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Abstract
The standard setup for federated learning (FL) is as a distributed optimization problem where each
client learns a local model using its own private data, and these local models are aggregated at
a central server. Recent works have also focused on settings where, not just the predictive accu-
racy but the model and predictive uncertainty estimates are also of interest. Bayesian FL methods
have recently emerged as a promising way to achieve this by solving a distributed posterior in-
ference problem. However, computing as well as aggregating the local client posteriors is usually
much more expensive (both in terms of local computation as well as the client-server communica-
tion) than optimization based FL approaches, such as FedAvg. We present a simple and scalable
Bayesian FL method in which, in each round, each client approximates its local posterior using the
improved variational online Newton method, which has almost the same cost as simply running an
Adam optimizer, making distributed inference mimic distributed optimization. We also present an
efficient aggregation method for the client posteriors to learn the global model at the server. Our
method achieves improved predictive accuracies as well as better uncertainty estimates as compared
to the baselines which include both optimization based FL as well as Bayesian FL methods.

1. Introduction

Federated learning (FL) [18] aims to learn a combined model from different clients with the con-
straint that sharing data among clients is not allowed. However, weights learned at each client can
be shared on the server, and at the server, these weights can be aggregated to learn the combined
model. FedAvg [18], a popular FL algorithm, does a simple weight averaging at the server, which
however is not ideal if there is data heterogeneity across clients. Moreover, these methods do not
perform well when clients have very limited amounts of training data. In such settings, learning
the posterior distribution at each client is more useful, as demonstrated in several recent works,
such as [2, 4, 10, 16] which have advocated taking a Bayesian approach to FL. However, existing
Bayesian FL methods usually rely on running computationally expensive routines on the clients
(e.g., requiring expensive MCMC sampling [2], expensive Laplace’s approximation which requires
Hessian computations [16] on the clients, or methods based on learning deep ensembles [15]), as
well as expensive client-server communication [11] and aggregation at the server (note that, unlike
standard FL, Bayesian FL would require sending the whole client posterior to the server). Therefore,
computationally efficient Bayesian FL methods are highly desirable.

In this work, we develop a Bayesian FL method which has an almost similar computational cost
as standard FL methods such as FedAvg, that use fast optimizers such as SGD or Adam, while still
providing the various benefits of a Bayesian approach such as robust predictions and quantification
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of model and predictive uncertainty. In particular, we leverage the IVON (Improved Variational
Online Newton) algorithm [20] to perform highly efficient variational inference (VI) on each client
by approximating its local posterior using a Gaussian with diagonal covariance. Our method is
computationally cheaper than other existing Bayesian FL methods that use expensive MCMC sam-
pling [2, 4], Laplace’s approximation [16], or even VI [11] at the clients. These local posteriors can
be efficiently sent to the server and the global posterior can be computed for which we also present
local posterior aggregation strategies.

2. Bayesian FL via Improved Variational Online Newton

The standard formulation of FL is similar to distributed optimization except some additional con-
straints, such as no data sharing among clients and server and a limited communication budget.
Assuming K clients, let D =

⋃
k∈[K]Dk be the total available data where Dk denotes the private

data of client k. The objective of standard FL is solve θ∗ = argminθ
∑

k∈[K]− log p(Dk | θ).
However, this optimization problem is not trivial as it requires access to each client’s data which is
not permitted in the federated setting. Thus, a multi-round approach is usually taken where clients
learn their local models, send these local models to a central server which aggregates them into a
global model, and send the global model to the clients to continue the next round of learning.

Unlike standard FL which only learns a point estimate of θ, an alternative is to learn a distribu-
tion of θ. The posterior distribution of θ can be written as

p(θ | D) ∝ p(θ)
∏

k∈[K]

p(Dk | θ) (1)

where p(θ) is prior distribution on θ and p(Dk | θ) is data likelihood of client k. Assuming
uniform prior p(θ), it can be trivially shown that the optimizing the standard FL objective function
is equivalent to finding the mode of the posterior p(θ | D), i.e., θ∗ = argmaxθ log p(θ | D).

Computing the full posterior p(θ | D) is more useful than computing just the point estimate
θ∗ because the posterior helps take into account model uncertainty. However, it is computationally
intractable to compute the posterior exactly. Directly approximating p(θ | D) using approximate
inference methods such as MCMC or variational inference [3] is also non-trivial, as it requires
computing each client’s likelihood which in turn requires global access to all the client’s data.

Claim 1 The global posterior p(θ | D) can be approximated at the server by the product of local
client posteriors without requiring access to any client’s local data.

If local posteriors p(θ | Dk) are also being approximated, multiple rounds of optimization are
needed to reduce the aggregation error in the global posterior [2]. In FL, another challenge is to
make the computation of the local posteriors, their aggregation at the server, and the client-server
communication, efficient, which in general can be difficult even for simple models [2].

2.1. Client’s posterior approximation

Assuming client k has Nk training examples, its local loss can be defined as ℓ̄k(θ) = 1
Nk

∑Nk
i=1 ℓi(θ),

and we can compute the point estimate of the parameters as θ∗
k = argminθ ℓ̄k(θ). However, in our

Bayesian FL setting, we will compute the (approximate) posterior distribution for each client using
variational inference, which amounts to solving the following optimization problem

q∗k(θ) = argmin
qk(θ)

Lk(q). where Lk(q) = Eqk(θ)[ℓ̄k(θ)] + DKL(qk(θ)∥pk(θ)). (2)
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where pk(θ) is the prior and DKL is the Kullback-Leibler divergence. If we use the Gaussian
variational family for qk(θ) with diagonal covariance then qk(θ) = N (θ|mk, diag(σ2

k)), where
mk and σ2

k denote the variational parameters that are to be optimized for. Optimizing the objective
in Equation 2 w.r.t these variational parameters requires making the following updates

mt+1
k = mt

k − α∇̂mk
Lk(q); σt+1

k = σt
k − α∇̂σk

Lk(q) (3)

where α > 0 is the learning rate.
Computing exact gradients in the above update equations is difficult due to the expectation

term in Lk(q). A naı̈ve way to optimize is to use stochastic gradient estimators. However, these ap-
proaches are not very scalable due to the high variance in the gradient estimates. Shen et al. [20] im-
proved these update equations and provided much more efficient update equations similar to Adam
optimizer, which is essentially the improved variational online Newton (IVON) algorithm [20], with
almost exact computational cost as Adam, and their key differences are summarized below

• Unlike Adam which solves for θ, IVON solves for both the mean vector m and the variances
σ2 which provides us an estimate of the Gaussian variational approximation at each client.
Note that the mean m plays the role of θ in Adam. In addition, the variances naturally
provide the uncertainty estimates for θ, essential for Bayesian FL (both in estimating the
client models’ uncertainties as well as during the aggregation of client models at the server).

• Unlike Adam which uses squared minibatch gradients to adjust the learning rates in different
dimensions, IVON uses a reparametrization defined as gradient element-wise multiplied by
(θ −m)/σ2 to get an unbiased estimate of the (diagonal) Hessian. Using this, IVON is able
to get a cheap estimate of the Hessian, which makes it a second-order method unlike Adam.

2.2. Posterior aggregation at server

At the server, we can aggregate the client posteriors to compute the global posterior [9]. IVON
approximates clients’ posteriors as Gaussians and product of Gaussian distributions is still a Gaus-
sian distribution up to a multiplicative constant. Thus we approximate the global distribution as a
Gaussian whose optimal mean and covariance matrix expressions are given below. Moreover, since
each client’s variational approximation is a Gaussian with diagonal covariance matrix, it makes the
aggregation operations efficient. Let’s assume q(θ | Dk) = N (θ | µk,Λ

−1
k ) where µk = mk and

Λk = diag(σ2
k). Using results of the product of Gaussians based aggregation [9, 16], we have

log q(θ | D) ≈
K∑
k=1

wk log q(θ | Dk) where wk =
Nk∑K
k=1Nk

q(θ | D) ≈ N (θ | µ,Λ−1)

Λ =

K∑
k=1

wkΛk µ = Λ−1
K∑
k=1

wkΛkµk (4)

Other aggregation strategies are also possible [9] and we leave this for future work. Note that
our aggregation strategy can also be seen as Fisher-weighted model merging [8] where each client
model is represented as the mean weights mk and a Fisher matrix which depends on local posterior’s
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variances σ2
k (although model merging only computes the mean, not the covariance, and thus does

not yield a global posterior distribution at the server).
The appendix provides further details of IVON and its integration in our Bayesian FL setup,

along with the pseudo-code for the overall algorithm, which we refer to as FedIvon.
Notably, FedIvon is appealing from two perspectives: It can be viewed an an efficient Bayesian

FL algorithm offering the various benefits of the Bayesian approach, as well as a federated learning
algorithm that easily incorporates second-order information during the training of the client models,
while not incurring the usual overheads of second-order methods used by some FL algorithms [5].

3. Experiments

We experiment on three publicly available datasets: EMNIST [7], SVHN [19] and CIFAR-10 [14]
(details in the appendix). We evaluate FedIvon in a challenging and realistic scenario involving
heterogeneous data distribution among a large number of clients with each client having very few
training examples. For each experiment, we consider a total of 200 clients with each client having a
small private training set of less than 100 examples. To simulate non-iid data distribution, we ran-
domly sample inputs from the training split, partition the sampled inputs into shards, and distribute
shards among clients to create class-imbalanced training data similar to [6]. For a fair comparison,
we use the same non-iid data split across clients for all the baseline methods and FedIvon. We
follow the experimental setup of [4] and train customized CNN models on EMNIST, SVHN, and
CIFAR-10 datasets. We compare our proposed method FedIvon with FedAvg [18] (simple aggre-
gation of client models at server) and FedLaplace [16] (using the Laplace’s approximation to fit a
Gaussian distribution to each client’s local model followed by aggregation at the server). FedAvg
serves as a baseline to emphasize the importance of uncertainty quantification without compromis-
ing on the performance while FedLaplace serves as a competitive baseline to evaluate FedIvon’s
predictive uncertainty measures. For all the baselines and FedIvon, we run the federated algorithm
for 2000 communication rounds, selecting a randomly sampled 5% i.e., 10 clients per round. We
train each client’s model locally for 2 epochs using a batch size of 32. We provide further details on
hyperparameters, model architectures, and split in the appendix.

3.1. Classification Task

We train a classification model in FL setting using all the methods and report the results in Table 1.
We evaluate all trained models’ performance (accuracy and negative log-likelihood) on the test split
and use metrics such as Expected Calibration Error (ECE) and Brier score to quantify predictive
uncertainty. In our results, FedIvon@mean denotes point estimate based predictions evaluated at
the mean of IVON posterior and FedIvon corresponds to Monte Carlo averaging with 500 samples.

As shown in Table 1, FedIvon outperforms all the baselines and yields the best test perfor-
mance and calibration scores. FedIvon leverages the improved variational online Newton method
to approximate the Hessian by continuous updates throughout the training. We also show the con-
vergence of all the methods on all the datasets in Figure 1. As observed, FedIvon exhibits slightly
slower improvements in the early training phase as compared to other baselines but soon outper-
forms them owing to its improved Hessian approximation as training progresses. Moreover, un-
like FedLaplace which fits Gaussian distribution to the client’s model using Laplace approximation
evaluated at MAP estimate, FedIvon approximates the Hessian over the entire course of its training,
resulting in much better predictive uncertainty estimates. This establishes efficacy of FedIvon, a
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Models EMNIST CIFAR-10 SVHN

ACC(↑) ECE(↓) NLL(↓) BS(↓) ACC(↑) ECE(↓) NLL(↓) BS(↓) ACC(↑) ECE(↓) NLL(↓) BS(↓)

FedAvg 91.66 0.0405 0.3355 0.1303 62.25 0.0981 1.199 0.5191 82.14 0.0311 0.6857 0.2640
FedLaplace 91.33 0.0381 0.3255 0.1314 61.80 0.1072 1.233 0.5284 81.99 0.0211 0.6423 0.2627

FedIvon@mean 93.14 0.0349 0.2821 0.1075 62.92 0.0983 1.1500 0.5114 84.54 0.0241 0.5624 0.2256
FedIvon 93.09 0.0188 0.2341 0.1019 62.54 0.0312 1.0790 0.5021 84.76 0.0148 0.5303 0.2210

Table 1: Test accuracy(ACC), Expected Calibration Error (ECE), Negative Log Likelihood (NLL),
and Brier Score (BS)

second-order method, in efficient modeling of model and predictive uncertainty but with the com-
putational cost that is similar to that of any first-order optimization method.
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Figure 1: Convergence of various methods (left: EMNIST, center: SVHN, right: CIFAR-10).

3.2. Out-of-Distribution Detection Task

Predictive uncertainty of the model plays a crucial role in uncertainty-driven tasks such as OOD
detection and active learning. We evaluate FedIvon and the baselines for distinguishing OOD inputs
from in-distribution inputs using their predictive uncertainty. Given any input x, the predictive
uncertainty of the model’s output is given by its Shannon entropy and is used to filter OOD inputs.
We simulate this task by randomly sampling 5000 images from the OOD dataset and mixing it with
an equal number of randomly sampled inputs from the test split of the training dataset.

Models EMNIST CIFAR-10 SVHM
FedAvg 0.8910 0.7896 0.7975

FedLaplace 0.8297 0.7513 0.8222
FedIvon 0.9032 0.7662 0.8233

Table 2: AUROC (↑) score for OOD/in-domain
data detection

Specifically, we use EMNIST, CIFAR-10,
and SVHN as the OOD dataset for the models
trained on EMNIST, SVHN, and CIFAR-10 re-
spectively. We report the AUROC (area under
the ROC curve) metric for all the methods on
all the datasets in Table 2 which shows that Fe-
dIvon achieves better or competitive AUROC
scores as compared to the other baselines.

4. Conclusion

We presented an efficient Bayesian FL method which has a low training cost at each client (almost
the same as running an Adam optimizer on each client) as well as low client-server communication
cost. Furture work will investigate the effect of various aggregations strategies at the server, as well
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as extending the method to personalized federated learning [1, 17, 21] where the data distribution
exhibits significant heterogeneity across the different clients, further necessitating Bayesian FL.
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Appendix A. Datasets

EMNIST consists of 28x28 grayscale images of alphabets and digits (0-9) with a train and test
split comprising 124800 and 20800 images respectively; however, in our experiments, we restrict
to alphabets only. SVHN consists of 32x32 RGB images of house number plates categorized into
10 distinct classes, each corresponding to one of the ten digits. It has a train and test split of size
73252 and 26032 respectively. CIFAR-10 comprises 32x32 RGB images of objects classified into
10 classes with 50000 training images and 10000 test images.

Appendix B. Hyperparameters used in experiments

In our experiments, We use ADAM optimizer with learning rate=1e-3, weight decay=2e-4
for FedAvg and FedLaplace method. IVON[20] optimizer is used for FedIvon with different hyper-
parameters given in Table 3. Linearly decaying learning rate is used in all the experiments.

params SVHN EMNIST CIFAR-10
initial learning rate 0.1 0.1 0.1
final learning rate 0.01 0.01 0.01

weight decay 2e-4 2e-4 2e-4
batch size 32 32 32
ESS (λ) 5000 5000 5000

initial hessian (h0) 2.0 5.0 1.0
MC sample while training 1 1 1

Table 3: Ivon Hyperparameters

Appendix C. Additional Results on Convergence of FedIvon

Figure 2 shows the test accuracies of various methods with increasing number of rounds.
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Figure 2: Test accuracy vs rounds (left: EMNIST, center: SVHN, right: CIFAR-10).
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Algorithm 1 FedIvon Algorithm

1: Input: Total communication rounds R, total clients K, clients’ private datasets {Dk}Kk=1, initial
model weight m0, initial model Hessian h0

2: for r = 1 to R do
3: Broadcast mr,hr to all K clients

4: Randomly sample k clients {Update selected client models locally}
5: for i = 1 to k do
6: mi,hi = Client Update(Di,mr,hr)
7: end for

8: Initialize mr+1 ← 0,hr+1 ← 0 {Aggregation of client models at server}
9: for i = 1 to k do

10: hr+1 ← hr+1 + hi ∗ w[i]
11: mr+1 ←mr+1 +mi ⊙ hi ∗ w[i]
12: end for

13: mr+1 ←
mr+1

hr+1
(elementwise division) {Global weight and Hessian}

14: end for

15: Output: Global model weights and Hessian (mR,hR)

Algorithm 2 Client Update

1: Input: Local dataset D, model weights m, Hessian(h), local epochs(E), learning rates {αe},
weight decay δ, hyperparameters β1, β2, batch-size B

2: Output: Trained model weights m, Hessian σ

3: g← 0, λ← |D|, n = E ∗ |D|/B.
4: σ ← 1/

√
λ(h+ δ).

5: αe ← (h+ δ)αe for all e ∈ {1, 2, . . . , n}.
6: for e = 1 to E do
7: Sample a batch of inputs of size B from D.
8: ĝ← ∇̂ℓ̄(θ), where θ ∼ q
9: ĥ← ĝ · (θ −m)/σ2

10: g← β1g + (1− β1) ĝ
11: h← β2h+ (1− β2) ĥ+ 1

2 (1− β2)
2 (h− ĥ)2/(h+ δ)

12: g← g/ (1− βe
1)

13: m←m− αe(g + δm)/(h+ δ)
14: σ ← 1/

√
λ(h+ δ)

15: end for
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Appendix D. Details of IVON and Related Methods

Using natural gradients, Khan and Lin [13] gave improved gradient based update equations for
the variational parameters and they call this approach Natural Gradient VI (NGVI). The major
difference between NVGI and original update equations is that learning rate is now adapted by the
variance σt+1

k which makes these updates similar to Adam.

NVGI: mt+1
k = mt

k + βtσ2
k
t+1 ⊙ [∇̂mk

Lk(q)]; σ−2
k

t+1
= σ−2

k

t − 2βt[∇̂σ2
k
Lk(q)]

Further, Khan et al. [12] showed that the NVGI update equations can be written in terms of scholastic
gradient and Hessian of θ, where σ2

k
t
= [N(ht

k +λ)]−1. The vector ht
k contains an online estimate

of diagonal Hessian. This approach called Variational Online Newton (VON) is similar to NGVI
except that it does not require the gradients of the variational objective.

VON: mt+1
k = mt

k − βt ĝ(θ
t) + λmt

k

ht+1
k + λ

; ht+1
k = (1− βt)ht

k + βtdiag[∇̂2
θθ ℓ̄k(θ

t)]

In the update of VON for non-convex objective functions, the Hessian can be negative which might
make σt

k negative, and break VON. To mitigate this issue Khan et al. [12] used a Generalized
Gauss-Newton (GGN) approximation of Hessian which is always positive. This method is called
VOGN.

∇2
θjθj

ℓ̄k(θ
t) ≈ 1

M

∑
i∈M

[
∇θjℓ

i
k(θ

t)
]2

:= ĥj(θ)

VOGN: mt+1
k = mt

k − βt ĝ(θ
t) + λmt

k

ht+1
k + λ

; ht+1
k = (1− βt)ht

k + βtĥj(θ
t)

VOGN [12] improves these equations where Gauss Newton estimation is used instead of Hessian
which gives similar update equations as the Adam optimizer. However, it still uses per-sample
squaring which is costly as compared to Adam. Further IVON [20] improved these update equa-
tions to make them as cost-effective as Adam. Using IVON’s update equations, we can efficiently
compute the client’s local posterior q∗k(θ) = N (θ|m∗

k, diag(σ∗2
k )).

IVON: ĥt
k = ∇̂ℓ̄k(θ) ·

θ −mt
k

σ2
k
t ; ht+1

k = (1− ρ)ht
k + ρĥt

k +
1

2
ρ2(ht

k − ĥt
k)

2/
(
ht
k + s0/λ

)
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