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ABSTRACT

It is quite challenging to ensure the safety of reinforcement learning (RL) agents
in an unknown and stochastic environment under hard constraints that require the
system state not to reach certain specified unsafe regions. Many popular safe
RL methods such as those based on the Constrained Markov Decision Process
(CMDP) paradigm formulate safety violations in a cost function and try to con-
strain the expectation of cumulative cost under a threshold. However, it is of-
ten difficult to effectively capture and enforce hard reachability-based safety con-
straints indirectly with such constraints on safety violation cost. In this work, we
leverage the notion of barrier function to explicitly encode the hard safety con-
straints, and given that the environment is unknown, relax them to our design of
generative-model-based soft barrier functions. Based on such soft barriers, we
propose a safe RL approach that can jointly learn the environment and optimize
the control policy, while effectively avoiding the unsafe regions with safety prob-
ability optimization. Experiments on a set of examples demonstrate that our ap-
proach can effectively enforce hard safety constraints and significantly outperform
CMDP-based baseline methods in system safe rate measured via simulations.

1 INTRODUCTION

Reinforcement learning (RL) (Sutton & Barto, 2018) has shown promising successes in learning
complex policies for games (Silver et al., 2018), robots (Zhao et al., 2020), and recommender sys-
tems (Afsar et al., 2021), by maximizing a cumulative reward objective as the optimization goal.
However, real-world safety-critical applications, such as autonomous cars and unmanned aerial ve-
hicles (UAVs), still hesitate to adopt RL policies due to safety concerns. In particular, these appli-
cations often have hard safety constraints that require the system state not reach certain specified
unsafe regions, e.g., autonomous cars not deviating into adjacent lanes or UAVs not colliding with
trees. And it is very challenging to learn a policy via RL that can meet such hard safety constraints,
especially when the environment is stochastic and unknown.

In the literature, the Constrained Markov Decision Process (CMDP) (Altman, 1999) is a popu-
lar paradigm for addressing RL safety. Common CMDP-based methods encode safety constraints
through a cost function of safety violations, and reduce the policy search space to where the ex-
pectation of cumulative discounted cost is less than a threshold. And various RL algorithms are
proposed to adaptively solve CMDP through the primal-dual approach for the Lagrangian problem
of CMDP. However, it is often hard for CMDP-based methods to enforce reachability-based hard
safety constraints (i.e., system state not reaching unsafe regions) by setting indirect constraints on
the expectation of cumulative cost. In particular, while reachability-based safety constraints are de-
fined on the system state at each time point (i.e., each point on the trajectory), the CMDP constraints
only enforce the cumulative behavior. In other words, the cost penalty on the system visiting the
unsafe regions at certain time point may be offset by the low cost at other times. There is a recent
CMDP approach addressing hard safety constraints by using the indicator function for encoding fail-
ure probability (Wagener et al., 2021), but it requires a safe back-up policy for intervention, which
is difficult to achieve in unknown environments. Safe exploration with hard safety constraint has
been studied in (Wachi et al., 2018; Turchetta et al., 2016; Moldovan & Abbeel, 2012). However,
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they focus on discrete state and action spaces where the hard safety constraints are defined as a set
of unsafe state-action pairs that cannot be visited, different from our continuous control setting.

On the other hand, current control-theoretical approaches for model-based safe RL often try to
leverage formal methods to handle hard safety constraints, e.g., by establishing safety guarantees
through barrier functions or control barrier functions (Luo & Ma, 2021), or by shielding mechanisms
based on reachability analysis to check whether the system may enter the unsafe regions within a
time horizon (Bastani et al., 2021). However, these approaches either require explicit known system
models for barrier or shielding construction, or an initial safe policy to generate safe trajectory data
in a deterministic environment. They cannot be applied to our unknown stochastic environments.

CMDP: 
The expectation of 
cumulative cost 
looks good. 
So should be fine?

Ours: You are 
bounded by a soft 
barrier function 
along each point 
on the trajectory,  
and is highly likely 
to be safe.

“Will I collide?”

Figure 1: An RL-based robot navigation exam-
ple that shows the difference between our ap-
proach and CMDP-based ones in encoding the
hard safety constraints.

To overcome the above challenges, we pro-
pose a safe RL framework by encoding the
hard safety constraints via the learning of a
generative-model-based soft barrier function.
Specifically, we formulate and solve a novel bi-
level optimization problem to learn the policy
with joint soft barrier function learning, gener-
ative modeling, and reward optimization. The
soft barrier function provides a guidance for
avoiding unsafe regions based on safety prob-
ability analysis and optimization. The genera-
tive model accesses the trajectory data from the
environment-policy closed-loop system with
stochastic differential equation (SDE) represen-
tation to learn the dynamics and stochasticity of
the environment. And we further optimize the
policy by maximizing the total discounted re-
ward of the sampled synthetic trajectories from
the generative model. This joint training framework is fully differentiable and can be efficiently
solved via the gradients. Compared to CMDP-based methods, our approach more directly encodes
the hard safety constraints along each point of the agent trajectory through the soft barrier function,
as shown in Figure 1. While given the unknown stochastic environment, our approach cannot pro-
vide a hard barrier and hence no deterministic safety guarantee, experimental results demonstrate
that in simulations, ours can significantly outperform the CMDP-based baselines in system safe rate.

The paper is organized as follows. Section 2 introduces related works, Section 3 presents our ap-
proach, including the bi-level optimization formulation, our safe RL algorithm with generative mod-
eling, soft barrier function learning, and policy optimization to solve the formulation, and theoretical
analysis of safety probability. Section 4 shows the experiments and Section 5 concludes the paper.

2 RELATED WORK

Safe RL by CMDP: CMDP-based methods encode the safety violation as a cost function and set
constraints on the expectation of cumulative discounted total cost. The primal-dual approaches have
been widely adopted to solve the Lagrangian problem of constrained policy optimization, such as
PDO (Chow et al., 2017), OPDOP (Ding et al., 2021), CPPO (Stooke et al., 2020), FOCOPS (Zhang
et al., 2020), and CRPO (Xu et al., 2021). Other works leverage a world model learning (As et al.,
2021) or the Lyapunov function to solve the CMDP (Chow et al., 2018), or add a safety layer for
the safety constraint (Dalal et al., 2018). However, the constraints in CMDP cannot directly encode
the hard reachability-based safety properties, which hinders its application to many safety-critical
systems. A recent CMDP-based work uses the indicator function for encoding failure probability as
hard safety constriants, but it requires a safe backup policy for intervention (Wagener et al., 2021).

Model-based Safe RL by Formal Methods: Formal analysis and verification techniques have
been proposed in model-based safe RL to enforce the system not reach unsafe regions. Some works
develop shielding mechanisms with a backup policy based on reachability analysis (Shao et al.,
2021; Li & Bastani, 2020; Bastani et al., 2021). Other works adopt (control) barrier functions or
(control) Lyapunov functions for provable safety (Emam et al., 2021; Choi et al., 2020; Cheng et al.,
2019; Wang et al., 2022; Ma et al., 2021; Luo & Ma, 2021; Berkenkamp et al., 2017; Taylor et al.,
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Figure 2: The overview of our safe RL framework based on a generative-model-based soft barrier
function. The real environment and generative model share the learning policy and the generative
model is abstracted as a discrete-time stochastic differential equation.

2020). Moreover, recent work (Yu et al., 2022) adopts reachability analysis with CMDP to compute
safe feasible sets. However, these methods either require known dynamics, a safe initial/backup
policy, or human intervention, and thus do not apply to our setting.

Barrier Function for Safety: Barrier function is introduced as a safety certificate afflicted to the
control policy for deterministic and stochastic systems (Prajna & Jadbabaie, 2004; Prajna et al.,
2004). In classical control, finding a barrier function is time-consuming and requires a lot of manual
effort, where a common idea is to relax the conditions of barrier function into optimization for-
mulations such as linear programming (Yang et al., 2016), quadratic programming (Ames et al.,
2016), and sum-of-square programming (Wang et al., 2022). However, these optimization-based
approaches can hardly scale to high-dimensional systems. To this end, recent works have shown
great promise in jointly training barrier function and safe policy by neural network representation
for better scalability (Qin et al., 2021). Our approach leverages the paradigm of barrier function, but
develops the concept of soft barrier to address unknown stochastic environments.

RL with Generative Model: Previous works of generative-model-based RL mainly focus on sam-
ple efficiency and policy optimization for the total expected return (Agarwal et al., 2020b; Li et al.,
2020a; Tirinzoni et al., 2020). Some works (HasanzadeZonuzy et al., 2021; Maeda et al., 2021) ad-
dress safe RL by CMDP with a generative model, but only solve the tabular discrete state and action
space. Besides policy optimization, the generative model in our framework also plays an important
role in building a soft barrier function to facilitate the probabilistic safety analysis and optimization.

3 OUR APPROACH

In this section, we present our framework for safe RL in unknown stochastic environment that en-
forces hard safety constraints with soft barrier functions. In Section 3.1, we present our bi-level
optimization formulation for the problem, which maximizes a total expected return while trying to
avoid unsafe regions. Specifically, we encode the hard safety constraints with a novel generative-
model-based soft barrier function in the lower problem and maximize the performance with gen-
erative model learning in the upper problem. We then present our safe RL algorithm to solve the
bi-level optimization formulation, by jointly learning the generative model (Section 3.2), soft bar-
rier function (Section 3.3), and policy optimization (Section 3.4) via first-order gradient, as shown in
Figure 2. We conduct theoretical analysis for safety probability of the learned policy in Section 3.5.

3.1 BILEVEL OPTIMIZATION PROBLEM FORMULATION FOR SAFE RL

We assume that the environment can be abstracted as a finite-horizon continuous MDP M ∼
(S,A,P, r, γ, π), where S ∈ Rn represents the continuous state space, A ∈ Rm indicates the
continuous action space, and the function class P : S ×A× S →[0, 1] denotes the unknown con-
tinuous and smooth stochastic environment dynamics without jump condition. The rewards func-
tion r(s, a) : S × A → R is known and the discount factor γ ∈ [0, 1]. A deterministic con-
tinuous NN-based policy πθ : S → A maps the states s(t) ∈ S to an action a(t) ∈ A at
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Algorithm 1 Safe RL with the Generative-model-based Soft Barrier Function

Input: Unknown environmentM, initial policy πθ, generative model M̂θ,α, barrier network Bβ .
Parameter: [θ, α, β].
Output: Policy πθ with M̂θ,α based soft barrier function Bβ .

1: For k in 0, · · · , N
2: For i in 0, · · · ,M
3: Sample processes τ iθ by policy πθ withM and synthetic processes τ̂ iθ,α by πθ with M̂θ,α.

4: Compute generative loss function Lg with τ iθ and τ̂ iθ,α as in Equation 3, α← α− ∂Lg

∂α .

5: Compute barrier function loss LB by sampling synthetic τ̂kθ,α as in Equation 4.
6: Compute total discount reward Ĵ(πθ) by sampling synthetic τ̂kθ,α as in Equation 5.

7: θ ← θ − ∂LB

∂θ + ∂Ĵ
∂θ , β ← β − ∂LB

∂β .

time t as a(t) = πθ(s(t)), where s(t) is a random variable at timestep t. The environment
has several known spaces, i.e., the state space S ⊂ S , the initial space S0 ⊂ S , and the un-
safe space Su ⊂ S . The RL objective is to maximize the total discounted expected return as
maxπθ

J := Es(0)∈S0,P (s′|s,a)

[∑T
t=0 γ

tr(s(t), a(t))
]

with P ∈ P . To encode the hard safety
constraint Su, we formulate a bi-level optimization problem for our framework as the following. We
use ˆ to denote the elements related to the generative model.

Definition 1 (Bi-level Optimization Problem for Safe RL)

max
θ,α

J(πθ)− λη∗(θ, α)2 − Lg(τθ, τ̂θ,α),

where η∗(θ, α) is the optimal objective to a lower-level problem of the generative-model-based soft
barrier function with ŝ as the state in the generative model:

min
β

η s.t.

{
Bβ(ŝ) ≥ 0,∀ ŝ ∈ S, Bβ(ŝ) ≥ 1,∀ ŝ ∈ Su, Bβ(ŝ) ≤ η,∀ ŝ ∈ S0,

E [Bβ(ŝ(t+ 1))|ŝ(t)] ≤ Bβ(ŝ(t)), ŝ(t+ 1) = M̂θ,α(ŝ(t)),∀t ∈ [0, T ]∀ŝ ∈ S \ Su,

(1)

where θ is the parameter of policy π. α is the parameter of the generative model M̂θ,α = (Ĝα, Σ̂α),
which is a stochastic differential equation (SDE) with Ĝα as the drift function and Σ̂α as the dif-
fusion function for the stochasticity, as shown later in Equation 2. λ ≥ 0 is a penalty multiplier.
τθ := {s(0), s(1), · · · , s(T )} and τ̂θ,α := {ŝ(0), ŝ(1), · · · , ŝ(T )} are the sampled realizations
of stochastic processes (trajectories) from the environment and from the generative model by the
policy πθ, respectively. β is the parameter of the generative-model-based soft barrier function
Bβ : Rn → R+. We encode the hard safety constraint by the generative-model-based soft bar-
rier function Bβ in the lower problem, which minimizes η∗(θ, α) as the upper bound of the unsafe
probability for M̂θ,α in Section 3.3. The upper problem aims to optimize the policy’s expected
return J(πθ) and learn the generative model by the maximum likelihood loss Lg(τθ, τ̂θ,α) between
the processes τθ and τ̂θ,α as shown later in Equation 3. Moreover, the upper problem penalizes
η∗(θ, α), which can back propagate the gradient information through M̂θ,α to πθ for pushing the
agent to avoid Su in the environment MDPM as much as possible if M̂θ,α behaves similar toM.

We can compute the gradient from η∗(θ, α) for πθ through M̂θ,α with current auto-differential tools.
This cannot be done inM as it is unknown. Therefore, the overall bi-level problem is end-to-end
differentiable and can be solved efficiently. Figure 2 shows how the components in our framework
interact with each other. The overall algorithm to solve the bi-level problem is shown in Algorithm 1.
Next, we are going to introduce the details of each module.

3.2 GENERATIVE MODELING

The role of the generative model in our framework is two folds: (1) Because the barrier function
requires an environment model to encode the hard safety constraints, the generative model serves
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as a surrogate model to build this barrier function, where η∗(θ, α) propagates the gradient to πθ

through M̂θ,α for improving system safety. (2) The generative model can generate synthetic process
(trajectory) τ̂θ,α to optimize the performance of the policy efficiently by gradient propagation.

We learn the generative model M̂θ,α as a discrete-time SDE to capture the dynamics and stochas-
ticity of the environment and serve as a base for the construction of the soft barrier function:

M̂θ,α : ŝ(t+ 1) = Ĝα(ŝ(t), πθ(ŝ(t))) + Σ̂α(ŝ(t))W (t), (2)

where Ĝα : Rn × Rm → Rn is an unknown drift function, Σ̂α : Rn → Rn×d is an unknown n× d
matrix based on ŝ, and W (t) ∈ Rd is the Brownian motion (also known as Wiener Process) with
dimension d, encoding the stochasticity. When the environment is deterministic, we can simply set
the Σ̂(s) as 0. We design the generative model to share the learning control policy with the real
environment, as shown in Figure 2. For the inference, the generative model starts from a sample
ŝ(0) ∈ S0 and rolls out by drift function Ĝα, diffusion function Σ̂α, and policy πθ. Therefore,
the computation graph contains the learning policy; thus, the auto-differential tools can obtain the
gradient for the learning policy by back-propagating through the generative model.

Remark 1 We use the fully-connected neural networks to encode such an SDE. Due to the continuity
of the neural net, such SDE specification requires the environment dynamics to be continuous and
smooth. Therefore our approach cannot handle hybrid dynamics with jump conditions such as the
contact dynamics in Mujoco and Safety Gym. Such an assumption is not uncommon, as it remains
an open problem to learn the discontinuous dynamics (Parmar et al., 2021; Pfrommer et al., 2021).

The generative model training is to reduce the following loss function.

min
α
Lg(τθ, τ̂θ,α) = min

α
−

T∑
t=0

log
(
P
(
s(t) | N (ŝ(t), Σ̂α(ŝ(t)))

))
(3)

where Lg is the maximum likelihood loss, P
(
s(t) | N (ŝ(t), Σ̂α(ŝ(t)))

)
is the likelihood probabil-

ity of the observed s(t) under the normal distribution of the SDE representation. We use torchsde (Li
et al., 2020b) to fit the data τθ = {s(0), s(1), · · · , s(T )} to the generative model by updating its pa-
rameter α, which is shown in Lines 2 to 4 in the Algorithm 1.

3.3 SOFT BARRIER FUNCTION LEARNING

To encode the hard constraints, we introduce a novel generative-model-based soft barrier function.

Definition 2 (Safety Probability Lower Bound) A safety probability lower bound
1 − η of the entire trajectory (process) τ = {s(0), s(1), · · · , s(T )} is defined as
P (s(t) ̸∈ Su|s(0) ∈ S0,∀t ∈ [0, T ]) ≥ 1− η.

Definition 3 (Barrier Function for SDE) Given a policy πθ, Bβ is a generative-model-based soft
barrier function for the discrete-time SDE M̂θ,α as in Equation 2, if it is twice differentiable and
satisfies the constraints of the lower problem in Equation 1.

Lemma 1 Prajna et al. (2004) Let B(ŝ(t)) be a supermartingale of the process ŝ(t) and B(ŝ) ≥
0,∀ŝ ∈ S. Then for any ŝ(0) ∈ S0, c > 0, P (supt≥0 B(ŝ(t)) ≥ c | ŝ(0) ∈ S0) ≤ B(ŝ(0))

c .

Theorem 1 With a barrier function as in Definition 3, the generative-model SDE with policy πθ

(Equation 2) has a safety probability lower bound 1−η∗, where η∗ is the optimal value in the lower
problem of Equation 1, as ∀t ∈ [0, T ], P (ŝ(t) ̸∈ Su|ŝ(0) ∈ S0) ≥ 1− η∗, ŝ(t+ 1) = M̂θ,α(ŝ(t)).

Proof: With the last condition of the constraints in the lower problem of Equation 1, we have

E [B(ŝ(t2))|ŝ(t1)] ≤ B(ŝ(t1)),∀T ≥ t2 ≥ t1 ≥ 0,
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which indicates that the barrier function B(ŝ) is a supermartingale. Then by leveraging the Lemma 1
above from Prajna et al. (2004), we have

P (ŝ(t) ∈ Su, for some t ∈ [0, T ] | ŝ(0) ∈ S0) = P (B(ŝ(t)) ≥ 1, for some t ∈ [0, T ] | ŝ(0) ∈ S0)

≤ P

(
sup

t∈[0,T ]

B(ŝ(t)) ≥ 1 | ŝ(0) ∈ S0

)
≤ B(ŝ(0)) ≤ η∗.

Therefore, safety probability lower bound is 1− η∗ and Theorem 1 holds. □

We further translate the constraints of the lower problem in Equation 1 with their sampling mean:

min
β

η s.t.


1
N

∑N
i=1 Bβ(ŝ

i(0)) ≤ η, ŝi(0) ∈ S0,
1
N

∑N
i=1 Bβ(ŝ

i
u) ≥ 1, ŝiu ∈ Su,

1
N

∑N
i=1 Bβ(ŝ

i) ≥ 0, ŝi ∈ S,
1
N

∑N
i=1 Bβ(ŝ

i(t+ 1)) ≤ Bβ(ŝ
i(t)), ŝi(t+ 1) = M̂θ,α(ŝ

i(t)),∀t ∈ [0, T ],∀si ∈ S \ Su.

The third non-negative condition is easy to satisfy by setting the output activation function as Sig-
moid for the barrier neural network. The last condition is to make B as a supermartingale, which is
the key to deriving the lower bound of safety probability. In practice, we use a supervised-learning-
based method to optimize this problem by minimizing the following loss function:

min
θ,β
LB =

1

N

N∑
i=1

Bβ(ŝ
i(0)) +

1

N

N∑
i=1

(1−Bβ(ŝ
i
u)) +

1

N

N∑
i=1

 1

M

M∑
j=1

Bβ(ŝ
i,j(t+ 1))−Bβ(ŝ

i(t))

 ,

ŝi,j(t+ 1) = M̂θ,α(ŝ
i(t)), t ∈ [0, T ], ŝi(t) ∈ S \ Su,

(4)
where ŝi,j(t + 1) is the next state of ŝi(t) sampled from the generative model M̂θ,α with policy
πθ. LB essentially reduces the barrier mapping value on S0 (the maximum is η∗(θ, α)) and projects
the unsafe space Su to 1 with Sigmoid output, and decreases the expectation of the barrier function
along with trajectory. It is worthy to note that LB cannot be approximated by the real environment
M, as we cannot sample from any intermediate time point s(t) to s(t + 1) in the space S \ Su to
compute the third sample mean in Equation 4, which is relatively feasible and simple to do with
M̂θ,α as in Equation 2. The barrier training can be terminated if the second and third sample mean
in Equation 4 are non-positive. The soft barrier training is shown as Line 5 in Algorithm 1.

3.4 POLICY OPTIMIZATION

As stated before, we use the generative model to generate synthetic data τ̂ iθ,α =

{ŝi(0), · · · , ŝi(T )}(i ∈ [1, N ]) with policy πθ to maximize the total expected return Ĵ(πθ) as:

max
πθ

Ĵ(πθ) = Eŝ(0),M̂θ,α

[
T∑

t=0

γtr (ŝ(t), πθ(ŝ(t)))

]
, s.t. ŝ(t+ 1) = M̂θ,α(ŝ(t)),∀t ∈ [0, T ].

We use the sample mean from the synthetic trajectories as an estimate for the expectation:

max
πθ

Ĵ(πθ) =
1

N

N∑
i=0

T∑
t=0

γtr
(
ŝi(t), πθ(ŝ

i(t))
)
, s.t. ŝi(t+ 1) = M̂θ,α(ŝ

i(t)),∀t ∈ [0, T ]. (5)

With policy πθ in the forward computation graph of M̂θ,α, we can directly obtain the backwards
gradient for πθ from Equation 5. The policy optimization is shown as Line 6 in the Algorithm 1.

3.5 THEORETICAL ANALYSIS OF SAFETY PROBABILITY BY SOFT BARRIER

For the final learned policy, we conduct a theoretical analysis of its safety probability (as defined in
Definition 2), derived from the generative-model-based soft barrier function in our framework.

Lemma 2 (Theorem 21 in (Agarwal et al., 2020a)) Given δ ∈ (0, 1), a learned deterministic policy
πθ(s) and assume the environment-policy transition dynamics as P ∗(s′|s) ∈ P with the function
class |P| < ∞ (s′ represents the next state of s), let the environment and policy generate a dataset

6



Under review as a conference paper at ICLR 2023

of n trajectories D := {(sj(t), sj(t + 1))}Tt=0(j = 1, · · · , n), s(t) ∼ Dt = (sj(0 : t − 1)).
Note that Dt is a martingale depending on the previous examples. Let the generative model M̂θ,α

maximize the likelihood of the dataset by its transition dynamics P̂ via Equation 3. Then with at
least probability 1− δ, the expectation of total variation distance between P ∗ and P̂ is bounded as:

T∑
t=0

Es∼Dt

[
dTV(P

∗, P̂ )
]
=

T∑
t=0

Es∼Dt

∥∥∥P̂ (s′|s)− P ∗(s′|s)
∥∥∥2
TV
≤ 2 log(|P|/δ)

n
(6)

Lemma 3 (proof provided in the Appendix A) Given a random variable Xn ≥ 0 on a probability
space Ω, if EΩ[Xn]→ 0 as n→∞, then P (Xn = 0)→ 1.

Proposition 1 (Asymptotic Lower Bound of Safety Probability) Given the learned policy πθ, let
the generative model fit n sample trajectories τ iθ(i = 1, · · · , n) from environment M with πθ by
Equation 3, learn the generative-model-based soft barrier function Bβ by Equation 4 with η∗ and
assume that it formally satisfies the constraints in Equation 1, then the real environment M with
policy πθ is safe with at least probability (1− η∗) when n→∞.

Proof of Proposition 1: Given (S,B) as the measure spaces with S as the state space and B = {B :
S → R, ∥B∥∞ ≤ 1}, where B is a generative-model-based soft barrier function with Sigmoid
output, then according to the definition of total variation distance and Lemma 2, we have

T∑
t=0

Es∼Dt

[
dTV(P

∗, P̂ )
]
=

T∑
t=0

Es∼Dt

[
1

2
sup
B∈B

EP∗(s′|s)[B(s′)]− EP̂ (s′|s)[B(s′)]

]
≤ 2 log(|P|/δ)

n
.

When n → ∞, set δ = 1
n , let Xn = 1

2 supB∈B EP∗(s′|s)[B(s′)] − EP̂ (s′|s)[B(s′)], and therefore

E[Xn] → 0. We know Xn ≥ 0, since Xn = 0 when P ∗ = P̂ . Therefore, according to Lemma 3,
P (Xn → 0)→ 1. We then assume Dt(t ∈ [0, T ]) can uniformly cover the space S as n→∞, thus
the soft barrier becomes a true barrier function for the real environment and Proposition 1 holds. □

Remark 2 (Practical Safety Probability Lower Bound) In addition to the asymptotic safety prob-
ability, we propose a finite-sample practical safety probability lower bound. We first sample the
generative model and the environment with the final learned policy to quantify their maximum dis-
tance per state as ∆ = maxt∈[0,T ],i=1,··· ,N |si(t)− ŝi(t)|, and then enlarge the unsafe region with
∆ by Minkowski sum as S

′

u = Su

⊕
∆. Next, we retrain another generative-model-based soft bar-

rier function B with S′
u. Finally, we conservatively report (1 − max(ŝ∈τ̂ i

t ,i=1,··· ,N) B(ŝit)) as the
final lower bound of safety probability by the soft barrier function.

Remark 3 (During-learning Safety) The above asymptotic and practical safety bounds are derived
for the final learned policy. It is possible that 1 − η∗ is not a valid safety probability bound during
learning, as there exist a modeling gap between the generative model and the real environment.
However, we optimize 1−η∗ during learning to increase the chance of finding safer learned policies
at the end, as demonstrated in our experiments below.

4 EXPERIMENTAL RESULTS

Experiment Settings and Examples: We compare our approach with two state-of-the-art open-
source CMDP-based methods, PPO-L (Ray et al., 2019) and FOCOPS (Zhang et al., 2020). For
these two baselines, we design the cost function such that the state is safe if its cost is less than
0. It is worth noting that PPO-L has a stronger safety constraint than FOCOPS as we implemented
the PPO-L with the expectation of cost per state as E[c(s, a)] ≤ 0, rather than the cumulative cost
in FOCOPS as E

[∑T
t=0 c(s, a) ≤ D′

]
. In FOCOPS, We conservatively set D′ = −60 for the 2D

and cartpole examples below, and −200 for the Rocket and UAV examples, to improve its safety.
We mark this safety-oriented version FOCOPS*. We mainly compare the converged final policy
of each method in system safe rate measured via simulations – we call it empirical safe rate. We
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Table 1: Comparison of our approach with CMDP-based baselines PPO-L and FOCOPS*. se is the
safe rate by simulating 500 random initial states from S0. 1−η is the practical lower bound of safety
probability in our approach as (1−max(ŝ∈τ̂ i

t ,i=1,··· ,n) B(ŝit)), derived by Remark 2. Our approach
achieves significantly higher se than the baselines. It is observed that 1− η is a lower bound of se.

Metric Methods 2D Cartpole Rocket UAV

se, empirical
safe rate

Ours 99.9(0.09)% 100% 100% 99.6(0.3)%
PPO-L 98.9(0.08)% 89.3(5.5)% 96.4(6.3)% 100%

FOCOPS* 98.7(0.18)% 84.2(4)% 100% 91(4.2)%

1− η,
lower bound

Ours 97.6(1.3)% 86.6(2.9)% 89.9(1.6)% 93.2(2.2)%
PPO-L, FOCOPS* - - - -

J(π),
performance

Ours -67.3(4.9) -24.4(4.7) -143.2(1.6) -847.1(6.5)
PPO-L -66.3(5.3) -34.1(6.7) -151.4(3.6) -895.5(4.3)

FOCOPS* -69.8(3.2) -15.2(2.3) -249.1(1.4) -734.1(3.3)

also perform safety probability analysis for our method (CMDP cannot provide one), and compare
different methods in total reward return.

Note that learning safe control policy for high-dimensional systems is quite challenging. Current
state-of-the-art works of certificate-based policy learning mainly focus on low-dimensional systems
with fewer than 6 dimensional states (Luo & Ma, 2021; Lindemann et al., 2021; Chang et al., 2019;
Berkenkamp et al., 2017). In this paper, we test our approach on 13D UAV and Rocket examples.

2-Dimensional SDE (Prajna et al., 2004) has the unknown dynamicsM as ṡ1 = 0.8s2,ds2 = (a−
0.3s31)dt + 0.2dW (t) (W (t), Wiener process.) Initial space S0 = {(s1 + 2)2 + s2 ≤ 0.01}, and
unsafe space Su = {s1 ∈ [−1, 0], s2 ∈ [1.2, 1.7]}. The goal is to stabilize the system near (0, 0).

Cartpole Balancing (Brockman et al., 2016) has a 4-dimensional vector s = [x, θ, ẋ, θ̇] as the sys-
tem state, where x is the position and θ is the angular error to the upright. The initial space
S0 = {(x, θ, ẋ, θ̇)|x ∈ [−0.167, 0.033], θ ∈ [−0.6,−0.5], ẋ = −0.35, θ̇ = 0.53}, and unsafe
space Su = {(x, θ, ẋ, θ̇) | x ≤ −0.75}. The goal is to keep the cartpole balanced upright.

Powered Rocket Landing (Jin et al., 2021) has 6 DoF (degrees of freedom) with 13 system states
and 3 action variables. The goal is to land the rocket close to the original point while avoiding
an unsafe region. Its state vector is s = [p v q ω] ∈ R13, where p = (x, y, z) ∈ R3 and v =
(vx, vy, vz) ∈ R3 represent the position and velocity of the rocket, respectively. q ∈ R4 is the unit
quaternion for attitude and ω ∈ R3 is the angular velocity with respect to the inertial frame. There
are three trust forces for the rocket as the control input u = [Tx, Ty, Tz] ∈ R3. The initial space
S0 : p = (x, y, z)(x− 10)2 + (y+8)2 + (z− 5)2 ≤ 0.01, v = 0,q = (0.73, 0, 0, 0.68), ω = 0, and
unsafe space Su : p = (x, y, z)(x− 5)2 + y2 ≤ 1,−2 ≤ z ≤ 5, ∥v∥1 ≤ 10, ∥ω∥1 ≤ 10.

UAV Maneuvering (Jin et al., 2021) is to maneuver an UAV close to the original point while avoid-
ing an obstacle. The 6-DoF UAV has 13 system states and 4 action variables. Its state vector is s =
[p v q ω] ∈ R13, same with above Rocket example. The control input u = [T1, T2, T3, T4] ∈ R4 in-
cludes the four rotating propellers of the quadrotor. S0 : p = (x, y, z)(x+8)2+(y+6)2+(z−9)2 ≤
0.01, v = 0,q = (1, 0, 0, 0), ω = 0, Su : p = (x, y, z)(x+ 4.5)2 + (y + 4)2 ≤ 1,−2 ≤ z ≤ 5.

Comparison and Effectiveness of Our Approach: Table 1 shows the comparison results in
simulation-based system safe rate (based on 500 simulations for each example, with random ini-
tial states), safety probability, and performance. We can see that by directly enforcing hard safety
constraints via soft barrier functions, our approach can achieve significantly higher system safe
rate than the CMDP-based baselines. Our approach also provides a practical lower bound of
safety probability, which the CMDP-based methods cannot provide. CMDP achieves better perfor-
mance (total reward return) in some cases, but we view safety as the first priority for these systems
and the focus of this work.

Figure 3 shows the control trajectories by the learned policies from our approach and the baselines.
The agent is always safe with our learned policy, while there exist unsafe cases by both PPO-L and
FOCOPS. Moreover, our generative model behaves very similarly to the real environment, which
shows the usefulness of the generative modeling for constructing the soft barrier function and opti-
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Figure 3: Control trajectories by the learned policies from our approaches and baselines. “Gene” in-
dicates the synthetic trajectory from the final learned generative model, which behaves very similarly
to the real environment with “Ours” policy, showing its effectiveness for barrier function construc-
tion. We can see that our approach learns safer policies than the baselines.

0 20 40 60 80 100 120 140
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Barrier Loss on 

Lie
min

xu Xu
B(xu)

max
x0 X0

B(x0)

0 1 2 3 4 5 6
t/s

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Barrier Value on &
B(s) on 
B(s) on 

Figure 4: Barrier function training and testing in
the 2D SDE example.
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Figure 5: Barrier function training and testing in
the UAV example.

mizing the control policy. We also show the learning process of the soft barrier function on the gen-
erative model and its testing in the real environment in Figures 4 and 5 for the 2D system and UAV
examples (results of the other two examples are in the Appendix A). The learned barrier function
maps the initial space to near 0 and the unsafe space to 1 with the third sample mean in Equation 4
to 0 (marked as Lie in Figures). The barrier function has a similar value along with the trajectories
in the real environment and the generative model. Again, this indicates that the generative model
behaves very similarly to the environment, as shown in Figure 3. Although the barrier function
decreases or stays constant most of the time, it can increase at some point. This is due to that 1)
the possible modeling error between the generative model SDE and environment 2) the supervised
learning cannot cover all possible cases for barrier training.

Limitations: As stated earlier, one key assumption of this work is the smoothness and continuity of
the system behavior, which prevents its application to hybrid dynamics with jump conditions such
as the contact dynamics in Mojuco and Safety Gym. One possible solution is to learn an ensemble
generative model as a hybrid system to deal with those discontinuous contact dynamics, and we plan
to explore it in future work. Another limitation of our framework is on the computation complexity
of the generative model (e.g., it takes around 8 hours to learn a policy for the Cartpole example and
1 day for the UAV and Rocket examples). In future work, we plan to improve the efficiency of this
part by exploring techniques such as Continuous Latent Process Flows (CLPF) Deng et al. (2021).

5 CONCLUSION

We present a safe RL approach for unknown stochastic environment that enforces hard reachability-
based safety constraints through generative-model-based soft barrier functions. Our approach for-
mulates a novel bi-level optimization formulation, and develops a safe RL algorithm that jointly
learns the generative model, soft barrier function, and policy optimization. Experiments demon-
strate that our approach can significantly improve empirical system safe rate over CMDP-based
baselines and also provide a practical lower bound of safety probability.
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Figure 6: Barrier function training and testing in
Rocket powered landing.
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Figure 7: Barrier function training and testing in
Cartpole balancing.

A APPENDIX

A.1 PROOF OF LEMMA 3 IN THE MAIN TEXT

For any m ∈ N, let Em = {ω ∈ Ω : Xn(w) >
1
m}. Since Xn ≥ 0, we have:

EΩ[Xn] =

∫
Ω

XndP ≥
∫
Em

XndP ≥
1

m
P (Em).

Therefore, P (Em)→ 0, and then:

0 ≤ P (ω ∈ Ω : Xn(w) ̸= 0) = P (
⋃

Em) = lim
m→∞

P (Em)→ 0,

P (ω ∈ Ω : Xn(w) ̸= 0)→ 0 =⇒ P (ω ∈ Ω : Xn(w) = 0)→ 1.

A.2 ADDITIONAL EXPERIMENTAL RESULTS

The barrier function training and testing results for the Rocket powered landing and the Cartpole
balancing examples are shown here in Figures 6 and 7.
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