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𝜆Grapher: A Resource-Efficient Serverless System for
GNN Serving through Graph Sharing
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ABSTRACT
Graph Neural Networks (GNNs) have been increasingly adopted for
graph analysis in web applications such as social networks. Yet, effi-
cient GNN serving remains a critical challenge due to highworkload
fluctuations and intricate GNN operations. Serverless computing,
thanks to its flexibility and agility, offers on-demand serving of
GNN inference requests. Alas, the request-centric serverless model
is still too coarse-grained to avoid resource waste.

Observing the significant data locality in computation graphs
of requests, we propose 𝜆Grapher, a serverless system for GNN
serving that achieves resource efficiency through graph sharing
and fine-grained resource allocation. 𝜆Grapher features the follow-
ing designs: (1) adaptive timeout for request buffering to balance
resource efficiency and inference latency, (2) graph-centric sched-
uling to minimize computation and memory redundancy, and (3)
resource-centric function management with fine-grained resource
allocation catered to the resource sensitivities of GNN operations
and function orchestration optimized to hide communication la-
tency. We implement a prototype of 𝜆Grapher based on the repre-
sentative open-source serverless platform Knative and evaluate it
with real-world traces from various web applications. Our results
show that 𝜆Grapher can achieve savings of up to 54.2% in mem-
ory resource and 45.3% in computing resource compared with the
state-of-the-art while ensuring GNN inference latency.

1 INTRODUCTION

Graphs, as a fundamental data structure, are prevalent in various
domains including social networks [29, 46], financial networks [5,
36], and transportation networks [15, 30]. The rise of deep learning
has empowered graph neural networks (GNNs) to be a powerful tool
to extract features from graph structures [40, 41, 50]. Today, GNNs
have been widely used in online web services, e.g., social network
analysis [9, 23], short-video recommendation [25, 47], shopping
recommendation [35, 44], and financial fraud detection [26, 36].

However, efficient serving of GNNs—running GNNs for time-
sensitive inference tasks—remains a critical challenge, for the fol-
lowing reasons: (1) GNNs are computation- and memory-intensive
due to the large graph size and complex operations, while appli-
cations impose stringent service-level objectives (SLOs) on GNN
inference latency [48]. (2) The arrival of GNN inference requests in
web services is typically busty and hard to predict [45]. (3) GNN exe-
cution intricately interleaves graph and tensor operations that show
diverging resource sensitivities [33]. The resource inefficiency of
GNN deployment leads to high operational costs for web services.

To deal with workload fluctuations, web services typically adopt
autoscaling techniques to adjust the provisioned resources vertically
and horizontally. Specifically, the system monitors a metric such
as the CPU or memory utilization and applies a threshold-based
scaling policy [4, 13]. Upon workload increases and the utilization

exceeds the threshold, a more powerful service instance (e.g., with
more CPU cores or memory) is launched to replace the current one
in the case of vertical scaling, or more service instances are added
to serve requests in the case of horizontal scaling. The opposite will
be applied when the workload decreases and the utilization drops
below the threshold. While such autoscaling techniques can absorb
workload variations at large time scales, the long delay in changing
the provisioned resources (e.g., launching new virtual machines)
limits their capability of handling short-term request spikes.

Serverless computing (and its popular implementation function
as a service) offers new opportunities for efficient provisioning of
web services thanks to its agile event-driven model [16]. However,
a direct request-centric serverless deployment of GNN inference,
i.e., invoking a separate function to process each arriving request,
as done in financial fraud detection systems on AWS Lambda [6],
may not provide us with the promised efficiency gain. There are
two major reasons: (1) The fixed resource allocation for a function
invocation per request ignores the diverging resource sensitivities
of operations in different GNN execution stages, leading to low
overall resource utilization. (2) Per-request function innovation
leads to repeated computation and redundant memory usage across
requests that potentially share parts of their computation graphs.

In this paper, we present 𝜆Grapher, a scalable, resource-efficient
serverless system for GNN inference. Our key observation is that
GNN inference requests arriving in a given period show high spatial
data locality, i.e., their computation graphs overlap significantly.
Following this observation, 𝜆Grapher features the following designs
to achieve high resource efficiency: First, 𝜆Grapher buffers requests
and processes them in batches to exploit the data locality and re-
duce computation and memory redundancy. As request buffering
introduces extra delay, to strike a good balance between resource
efficiency and latency, 𝜆Grapher incorporates adaptive timeout con-
figuration to decide when the batch of requests in a buffer must be
dispatched to avoid latency SLO violation. Second, 𝜆Grapher adopts
graph-centric scheduling to perform GNN inference computation.
Specifically, we use multiple queues and distribute arriving requests
to these queues, aiming to maximize the spatial data locality of re-
quests in the same queue. To execute the aggregate computation
of batched requests, we merge the computation graphs of all these
requests and partition the merged graph accounting for locality
so that resources allocated for a partition can be released imme-
diately once the local computation is completed, leveraging the
agility of serverless functions. Finally, 𝜆Grapher employs resource-
centric function management which allocates resources to functions
catering to the resource sensitivities of the GNN operations per-
formed by each function and orchestrates functions into a pipeline
to reduce inter-function communication time overhead.

In short, this paper makes the following contributions. After con-
ducting a thorough empirical analysis of GNN workload variations,
data locality, and resource sensitivities of GNN operations (§2), we
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Figure 1: Typical GNN inference workflow.
• present a resource-efficient serverless system for GNN infer-

ence (§3) featuring an adaptive timeout mechanism for request
buffering to balance resource efficiency and end-to-end latency.

• propose a graph-centric request scheduler that exploits data
locality to minimize computation and memory redundancy and
maximize resource elasticity.

• introduce a resource-centric function manager that caters the
resource allocation to the specific resource sensitivities of GNN
operations and orchestrates functions in pipelines to reduce
inter-function communication latency.

• implement 𝜆Grapher on the serverless platform Knative. Our
evaluation with real-world request traces shows that 𝜆Grapher
achieves savings of up to 54.2% in memory resource and 45.3% in
computing resource when compared to the state-of-the-art (§4).
§5 discusses related work and §6 concludes the paper.

2 BACKGROUND AND MOTIVATION

This section describes the fundamentals of GNN and the infer-
ence workflow in current systems, empirically studies the workload
fluctuations of GNN inference, motivates a graph-centric serverless
approach for GNN inference, and discusses the challenges in build-
ing an efficient graph-centric serverless system for GNN inference.

2.1 Fundamentals of GNN Inference
GNN basics. Denote the input graph as𝐺 = (𝑉 , 𝐸), where 𝑉 is the
set of vertices representing specific entities and 𝐸 is the set of edges
representing relationships between entities. Each vertex 𝑣 ∈ 𝑉 has
a feature representation ℎ𝑣 ∈ R𝑑 , where 𝑑 is the feature dimen-
sion. A GNN contains multiple layers, each comprising Aggregate
and Update operations. In each layer, every vertex 𝑣 aggregates
information from its neighboring vertices with

ℎ𝑙+1𝑣 = Φ𝑙
(
{ℎ𝑙𝑢 : 𝑢 ∈ N (𝑣)}

)
, (1)

where ℎ𝑙+1𝑣 is the representation of vertex 𝑣 in layer 𝑙 + 1, N(𝑣) is
the set of neighbors of vertex 𝑣 , ℎ𝑙𝑢 is the representation of neigh-
boring vertex 𝑢 in layer 𝑙 , and Φ𝑙 is the aggregation function. The
representation of each vertex 𝑣 is updated after each layer 𝑙 with

ℎ𝑙+1𝑣 = Υ𝑙 (ℎ𝑙+1𝑣 , ℎ𝑙𝑣), (2)

where the update function Υ𝑙 typically includes neural network
layers used to integrate information from the current layer and the
previous layer, resulting in a new representation for the vertex.
GNN inference workflow. GNN inference has been employed by
various time-sensitive online services, such as GraphLearn [1] and
PlatoGL [25]. Figure 1 shows a typical GNN inference workflow.
First, the request content is extracted as vertices and edges. Next,
the platform sets the vertex to predict as the target vertex and
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Figure 2: Workload fluctuations in GNN inference.
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Figure 3: Varying resource sensitivity of GNN operations.
The experiment is conducted with a 3-layer GCN.

extracts an 𝑛-hop computation graph. Then, the feature vectors are
extracted following the vertices/edges in this graph. Finally, this
graph and feature vectors are used as inputs for inference.

2.2 Resource Inefficiency in Current Systems
Current GNN inference systems fall into two types: traditional
elastic cloud systems and request-centric serverless systems. The
former has pre-configured resources and applies autoscaling in
coarse grains based on monitoring metrics, as explained before.
Examples of this type include Alibaba’s GraphLearn [1] and Ten-
cent’s PlatoGL [25]. Request-centric serverless systems handle each
request by triggering a function invocation, allowing on-demand
processing based on the specific computation graph of the request.
AWS’s financial fraud detection system operates in this way [6]. Un-
fortunately, both types of systems suffer from resource inefficiency
for one or both of the following two reasons.
Multi-scale workload fluctuations in GNN inference. Using
widely recognized datasets of user request arrival traces from Twit-
ter [2] and datasets of requests on social network graphs from
Twitter [7], we show that the GNN inference workload fluctuates at
three levels: request, graph, and layer. Request-level fluctuations are
represented by burstiness in the user request intensity, measured
by requests per second (RPS), as shown in Figure 2a. Graph-level
fluctuations concern the size of the extracted computation graph
of each request. We use a typical setup of a 3-hop computation
graph from the target vertex for real-time inference and compare
the graph size difference between any two consecutively arriving
requests. Figure 2b shows the difference can be as large as 98.6×.
Layer-level fluctuations are represented by the difference in the
number of vertices at each GNN layer, demanding varying resources
to perform computation. Figure 2c shows that this difference can
reach 4× between Layers 1 and 2 and 9× between Layers 1 and 3.
Varying resource sensitivity of GNN operations. Each GNN
layer is composed of two main operations alternatively executed:
Aggregate and Update. Figure 13 (in Appendix A) shows the the
structure of three classic GNN layers, namely GCN [18], Graph-
SAGE [11], and GIN [42]. Taking a 3-layer GCN model as an ex-
ample, we investigate the demands and sensitivities of Aggregate
and Update to different resource types. Figure 3a shows that Aggre-
gate, a graph-based operation, is memory-bound, whereas Update,

2
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Figure 4: Computation graph overlap among requests over a
period and comparative resource consumption analysis of
traditional, request-centric, and graph-centric approaches.

a tensor-based operation, is CPU-bound. Figure 3b shows that with
the increase of CPU cores, Aggregate shows a continuous latency
reduction (up to 4.5×) while the latency for Update quickly plateaus
with a maximum reduction of 2.2×. This implies that Aggregate is
more sensitive to CPU resource than Update.

Existing systems consider request-level workload fluctuations at
best and none of them consider multi-scale workload fluctuations
and varying resource sensitivities of GNN operations.

2.3 New Opportunities
The above analysis motivates us to switch from the request-centric
serverless design to a graph-centric one. This design choice offers
the following new opportunities.
Exploiting data locality for graph sharing. Based on the Twitter
trace [2, 7], we observe a significant overlap between the compu-
tation graphs of requests arriving within a period. Figure 4 shows
that the overlap rate can reach 44.2% for epochs of 150 ms, leading
to considerable redundant computation and memory usage, which
can be avoided by batching requests and sharing intermediate re-
sults across requests [41]. We show in Figure 4 that a graph-centric
serverless approach could save, on average, 55.3% and 46.5% mem-
ory resource compared with the traditional and request-centric
serverless approaches, respectively. Figure 5 shows the resource
consumption of two consecutive requests under different execution
modes. It shows that batching requests and eliminating redundancy
reduces 21.3% of memory usage and 22.7% of CPU usage.
Decoupling GNN operations for fine-grained resource alloca-
tion. The sensitivity of Aggregate and Update to resources differs,
suggesting a resource-centric approach to function management.
Specifically, we can manage functions in resource groups, decou-
pling memory-sensitive Aggregate and compute-sensitive Update
and customizing fine-grained resource allocation for each of them.
Figure 6 shows that with this approach up to 52%memory reduction
and 25% CPU reduction can be achieved (see the “3+3” mode). On
the other hand, we pay the cost of slight latency increases, primarily
caused by the inter-function communication overhead.

2.4 Design Challenges
The graph-centric serverless approach with fine-grained resource
allocation offers tremendous benefits, but also raises challenges.
C1: How to batch requests to exploit data locality? Request
batching is a de-facto optimization in inference serving systems for
improving resource efficiency. However, due to the heterogeneity
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Figure 5: Resource utilization under different execution
modes. “A” and “B” represent individual executions, “AB”
represents batch processing without sharing, and “ABO” rep-
resents batch processing with sharing exploiting the overlap.
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Figure 6: Latency and resource comparison between decou-
pled and coupled groups. Decoupled group “i+j” means allo-
cating i CPU cores to Aggregate and j CPU cores to Update.

of request graphs and irregular memory access in the Aggregate
operation in GNN inference (see Figure 2b), batch processing can
be inefficient if not treated carefully. As we have shown signifi-
cant resource efficiency improvement can be achieved by reusing
intermediate results among batched requests. The challenge is on
quickly grouping requests to maximize the chance of reuse.
C2: How to efficiently execute batched requests? When batch-
ing requests, the computation graphs of these requests are merged
into a big graph, e.g., with millions of vertices. The memory needed
to host the merged graph can easily exceed the memory limit of
serverless functions, leading to scalability concerns. A quick idea is
to break down the merged graph into pieces and allocate a function
for each piece. The challenge is on partitioning the merged graph
at a suitable granularity to ensure scalability and take advantage of
the agility of serverless functions to achieve resource efficiency.
C3: How to conceal inter-function communication overhead?
Decoupling GNN operations and enabling fine-grained resource al-
location offers efficiency gains, but at the cost of extra inter-function
communication overhead. One typical approach is to construct a
pipeline to overlap function execution with communication. The
challenge is to fine-tune this pipeline so that all the functions in
the pipeline achieve load balancing to maximize overhead hiding.

3 SYSTEM DESIGN
We present 𝜆Grapher and its design in this section.

3.1 System Overview
To address the shortcomings of the request-centric serverless ser-
vice model discussed in Section 2.2, we develop a resource-efficient
serverless GNN inference system with a graph scheduling and re-
source management engine. The main idea behind the engine lies in
two aspects: (1) graph-centric scheduling which leverages the graph
sharing of consecutively arriving requests to reduce computation

3
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Figure 7: A system overview of 𝜆Grapher.

and memory redundancy, and (2) resource-centric function manage-
ment which involves fine-grained resource allocation for functions
in the form of compute function groups and memory function
groups, catering to the compute-sensitive and memory-sensitive
operations, thereby maximizing resource efficiency. 𝜆Grapher aims
to optimize the resource efficiency during GNN serving while en-
suring the latency SLOs of GNN requests.

Figure 7 illustrates the system overview of 𝜆Grapher. At the be-
ginning of the GNN serving, ❶ a continuous stream of user requests
arrives at the serverless platform. Then, ❷ the Parser analyzes the
content of the user requests, i.e., the IDs of the target vertices that
require processing on the graph, and the target IDs are dispatched
to the Configurator, while the user requests enter the Router. Next,
❸ the Configurator, based on the received target IDs, queries the
vertex IDs within an 𝑛-hop computation graph around the target
IDs from the graph database (excluding the graph object and feature
vectors) and generates the corresponding data indices to send to
the Router. According to the data indices, ❹ the Router routes in-
coming user requests to the buffer with the highest degree of graph
sharing among the Multi-Buffers. While the requests are waiting
in the Multi-Buffers, ❺ the Configurator collects the states of the
buffers and queries the built-in latency SLO as well as the historical
service logs to ❻ periodically set and adjust the timeouts for each
buffer in the Multi-Buffers. As the requests continue to be added
to the Multi-Buffers, ❼ the Graph Scheduler, with a global perspec-
tive, schedules the requests within the Multi-Buffers based on the
state of each buffer (i.e., scheduling requests to move in or out of
buffers) to enhance the benefits of graph sharing, and extracts𝑛-hop
computation graphs corresponding to the requests from the graph
database, performing dynamic graph partitioning on each buffer.
When a buffer times out, ❽ the batched requests and results are sent
to the newly created Orchestrator. The Orchestrator, based on the
graph partitions, ❾ scales the compute resource function groups
and memory resource function groups, mapping the workloads
to specific functions. During the runtime loading process, ❿ the
compute functions load only the neural network structure, while
the memory functions load the graph structure of partitions and
its corresponding feature vectors. Finally, the functions perform
collaborative inference as per the orchestrated process. Next, we
present the details of each module.

3.2 Parser and Router
When user requests continuously arrive at the serverless platform,
it is necessary to analyze relevant information from the requests for
subsequent inference and route the requests to designated buffers
for graph sharing with other requests.

Target IDs. The Parser is responsible for analyzing the content of
user requests, which are the IDs of the target graph structures that
need to be inferred, referred to as the target IDs. Graph analysis
tasks can primarily be categorized into three types: vertex-level
prediction, edge-level prediction, and graph-level prediction. Tak-
ing social network analysis as an example, vertex-level prediction
involves determining user interests, with the target IDs for requests
being the vertex IDs. Edge-level prediction involves analyzing rela-
tionships between users, and the target IDs for requests are the edge
IDs. Graph-level prediction pertains to the overall properties of spe-
cific information within the entire social network, with the target
IDs for requests being the computation graph IDs. Therefore, the
Parser needs to analyze essential information from requests based
on the type of analysis task to support the subsequent extraction
of the 𝑛-hop computation graphs.
Routing Strategy. The Router is responsible for routing each re-
quest to the buffer that has the highest graph-sharing degree for
that request to enhance data locality. Each request corresponds
to an 𝑛-hop computation graph 𝐺 (𝑉 , 𝐸) based on its task ID. The
configurator, upon receiving the task ID, extracts the 𝑛-hop compu-
tation graph from the graph database that stores the whole graph
for the service and generates the data index for that request 𝑟𝑖 by
using the vertex set𝑉 of this computation graph as𝑈𝑟𝑖 = 𝑉𝑟𝑖 , where
𝑈𝑟𝑖 is the data index of the request 𝑟𝑖 . The data index for a buffer
𝑏𝑖 is the union of data indices for all requests it contains:

𝑈𝑏𝑖 = 𝑈𝑟0 ∪𝑈𝑟1 ∪ . . . ∪𝑈𝑟 𝑗 , 𝑟 𝑗 ∈ 𝑏𝑖 . (3)

The routing strategy involves directing requests to the buffer with
the highest graph-sharing degree, which is determined by finding
the intersection between the data index for each buffer and the
request’s data index, with the largest intersection indicating the
highest graph-sharing degree buffer:

𝑆
𝑟𝑖
𝑏𝑖

=
��𝑈𝑏𝑖 ∩𝑈𝑟𝑖 �� /��𝑈𝑟𝑖 �� , 𝑏 𝑗 = argmax

𝐵
𝑆
𝑟𝑖
𝐵
, (4)

where 𝑆𝑟𝑖
𝑏𝑖

is the graph sharing degree of request 𝑟𝑖 with respect to
buffer 𝑏𝑖 in Multi-Buffers 𝐵, and 𝑏 𝑗 is the buffer with the highest
graph sharing degree for the request 𝑟𝑖 .

3.3 Multi-Buffers and Configurator
Multi-Buffers.We observe a significant overlap among the compu-
tation graphs corresponding to user requests arriving continuously
over a period as discussed in Section 2.2. Therefore, we design
the Multi-Buffers which provides requests with an opportunity for
graph sharing with other requests with the same part of the com-
putation graph, by allowing requests to wait in the buffer for a
certain period. The Multi-Buffers, denoted as 𝐵, consists of multiple
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individual buffers. The requests that can engage in graph sharing
are placed in the same buffer and continue to wait for other requests
eligible for graph sharing. The requests are processed and sent to
subsequent inference nodes for inference only when the current
buffer times out. Each buffer possesses a 5-tuple (𝑅, 𝑆, 𝑁 ,𝑄, 𝐾) to
characterize the state of the buffer at the current moment, where 𝑅
denotes the requests per second for the buffer, 𝑆 ∈ [0, 1] represents
the average graph sharing degree of all requests in the buffer, 𝑁 rep-
resents the number of the requests in the buffer,𝑄 ∈ [0, 1] indicates
the ratio between the remaining time and the configured timeout of
the buffer, and 𝐾 ∈ [0, 1] represents the ratio between the buffer’s
configured timeout and the maximum allowable timeout setting.
The timeout of the buffer is a crucial determinant of system per-
formance. Configuring the appropriate timeout enables efficient
resource conservation through graph sharing while simultaneously
ensuring the timely fulfillment of SLO requirements. However, set-
ting the timeout too high or too low can result in request violations
or diminished graph-sharing benefits, reducing system resource
efficiency. In the evolving inference service environment, we need
to configure the buffer’s timeout reasonably.
Adaptive Timeout Configuration. The Configurator adaptively
configures the buffer’s timeout based on the buffer’s state to balance
the benefits of graph sharing and the timeliness of inference. We uti-
lize the decision tree regression algorithm [43] to capture the buffer
state and make rapid and effective timeout adjustment decisions, ul-
timately achieving a balanced benefit. We employ real-world traces
from Twitter [2, 7] and utilize the built-in SLO to conduct authentic
service runs, thereby gaining service history:
Step 1: we determine the initial timeout 𝑇0 and the maximum time-
out 𝑇𝑚𝑎𝑥 for the buffer Based on the SLO:

𝑇0 = 𝛾 × 𝑆𝐿𝑂, 𝑇𝑚𝑎𝑥 = 𝛿 × 𝑆𝐿𝑂, 0 < 𝛾 < 𝛿 < 1. (5)

Step 2: Whenever the buffer accumulates a certain number of new
requests or after a certain period has passed, the buffer’s state
changes and a decision needs to be made from the decision set
𝑋 = {−1, 0} ∪ {1 × 𝜏, . . . , 𝑖 × 𝜏}. There are three types of decisions,
including 𝑥𝑖 = −1, indicating an immediate sending of the buffer
to the inference node for the execution of the inference phase,
𝑥𝑖 = 0, indicating the preservation of the existing timeout, and the
extension of the timeout by 𝑥𝑖 = 𝑖 × 𝜏 , where 𝜏 is the unit time
interval for extending the timeout. To assess the magnitude of each
decision’s benefits, we propose a metric that measures the trade-off
between graph-sharing benefits and inference timeliness:

𝜇𝑏𝑖 = 𝛼 × 𝑆𝑏𝑖 − 𝛽 × 𝐷𝑏𝑖 , 𝛼 ∈ [0, 1] , 𝛽 ∈ [0, 1] , (6)

where 𝜇𝑏𝑖 represents the total performance gain of the buffer 𝑏𝑖 ,
𝑆𝑏𝑖 signifies the benefit of graph sharing obtained in the buffer 𝑏𝑖 ,
which is the average graph sharing degree, 𝐷𝑏𝑖 denotes the average
time ratio delayed in the buffer 𝑏𝑖 due to waiting, i.e., the average of
the time each request is delayed in the buffer relative to the Timeout,
and 𝛼 and 𝛽 are fixed coefficients set by the developers. We record
the buffer’s state and the decision with the maximum performance
gain when a decision is required, using this as historical experience.
Step 3: Using the 5-tuple state of the buffer (𝑅, 𝑆, 𝑁 ,𝑄, 𝐾) as inde-
pendent variables and the corresponding decisions as the dependent
variable, we fit a decision tree regression model:

𝑀𝑜𝑑𝑒𝑙 = 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑇𝑟𝑒𝑒𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑜𝑟 .𝑓 𝑖𝑡 ((𝑅, 𝑆, 𝑁 ,𝑄, 𝐾), 𝑋 ) . (7)
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Figure 8: The global perspective optimization process.

The generated Configurator based on the decision tree regression
model brings us some decision-making heuristics: 1) When the
buffer has been waiting for a long time without the prospect of
achieving graph sharing or when the graph sharing degree is suffi-
ciently high, the Configurator tends to decide 𝑥𝑖 = −1, opting not to
continue waiting and instead sending the buffer to subsequent in-
ference node; 2) When the benefits remain stable, the Configurator
tends to prefer the choice of 𝑥𝑖 = 0, conservatively maintaining the
current timeout; 3) When the buffer consistently receives requests
that can significantly enhance the average graph sharing degree,
the Configurator tends to decide of 𝑥𝑖 = 𝑖 ×𝜏 , which involves greed-
ily extending the timeout, with the degree of greediness depending
on the extent of benefit increase.

3.4 Graph Scheduler
The Graph Scheduler is responsible for overall scheduling of the
computation graphs corresponding to the requests in the Multi-
Buffers, which involves three specific parts: 1) Globally adjust re-
quests between the buffers to achieve the optimal scenario for graph
sharing; 2) Conduct graph sharing by merging common vertices in
the computation graphs to reducing computation and memory re-
dundancy; 3) Dynamically partition the request graphs to enhance
resource efficiency and provide scalability for inference.
Global Perspective Optimization.When a new request arrives, it
is always routed to the buffer with the highest graph sharing degree
for itself according to the routing strategy. However, this can lead
to the convergence of graph sharing results towards local optima
rather than global optima, as shown in Figure 8. Therefore, we intro-
duce the global perspective optimization algorithm to dynamically
and adaptively schedule the remaining requests with graph sharing
from a global perspective to achieve the global optimum of graph
sharing, as demonstrated in Algorithm 1 in Appendix B. Whenever
a new request enters the Multi-Buffers, the Graph Scheduler places
this request in the appropriate buffer based on the routing strategy
and calculates the current buffer’s performance gain (Line 1-Line 3).
The Graph Scheduler detects other requests in other buffers that
can participate in graph sharing with the newly arrived request
and calculates their respective graph sharing degree (Line 4-Line 7).
Next, the Graph Scheduler calculates the average graph sharing
degree and the average time ratio delayed if requests are moved
in or out of the buffer, thus computing the performance gain after
scheduling (Line 8-Line 12). Finally, the Graph Scheduler compares
the performance gains before and after the above scheduling. If the
performance gain is greater after the scheduling, the Graph Sched-
uler adopts this decision, transferring the corresponding requests
into the buffer where the new request is located and removing
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Figure 9: Demonstration of the dynamic graph scheduling.

them from their respective buffer (Line 13-Line 16). After sched-
uling from a global perspective, the requests in the buffer are the
global optimal solution for graph sharing. After scheduling from a
global perspective, requests in the buffer can make full use of the
benefits brought by subsequent graph sharing.
Graph Sharing. The Graph Scheduler combines the graphs cor-
responding to all requests in the buffer to reuse the Intermediate
results and reduce computational and memory redundancy in sub-
sequent batch processing. Specifically, the Graph Scheduler adopts
a hierarchically aggregated computation graph (HAG), based on
the ideas from previous work [14], to merge redundant vertices and
facilitate result sharing on the graph. The process of graph sharing
primarily involves three steps: 1) Expand the computation graph of
the target vertex into a computation tree; 2) Traversal the compu-
tation tree to merge vertices at the same depth between different
computation trees; 3) Conduct the aggregation operation on the
merged vertices only once, and the intermediate results from the
aggregation operation can be reused in subsequent steps. Taking
Figure 5a as an example, two requests have computation trees that
simultaneously share 5 overlap vertices. These overlapping vertices
are first merged and aggregated to produce intermediate results,
which are then further aggregated with other context vertices to
complete the inference of the target vertex. Compared to executing
the two computation trees separately, graph sharing significantly
reduces the number of aggregation operations and data transfers.
Dynamic Graph Scheduling. In the Graph Scheduler, each buffer
corresponds to a large graph composed of requests. The Graph
Scheduler performs graph scheduling on a per-buffer basis. When-
ever a new request is added to a buffer, the Graph Scheduler extracts
the computation graph structure of that request from the graph
database. Similarly, when requests are transferred between buffers,
the corresponding graph structures are also transferred. This dy-
namic incremental graph partitioning is carried out to optimize
inference for subsequent tasks. The dynamic graph scheduling
serves three main objectives, as shown in Figure 9: 1) Not all graph
vertices participate in the computation at every layer, as illustrated
in Figure 2c. Dynamic graph scheduling involves partitioning the
graph for each GNN layer, leveraging the resource-efficient nature
of serverless functions that are created and destroyed as needed; 2)
Serverless function instances have resource limitations and cannot
accommodate the entirety of the graphs stored in buffers. Dynamic
graph scheduling provides scalability for inference, addressing this
constraint. Algorithm 2 in Appendix B describes the specific dy-
namic graph partitioning process. First, combine the graphs in the
buffer with the arrived request graph to generate the HAG, which
is the data structure resulting from shared graph scheduling (Line
1). Next, begin traversing from the task vertex to its predecessor
vertices (note that even in the case of an undirected graph, it is
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Figure 10: Demonstration of the collaborative inference.

represented as a directed graph), i.e., the vertices required for its
aggregation, which are formed as a partition (Line 2-Line 9). The
predecessor vertices visited in the previous iteration are treated
as new task vertices for the subsequent traversal, and this process
continues until the set of task vertices becomes empty, at which
point the algorithm concludes (Line 10-Line 12). Finally, we obtain a
two-dimensional list of graph partitions, where each row represents
the input for each GNN layer, and the granularity of these graph
partitions is fine, providing scalability for subsequent inference.

3.5 Orchestrator
The Orchestrator coordinates a set of serverless functions to per-
form GNN inference on batched requests, as shown in Figure 10,
following resource-centric management that maximizes resource
efficiency without violating SLO, which comprises three stages:
1) The Orchestrator maps memory-sensitive graph workloads and
compute-sensitive tensor workloads to memory functions and com-
pute functions, respectively; 2) The Orchestrator employs a pipeline
collaborative inference mechanism to distribute communication
overhead among functions; 3) Based on the workloads and the
remaining time, the Orchestrator scales memory functions and com-
pute functions, customizing their resource allocation.
Workload Mapping. The Orchestrator divides the GNN workload
into graph workloads and tensor workloads and manages serverless
functions with resource groups, categorized into memory function
groups with abundant memory resources and compute function
groups with ample computing resources. The memory function
group exclusively handles graph workloads, i.e., memory-sensitive
Aggregate operations, while the compute function group exclu-
sively loads tensor workloads and handles computation-sensitive
Update operations. For the mapping of graph workloads, to lever-
age the resource-efficient nature of serverless functions and save
resources, the Orchestrator maps different layers of GNN’s input
graph partitions to different memory functions, and maps partitions
from the same GNN layer to the same memory function whenever
possible. If the memory size of partitions from the same GNN layer
exceeds the instance memory limit, the excess partitions will be
mapped to another new memory function instance. Regarding the
mapping of tensor workloads, as tensor workloads require less
memory, the neural networks for each GNN layer are loaded into a
single compute function instance. The target vertices that complete
their tasks early can exit the batch processing and return the results.
Collaboration between Functions. The Orchestrator organizes
collaborative inference between functions in a pipeline fashion,
allowing the communication overhead between functions to be
distributed within their respective computations, as illustrated in
Figure 10. The entire pipeline process begins with the memory
function inferring the first layer of GNN, and thus, the granularity
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of concurrent tasks in the pipeline is determined by the number of
graph partitions and vertices processed in parallel at each step by
the first layer memory function. The concurrent granularity needs
to be considered when allocating resources for functions.
Function Scaling. The Orchestrator customizes resources for mem-
ory functions and compute functions based on workload size and
concurrent granularity, saving resources while ensuring SLO com-
pliance. Specifically, the allocated memory resource amount for
memory function 𝐹𝑚

𝑖
and compute function 𝐹𝑐

𝑖
are𝑀𝑚

𝑖
and𝑀𝑐

𝑖
:

𝑀𝑚
𝑖 = 𝑀𝑟𝑢𝑛𝑡𝑖𝑚𝑒 +𝑀𝑉𝑖 +𝑀𝐸𝑖 +𝑀ℎ𝑖 (8)
𝑀𝑐
𝑖 = 𝑀𝑟𝑢𝑛𝑡𝑖𝑚𝑒 +𝑀𝑛𝑛 (9)

where 𝑀𝑟𝑢𝑛𝑡𝑖𝑚𝑒 represents the runtime memory size, 𝑀𝑉𝑖 repre-
sents the memory size of loaded vertices,𝑀𝐸𝑖 represents the mem-
ory size of loaded edges,𝑀ℎ𝑖 represents the memory size of loaded
embeddings, and𝑀𝑛𝑛 represents the memory size of the neural net-
work. the Orchestrator allocates the CPU cores to functions based
the bayesian optimization [32]:

𝐵𝑎𝑦𝑒𝑠𝑖𝑎𝑛𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛( ®𝐹, ®𝑋, ®Γ, ®𝑇𝑙 ) → ®𝐶 (10)

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 : 𝐶𝑜𝑠𝑡 =
∑︁

𝐹𝑚 ×𝑇𝑚
𝑙

+
∑︁

𝐹𝑐 ×𝑇𝑐
𝑙

(11)

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑠 :
∑︁

𝑇𝑚
𝑙

+
∑︁

𝑇𝑐
𝑙
≤ 𝑇𝑆𝐿𝑂 −𝑇𝑡𝑖𝑚𝑒𝑜𝑢𝑡 (12)

where ®𝐹 represents the function vector, ®𝑋 represents the function
workload size vector, ®Γ indecates the concurrent granularity vector,
®𝑇𝑙 represents the inference time vector under different cores and
task size, ®𝐶 represents the core number vector, and 𝑇𝑚

𝑙
and 𝑇𝑐

𝑙
indicate the inference time of memory and compute functions.

4 EVALUATION
In this section, we prototype 𝜆Grapher and evaluate it with real-
world traces from various web applications.

4.1 Experimental Setup
𝜆Grapher Prototype. We prototype 𝜆Grapher based on the open-
source serverless platform Knative [19] with 3.5k LOC in Python
and Go. Specifically, we implement the Parser, Configurator, Router,
Multi-Buffers, Graph Scheduler, and Orchestrator in a VM instance
as intermediaries between the request source and the Knative plat-
form and we deploy function instances through Knative Serving
Service and Knative Serving Ingress. The graph query service is im-
plemented using the high-performance Neo4j [39] graph database.
Baselines.We compare 𝜆Grapher with two state-of-the-art GNN
serving systems, including GraphLearn [1], representing the tra-
ditional cloud service architecture, and a financial fraud detection
system based on AWS Lambda [6], donated as AWSGNN, represent-
ing the request-centric serverless architecture. GraphLearn relies
on monitoring memory occupancy threshold (80%) metrics to scale
instances (1GB, 8vCPU) up or down, as most traditional elastic
cloud services do [4]. AWSGNN dynamically allocates functions
for each request based on its requirements, with a fixed ratio of
memory to computational resources (128MB to 1vCPU) [8].
Web Application Traces. We utilize real-world traces from Twit-
ter [2] to generate the inter-arrival time of user requests, which
is widely used for evaluating inference systems. We use three
graph datasets from real-world applications to generate request

Table 1: Graph Datasets from Real-World Applications

Graph Datasets Graph Type |V| |E| Dim. SLO (s)

Bitcoin OTC [18] Unipartite, Directed 5,881 35,592 128 0.3

KuaiRec [10] Bipartite, Undirected 17,904 192,729 58 0.4

Higgs Twitter [11] Unipartite, Directed 456,626 14,855,842 128 0.6
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Figure 11: Resource efficiency between 𝜆Grapher and two
state-of-the-art under different traces and GNN workloads.

contents, including KuaiRec [10] from the video-sharing mobile app
Kuaishou [20], Bitcoin OTC [22] form Bitcoin transaction network,
and Higgs Twitter [7] from Twitter network, which are widely
applied in evaluating the GNN model designed for short-video
recommendation [27], financial fraud detection [21] and social net-
work analysis [31], respectively. The SLOs are set based on the
requirements of the application scenario, as described in the previ-
ous work [48]. The details of graph datasets are shown in Table 1.
GNN Workloads. We select three common GNN models with
three layers using the Deep Graph Library (DGL) [37], including
GCN [18], GraphSAGE [11], and GIN [42]. The structures of GNN
layers are shown in Figure 13 in Appendix A.
Testbed. We implement 𝜆Grapher on a local cluster with 10 physi-
cal machines, each of which includes 104 Intel Xeon 8269CY cores
at 2.5GHz and 192 GB RAM (Ubuntu 18.04). We collect real service
data on physical machines, such as inference latency under various
configurations. To expedite the experimental process, we transform
the prototype implementation into a simulation mode as in [24].

4.2 Performance Comparison
We compare 𝜆Grapher with the two state-of-the-art GNN serv-
ing systems, GraphLearn and AWSGNN, in terms of memory and
compute resource efficiency, specifically comparing the average
memory and compute resource usage per request. The results in
Figure 11 indicate that, compared to the state-of-the-art, 𝜆Grapher
can achieve up to 54.2% memory and 45.3% in computing resource
savings. Across three web application traces, including Bitcoin OTC,
KuaiRec, and Higgs Twitter, the average graph sharing degrees of
each buffer are 44.8%, 50.6%, and 61.8% respectively.
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Figure 12: Results of the adaptive timeout configuration.

Memory Resource Efficiency. In different GNN workloads and
across various traces, 𝜆Grapher reduces memory resource usage
by 28.9% to 54.2% compared to GraphLearn and 18.7% to 36.7%
compared to AWSGNN (on average 34.6%). As a representative
of traditional cloud-based systems, GraphLearn still employs an
approach of over-allocating resources prior to service initiation and
continuously monitoring to address request fluctuations and system
availability. However, its instance resource scaling granularity is
relatively coarse, resulting in significant memory resource wastage.
As a representative of request-centric serverless systems, AWSGNN
effectively manages request intensity fluctuations. Nonetheless, due
to significant overlaps between requests arriving in close proximity
during the same time frame, the approach of serving individual
requests with individual functions lacks the utilization of spatial
data locality, leading to memory redundancy during GNN inference.
𝜆Grapher adopts a graph-centric task scheduling approach, which
efficiently saves memory resources by scheduling requests that can
perform graph sharing together through adaptive buffer timeout
configuration and global perspective request scheduling.
Computing Resource Efficiency. Under various GNN workloads
and across different traces, 𝜆Grapher demonstrates a reduction in
computing resource usage, achieving savings ranging from 21.5%
to 45.3% compared to GraphLearn, and 12.1% to 23.5% compared
to AWSGNN (on average 26.7%). As illustrated in Figure 3, GNN’s
fine-grained operations exhibit significantly different resource sen-
sitivities. However, in both GraphLearn and AWSGNN, resource
allocation is coarse-grained for the entire GNN, resulting in subopti-
mal utilization of computing resources. 𝜆Grapher not only reduces
unnecessary computational redundancy through graph sharing but
also offers a resource-centric function management mechanism. By
decoupling Aggregate and Update operations with varying resource
sensitivities, 𝜆Grapher enables fine-grained resource allocation. Ad-
ditionally, 𝜆Grapher orchestrates a refined pipeline for customized
functions to ensure load balancing. These improvements lead to a
substantial enhancement in computing resource efficiency.

4.3 Sensitivity Analysis of Buffer Timeout
To validate the performance of the adaptive timeout configuration
module, we select fixed upper and lower bounds for buffer time-
out, set at 50ms and 300ms, respectively. 𝜆Grapher dynamically
adjusts within this range. We conduct tests on the largest-scale
graph datasets Higgs Twitter, under various GNN workloads, as
shown in Figure 12. The results demonstrate that the adaptive time-
out configuration scheme can save 31.2% of memory resources and
24.9% of computational resources on average compared to a fixed
configuration with a lower limit of 50ms. Compared to the upper
limit configuration 300ms, it achieves an average 54.8% reduction
in computing resource usage. The underlying reason for this is

that, with a 50ms timeout, it cannot leverage data locality between
requests to optimize resource efficiency. Conversely, with a 300ms
timeout, although it can fully harness graph sharing to optimize
memory resource efficiency, the extended request waiting times
require a significant amount of computational resources to ensure
compliance with SLO goals. The adaptive timeout configuration
dynamically adjusts the timeout size based on the buffer status,
providing a balance between the benefits of graph sharing and the
risk of violating SLO.

5 RELATEDWORK

GNN Inference. In the traditional distributed environment, the
focus of work in recent years is how to divide the graph reason-
ably and map fine-grained operations to computing resources of
appropriate size to achieve acceleration [3, 17, 38, 49]. Wang et
al. [38] propose an adaptive and efficient system for GNN accelera-
tion on GPUs, which preprocesses the model and input graph to
achieve reasonable graph partitioning and resource mapping, and
finally achieves accelerated inference. In the cloud environment,
in order to solve the problem of graph data distributed in different
geographies, Zeng et al. [45] propose to conduct the GNN real-time
inference by adopting the fog computing paradigm to reduce the
communication overhead of the data collection before inference.
The above works focus on inference of static GNN models, which
pre-allocate computing node resources and provide services by
continuous monitoring. This scheme is difficult to dynamically and
adaptively allocate resources according to the fluctuation of user
requests, resulting in waste of resources.
Serverless Graph System. Due to the elastic scalability and flexi-
bility of serverless computing, some scholars propose to migrate the
graph processing system to the FaaS platform in recent years [12, 33,
34]. Toader et al. [34] implement the classic large-graph processing
model Pregel [28] on the FaaS platform in a simple engineeringman-
ner, and introduce a remote storage mechanism tomeet the stateless
challenge. However, due to frequent data communication, the sys-
tem performs poorly in performing large-scale graph algorithms.
Thorpe et al. [33] make the GNN training process semi-serverless,
introducing serverless threads to handle computation-sensitive ten-
sor operations, while graph operations that are sensitive to memory
resources are still executed on the CPU server. At present, there is
a gap in the work of serverless-based GNN serving.

6 CONCLUSION

In this paper, we identify the resource inefficiency problem in
current GNN serving systems. Through studying the web appli-
cation traces, we observe the spatial data locality in computation
graphs of requests. We propose a scalable, resource-efficient server-
less system named 𝜆Grapher for GNN serving. 𝜆Grapher supports
a graph-centric task scheduling strategy to reduce the computation
and memory redundancy and facilitates a resource-centric function
management mechanism which allocates resources to functions
catering to the resource sensitivities of GNN fine-grained opera-
tions. Compared to the state of the arts, our 𝜆Grapher prototype can
save up to 54.2% in memory resource usage and 45.3% in computing
resource usage with real-world traces while meeting the SLOs.
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A GNN LAYER STRUCTURES
Figure 13 shows the the structure of three classic GNN layers,
namely GCN [18], GraphSAGE [11], and GIN [42]. Each GNN layer
is composed of two main operations alternatively executed: Aggre-
gate and Update.

Aggregate

Update

GCN Layer GraphSAGE Layer

Aggregate

GIN Layer

Update Update

Aggregate

Update

Update

Figure 13: Classic GNN Layers.

B ALGORITHM DETAILS
Algorithm 1: Global Perspective Optimization Algorithm
Input :Multi-Buffers 𝐵 = {𝑏0, 𝑏1, . . . , 𝑏𝑖 };

Requests in the buffer 𝑏𝑖 = {𝑟𝑏𝑖0 , 𝑟
𝑏𝑖
1 , . . . , 𝑟

𝑏𝑖
𝑖
} ;

Arrived requests 𝐴 = {𝑟0, 𝑟1, . . . , 𝑟𝑘 };
𝐴’s routing IDs 𝐽 = { 𝑗𝑟0 , 𝑗𝑟1 , . . . , 𝑗𝑟𝑖 };

Output :Modified Multi-Buffers 𝐵′;
Parameters :Graph sharing degree of request with buffer

𝑆𝑟
𝑏
; Buffer to which the request is routed 𝑏 𝑗 ;

Data index of request𝑈𝑟 ; Average sharing
degree of buffer 𝑆𝑏 , 𝑆′𝑏 ; Average time ratio
delayed in the buffer 𝐷𝑏 , 𝐷

′
𝑏
; Performance

gain of buffer 𝜇𝑏 , 𝜇′𝑏 ; Fixed coefficients 𝛼, 𝛽 ;

1 foreach 𝑟𝑘 in 𝐴 do
2 routeRequestToBuf(𝑟𝑘 , 𝑗𝑟𝑘 ) → 𝑏 𝑗 ;
3 𝛼 × 𝑆𝑏 𝑗

− 𝛽 × 𝐷𝑏 𝑗
→ 𝜇𝑏 𝑗

;
4 foreach 𝑏𝑖 do
5 if 𝑏𝑖 ≠ 𝑏 𝑗 and 𝑆

𝑟𝑘
𝑏𝑖

> 0 then
6 foreach 𝑟𝑖 in 𝑏𝑖 do

7 𝑆
𝑟𝑘
𝑟𝑖 =

��𝑈𝑟𝑘
∩𝑈𝑟𝑖

����𝑈𝑟𝑘

�� ;

8 if 𝑆𝑟𝑘𝑟𝑖 > 0 then
9 modBufByDelRequest(𝑏𝑖 ,𝑟𝑖 )→ 𝑆 ′

𝑏𝑖
, 𝐷′

𝑏𝑖
;

10 𝛼 × 𝑆 ′
𝑏𝑖

− 𝛽 × 𝐷′
𝑏𝑖

→ 𝜇′
𝑏𝑖
;

11 modBufByAddRequest(𝑏 𝑗 ,𝑟𝑖 )→ 𝑆 ′
𝑏 𝑗
, 𝐷′

𝑏 𝑗
;

12 𝛼 × 𝑆 ′
𝑏 𝑗

− 𝛽 × 𝐷′
𝑏 𝑗

→ 𝜇′
𝑏 𝑗
;

13 if 𝜇′
𝑏𝑖

+ 𝜇′
𝑏 𝑗

> 𝜇𝑏𝑖 + 𝜇𝑏 𝑗
then

14 transferRequestToBuf(𝑟𝑖 ) → 𝑏 𝑗 ;
15 delRequestFromBuf(𝑟𝑖 , 𝑏𝑖 );
16 return 𝐵′;

Algorithm 2: Dynamic Graph Scheduling Algorithm
Input :Graph of the buffer 𝐺𝑏 (𝑉𝑏 , 𝐸𝑏 );

Graph of the arrived request 𝐺𝑟 (𝑉𝑟 , 𝐸𝑟 );
Target vertices IDs𝑊 = [𝑤0, . . . ,𝑤𝑖 ] ;

Output :Graph Partitions for each GNN layer
𝑃 = [[𝑝00, . . . , 𝑝0𝑖 ] , . . . , [𝑝𝑛0, . . . , 𝑝𝑛𝑖 ]]

Parameters :HAG 𝐻 (𝑉ℎ, 𝐸ℎ); Traverse depth 𝑛;
1 GenerateHAG(𝐺𝑏 (𝑉𝑏 , 𝐸𝑏 ),𝐺𝑟 (𝑉𝑟 , 𝐸𝑟 ))→ 𝐻 (𝑉ℎ, 𝐸ℎ);
2 [] → 𝑃 and 0 → 𝑛;
3 while𝑊 ≠ ∅ do
4 𝑝𝑛 = [];
5 foreach𝑤𝑖 in𝑊 do
6 traversePredecessors(𝑤𝑖 , 𝐻 (𝑉ℎ, 𝐸ℎ))→ 𝑝𝑛𝑖 ;
7 append(𝑝𝑛𝑖 )→ 𝑝𝑛 ;
8 append(𝑝𝑛)→ 𝑝;
9 𝑝𝑛0 ∪ 𝑝𝑛1 ∪ . . . ∪ 𝑝𝑛𝑖 →𝑊 ;

10 𝑛 + 1 → 𝑛;
11 return 𝑃 ;
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