ(tepisode) = λ0e

−αtepisode .

Policy update. We adopt a Proximal Policy Optimization (PPO)-style [55] strategy to update the
parameters of the diffusion model. The objective is to minimize the clipped surrogate loss:

LPPO = −Em∼pθ
[min (r(m) ·Rtotal(m), clip(r(m), 1− ϵ, 1 + ϵ) ·Rtotal(m))] , (6)

where r(m) = pθ(m)
pθold (m) denotes the likelihood ratio between the current policy and the previous

policy and ϵ denotes the clipping range.

4 Experiments

4.1 Experimental Settings

This section describes the experimental design of our study, including datasets and data processing,
surrogate model training, diffusion model training, RL-guided diffusion model training, baseline
comparison, ablation study design, MD simulations and ADMET property prediction, evaluation,
and computational resources. Detailed settings, dataset descriptions, hyperparameter configurations,
and implementation details can be found in Appendix B.

Datasets and Data Preprocessing. We collected 3D molecular structures and SMILES strings of the
three datasets. RDKit [56] was used to compute QED and SAS scores, and AutoDock Vina [57] was
applied to evaluate binding affinity to EGFR. Each molecule is associated with a SMILES string, 3D
structure, QED score, SAS score, and binding affinity. The datasets were split into training (80%),
validation (10%), and test (10%) sets. For diffusion model training, molecules were split by species
grouping. For surrogate model training, molecules were split by molecular scaffold. All models were
trained and evaluated using standard train/validation/test splits.

Train surrogate models. We use Chemprop to train surrogate models predicting molecular properties
from SMILES. A separate model is trained for each property in each dataset, yielding nine models in
total. Hyperparameters are selected via grid search.

Build diffusion models. Conditional EDM is trained on 3D molecular structures and property
distributions, using the original hyperparameters. GeoLDM and GFMDiff are also trained for
comparative analysis.

RL-guided diffusion model training. The model is trained by sampling property combinations
exceeding predefined cutoffs from the training set as input conditions. It generates molecules
conditioned on these properties. Generated molecules are evaluated for validity, uniqueness, novelty,
Tanimoto diversity, and uncertainty to compute rewards. Rewards are used to update model parameters
via policy gradient.

Baseline comparison. We adapt four RL-guided diffusion baselines for image generation (SFT-PG,
DDPO-SF, DDPO-IS, DPOK) to the molecular domain. We reformulated the task into a single-
objective setting to fit these baselines. All baselines were trained across all datasets. Performance
was compared against a vanilla diffusion model and our framework.

Ablation study design. Our ablation study includes two parts. First, we replace the multi-objective
optimization module with four categories of alternative strategies: scalarization-based (WS, POO,
MMM, LSDW), constraint-based (NMD, NMD-WS, CP, PFM), gradient-based (SVD, PCGrad,
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CAGrad, GradVac), and uncertainty-based (UCB, EI, MVC, BORE). Second, we evaluate the effects
of disabling key components: reward boosting, diversity penalty, and dynamic cutoff adjustment.

MD simulations and ADMET property prediction. MD simulations were performed using
AmberTools [58] and OpenMM [59]. Ligands and receptors were parameterized with ff14SB [60]
and GAFF [61], solvated with TIP3P water [62], and simulated under standard conditions (300 K,
1 bar) for a total physical simulation time of 4,000 ps (approximately 1,000,000 steps). ADMET
properties were predicted with ADMET-AI [24].

Evaluation. Surrogate models were evaluated using the coefficient of determination (R², measuring
goodness of fit) [63], residual analysis, and Area Under the Calibration Error curve (AUCE, measuring
predictive uncertainty calibration) [64]. To evaluate generation performance, 2,000 molecules were
generated per run across three independent runs. Evaluation metrics included validity, uniqueness,
novelty, molecular stability, atomic stability, and proportion of desired candidates.

Device. All experiments were conducted on NVIDIA A100 GPUs with 80 GB memory.

4.2 Results and Discussion

This section presents and discusses the experimental results, including surrogate model evaluation,
diffusion model performance with and without RL-guided optimization, comparisons with SOTA
baselines, ablation studies, and MD and ADMET analyses. Additional results, including detailed
surrogate model performance, diffusion model performance across architectures, extended examples
of generated molecules, and further analysis and explanation are provided in Appendix C.

4.2.1 Surrogate Models

We assess the prediction accuracy and uncertainty calibration of the trained surrogate models. The
models achieve strong regression performance across all datasets and properties, with R² values
of 0.95–0.99 for QED and SAS, and 0.86–0.88 for binding affinity. Residual plots and predictive
variance analysis confirm that model uncertainty correlates with prediction errors. Uncertainty
calibration is evaluated using reliability diagrams. The AUCE remains low across datasets and
properties (0.02–0.10), indicating well-calibrated uncertainty estimates. These results demonstrate
that surrogate models not only accurately predict molecular properties but also provide reliable
uncertainty estimates, validating their use as a guidance signal for RL fine-tuning of diffusion models.

4.2.2 RL-guided Diffusion Models

Fig. 2 shows the training process of the RL-guided diffusion models. As shown in Fig. 2a–c, the
quality metrics, especially validity and molecular stability, are gradually improved over the course of
training. The reward curves (Fig. 2d–f) grow steadily and eventually stabilize, indicating convergence.
These results confirm that our RL framework enables effective and stable optimization.

Table 1 compares our uncertainty-aware RL-guided diffusion model with state-of-the-art RL baselines
and a vanilla diffusion model across all datasets. On QM9, our method achieves the best overall
performance, with the highest validity (98.17%), VUN score (88.90%), and top molecule percentage
(28.33%). It improves validity by over 9% compared to RL baselines and demonstrates better
balance across validity, uniqueness, and novelty. On ZINC15, our model attains near-perfect validity
(99.02%) and outperforms all baselines across metrics, including a 33.40% top molecule ratio. This
aligns with the drug-like nature of ZINC15, which matches our property objectives better than the
small organic compounds in QM9. On PubChem, despite its structural complexity, our method
maintains 100% uniqueness and novelty, and outperforms baselines by a large margin. The relatively
lower validity (16.23%) is attributed to the mismatch between pre-training on simpler molecules
and the high diversity of PubChem. The discrepancy between training and evaluation (Fig. 2c vs.
Table 1) arises from the evaluation using a larger sample size (2000 vs. 128 molecules). Overall,
our method consistently outperforms all baselines across datasets, confirming its effectiveness and
generalizability.

As shown in Fig. 3, we compared the property distributions of 2,000 valid molecules generated with
and without RL guidance across three trials. RL-guided models consistently improved QED and
reduced SAS and binding affinity, indicating better drug-likeness, synthetic accessibility, and binding
potential. The extent of improvement varied across datasets due to intrinsic property and structure
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Figure 2: RL-guided diffusion model training performance across three datasets. (a–c) Evolution
of key molecular quality metrics (validity, uniqueness, novelty, atom stability, and molecular stability)
over RL training episodes, where the vanilla diffusion models were pre-trained on QM9, ZINC15,
and PubChem, respectively. (d–f) Corresponding total reward curves showing convergence trends.

Table 1: Performance of baseline models and our method across three molecular datasets.
Dataset Method Val (%) (↑) Uni (%) (↑) Nov (%) (↑) VUN (%) (↑) ASta (%) (↑) MSta (%) (↑) Top (%) (↑)

QM9

W/O RL 88.55 ± 0.65 97.57 ± 0.30 99.75 ± 0.15 86.19 ± 1.02 99.34 ± 0.11 95.90 ± 0.34 25.17 ± 1.17

SFT-PG 88.57 ± 1.33 96.80 ± 0.33 99.80 ± 0.15 85.57 ± 1.60 99.24 ± 0.10 95.62 ± 0.58 25.58 ± 1.65

DDPO-SF 88.65 ± 1.05 97.39 ± 0.48 99.79 ± 0.20 86.16 ± 1.59 99.25 ± 0.09 95.50 ± 0.34 25.65 ± 1.51

DDPO-IS 88.82 ± 1.03 96.59 ± 0.71 99.39 ± 0.04 85.27 ± 1.30 97.31 ± 0.09 86.10 ± 0.64 25.77 ± 1.29

DPOK 88.10 ± 0.37 97.52 ± 0.42 99.81 ± 0.15 85.75 ± 0.80 99.18 ± 0.03 95.28 ± 0.18 25.20 ± 1.44

Ours 98.17 ± 0.07 90.90 ± 0.72 99.63 ± 0.04 88.90 ± 0.68 99.87 ± 0.03 99.17 ± 0.27 28.33 ± 0.61

ZINC15

W/O RL 30.05 ± 1.34 100.00 ± 0.00 100.00 ± 0.00 30.05 ± 1.34 88.36 ± 0.40 12.00 ± 1.33 8.02 ± 0.46

SFT-PG 41.25 ± 1.48 100.00 ± 0.00 100.00 ± 0.00 41.25 ± 1.48 91.71 ± 0.08 25.55 ± 0.65 10.43 ± 0.73

DDPO-SF 30.25 ± 1.56 100.00 ± 0.00 100.00 ± 0.00 30.25 ± 1.56 88.37 ± 0.40 11.97 ± 1.41 8.05 ± 0.61

DDPO-IS 30.47 ± 1.39 100.00 ± 0.00 100.00 ± 0.00 30.47 ± 1.39 88.35 ± 0.44 12.02 ± 1.57 8.13 ± 0.60

DPOK 30.13 ± 2.28 100.00 ± 0.00 100.00 ± 0.00 30.13 ± 2.28 88.42 ± 0.61 12.01 ± 1.38 8.02 ± 0.78

Ours 99.02 ± 0.46 99.75 ± 0.06 100.00 ± 0.00 98.77 ± 0.49 99.86 ± 0.03 98.08 ± 0.63 33.40 ± 0.89

PubChem

W/O RL 7.18 ± 4.78 99.67 ± 0.65 100.00 ± 0.00 7.17 ± 4.80 94.51 ± 0.16 38.18 ± 0.92 2.23 ± 1.65

SFT-PG 7.47 ± 1.40 99.57 ± 0.85 100.00 ± 0.00 7.44 ± 1.37 82.99 ± 0.49 33.25 ± 0.34 2.03 ± 0.76

DDPO-SF 7.98 ± 2.96 100.00 ± 0.00 100.00 ± 0.00 7.98 ± 2.96 94.49 ± 0.98 44.22 ± 0.32 2.40 ± 0.37

DDPO-IS 10.50 ± 6.19 99.90 ± 0.20 100.00 ± 0.00 10.48 ± 6.16 95.36 ± 0.99 45.37 ± 1.85 2.52 ± 1.22

DPOK 7.65 ± 1.75 99.67 ± 0.64 100.00 ± 0.00 7.62 ± 1.76 94.51 ± 0.20 38.17 ± 0.64 2.42 ± 0.46

Ours 16.23 ± 9.72 100.00 ± 0.00 100.00 ± 0.00 16.23 ± 9.72 99.04 ± 0.13 88.65 ± 0.59 2.97 ± 1.60

Note: Each model generates 2,000 molecules per run. Results are averaged over three independent runs and reported as mean ± 95% confidence interval.
"W/O RL" denotes vanilla diffusion models without RL. "Val", "Uni", and "Nov" represent the percentages of valid, unique, and novel molecules,
respectively. "VUN" is their joint metric computed as Val × Uni × Nov, representing the percentage of molecules that are simultaneously valid, unique,
and novel. "ASta" and "MSta" denote atom-level and molecule-level stability. "Top" indicates the proportion of generated molecules that simultaneously
satisfy all three property constraints, using relaxed cutoffs (QED > 0.4, SAS < 8, and binding affinity < –4.5) to avoid missing potentially useful
candidates. All metrics are reported as percentages, and higher values indicate better performance.

constraints. These results highlight the robustness and effectiveness of our framework in optimizing
multiple molecular properties.

4.2.3 Ablation Study

We conducted ablation studies to assess the contribution of each component in our framework
(Table 2). Compared to traditional multi-objective strategies as well as other alternative uncertainty-
based approaches, our method consistently outperforms across key metrics. While uniqueness slightly
decreases, the trade-off is acceptable given the substantial gains in other objectives. Simplified
variants of our method show clear performance drops, confirming the necessity of the full design.
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Figure 3: Distributions of generated valid molecule properties across three datasets with and
without RL-guided optimization. (a–c) QED distributions for vanilla diffusion models pre-trained
on QM9, ZINC15, and PubChem. (d–f) SAS distributions. (g–i) Binding affinity distributions. Each
dataset shows results from three independent trials comparing vanilla diffusion models (without RL)
and RL-guided diffusion models (with RL).

4.2.4 MD and ADMET analysis

We further evaluated the drug-likeness and stability of top-ranked molecules generated by our RL-
guided diffusion models. As shown in Fig. 4, these candidates were compared with known EGFR
mutant inhibitors using molecular docking, MD simulations, and ADMET profiling. The reference in-
hibitors showed stable RMSD trajectories and favorable pharmacokinetic profiles (Figs. 4e–f). Based
on ADMET and MD performance, we found all candidates (molecules in Figs. 4b–d) maintained
stable protein-ligand complexes, with RMSD values within or below reference ranges. Notably,
candidates in Fig. 4c and Fig. 4d showed particularly strong conformational stability. ADMET
analysis further confirmed good absorption, low CYP inhibition, and minimal toxicity. Overall, the
generated compounds matched or outperformed the reference inhibitors, demonstrating the practical
utility of our framework in identifying structurally stable, pharmacologically promising molecules
for early-stage drug discovery.

5 Conclusion

We proposed an uncertainty-aware multi-objective RL-guided diffusion model framework for 3D de
novo molecular generation. By incorporating predictive uncertainty into optimization, our method
effectively balances complex and conflicting molecular design objectives. Experiments across
multiple datasets show that RL-guided diffusion models generate high-quality molecules with superior
validity, uniqueness, novelty, stability, and multiple drug-relevant properties. Notably, our method
identified novel candidates with strong drug-like characteristics, MD stability, and favorable ADMET
properties, beyond the reach of standard diffusion models. These results underscore the potential of
our framework for early-stage drug discovery.
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Table 2: Ablation analysis results.
Category Method Val (%) (↑) Uni (%) (↑) Nov (%) (↑) VUN (%) (↑) ASta (%) (↑) MSta (%) (↑) Top (%) (↑)

Scalarization-
based

WS 91.78 ± 0.45 95.92 ± 0.84 99.81 ± 0.10 87.86 ± 0.81 99.52 ± 0.14 96.80 ± 0.74 27.02 ± 0.88

POO 89.13 ± 0.54 87.86 ± 1.15 99.45 ± 0.07 77.88 ± 1.43 98.57 ± 0.17 91.27 ± 0.96 24.60 ± 1.61

MMM 90.08 ± 0.80 79.55 ± 1.29 99.35 ± 0.05 71.20 ± 1.80 98.56 ± 0.19 91.33 ± 0.86 26.53 ± 2.09

LSDW 91.37 ± 0.07 76.96 ± 1.06 99.48 ± 0.05 69.95 ± 1.00 99.27 ± 0.07 94.73 ± 0.38 21.73 ± 1.71

Constraint-
based

NMD 93.30 ± 0.45 83.57 ± 1.33 99.61 ± 0.08 77.67 ± 1.27 99.45 ± 0.03 96.08 ± 0.31 25.75 ± 1.30

NMD-WS 92.88 ± 0.07 76.71 ± 1.53 99.39 ± 0.10 70.82 ± 1.50 99.37 ± 0.09 95.20 ± 0.60 23.15 ± 1.36

CP 92.15 ± 0.29 85.19 ± 0.99 99.49 ± 0.13 78.10 ± 1.06 99.09 ± 0.16 94.20 ± 1.10 26.30 ± 1.23

PFM 91.98 ± 0.60 96.70 ± 0.40 99.77 ± 0.17 88.75 ± 0.78 99.61 ± 0.04 97.58 ± 0.28 24.68 ± 1.16

Gradient-
based

SVD 84.62 ± 1.48 95.34 ± 1.24 99.57 ± 0.25 80.32 ± 0.74 97.72 ± 0.09 87.70 ± 0.32 25.62 ± 0.25

PCGrad 86.98 ± 0.45 92.60 ± 0.53 99.46 ± 0.27 80.12 ± 0.87 98.23 ± 0.25 90.18 ± 0.62 24.87 ± 0.33

CAGrad 86.33 ± 0.95 93.86 ± 0.40 99.61 ± 0.15 80.72 ± 0.78 98.30 ± 0.15 90.35 ± 0.74 24.27 ± 0.90

GradVac 88.50 ± 0.97 96.16 ± 0.40 99.69 ± 0.07 84.83 ± 0.83 99.15 ± 0.08 94.65 ± 0.45 24.43 ± 0.26

Uncertainty-
based

UCB 86.10 ± 0.95 95.59 ± 0.48 99.98 ± 0.04 82.28 ± 0.48 99.51 ± 0.08 97.12 ± 0.55 13.40 ± 0.20

EI 85.68 ± 0.95 92.61 ± 0.46 99.50 ± 0.14 78.95 ± 0.86 98.00 ± 0.11 88.88 ± 0.62 26.97 ± 0.72

MVC 87.78 ± 0.34 97.23 ± 0.51 99.80 ± 0.15 85.18 ± 0.09 99.03 ± 0.02 94.42 ± 0.28 24.03 ± 0.62

BORE 89.33 ± 0.77 97.09 ± 0.35 99.81 ± 0.15 86.57 ± 1.14 99.42 ± 0.04 96.40 ± 0.44 23.73 ± 1.62

Ours W/O
Reward Boost 90.00 ± 0.52 96.93 ± 0.69 99.68 ± 0.08 86.95 ± 0.17 99.22 ± 0.03 95.40 ± 0.26 25.92 ± 1.54

Diversity Penalty 83.55 ± 1.39 79.37 ± 0.76 99.17 ± 0.02 65.77 ± 1.40 96.17 ± 0.34 80.42 ± 1.77 25.43 ± 0.71

Static Cutoff 95.73 ± 0.57 94.76 ± 0.28 99.93 ± 0.04 90.65 ± 0.76 99.87 ± 0.04 99.03 ± 0.28 24.88 ± 0.90

Ours† 98.17 ± 0.07 90.90 ± 0.72 99.63 ± 0.04 88.90 ± 0.68 99.87 ± 0.03 99.17 ± 0.27 28.33 ± 0.61

† This repeats previous results for easier comparison.
Note: Each model generates 2,000 molecules per run. Results are averaged over three independent runs and reported as mean ± 95% confidence interval. All
experiments in this table are conducted on the diffusion models pre-trained on QM9. "Val", "Uni", and "Nov" represent the percentages of valid, unique, and novel
molecules, respectively. "VUN" is their joint metric computed as Val × Uni × Nov, representing the percentage of molecules that are simultaneously valid, unique,
and novel. "ASta" and "MSta" denote atom-level and molecule-level stability. "Top" indicates the proportion of generated molecules that simultaneously satisfy all
three property constraints, using relaxed cutoffs (QED > 0.4, SAS < 8, and binding affinity < –4.5) to avoid missing potentially useful candidates. “Ours W/O”
refers to our framework with one module (reward boost, diversity penalty, or dynamic cutoff) ablated. All metrics are reported as percentages, and higher values
indicate better performance.
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Figure 4: Comparison between a known EGFR inhibitor and top molecules generated by RL-
guided diffusion models. (a) Docking pose of a known EGFR inhibitor. (b–d) Docking poses of
the top-ranked molecules generated by RL-guided diffusion models pre-trained on QM9, ZINC15,
and PubChem, respectively. QED, SAS, and binding affinity values are shown in each panel. (e–l)
Corresponding ADMET radar plots and MD simulation RMSD curves. (e, f) Known inhibitor. (g,
h) Molecule from (c). (i, j) Molecule from (b). (k, l) Molecule from (d). All MD trajectories were
verified to have reached equilibrium prior to analysis, as indicated by the stabilization of RMSD
values within a stable range of approximately 0.20–0.30 nm after an initial relaxation phase and the
absence of sustained drift or abrupt fluctuations. The presented molecules were selected based on
their overall performance.
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Limitations. While our approach shows strong overall performance, results on PubChem suggest
that existing diffusion architectures may struggle with large, complex molecules containing many
heavy atoms. This limitation stems from backbone scalability rather than the RL framework itself.
Future work on scalable diffusion architectures may further improve performance on large-molecule
datasets.

Broader Impact. This work presents a generalizable framework that may accelerate early-stage
drug discovery by efficiently exploring chemical space and optimizing multiple pharmacologically
relevant properties. It enables the targeted design of molecules that meet predefined therapeutic
criteria. Beyond drug discovery, the approach may benefit materials science, catalyst design, and
molecular engineering. We acknowledge the ethical implications of powerful generative tools and
support their responsible use within appropriate regulatory and safety frameworks.
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• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Section 5 includes limitations of our work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: This paper does not include theoretical or formal proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All experimental settings, including data splits, model backbones, hyperparam-
eters, and evaluation protocols, are fully described in Section 4 and Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The datasets used in our study are publicly available, with access links provided
in the Appendix. The source code will be released upon acceptance of the manuscript.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All experimental details, including dataset descriptions, data splits, model archi-
tectures, optimization procedures, hyperparameter configurations, and evaluation protocols,
are clearly documented in Section 4 and further detailed in Appendix. These specifications
are sufficient to fully understand and reproduce the reported results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report 95% confidence intervals across multiple runs for all key experi-
ments.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We mention the computational resources used to conduct the experiments in
Section 4 and Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed the NeurIPS Code of Ethics and confirm that our research
fully complies with the guidelines. Our work does not involve human subjects, sensitive
data, or potential misuse.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
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Justification: Broader impacts are discussed in Section 5.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our work does not involve models or datasets with high risk of misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All external tools (e.g., RDkit, AutoDock Vina) and models are cited and used
under their respective licenses.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We introduce new code and models, which are documented and will be released
with usage instructions upon acceptance.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This work does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This work does not involve research with human subjects and therefore does
not require IRB approval.

Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs are not used as a component of the core methods in this research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A Methodology

This section provides extended details to supplement Section 3 of the main manuscript.

A.1 Conditional Diffusion Model

Notation. We define x ∈ RM×3 as the coordinates of M atoms in 3D space, constrained to the
zero center of gravity subspace, meaning the sum of the coordinates

∑
i xi = 0. The atom features,

h ∈ RM×d, are invariant to E(3) transformations and include attributes like one-hot encoded atom
types or charges. The conditioning variable c represents a desired molecular property. At each
diffusion step t, the latent variable zt =

[
z
(x)
t , z

(h)
t

]
combines the noised coordinates z

(x)
t and

features z
(h)
t . The parameters αt and σt control the balance between signal retention and noise

addition, while ϕ(·, t, c) is an Equivariant Graph Neural Network (EGNN) that predicts noise during
denoising, conditioned on both the time step t and the property c. Finally, Nxh denotes a joint normal
distribution over coordinates and features, with coordinates constrained to the zero center of gravity
subspace.

Forward Diffusion. The forward diffusion process is the first key component of EDM, designed to
gradually corrupt the original data into noise, creating a sequence of latent variables z0, z1, . . . , zT
that we can later denoise to generate new samples. In a standard diffusion model, the process adds
noise to a data point x according to the formula:

q(zt | x) = N (zt;αtx, σ
2
t I), (A.1)

where αt determines how much of the original signal is retained, and σ2
t controls the variance of

the added Gaussian noise. This formula captures the essence of diffusion: as t increases, the data is
progressively noised until it resembles pure noise at t = T .

In EDM, this idea is extended to jointly model both coordinates x and features h, since molecules
require both positional and categorical information. The forward process is Markovian, meaning
each step depends only on the previous one, and is expressed as:

q(z0, z1, . . . , zT | x,h) = q(z0 | x,h)
T∏

t=1

q(zt | zt−1). (A.2)

The initial distribution at t = 0 is defined as:

q(z0 | x,h) = Nxh(z0 | α0[x,h], σ
2
0I), (A.3)

and the transition from zt−1 to zt is given by:

q(zt | zt−1) = Nxh(zt | αt|t−1zt−1, σ
2
t|t−1I), (A.4)

where αt|t−1 = αt/αt−1 adjusts the signal scaling between steps, and the noise variance is

σ2
t|t−1 = σ2

t − α2
t|t−1σ

2
t−1.

The joint distribution Nxh factorizes into distributions for coordinates and features:

Nxh(zt | αt[x,h], σ
2
t I) = Nx(z

(x)
t | αtx, σ

2
t I) · N (z

(h)
t | αth, σ

2
t I). (A.5)

Here, Nx is a normal distribution over the zero center of gravity subspace, ensuring the coordinates
remain translation-invariant, and is defined as:

Nx(x | µ, σ2I) = (
√
2πσ)−(M−1)·3 exp

(
−∥x− µ∥2/(2σ2)

)
, (A.6)

with µ in the zero center of gravity subspace. The feature distribution N is a standard normal
distribution, reflecting the invariance of h to E(3) transformations.
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The noise schedule is designed to be variance-preserving, meaning αt =
√

1− σ2
t , ensuring that the

total variance of the data remains constant as noise is added. The specific form of αt is chosen to
smoothly transition from retaining the signal to adding noise:

αt = (1− 2s) ·
(
1− (t/T )2

)
+ s, (A.7)

where s = 10−5 is a small constant to prevent numerical issues, allowing αt to decrease from α0 ≈ 1
(almost pure signal) to αT ≈ 0 (almost pure noise). To quantify the balance between signal and noise
at each step, we define the Signal-to-Noise Ratio (SNR):

SNR(t) = α2
t /σ

2
t = α2

t /(1− α2
t ). (A.8)

The SNR decreases as t increases, reflecting the increasing dominance of noise. For computational
convenience during training and sampling, we also compute the negative log-SNR, defined as:

γ(t) = − log SNR(t) = − logα2
t + log σ2

t . (A.9)

The purpose of the negative log-SNR is to provide a numerically stable representation of the noise level
at each step, which is particularly useful when optimizing the model or scheduling the noise. Using
properties of the sigmoid function, we can express α2

t = sigmoid(−γ(t)) and σ2
t = sigmoid(γ(t)),

which simplifies calculations and ensures that the noise schedule is well-behaved across all timesteps.

Backward Diffusion. The goal of the reverse process is to generate new molecules by denoising
the latent variables, starting from pure noise at t = T and iteratively refining them back to a data
sample at t = 0. In a conditional diffusion model, the reverse process approximates the denoising
step, conditioned on c, as:

p(zt−1 | zt, c) = N (zt−1;µθ(zt, t, c), σ
2
t I), (A.10)

where µθ(zt, t, c) is the mean predicted by EGNN, guiding the denoising process toward samples
that satisfy the condition c. This formula provides a high-level view of the reverse process, capturing
how the model learns to reverse the noise addition step by step.

We define this process more precisely to ensure E(3) equivariance. The true posterior for the reverse
step is:

q(zs | x,h, zt) = Nxh(zs | µt→s([x,h], zt), σ
2
t→sI), (A.11)

where s < t, and the mean and variance are:

µt→s([x,h], zt) = (αt|sσ
2
s/σ

2
t )zt + (αsσ

2
t|s/σ

2
t )[x,h], (A.12)

σt→s = (σt|sσs)/σt, αt|s = αt/αs, σ2
t|s = σ2

t − α2
t|sσ

2
s . (A.13)

Since x and h are unknown during generation, we approximate them using EGNN ϕ(zt, t, c), which
predicts the noise ϵ̂t = [ϵ̂

(x)
t , ϵ̂

(h)
t ]. The estimated data is then computed as:

[x̂, ĥ] = (zt/αt)− (σt/αt)ϵ̂t, (A.14)

where ϵ̂t = ϕ(zt, t, c). Substituting this into the mean, the reverse transition distribution becomes:

p(zs | zt, c) = Nxh(zs | µt→s([x̂, ĥ], zt), σ
2
t→sI). (A.15)

For sampling, we start with zT ∼ Nxh(0, I), representing pure noise, and iteratively apply the reverse
process for t = T down to t = 1, setting s = t− 1. At each step, we sample ϵ ∼ N (0, I), subtract
the center of gravity from z

(x)
t , compute the predicted noise ϵ̂t = ϕ(zt, t, c), and update:

zs = (1/αt|s)zt − (σ2
t|s/(αt|sσt))ϵ̂t + σt→sϵ. (A.16)

Finally, we sample the data (x,h) ∼ p(x,h | z0, c). EGNN ensures that the predicted noise for
coordinates is equivariant:

Rϵ̂
(x)
t = ϕ(x)(Rz

(x)
t , z

(h)
t , t, c), (A.17)

where R is an orthogonal matrix.
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Training Objective. To train the model, we aim to maximize the conditional log-likelihood
log p(x,h | c), which is achieved by optimizing a variational lower bound:

log p(x,h | c) ≥ Lc,0 + Lc,base +

T∑
t=1

Lc,t. (A.18)

The term Lc,t = −KL(q(zs | x,h, zt)∥p(zs | zt, c)) measures the divergence between the true and
approximate reverse distributions for t = 1, . . . , T . The term Lc,0 = log p(x,h | z0, c) evaluates the
likelihood at the final step, and Lc,base = −KL(q(zT | x,h)∥p(zT )) compares the forward process
at t = T to the prior. Since αT ≈ 0, Lc,base ≈ 0.

For t ≥ 1, the KL divergence simplifies to a noise prediction objective:

Lc,t = Eϵ∼Nxh(0,I)

[
(1/2)w(t)∥ϵt − ϕ(zt, t, c)∥2

]
, (A.19)

where w(t) = 1− SNR(t− 1)/SNR(t). Setting w(t) = 1 simplifies training and improves sample
quality, reducing the objective to minimizing the mean-squared error between the true noise ϵt and
the predicted noise ϕ(zt, t, c). During training, we sample t ∼ U(0, . . . , T ), noise ϵ ∼ N (0, I),
compute zt = αt[x,h] + σtϵ, and minimize ∥ϵ− ϕ(zt, t, c)∥2.

The zero-term Lc,0 splits into contributions from coordinates and features: Lc,0 = L(x)
c,0 + L(h)

c,0 .

For coordinates, we approximate the posterior as:

q(x | z(x)0 ) ≈ Nx(x | z(x)0 /α0, (σ
2
0/α

2
0)I), (A.20)

and the generative distribution is:

p(x | z0, c) = N (x | (z(x)0 /α0)− (σ0/α0)ϵ
(x)
0 , (σ2

0/α
2
0)I), (A.21)

yielding:

L(x)
c,0 = Eϵ(x)∼Nx(0,I)

[
logZ − 1

2
∥ϵ(x) − ϕ(x)(z0, 0, c)∥2

]
, (A.22)

where Z = (
√
2π · σ0/α0)

(M−1)·3.

For categorical features, the noising is

q(z
(h)
t | h) = N (z

(h)
t | αth

onehot, σ2
t I), (A.23)

and the generative distribution is a categorical distribution, approximating L(h)
c,0 ≈ 0 for small σ0.

Conditional Generation Mechanism The purpose of conditional generation is to produce
molecules (x,h) ∼ p(x,h | c,M) that satisfy the desired property c and have M atoms. We
first sample (c,M) ∼ p(c,M) from a learned distribution estimated from the training data. Then,
we sample pure noise zT ∼ Nxh(0, I), iteratively denoise using p(zt−1 | zt, c), and finally sample
the data (x,h) ∼ p(x,h | z0, c). The neural network ϕ(zt, t, c) incorporates c by concatenating it
to the node features, guiding the denoising process toward the desired property.

A.2 Surrogate Models for Multi-objective Uncertainty Quantification

Uncertainty Modeling. The uncertainty Usingle(m; δ) encompasses both aleatoric and epistemic
uncertainties, combined into the total variance

σ2
total(m) = σ2

a(m) + σ2
e(m). (A.24)

Aleatoric uncertainty σ2
a reflects inherent data noise, such as variability from computational simula-

tions, while epistemic uncertainty σ2
e arises from model limitations due to limited training data.

In the Chemprop model with evidential learning, these are estimated using the Normal Inverse-Gamma
(NIG) parameters:

σ2
a =

β

α− 1
, and σ2

e =
β

ν(α− 1)
, (A.25)

where β, α, and ν are predicted by the model.
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The Gaussian distribution assumption, with mean µ(m) and standard deviation

σ(m) =
√
σ2

total(m), (A.26)

is reasonable because it allows the integral in Usingle(m; δ) to compute a probability, validated by the
model’s calibration to real-world data variability.

Uncertainty as a Threshold Probability. The uncertainty σ(m) directly informs the probability
that a molecule’s true property value exceeds the threshold δ, computed as:

Usingle(m; δ) = η

∫ ∞

δ

1

σ(m)
√
2π

exp

(
−1

2

(
x− µ(m)

σ(m)

)2
)
dx. (A.27)

This integral represents the cumulative probability under a Gaussian distribution, where a larger σ(m)
reduces the likelihood of exceeding δ due to increased spread, and a smaller σ(m) increases it if
µ(m) is favorable.

The inclusion of total uncertainty (σ2
total) ensures that both aleatoric and epistemic contributions are

considered, reflecting the overall reliability of the prediction.

Multi-Objective Uncertainty. The multi-objective uncertainty is defined as:

Umulti(m; δ1, . . . , δk) =

k∏
i=1

Usingle(m; δi). (A.28)

This product is justified by assuming conditional independence of property uncertainties given the
molecule, meaning the likelihood of meeting all thresholds δ1, . . . , δk is the joint probability of
individual successes. Each Usingle(m; δi) measures the probability for one property, and the product
ensures a molecule is rewarded only if it likely satisfies all objectives simultaneously.

This approach avoids trade-offs, penalizing molecules with low probability for any property, which is
critical in RL where a balanced solution is needed, making it a coherent aggregation strategy.

A.3 RL-guided Optimization

Transition Probability. We first employ the trained diffusion model to sample a set of molecules
and record their diffusion trajectories. Each trajectory can be treated as a Markov chain. The transition
probability between two states on the chain are defined in Equation (A.4). Its PDF format is given by

pθ(zt−1 | zt, c) =
1

(2πσ2
t )

d/2
exp

(
− 1

2σ2
t

∥zt−1 − µθ(zt, t, c)∥2
)
, (A.29)

relying on the variance σ2
t and the latent variables zt and zt−1. The variance σ2

t is computed based
on the noise schedule in the diffusion process. Referring to Equation (A.13), we define

σ2
t→s =

σ2
t

αt
= σ2

t

σ2
s

α2
s

, (A.30)

where σ2
t = 1−αt, ensuring that the variance increases as t grows, reflecting the progressive addition

of noise in the forward process.

The latent variable zt is sampled iteratively during the backward process of the diffusion model.
Starting from zT ∼ N (0, I), each zt for t = T − 1, . . . , 0 is computed using Equation (A.16):

zs =
1

√
αt|s

zt −

(
σ2
t→s√
αt|sσt

)
ϵ̂+ σt→sϵ, (A.31)

where ϵ ∼ N (0, I) and ϵ̂ = ϕ(zt, t, c). Subsequently, zt−1 is sampled from

N (zt−1 | µt→s([x,h], zt), σ
2
t→sI), (A.32)

ensuring the denoising trajectory aligns with the learned distribution.
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Reward Bonus Design. The reward bonus Rbonus(m) is determined by three binary flags: validity
(vm), uniqueness (um), and novelty (nm), each taking values in {0, 1}. These flags indicate whether
molecule m satisfies the respective criteria. The bonus is formulated as a weighted linear combination:

Rbonus(m) = bvvm + buum + bnnm, (A.33)

where bv , bu, and bn are positive scalars representing the reward contributions of validity, uniqueness,
and novelty, respectively.

This reward-boosting design allows binary objectives related to generation quality to be integrated
without inducing reward sparsity, thereby enabling unified optimization of both binary and continuous
rewards in a multi-objective setting.

Optimization. We optimize the diffusion model using a PPO-style clipped surrogate loss. Gradients
are accumulated over multiple sampled timesteps based on fixed trajectories, enabling stable updates
under complex multi-objective rewards. The pseudocode is shown in Algorithm A.1.

Algorithm A.1 RL-guided Optimization for Diffusion Models
1: Initialize diffusion model πθ, optimizer, and learning rate scheduler
2: for episode = 1 to N do
3: Freeze current policy as πθold

4: Generate a batch of molecules using πθold

5: Record complete diffusion trajectories and transition probabilities
6: Estimate uncertainty and compute reward probabilities
7: Measure molecular diversity, validity, uniqueness, and novelty
8: Compute total rewards
9: for each policy update over fixed trajectories do

10: Sample timesteps t1, t2, . . . , tK ∼ U(0, T )
11: for each sampled timestep t do
12: Evaluate log-probabilities under πθ at timestep t
13: Compute importance ratio r(m) = exp(log pθ − log pθold)
14: Compute clipped surrogate loss
15: Accumulate gradients
16: end for
17: Update πθ using accumulated gradients
18: Step learning rate scheduler
19: end for
20: end for
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B Experimental Settings

As illustrated in Fig. B.1, our pipeline consists of five key stages: data preprocessing, surrogate
model training, diffusion model pretraining, RL-guided optimization of the diffusion model, and
molecule generation with subsequent in silico evaluation. The following sections provide additional
implementation details for each stage of the pipeline.

RL

Molecular 
Dataset

Surrogate 
Model

Diffusion 
Model

Data 
Preprocessing

GuideTrain

Novel 
Molecules

GenerateTrainInput 

in silico 
Evaluation

Figure B.1: Overall workflow of our framework. A molecular dataset is first preprocessed to train
both the diffusion model and the surrogate models. RL guides the optimization of the diffusion model
using predictions from the surrogate models. The optimized diffusion model then generates candidate
molecules for in silico evaluation.

B.1 Data Sources and Descriptions

We use three molecular datasets (QM9, ZINC15, and PubChem) as sources for training and evaluating
surrogate and diffusion models. In addition, we use a curated crystallographic structure of mutant
EGFR as the target receptor for molecular docking. Table B.1 summarizes the sources, descriptions,
and download options for each dataset used in this study.

B.2 Data Preprocessing

B.2.1 Target Protein Preprocessing

We selected the human EGFR as the docking target in this study due to its central role in cell signaling
and its clinical importance in various cancers. In particular, we used the 3D crystal structure with
PDB ID 6VHN, which corresponds to the kinase domain of a mutant form of EGFR bound to a
small-molecule inhibitor. This structure provides a biologically relevant conformation for evaluating
ligand binding and offers sufficient resolution (2.5 Å) for structure-based modeling.

To prepare the protein for molecular docking, we applied a series of standard preprocessing steps to
ensure structural completeness and compatibility with docking software. First, all water molecules,
ions, and co-crystallized ligands not involved in the binding site were removed to eliminate potential
artifacts and ensure a clean receptor surface. The structure was then processed to convert any
non-standard residues into their canonical forms, and missing side chains were reconstructed using
geometry-based modeling to ensure a complete atomic representation. Polar hydrogen atoms were
added throughout the protein to restore potential hydrogen bonding interactions typically unresolved
in crystallographic data. Finally, partial atomic charges were assigned to the protein using a standard
method compatible with docking engines. The resulting structure was saved in the appropriate format
and used as the receptor input in subsequent docking simulations.

B.2.2 Molecular Data Preprocessing

To process each dataset, we first remove invalid molecules (e.g., those with missing 3D coordinates
or broken structures) and eliminate duplicates. For the remaining molecules, we annotate three key
properties (QED, SAS, and binding affinity) for each molecule. Specifically, QED and SAS are
computed using RDKit, while the binding affinity is predicted using AutoDock Vina through docking
simulations with the EGFR receptor site. These property annotations will be used in both surrogate
model training and diffusion model training.
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Table B.1: Sources and descriptions of datasets.

Dataset Item Details

QM9
Source http://deepchem.io.s3-website-us-west-1.amazonaws.com/

datasets/gdb9.tar.gz

Description Dataset containing quantum chemical properties of small organic molecules.
QM9 is widely used in the development and evaluation of machine learning
models for molecular property prediction.

Download Option Whole dataset (SDF format)

ZINC15
Source https://zinc15.docking.org/tranches/home/#

Description A free database of commercially available molecules for virtual screening,
frequently used in drug discovery research.

Download Option 3D lead-like molecules (SDF format); neutral or +0 charged; mid-range logP;
in-stock availability; standard reactivity

PubChem
Source https://pubchem.ncbi.nlm.nih.gov/#query=small%20molecule&

tab=compound

Description A public chemical database providing bioactivity data and annotations for small
molecules. PubChem is extensively used in cheminformatics, drug discovery,
and bioinformatics applications.

Download Option Small molecule subset (SDF format)

EGFR Source https://www.rcsb.org/structure/6VHN

Description Crystallographic structure of the kinase domain of mutant human EGFR (PDB
ID: 6VHN), co-crystallized with a small-molecule inhibitor. This structure
serves as the receptor target for binding affinity prediction via molecular dock-
ing.

Download Option Downloadable in .pdb format from RCSB PDB

After property computation, all hydrogen atoms are removed from the 3D molecular structures. This
decision is motivated by the need to reduce computational overhead and simplify molecular graphs
during preprocessing and training. Hydrogen atoms offer limited topological information and can be
accurately reconstructed at a later stage based on standard valency rules. Because the core chemical
and spatial information of each molecule remains intact, this step introduces no adverse impact on the
training performance. Each molecule is ultimately represented by its SMILES string, 3D structure
(including atom types and coordinates), and its drug-related properties. The SMILES string is used
as molecular input when training surrogate models, while the 3D structure is used as input to the
diffusion model.

To train the diffusion model, we further construct dataset-level configuration files based on the
hydrogen-removed molecules. For each dataset, each distinct atom type in the molecule is assigned
a numerical encoding via an atom encoder and its corresponding decoder. The unique atom types
identified in each dataset are listed in Table B.2. The number of atoms in each molecule is counted to
determine the maximum graph size across the dataset. Fig B.2 illustrates the number of molecules in
each dataset grouped by heavy atom count. Molecules in QM9 typically contain fewer than 10 heavy
atoms, while those in ZINC15 and PubChem span a broader range of sizes. Especially in PubChem,
some structures exceed 40 atoms.

Table B.2: Unique atom types observed in each dataset. (after hydrogen removal)

Dataset Unique Atom Types

QM9 C, N, O, F
ZINC15 C, N, O, F, P, S, Cl, Br, I
PubChem C, N, O, F, P, S, Cl, Br, I

To prepare the data for model training and evaluation, we apply different data splitting strategies
tailored to the modeling task.
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Figure B.2: Distribution of molecules by the number of heavy atoms in each dataset. Subfigures
(a), (b), and (c) correspond to QM9, ZINC15, and PubChem, respectively.

Scaffold-based splitting. For the surrogate model, we adopt scaffold-based splitting. Specifically,
each molecule is first assigned a Bemis–Murcko scaffold by removing its side chains and retaining
the core ring and linker structures. Molecules sharing the same scaffold are grouped together. These
scaffold groups are then randomly shuffled and assigned to the training, validation, and test sets in
such a way that no scaffold appears in more than one set. This ensures that the model is evaluated on
structurally novel scaffolds not seen during training.

Species-based splitting. For training the diffusion model, we use species-based splitting. Each
molecule is grouped based on the unique set of atom types it contains (i.e., its chemical species).
These species groups are shuffled and assigned to disjoint training, validation, and test partitions,
ensuring that each subset contains distinct combinations of atomic species. This strategy preserves
the global diversity of atom types while promoting generalization to structurally diverse molecules in
3D space.

Table B.3 summarizes the dataset statistics and splitting outcomes, including the total number of
molecules, maximum number of heavy atoms, and the number of samples in the training, validation,
and test sets for each dataset.

Table B.3: Dataset statistics after preprocessing. Hydrogen atoms are excluded in max atom count.

ZINC15 QM9 PubChem

# total molecules 198,626 132,251 444,287
# max atoms 26 9 50
# molecules in train set (80%) 158,900 105,800 355,429
# molecules in test set (10%) 19,862 13,225 44,428
# molecules in validate set (10%) 19,864 13,226 44,430

B.3 Surrogate Model Training and Hyper-parameters

We train surrogate models using Chemprop, a graph neural network-based molecular property
predictor. For each dataset, we use the available SMILES strings and their corresponding property
labels (e.g., QED, SAS, or binding affinity) to train a separate model. The trained surrogate model
estimates not only the predicted property value but also the uncertainty associated with whether
the value exceeds a predefined threshold. Model hyperparameters are selected via grid search, as
summarized in Table B.4. The best hyperparameter configurations selected for each dataset are
reported in Table B.5.
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Table B.4: Hyperparameter search space for surrogate model training.

Hyperparameter Search Range

activation ReLU, SELU, GELU, Leaky ReLU
batch size 32, 64, 128, 512, 1024
dropout 0.0, 0.15, 0.1, 0.2
ensemble size 1, 5, 10, 20, 30
epochs 5, 10, 20, 30, 40, 50, 60
evidential regularization 1e-3, 5e-3, 1e-2
ffn_hidden_size 200, 300, 400, 600
final learning rate 1e-5, 1e-4
hidden size 200, 300, 400, 600
loss function mse, evidential, mve
ffn_num_layers 2, 3
max learning rate 1e-3, 1e-2
initial learning rate 1e-4, 1e-3

Table B.5: Hyperparameters for surrogate models across datasets and prediction tasks.

Hyperparameter QM9 ZINC15 PubChem
QED SAS Affinity QED SAS Affinity QED SAS Affinity

activation PReLU PReLU PReLU PReLU PReLU PReLU PReLU PReLU PReLU
batch size 64 64 64 64 64 64 64 64 64
dropout 0 0.15 0 0 0 0 0 0.1 0
ensemble size 1 1 1 1 1 1 1 1 1
epochs 40 40 40 40 40 40 40 40 40
evidential regularization 5e-3 5e-3 5e-3 5e-3 5e-3 5e-3 1e-2 5e-3 5e-3
ffn_hidden_size 300 300 300 300 300 300 300 300 300
final learning rate 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5
hidden size 300 300 300 300 300 300 300 300 300
loss function evidential evidential evidential evidential evidential evidential evidential evidential evidential
ffn_num_layers 2 2 2 2 2 2 2 2 2
max learning rate 3e-3 3e-3 3e-3 3e-3 3e-3 3e-3 3e-3 3e-3 3e-3
initial learning rate 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4

B.4 Hyper-parameters for RL-guided Diffusion Model Training

We perform grid search over key hyperparameters for RL-guided diffusion model training, as
summarized in Table B.6. The final selected configurations for RL-guided diffusion models pre-
trained on each dataset (QM9, ZINC15, PubChem) are reported in Table B.7.

Table B.6: Hyperparameter search space for RL-guided diffusion model training.

Hyperparameter Search Range
valid_bonus 0.05, 0.2, 0.3, 0.35
unique_bonus 0.05, 0.2, 0.3, 0.35
novel_bonus 0.05, 0.2, 0.3, 0.35
clip_param 1e-4, 2e-4, 3e-4
learning rate 1e-5, 2e-5, 5e-5
reuse 1, 2, 3, 5, 10
n_samples 32, 64, 128, 256

B.5 Baseline Implementation

For each baseline, we follow the original framework design proposed in the corresponding papers. To
adapt our multi-objective setting to these single-objective optimization frameworks, we convert the
task into a binary reward formulation: a molecule receives a reward of 1 only if all target properties
exceed their predefined cutoffs, and 0 otherwise. The cutoffs are dataset-specific and determined
based on the top 10% of molecules ranked by each property, which provides a well-defined reward
signal while mitigating the issue of extreme reward sparsity. For SFT-PG, we instead define the
reward as the discrepancy between the property distribution of the generated molecules and an
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Table B.7: Final hyperparameter settings for RL-guided diffusion model training.

Hyperparameter QM9 ZINC15 PubChem
valid_bonus 0.2 0.2 0.05
unique_bonus 0.35 0.35 0.3
novel_bonus 0.05 0.05 0.05
clip_param 3e-4 3e-4 3e-4
rl_lr 1e-5 1e-5 1e-5
reuse 3 3 3
n_samples 128 128 64

ideal target distribution derived from the unconditional diffusion model. We adopt hyperparameter
configurations similar to the original implementations, using a clipping parameter of 0.2, a learning
rate of 1× 10−5, and generating 128 samples per policy update.

B.6 Ablation Study Design

We compare our method against three classes of widely used multi-objective optimization paradigms
(scalarization-based, constraint-based, and gradient-based) to validate that the performance gains of
our uncertainty-aware reward are not simply due to reformulating the objectives. These methods
represent common and well-established strategies in multi-objective tasks.

We also compare to other uncertainty-based methods to demonstrate that our formulation has more
actionable signals than generic uncertainty sampling or exploration strategies.

Lastly, we ablate key components in our reward module such as reward boosting, diversity penalty,
and dynamic cutoff adjustment, which helps to understand their individual contributions and assess
how each module improves molecule quality, stability, or balance across objectives.

B.7 MD simulations and ADMET property prediction

To evaluate the dynamic stability and pharmacokinetic viability of candidate molecules beyond static
docking, we conducted MD simulations and ADMET property predictions as two complementary
computational assays. The MD simulations were implemented using AmberTools for system setup
and OpenMM for GPU-accelerated production runs. Protein-ligand complexes were constructed by
first assigning GAFF atom types to ligands using Antechamber, while proteins were parameterized
with the ff14SB force field. All complexes were solvated in a rectangular TIP3P water box with a
minimum 10 Å buffer in each direction and neutralized using counterions. The system topology and
coordinate files were generated via tleap, and the entire simulation was conducted under periodic
boundary conditions.

Each system underwent initial energy minimization and equilibration prior to production runs. The
equilibration protocol consisted of a 100 ps NVT heating phase and a 200 ps NPT equilibration
phase, gradually increasing the temperature to 300 K using a Langevin thermostat. The production
simulations were run under the NPT ensemble at 1 atm and 300 K using Langevin dynamics with a 2
fs timestep, totaling 1,000,000 steps (corresponding to a total physical simulation time of 4,000 ps).
PME was used for long-range electrostatics with a 10 Å cutoff, and all hydrogen-containing bonds
were constrained.

The primary readout of MD simulation was the RMSD of protein backbone atoms, calculated over
time using the initial apo structure as a reference. RMSD trajectories were used to assess the
stability and equilibration of each protein–ligand complex. All systems showed RMSD stabilization
within a narrow range of approximately 0.20–0.30 nm after an initial relaxation phase, confirming
that equilibrium was reached prior to subsequent analysis. Complexes demonstrating such early
convergence, low fluctuation, and the absence of sharp deviations were considered structurally stable.
This dynamic screening step ensures that promising compounds maintain consistent binding behavior
and do not induce substantial conformational drift or instability under physiologically relevant
simulation conditions.
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In parallel, ADMET properties were evaluated using ADMET-AI, a graph neural network–based
platform trained on diverse experimental datasets. While the tool generates predictions for 41
pharmacokinetic and toxicological endpoints, we focused our analysis on a curated subset of 14
key properties that are particularly relevant for early-stage drug development. These include critical
parameters across all five ADMET domains, which are absorption (e.g., human intestinal absorption,
Caco-2 permeability), distribution (e.g., volume of distribution, blood-brain barrier permeability),
metabolism (e.g., CYP450 isoform inhibition for 3A4, 2D6, and 2C9), excretion (e.g., renal clearance),
and toxicity (e.g., hERG inhibition, Ames mutagenicity, hepatotoxicity, and LD50).

The rationale for selecting these 14 properties stems from their strong empirical association with
clinical trial outcomes and their routine use in pharmaceutical pipelines as early-stage go/no-go filters.
Many of the remaining 27 endpoints, such as secondary CYP isoforms or advanced carcinogenicity
markers, are either redundant with the selected subset or less predictive during the hit-to-lead phase.
The 14-feature radar profile thus serves as a concise yet informative representation of a molecule’s
drug-likeness and safety, enabling practical compound triage without overfitting to noisy or weakly
generalizable predictions.

Each compound’s profile was evaluated both as an individual feature vector and as an integrated radar
chart to identify potential liabilities. Compounds with strong absorption and distribution but poor
metabolic or toxicity profiles were flagged for exclusion. Conversely, molecules with well-balanced
and favorable values across all 14 categories were considered pharmacokinetically viable. This
ADMET analysis complements the MD results by ensuring that structurally stable ligands also meet
essential safety and efficacy criteria, thereby reinforcing their prioritization for further validation.

B.8 Evaluation

B.8.1 Evaluation Metrics for Surrogate Models

We adopt a widely used evaluation framework that includes both regression accuracy and uncertainty
calibration metrics to assess the performance of surrogate models trained with uncertainty prediction.

Regression Accuracy. We use the coefficient of determination (R2) to assess the accuracy of the
surrogate model’s predicted mean values. This metric quantifies how well the predicted outputs align
with the ground-truth labels. It is defined as

R2 = 1−
∑

i(yi − ŷi)
2∑

i(yi − ȳ)2
, (B.1)

where yi and ŷi denote the ground-truth and predicted values, respectively, and ȳ is the mean of the
ground-truth values. An R2 score of 1 indicates perfect prediction, whereas a score of 0 suggests that
the model performs no better than simply predicting the mean. Higher R2 values therefore reflect
stronger predictive performance and tighter alignment between the model’s outputs and observed
data.

Uncertainty Calibration. To quantify how well predicted uncertainties reflect actual confidence,
we compute the AUCE. This metric compares predicted confidence levels to the empirical frequency
with which the true values fall within corresponding confidence intervals. It is defined as

AUCE =

∫ 1

0

∣∣∣P̂ (c)− c
∣∣∣ dc, (B.2)

where c ∈ [0, 1] denotes the confidence level, and P̂ (c) is the proportion of predictions whose
ground-truth values fall within the predicted c-level confidence interval. Lower AUCE values indicate
better calibration.

Visualization. To complement the numerical metrics, we employ two types of visualizations for
model diagnostics:

• Parity plots: compare predicted values against ground-truth targets, with predictive uncer-
tainty shown as color gradients. We additionally include histograms and residual error plots
to assess potential bias, variance, and distributional shifts.
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• Calibration curves: plot empirical coverage P̂ (c) versus nominal confidence level c,
allowing a visual assessment of how well the predicted uncertainties align with observed
outcomes.

These visualizations provide intuitive insights into both regression accuracy and uncertainty calibra-
tion, and help identify systematic errors that may not be apparent from R2 or AUCE alone.

B.8.2 Evaluation Metrics for Diffusion Models With and Without Optimization

To assess the quality generated molecules, we evaluate them using six key metrics: validity, unique-
ness, novelty, atom stability, molecular stability, and the proportion of top molecules. Let Mgen
denote the set of molecules generated by the model, and Mtrain the set of training molecules.

Validity. Validity measures the fraction of generated molecules that can be parsed into chemically
valid molecular structures. Specifically, we consider a molecule valid if it can be successfully
reconstructed from its atomic coordinates and types, converted into an RDKit molecule object,
and translated into a canonical SMILES string without triggering errors during bond inference,
sanitization, or stereochemistry assignment. This process includes constructing an XYZ block from
the predicted positions and atom types, inferring bonds using RDKit’s internal heuristics, and applying
standard sanitization and stereochemical processing. If these steps succeed without exceptions, the
molecule is considered valid. Formally, the validity score is defined as:

Validity =
|{m ∈ Mgen | m is valid}|

|Mgen|
× 100% (B.3)

Uniqueness. Uniqueness denotes the proportion of valid molecules that are distinct from each
other. It is computed by removing duplicates among all valid molecules based on their canonical
SMILES representations. A higher uniqueness score indicates that the model is capable of generating
a chemically diverse set of valid structures, rather than repeatedly producing similar or identical
molecules. Conversely, a low uniqueness score may suggest issues such as overfitting to the training
data or mode collapse, where the model fails to explore a wide range of chemical space. Formally, it
is defined as:

Uniqueness =
|Unique(Mvalid)|

|Mvalid|
× 100% (B.4)

Novelty. Novelty quantifies the proportion of unique valid molecules generated by the model that
do not appear in the training set. This comparison is performed using canonical SMILES strings to
ensure consistency in molecular representation. A higher novelty score indicates that the model is
capable of generating novel chemical structures beyond those it has seen during training, which is
desirable in de novo molecular design. In contrast, a low novelty score may suggest that the model
has overfit to the training data and is merely replicating known molecules. Formally, it is defined as:

Novelty =
|{m ∈ Unique(Mvalid) | m /∈ Mtrain}|

|Unique(Mvalid)|
× 100% (B.5)

VUN. VUN measures the proportion of generated molecules that are simultaneously valid, unique,
and novel. It is computed as the product of Validity, Uniqueness, and Novelty. This metric reflects
the overall ability of the model to generate truly de novo compounds that are chemically correct,
structurally diverse, and absent from the training set. A high VUN indicates that a large fraction of
the generated molecules can be considered meaningful de novo candidates. In contrast, a low VUN
suggests that only a small portion of outputs are genuinely novel and chemically usable, limiting the
model’s utility in de novo molecular design. Formally,

VUN = Validity × Uniqueness × Novelty =
|{m ∈ Unique(Mvalid) \Mtrain}|

|Mgen|
× 100% (B.6)

Atom Stability. Atom Stability measures the proportion of atoms in valid molecules that satisfy
known valency rules. For each generated molecule, atom types and their 3D coordinates are used to
reconstruct local bonding environments. Each atom is then evaluated based on whether its inferred
number of bonds falls within its chemically allowed valence range. This metric captures whether the
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model respects fundamental atom-level chemical constraints. A high atom stability score indicates
that most atoms are placed in chemically reasonable configurations with proper bonding patterns.
Formally, the metric is defined as:

Atom Stability =
|{m ∈ Mvalid | all atoms in m obey valency}|

|Mvalid|
× 100% (B.7)

Molecular Stability. Molecular Stability measures the proportion of valid molecules that form
chemically coherent structures as a whole. A molecule is considered stable if it forms a connected
graph without unrealistic fragments, over-bonded atoms, or invalid substructures. Stability is assessed
by reconstructing the full molecule from predicted positions and atom types, followed by heuristic
bond inference and consistency checks. This metric reflects the model’s ability to generate molecules
that are not only locally plausible (per atom), but also structurally sound on a global level. A high
molecular stability score suggests that the majority of generated molecules form valid chemical
graphs without structural discontinuities or violations of bonding rules. Formally, the metric is
defined as:

Molecular Stability =
|{m ∈ Mvalid | m is chemically stable}|

|Mvalid|
× 100% (B.8)

Top Molecules. This metric calculates the percentage of generated molecules that simultaneously
satisfy all three essential drug-relevant property constraints: QED ≥ 0.4, SAS ≤ 8.0, and binding
affinity ≤ −4.5 kcal/mol (QED and SAS scores are computed using RDKit, while binding affinity
is estimated using AutoDock Vina). Table B.8 describes the meaning of different value ranges for
QED, SAS, and binding affinity in the context of drug design. As a composite metric, it reflects
the model’s capacity to generate candidate compounds that are not only chemically valid but also
pharmacologically meaningful and synthetically accessible. We require a minimum QED score
of 0.4 to ensure baseline drug-likeness. In practice, molecules with higher QED scores are more
likely to exhibit favorable physicochemical properties, including appropriate lipophilicity, molecular
weight, and hydrogen-bonding potential. These characteristics are typically associated with improved
pharmacokinetics, reduced toxicity, and enhanced bioavailability in vivo. We also apply a SAS
threshold of 8.0 to filter out molecules that are prohibitively difficult to synthesize. This constraint
reflects real-world development considerations, where compounds that require low-yield or complex
synthetic routes are often deemed infeasible regardless of their predicted activity. Finally, we impose
a binding affinity threshold of –4.5 kcal/mol to retain candidates that are thermodynamically capable
of engaging the target protein with meaningful strength. For kinase targets like EGFR, effective
binding at the Adenosine TriPhosphate (ATP) pocket is a prerequisite for competitive inhibition and
downstream signaling blockade. Docking scores are inherently approximate. However, more negative

Table B.8: Reference ranges and interpretability of QED, SAS, and binding affinity scores.

Property Range Interpretation
QED (0.0, 0.3) Low drug-likeness; poor pharmaceutical potential

(0.3, 0.5) Suboptimal but potentially useful structures
(0.5, 0.7) Typical lead-like drug candidates
(0.7, 0.9) High drug-likeness, good design quality
(0.9, 1.0) Excellent drug-likeness (rare)

SAS (1.0, 3.0) Very easy to synthesize; trivial structures
(3.0, 5.0) Easy to synthesize using standard routes
(5.0, 6.5) Moderately challenging to synthesize
(6.5, 8.0) Synthesis may require complex procedures and conditions
(8.0, 10.0) Extremely difficult or infeasible to synthesize

Binding Affinity (-15.0, -9.0) Very high binding affinity; near irreversible
(kcal/mol) (-9.0, -7.0) Strong binding; ideal for inhibitors

(-7.0, -5.5) Moderate binding; potentially active
(-5.5, -4.5) Binding is weak; potential for initial target engagement
(-4.5, 0.0) Very weak binding; typically inactive
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binding energies often correlate with stronger interactions and, by extension, higher inhibitory
potential. To avoid prematurely discarding promising compounds, particularly during the exploratory
phase of molecular screening, we adopt this permissive but principled filtering strategy that balances
chemical diversity with essential real-world constraints. By requiring all three properties to be
satisfied simultaneously, the metric avoids overestimating molecules that perform well in only one
aspect while failing in others. At the same time, it ensures that slightly suboptimal values in one
property do not automatically disqualify a molecule, as long as the overall profile remains within a
plausible range. This joint criterion enables a more holistic assessment of generated molecules and
better reflects the multidimensional requirements of early-stage drug-like candidates. Formally, the
Top Molecules score is defined as follows:

Top Molecules =
|{m ∈ Mnovel | QED(m) ≥ 0.4 ∧ SAS(m) ≤ 8 ∧ Affinity(m) ≤ −4.5}|

|Mgen|
×100%

(B.9)

B.9 Devices and Computational Setup

All experiments are conducted on NVIDIA A100 GPUs with 80 GB of memory. On the QM9
dataset, both EDM and GeoLDM require approximately 90 seconds per training iteration during
pretraining. Due to its additional modules and guidance mechanisms, GFMDiff takes around 5
minutes per iteration. During RL-based EDM optimization, which includes molecule generation,
property evaluation, and sample reuse, each optimization step takes about 2 minutes. Generating
a single molecule using EDM model requires approximately 20 seconds. On larger datasets, the
training time increases accordingly. On ZINC15, one pretraining iteration of EDM takes around
7 minutes, while on PubChem it takes approximately 10 minutes. During optimization based on
pretrained EDM models, each optimization step takes about 3 minutes on ZINC15 and 5 minutes on
PubChem.
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C Results and Discussion

C.1 Correlation Analysis

The independence assumption in Equation 3 allows us to represent the multi-objective reward
as a product of individual property-specific probabilities, where each probability corresponds to
the likelihood that a generated molecule exceeds a predefined cutoff for a given property. These
probabilities are estimated using uncertainty-aware predictions from Chemprop, and their product
provides a smooth and differentiable reward signal suitable for RL.

In our study, we focus on three key properties: QED, SAS, and binding affinity. These properties are
designed to reflect different and complementary aspects of molecule quality. Empirically, we find
that these properties are only weakly correlated. As the correlation matrices are shown in Table C.1,
all pairwise Pearson correlation coefficients between the properties are less than 0.3 in magnitude,
indicating low correlation and supporting the independence assumption in this context.

Table C.1: Correlation matrices of QED, SAS, and binding affinity for different datasets

QM9 QED SAS Affinity
QED 1.00 -0.22 0.12
SAS -0.22 1.00 0.02
Affinity 0.12 0.02 1.00
ZINC15 QED SAS Affinity
QED 1.00 -0.04 -0.01
SAS -0.04 1.00 0.04
Affinity -0.01 0.04 1.00
PubChem QED SAS Affinity
QED 1.00 -0.18 0.19
SAS -0.18 1.00 -0.06
Affinity 0.19 -0.06 1.00

Notably, as the number of properties increases (e.g., more than 5), the assumption of independence
may become less reasonable due to the potential rise in inter-property correlations. In such cases,
more advanced modeling strategies that explicitly consider property interactions could be beneficial.
However, it is common practice in multi-objective molecular design to focus on a small set of key
properties.

C.2 The Results of Surrogate Models

We assess the performance and reliability of the trained surrogate models using parity plots (Fig.C.1)
and calibration curves (Fig.C.2). The parity plots demonstrate strong alignment between predicted
and ground-truth values across all datasets and properties, with R2 scores consistently above 0.8,
indicating high regression accuracy. The accompanying histograms show that the predictions cover a
wide and balanced range of property values, while the residual plots below each panel reveal no major
systematic bias, with residuals centered around zero. These observations confirm that the models are
not only accurate but also generalizable across molecular variations. The calibration curves further
show that the predicted uncertainties are well calibrated, with AUCE values below 0.1 in most cases,
suggesting that the uncertainty estimates meaningfully reflect the actual prediction errors. Together,
these results confirm that the surrogate models provide accurate and trustworthy property predictions,
supporting their use in uncertainty-aware reward construction.
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Figure C.1: Parity plots comparing ground-truth property values with predictions from surro-
gate models. The panels visualize results across three datasets (QM9, ZINC15, PubChem) and three
properties (QED, SAS, binding affinity). Each point represents a molecule in the test set, colored
by the predicted total uncertainty σ2

total. The histograms indicate the distribution of predicted and
true values. Scatter plots below each parity plot show residual errors. R2 is reported in each plot to
indicate prediction accuracy. R2 values above 0.8 are generally considered to reflect strong predictive
performance.
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Figure C.2: Confidence-based calibration curves (orange) of our surrogate models. The plots
show calibration performance on the test set across three datasets (QM9, ZINC15, PubChem) and
three properties (QED, SAS, binding affinity). AUCE shown in each panel, quantifies miscali-
bration—lower AUCE values indicate better uncertainty calibration. The gray region denotes the
deviation from ideal calibration (diagonal dashed line). AUCE values below 0.1 are generally consid-
ered indicative of well-calibrated uncertainty estimates.

C.3 Extended Discussion on Baseline Comparisons

Similar to many multi-objective optimization problems, our binary reward design for these baselines
creates a sparse and discontinuous optimization landscape. Molecules that are close to meeting the
cutoffs but fail in one property receive no learning signal, making it difficult for the policy to gradually
improve. This effect is exacerbated on challenging datasets where valid or near-optimal molecules
are rare in the initial stages of training. As a result, during the training of some baselines, nearly all
sampled molecules receive zero reward, leading to slow convergence and limited exploration.

SFT-PG approaches the problem from a different angle by minimizing the distributional gap between
the model’s generated property distributions and an ideal target distribution. While this avoids the
brittleness of hard thresholds, it still suffers from indirect optimization. Without explicit instance-level
reward feedback, the model may align distribution statistics while continuing to produce low-quality
individual samples. This is because the training objective only penalizes aggregate discrepancies
rather than enforcing quality at the individual molecule level. As a result, the model can satisfy
distributional targets by generating a large number of average-quality samples, even if many of them
fail to meet practical thresholds. This limitation is further exacerbated in settings with noisy or
imperfect surrogate labels, where lack of instance-level supervision prevents the model from learning
fine-grained improvements.

In contrast, our uncertainty-aware RL framework addresses these limitations through a probabilistic
reward function that estimates the likelihood of each molecule satisfying individual property con-
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straints. This yields several advantages. First, it provides denser and more informative gradient
signals, allowing the policy to improve even for partially successful molecules. Second, it enhances
sample efficiency and convergence speed by avoiding reward sparsity. Third, by incorporating both
aleatoric and epistemic uncertainty, the model learns to prioritize high-confidence regions of chemical
space, which is especially important under noisy or limited data.

Furthermore, we report additional baseline comparisons to further validate the effectiveness of our
method. Table C.2 presents results obtained using a weighted sum of objective values for the baselines,
rather than binary indicators, to enable more comprehensive comparisons. Table C.3 summarizes
results from various optimization methods on the QM9 dataset, including Training-Free Guidance
(TFG) [65], Best-of-N [66], Sequential Monte Carlo (SMC) [67], PILOT [68], and DiffSMol [69].
Additionally, Table C.4 reports experiments on two groups of real-valued properties on the QM9
dataset, further validating the proposed method. Overall, the results show that our method consistently
achieves superior performance across all settings.

Table C.2: Baseline results with a weighted-sum formulation of objectives on the QM9 dataset.
Method Val (%) (↑) Uni (%) (↑) Nov (%) (↑) VUN (%) (↑) ASta (%) (↑) MSta (%) (↑) Top (%) (↑)
SFT-PG 90.68 ± 1.35 96.12 ± 0.24 99.51 ± 0.20 86.73 ± 1.22 99.29 ± 0.15 95.92 ± 0.43 26.28 ± 1.37

DDPO-SF 91.02 ± 1.68 96.23 ± 0.41 99.39 ± 0.11 87.05 ± 1.01 99.35 ± 0.22 95.56 ± 0.67 26.32 ± 1.18

DDPO-IS 91.23 ± 1.55 95.27 ± 0.87 99.33 ± 1.18 86.33 ± 0.79 99.28 ± 0.43 89.18 ± 0.37 26.98 ± 0.89

DPOK 90.56 ± 0.43 96.91 ± 0.79 99.62 ± 0.08 87.43 ± 0.67 99.02 ± 0.18 95.48 ± 0.64 26.02 ± 1.92

Ours 98.17 ± 0.07 90.90 ± 0.72 99.63 ± 0.04 88.90 ± 0.68 99.87 ± 0.03 99.17 ± 0.27 28.33 ± 0.61

Note: Each model generates 2,000 molecules per run. Results are averaged over three independent runs and reported as mean ± 95%
confidence interval. Higher values (bold) indicate better performance.

Table C.3: More baseline comparisons on QM9 dataset.
Method Val (%) (↑) Uni (%) (↑) Nov (%) (↑) VUN (%) (↑) ASta (%) (↑) MSta (%) (↑) Top (%) (↑)
TFG 91.02 ± 0.31 97.10 ± 0.22 99.70 ± 0.10 88.12 ± 0.37 99.08 ± 0.16 95.67 ± 0.60 25.41 ± 0.87

Best-of-N 94.53 ± 0.36 93.02 ± 0.17 99.41 ± 0.24 87.41 ± 0.38 99.12 ± 0.16 96.56 ± 0.52 26.62 ± 0.85

SMC 95.11 ± 0.23 92.34 ± 0.76 99.69 ± 0.52 87.55 ± 0.46 99.47 ± 0.12 97.51 ± 0.27 26.95 ± 0.83

PILOT 95.20 ± 0.23 91.92 ± 0.61 99.61 ± 0.38 87.17 ± 0.43 99.13 ± 0.27 97.14 ± 0.35 27.01 ± 0.72

DiffSMol 94.12 ± 0.28 92.88 ± 0.31 99.59 ± 0.16 87.10 ± 0.26 99.01 ± 0.29 95.97 ± 0.48 26.51 ± 0.74

Ours 98.17 ± 0.07 90.90 ± 0.72 99.63 ± 0.04 88.90 ± 0.68 99.87 ± 0.03 99.17 ± 0.27 28.33 ± 0.61

Note: Each model generates 2,000 molecules per run. Results are averaged over three independent runs and reported as mean ± 95%
confidence interval. Higher values (bold) indicate better performance.

Table C.4: Results on two groups of real-valued properties on the QM9 dataset.
Group Method Val (%) (↑) Uni (%) (↑) Nov (%) (↑) VUN (%) (↑) ASta (%) (↑) MSta (%) (↑) Top (%) (↑)

Group 1 W/O RL 89.78 ± 0.73 97.98 ± 0.36 99.56 ± 0.48 87.58 ± 0.76 99.06 ± 0.37 86.02 ± 0.32 32.07 ± 0.23

Ours 95.96 ± 1.27 94.80 ± 0.73 99.58 ± 0.52 90.59 ± 0.45 99.35 ± 0.07 92.14 ± 0.37 39.84 ± 0.33

Group 2 W/O RL 87.89 ± 0.43 95.32 ± 0.41 99.39 ± 0.62 83.27 ± 0.53 99.01 ± 0.29 86.23 ± 0.65 29.41 ± 0.92

Ours 94.47 ± 0.19 95.16 ± 0.53 99.44 ± 0.16 89.39 ± 0.57 99.52 ± 0.43 92.26 ± 0.49 36.74 ± 1.13

Note: Each model generates 2,000 molecules per run. Results are averaged over three independent runs and reported as mean ± 95% confidence
interval. Higher values (bold) indicate better performance. Group 1: HOMO–LUMO gap, HOMO energy, and LUMO energy. Group 2: Dipole
moment (µ), Heat capacity (Cv), and Isotropic polarizability (α).

C.4 Extended Discussion on Ablation Studies

To assess the contribution of each component in our uncertainty-aware RL framework, we conduct
ablation studies that isolate their individual effects. Results show that uncertainty-guided reward
scaling is essential for stability and reliability. It prevents the model from overfitting to spurious high
scores and ensures consistent improvement across multiple objectives. The diversity penalty further
encourages structural exploration by discouraging repeated generation of similar molecules, leading
to a broader search and a higher yield of top-performing candidates. Dynamic thresholding allows the
model to adaptively respond to varying property distributions, avoiding premature convergence caused
by rigid cutoffs. Lastly, the reward bonus effectively sharpens selection pressure toward high-quality
molecules, enhancing validity while preserving uniqueness and novelty. Each component contributes
to a different dimension of generation, and their combination yields robust and pharmaceutically
meaningful outputs.
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C.5 Free Energy Perturbation–based Affinity Prediction

To complement the docking results with a more rigorous assessment of ligand–protein binding
strength, free energy perturbation calculations were applied to estimate the binding free energy
(∆Gbind) of the four selected compounds.

Using exponential averaging based on the Zwanzig equation, we computed binding free energy as the
difference between the ligand’s free energy in the bound (complex) and unbound (ligand-only). All
simulations were run in OpenMM.

As shown in the Table C.5, the predicted binding free energy values ranged from –4.14 to –4.29
kcal·mol−1, corresponding to low-micromolar binding affinities. Importantly, the three designed
compounds exhibited binding affinities that are comparable to or modestly better than the known
EGFR inhibitor. While not dramatically superior, these results lend additional support to the docking-
based predictions and suggest that the newly generated candidates have acceptable and potentially
favorable binding characteristics.

Table C.5: Free energy perturbation–based affinity prediction.
Compound ∆Gcomplex (kcal/mol) ∆Gligand (kcal/mol) ∆Gbind (kcal/mol) Predicted Kd (µM)
Known inhibitor -19.5 -15.4 -4.14 ∼1.2 µM
Molecule I -20.3 -16.0 -4.29 ∼0.89 µM
Molecule II -20.0 -15.7 -4.26 ∼1.0 µM
Molecule III -20.2 -15.9 -4.28 ∼0.9 µM

Molecule I: the generated molecule shown in Fig. 4b of the main text. Molecule II: the generated molecule shown in
Fig. 4c of the main text. Molecule III: the generated molecule shown in Fig. 4d of the main text.

C.6 Extended Discussion on MD and ADMET Prediction

While the main text highlights the general trend of MD and ADMET results for generated molecules,
several specific observations warrant further discussion. In the MD simulations, all three top-ranked
candidates formed stable complexes with EGFR over the full 10,000 ps production trajectories.
One candidate (Fig. 4c in main manuscript) exhibited excellent structural stability, maintaining
a low RMSD relative to the equilibrated apo conformation, indicative of strong and persistent
binding. Another (Fig. 4d in main manuscript) showed minimal conformational fluctuations across
the simulation and preserved critical hydrogen bonds within the ATP-binding site, reinforcing its
potential as a potent inhibitor.

Beyond structural dynamics, in silico pharmacokinetic profiling of these candidates using ADMET-AI
revealed consistently favorable drug-like properties. All three molecules exhibited high predicted
human intestinal absorption, low blood-brain barrier permeability, and no violations of Lipinski’s rule.
Importantly, one of the molecule (Fig. 4d in main manuscript) showed low predicted hepatotoxicity
and high metabolic stability, while another (Fig. 4b in main manuscript) scored favorably across
P450 inhibition panels, suggesting low potential for metabolic drug-drug interactions.

These extended findings further support that top molecules generated by our framework are not only
structurally valid and property-optimized, but also promising in terms of downstream pharmacological
viability. Incorporating such analyses into post-generation filtering can substantially improve the
relevance of AI-designed molecules for real-world drug discovery workflows.

C.7 Visualization for Generated Molecules

We visualize representative candidate molecules generated by RL-guided diffusion models pre-trained
on different datasets in Fig. C.3. For optimized model, we rank all generated molecules based on their
multi-objective uncertainty scores. The top eight molecules with the highest scores from each model
are shown. This selection strategy ensures that the displayed candidates are not only high-quality in
terms of predicted properties, but also robust with respect to the model’s uncertainty.
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Figure C.3: Representative candidate molecules generated by RL-guided diffusion models. Each
model was pre-trained on one of the three datasets (QM9, ZINC15, PubChem) and generated 2,000
molecules. The top 8 molecules selected by composite properties are shown: first row: QM9, second
row: ZINC15, third row: PubChem.

C.8 Analysis on Other Diffusion Models

Table C.6 summarizes the performance of our RL-guided optimization framework across other two
diffusion models (GeoLDM and GFMDiff) on the QM9 dataset. Our method consistently improves
the key evaluation metrics over the non-RL baselines, including validity, novelty and top molecules.
This demonstrate that our method generalizes well across different diffusion models.

Table C.6: Performance of other diffusion models and our method on QM9 datasets.
Model Method Val (%) (↑) Uni (%) (↑) Nov (%) (↑) VUN (%) (↑) ASta (%) (↑) MSta (%) (↑) Top (%) (↑)

GeoLDM W/O RL 91.98 ± 0.17 95.13 ± 0.64 99.71 ± 0.07 87.25 ± 0.52 99.08 ± 0.16 95.67 ± 0.60 85.40 ± 0.00

Ours 95.11 ± 1.24 94.12 ± 0.31 99.73 ± 0.13 89.28 ± 1.57 99.12 ± 0.17 95.54 ± 0.49 87.08 ± 0.02

GFMDiff W/O RL 94.33 ± 0.17 96.34 ± 0.81 96.11 ± 1.03 87.35 ± 1.72 99.75 ± 0.03 98.23 ± 0.03 74.50 ± 0.00

Ours 96.72 ± 1.27 95.93 ± 0.94 96.15 ± 0.21 89.21 ± 1.39 99.77 ± 0.10 98.35 ± 0.56 75.01 ± 0.01

Note: Each model generates 2,000 molecules per run. Results are averaged over three independent runs and reported as mean ± 95% confidence
interval. "W/O RL" denotes vanilla diffusion models without RL. "Val", "Uni", and "Nov" represent the percentages of valid, unique, and novel
molecules, respectively. "VUN" is their joint metric computed as Val × Uni × Nov, representing the percentage of molecules that are simultaneously
valid, unique, and novel. "ASta" and "MSta" denote atom-level and molecule-level stability. "Top" indicates the proportion of generated molecules
that simultaneously satisfy all three property constraints, using relaxed cutoffs (QED > 0.4, SAS < 8, and binding affinity < –4.5) to avoid missing
potentially useful candidates. All metrics are reported as percentages, and higher values indicate better performance.

41


	Introduction
	Related Works
	Methodology
	Conditional EDM Backbone
	Surrogate Models for Multi-objective Uncertainty Quantification
	RL-guided Optimization

	Experiments
	Experimental Settings
	Results and Discussion
	Surrogate Models
	RL-guided Diffusion Models
	Ablation Study
	MD and ADMET analysis


	Conclusion
	Methodology
	Conditional Diffusion Model
	Surrogate Models for Multi-objective Uncertainty Quantification
	RL-guided Optimization

	Experimental Settings
	Data Sources and Descriptions
	Data Preprocessing
	Target Protein Preprocessing
	Molecular Data Preprocessing

	Surrogate Model Training and Hyper-parameters
	Hyper-parameters for RL-guided Diffusion Model Training
	Baseline Implementation
	Ablation Study Design
	MD simulations and ADMET property prediction
	Evaluation
	Evaluation Metrics for Surrogate Models
	Evaluation Metrics for Diffusion Models With and Without Optimization

	Devices and Computational Setup

	Results and Discussion
	Correlation Analysis
	The Results of Surrogate Models
	Extended Discussion on Baseline Comparisons
	Extended Discussion on Ablation Studies
	Free Energy Perturbation–based Affinity Prediction
	Extended Discussion on MD and ADMET Prediction
	Visualization for Generated Molecules
	Analysis on Other Diffusion Models


