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ABSTRACT

There is growing evidence that pretrained language models improve task-specific
fine-tuning even where the task examples are radically different from those seen
in training. What is the nature of this surprising cross-domain transfer? We offer
a partial answer via a systematic exploration of how much transfer occurs when
models are denied any information about word identity via random scrambling.
In four classification tasks and two sequence labeling tasks, we evaluate LSTMs
using GloVe embeddings, BERT, and baseline models. Among these models, we
find that only BERT shows high rates of transfer into our scrambled domains, and
for classification but not sequence labeling tasks. Our analyses seek to explain
why transfer succeeds for some tasks but not others, to isolate the separate con-
tributions of pretraining versus fine-tuning, to show that the fine-tuning process
is not merely learning to unscramble the scrambled inputs, and to quantify the
role of word frequency. These findings help explain where and why cross-domain
transfer occurs, which can guide future studies and practical fine-tuning efforts.

1 INTRODUCTION

Fine-tuning pretrained language models has proven to be highly effective across a wide range of
NLP tasks; the leaderboards for standard benchmarks are currently dominated by models that adopt
this general strategy (Rajpurkar et al., 2016; 2018; Wang et al., 2018; Yang et al., 2018; Wang et al.,
2019). Recent work has extended these findings in even more surprising ways: Artetxe et al. (2020),
Karthikeyan et al. (2019), and Tran (2020) find evidence of transfer between natural languages, and
Papadimitriou & Jurafsky (2020) show that pretraining language models on non-linguistic data such
as music and computer code can improve test performance on natural language.

Why does pretraining help even across what appear to be fundamentally different domains, and
what are the limits of such cross-domain transfer? In this work, we seek to inform these questions
via a systematic exploration of how much cross-domain transfer we see when the model is denied
any information about word identity. In this setting, we can vary the pretraining and fine-tuning
examples dramatically while holding other aspects of the task constant. This allows us to quantify
the extent of transfer, and it can yield insights into the wide-ranging transfer results cited above.

Figure 1 gives an overview of our core experimental paradigm: starting with two identical copies
of a single pretrained model for English, we fine-tune one on English examples and the other on
scrambled English sentences, using a scrambling function F (section 3), and then we evaluate the
resulting models. We apply this paradigm to four classification tasks and two sequence modeling
tasks, and we evaluate bag-of-words baselines, LSTMs with GloVe initialization and rich attention
mechanisms, and BERT. Our central finding is that only BERT is able to achieve robust cross-domain
transfer, and for classification tasks but not sequence labeling ones.

To try to understand why such transfer is successful for some tasks but not others, we pursue a
number of hypotheses. First, we consider whether using a scrambling function F that matches
word frequencies is required for transfer, and we find that such matching plays a small role, but
not enough to account for the observed performance (section 7.1). Second, we assess whether
frequency matching might actually be inserting semantic consistency into the scrambling process
by, for example, systematically creating substitution pairs like good/great and professor/teacher
(section 7.2). However, we find no evidence of such semantic consistency. Third, we try to isolate the
contribution of pretraining versus fine-tuning by fine-tuning randomly initialized models of different
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Figure 1: An overview of our experiment paradigm. Starting with a model (e.g., pretrained BERT,
GloVe-initialized LSTM, etc.), we copy it and fine-tune it on the regular and scrambled train set
using a scrambling function F. The model is then evaluated on regular and scrambled test sets. Our
paper explores different options for F and a number of variants of our models to try to quantity the
amount of transfer and identify its sources.

sizes (section 7.3) and by freezing the BERT parameters, such that only task-specific parameters are
updated (section 7.4). These variations lead to a substantial drop in transfer, suggesting that fine-
tuning is vital, although our LSTM results show that the BERT pretrained starting point is also
an essential component. Fourth, we ask whether the fine-tuning process is primarily learning to
reassociate scrambled words with their sources, and we find that it is not (section 7.5). While these
findings do not fully account for the transfer we observe, they offer a partial explanation which
should help guide future studies of this issue and which can help with practical fine-tuning work.

2 RELATED WORK

2.1 EVIDENCE FOR TRANSFER

Transferability across domains is often used to benchmark large pretrained models such as
BERT (Devlin et al., 2019b), RoBERTa (Liu et al., 2019b), ELECTRA (Clark et al., 2019), and XL-
Net (Yang et al., 2019). To assess transferability, pretrained models are fine-tuned for diverse down-
stream tasks (Wang et al., 2018; 2019). Recently, pretrained Transformer-based models (Vaswani
et al., 2017) have even surpassed estimates of human performance on GLUE (Wang et al., 2018)
and SuperGLUE (Wang et al., 2019). While the benefits of pretraining are reduced when there is
a large train set (Hernandez et al., 2021), there is little doubt that this pretraining process helps in
many scenarios.

2.2 STUDIES OF WHY TRANSFER HAPPENS

There are diverse efforts underway to more deeply understand why transfer occurs. Probing tests of-
ten involve fitting supervised models on internal representations in an effort to determine what they
encode. Such work suggests that BERT representations encode non-trivial information about mor-
phosyntax and semantics (Tenney et al., 2019; Liu et al., 2019a; Hewitt & Manning, 2019; Manning
et al., 2020) and perhaps weakly encode world knowledge such as relations between entities (Da
& Kasai, 2019; Petroni et al., 2019), but that they contain relatively little about pragmatics or role-
based event knowledge (Ettinger, 2020). Newer feature attribution methods (Zeiler & Fergus, 2014;
Springenberg et al., 2015; Shrikumar et al., 2017; Binder et al., 2016; Sundararajan et al., 2017) and
intervention methods (McCoy et al., 2019; Vig et al., 2020; Geiger et al., 2020) are corroborating
these findings while also yielding a picture of the internal causal dynamics of these models.
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Scrambling Method Sentence

Original English (No Scrambling) “the worst titles in recent cinematic history”
Similar Frequency “a engaging semi is everyone dull dark”
Random “kitsch theatrically tranquil andys loaf shorty lauper”

Table 1: An example from the SST-3 dataset and its two scrambled variants.

Another set of strategies for understanding transfer involves modifying network inputs or internal
representations and studying the effects of such changes on task performance. For instance, Tamkin
et al. (2020) show that BERT’s performance on downstream GLUE tasks suffers only marginally
even if some layers are reinitialized before fine-tuning, and Gauthier & Levy (2019), Zanzotto
et al. (2020), Pham et al. (2020), and Sinha et al. (2021) show that BERT-like models are largely
insensitive to word order changes.

2.3 EXTREME CROSS-DOMAIN TRANSFER

Cross-domain transfer is not limited to monolingual cases (Karthikeyan et al., 2019). With modifica-
tions to its tokenizer, English-pretrained BERT improves performance on downstream multilingual
NLU tasks (Artetxe et al., 2020; Tran, 2020). Papadimitriou & Jurafsky (2020) show that pretrain-
ing language models on structured non-linguistic data (e.g., MIDI music or Java code) improves
test performance on natural language. Our work complements and advances these efforts along two
dimensions. First, we challenge models with extremely ambitious cross-domain settings and find
that BERT shows a high degree of transfer, and we conduct a large set of follow-up experiments to
help identify the sources and limitations of such transfer.

3 EXPERIMENTAL PARADIGM

We now describe the evaluation paradigm summarized in figure 1 (section 3.1), with special attention
to the scrambling functions F that we consider (sections 3.2–3.3).

3.1 EVALUATION PIPELINE

Figure 1 shows our main evaluation paradigm for testing the transferability of a model without word
identity information. On the left side, we show the classic fine-tuning pipeline (i.e., we fine-tune on
the original English training set and evaluate on the original English test set). On the right side, we
show our new evaluation pipeline: starting from a single model, we (1) fine-tune it with a corrupted
training split where regular English word identities are removed and then (2) evaluate the model on
a version of the evaluation set that is corrupted in the same manner. The paradigm applies equally to
models without any pretraining and with varying degrees of pretraining for their model parameters.

3.2 SCRAMBLING WITH SIMILAR FREQUENCY

To remove word identities, we scrambled each sentence in each dataset by substituting each word
w with a new word w′ in the vocabulary of the dataset. For Scrambling with Similar Frequency, we
use the following rules:

1. w and w′ must have the same sub-token length according to the BERT tokenizer; and
2. w and w′ must have similar frequency.

The first rule is motivated by the concern that sub-token length may correlate with word frequency,
given that rarer and longer words may be tokenized into longer sub-tokens. The second rule is
the core of the procedure. The guiding idea is that word frequency is often reflected in learned
embeddings (Gong et al., 2018), so this scrambling procedure might preserve useful information
and thus help to identify the source of transfer. Table 5 shows an example, and Appendix C provides
details about the matching algorithm and additional examples of scrambled sentences.
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Dataset
Standard Models (Train and Test on English) Scrambled Models (Train and Test on Scrambled English)

BERT LSTM BoW Dummy
BERT-Scrambled LSTM-Scrambled

Similar Frequency Random Similar Frequency Random

SST-3 .71 (.02) .62 (.01) .59 (.00) .33 (.02) .65 (.01) .64 (.02) .57 (.02) .56 (.02)

SNLI .91 (.02) .78 (.02) 66 (.02) .33 (.01) .84 (.01) .82 (.02) .72 (.00) .71 (.01)

QNLI .91 (.02) .68 (.02) .62 (.01) .50 (.01) .82 (.01) .79 (.02) .62 (.01) .61 (.01)

MRPC .86 (.01) .72 (.02) .70 (.02) .50 (.02) .82 (.02) .78 (.02) .69 (.00) .68 (.00)

EN-EWT .97 (.01) .85 (.02) .65 (.01) .09 (.01) .86 (.01) .81 (.02) .80 (.01) .72 (.01)

CoNLL-2003 .95 (.01) .75 (.01) .28 (.02) .02 (.01) .74 (.01) .72 (.02) .61 (.02) .56 (.01)

Table 2: Model performance results for models trained on original English and on scrambled En-
glish. Standard deviations are reported for all entries.

3.3 RANDOM SCRAMBLING

To better understand the role of frequency in domain transfer, we also consider a word scrambling
method that does not seek to match word frequencies. For this, we simply shuffle the vocabulary
and match each word with another random word in the vocabulary without replacement. We include
the distributions of the difference in frequency for every matched word pair in Appendix C to make
sure a word is paired with a new word with drastically different frequency in the dataset. We also
tried to pair words by the reverse order of frequencies, which yielded similar results, so we report
only random scrambling results here.

4 MODELS

In this section, we describe the models we evaluated within our paradigm. Appendix B provides
additional details about how the models were designed.

BERT For our BERT model (Devlin et al., 2019a), we import weights from the pretrained BERT-
base model through the HuggingFace transformers library (Wolf et al., 2020). For sequence clas-
sification tasks, we append a classification head after the [CLS] token embedding in the last layer
of the BERT model. If an input example contains a pair of sentences, we concatenate them using
a [SEP] token in between. For sequence labeling tasks, we append a shared classification head to
each token embedding in the last layer of the BERT model.

LSTM We contextualize our results against a strong LSTM-based model (Hochreiter & Schmidhu-
ber, 1997). We lower-case each input sentence and tokenize it by separating on spaces and punc-
tuation. We then use 300-dimensional GloVe embeddings (Pennington et al., 2014)1 as inputs to a
single-layer recurrent neural network with LSTM cells, with a hidden size of 64. We use dot-product
attention (Luong et al., 2015) to formulate a context vector for each sentence. Finally, we pass the
context vector through a multilayer perceptron (MLP) layer to get the final prediction. For an input
example with a pair of sentences, we concatenate two sentences together before feeding them into
our LSTM encoder. For sequence labeling tasks, we directly feed the hidden state at each position
to the MLP layer to get the final prediction.

Bag-of-Words (BoW) Model We compare against a BoW classifier, which serves as a proxy of
model performance when only given word co-occurrence information. For each sentence in a
dataset, we first formulate a BoW vector that uses unigram representations of an input sentence.
Then, we feed the BoW vector through a softmax classifier. For examples with a pair of sentences,
we create two BoW vectors for each sentence, and concatenate them together before feeding them
into the linear layer for predicting labels. For sequence labeling tasks, we use Conditional Random
Fields models (CRFs; Lafferty et al., 2001) with character-level unigram BoW features.

Dummy Model We include a random classifier that generates predictions randomly proportional to
the class distribution of the training set. We use this model to further contextualize our results.

1We use the Common Crawl cased version: http://nlp.stanford.edu/data/glove.840B.300d.zip
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Dataset Type #Train #Dev #Test #Class

SST-3 Sequence Classification 159k 1,1k 2.2k 3
SNLI Sequence Classification 550k 10k 10k 3
QNLI Sequence Classification 108k 5.7k 5.7k 2
MRPC Sequence Classification 3.7k 408 1.7k 2
EN-EWT UPOS Sequence Labeling 14k 2k 3.5k 18
CoNLL-2003 NER Sequence Labeling 12.5k 2k 2.1k 9

Table 3: Summary information for each task.

5 TASKS

We consider six sequence classification and sequence labeling tasks (Table 3).

Sequence Classification We select four NLU datasets for sequence classification. We consider
sentiment analysis (SST-3; Socher et al., 2013), where SST-3 is a variant of the Stanford Sentiment
Treebank with positive/negative/neutral labels; we train on the phrase- and sentence-level sequences
in the dataset and evaluate only on its sentence-level labels. Additionally, we include natural lan-
guage inference (QNLI; Demszky et al., 2018 and SNLI; Bowman et al., 2015) and paraphrase
(MRPC; Dolan & Brockett, 2005). QNLI is derived from a version of Stanford Question Answering
Dataset. For sequence classification tasks, we use Macro-F1 scores for SST-3, and accuracy scores
for other NLU tasks.

Sequence Labeling In contrast to sequence classification, where the classifier only considers the
[CLS] token of the last layer and predicts a single label for a sentence, sequence labeling requires
the model to classify all tokens using their contextualized representations. We select two datasets
covering distinct tasks: part-of-speech detection (POS) and named entity recognition (NER). We
used Universal Dependencies English Web Treebank (EN-EWT) (Silveira et al., 2014) for POS,
and CoNLL-2003 (Tjong Kim Sang & De Meulder, 2003) for NER. For sequence labeling tasks, we
used Micro-F1 (i.e., accuracy with full labels) for POS and F1 scores for NER.

6 RESULTS

In this section, we analyze the fine-tuning performance of BERT on scrambled datasets. Table 2
shows performance results. We focus for now on the results for Scrambling with Similar Frequency.
Additionally, we also include baseline models trained with original sentences for comparison pur-
poses. When training models on each task, we select models based on performance on the dev split
during fine-tuning. We average performance results with multiple random seeds to get stabilized
results. See Appendix B for additional details on our training and evaluation procedures.

6.1 SEQUENCE CLASSIFICATION

Comparing the second column (BERT model that is trained and tested on English) with the sixth col-
umn (BERT model that is trained and tested on Scrambled English with Similar Frequency Scram-
bling) in Table 2, we see that BERT maintains strong performance for all sequence classification
tasks even when the datasets are scrambled. More importantly, we find that BERT fine-tuned with
a scrambled dataset performs significantly better than the LSTM model (with GloVe embeddings)
trained and evaluated on standard English data

For example, on the MRPC task, BERT evaluated with scrambled data experiences a less than 5%
performance drop, and shows significantly better performance (a 13.9% improvement) than the best
LSTM model. BERT evaluated with scrambled QNLI experiences the biggest drop (a 9.89% de-
crease). However, this still surpasses the best LSTM performance by a large margin (a 20.6%
improvement).

Table 2 also presents performance results for other baseline models, which can be used to assess the
intrinsic difficulty of each task. Our results suggest that BERT models fine-tuned with scrambled
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Dataset LSTM-Baseline
LSTM-Scrambled

Similar Frequency
GloVe No GloVe

SST-3 .62 (.01) .57 (.02) .58 (.01)

SNLI .78 (.02) .72 (.00) .71 (.00)

QNLI .68 (.02) .62 (.01) .61 (.01)

MRPC .72 (.02) .69 (.00) .69 (.00)

EN-EWT .85 (.02) .80 (.01) .79 (.01)

CoNLL-2003 .75 (.01) .61 (.02) .60 (.01)

Table 4: Performance results for LSTM
models trained on regular English and on
English with Scrambling with Similar Fre-
quency, with GloVe embeddings and with
randomly initialized embeddings.

Figure 2: Zero-shot evaluation with the Bag-of-Word
(BoW) model on scrambled datasets and the dummy
model. Numbers are the differences between the cur-
rent points and the first points in percentages.

tasks remain very strong across the board, and they remain stronger than best LSTM baseline models
(those trained and tested on regular English) in all the classification tasks.

The overall performance of the LSTM models is worth further attention. The LSTMs are far less
successful at our tasks than the BERT models. However, it seems noteworthy that scrambling does
not lead to catastrophic failure for these models. Rather, they maintain approximately the same
performance in the scrambled and unscrambled conditions. This might seem at first like evidence of
some degree of transfer. However, as we discuss in section 7.3, the more likely explanation is that
the LSTM is simply being retrained more or less from scratch in the two conditions.

6.2 SEQUENCE LABELING

For a more complex setting, we fine-tuned BERT with sequence labeling tasks, and evaluated its
transferability without word identities (i.e., using datasets that are scrambled in the same way as in
our sequence classification tasks). The second set (bottom set) of Table 2 shows performance results
for sequence labeling tasks where the goal of the BERT model is to classify every token correctly.
As shown in Table 2, BERT experiences a significant drop when evaluated with a scrambled dataset
for a sequence labeling task. For LSTMs trained with scrambled sequence labeling tasks, we also
observe bigger drops compared with sequence classification tasks. For CoNLL-2003, LSTM with
GloVe embeddings drops (a 18.7% decrease) from its baseline counterpart. Our results suggest that
transfer learning without word identities is much harder for sequence labeling tasks. One intuition is
that sequence labeling tasks are more likely to rely on word identities given the fact that classification
(i.e., labeling) is at the token-level.

7 ANALYSIS

7.1 FREQUENCY EFFECTS

Preserving word frequencies during scrambling may lead to higher performance when training and
evaluating on scrambled datasets. To assess how much of the observed transfer relates to this fac-
tor, we can compare Scrambling with Similar Frequency (SSF) with Random Scrambling (RS), as
described in section 3. As shown in Table 2, performance drops slightly if we use RS. For sequence
classification tasks, RS experiences 1–5% drops in performance compared with SSF. For sequence
labeling tasks, the difference is slightly larger: about 2–6%. This suggests that word frequency is
indeed one of the factors that affects transferability, though the differences are relatively small, in-
dicating that this is not the only contributing factor. This is consistent with similar findings due to
Karthikeyan et al. 2019 for multilingual BERT.

7.2 DOES SCRAMBLING PRESERVE MEANING?

Another explanation is that our scrambling methods tend to swap words that are predictive of the
same labels. For example, when we are substituting words with similar frequencies in SST-3,
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Figure 3: Performance results when fine-tuning end-to-end for different number of Transformer lay-
ers. Annotated numbers are the differences between the red lines and the green lines in percentages.
Scoring for each task is defined in Section 5.

“good” may be swapped with “great” since they may have similar frequencies in a sentiment anal-
ysis dataset. To rule this out, we conducted zero-shot evaluation experiments with our BoW model
on sequence classification tasks. The rationale here is that, to the extent that our swapping preserved
the underlying connection between features and class labels, this should show up directly in the per-
formance of the BoW model. For example, just swapping of “good” for “great” would hardly affect
the final scores for each class. If there are a great many such invariances, then it would explain the
apparent transfer.

Figure 2 shows the zero-shot evaluation results of our BoW model on all sequence classification
datasets. Our results suggest that both scrambling methods result in significant performance drops,
which suggests that word identities are indeed destroyed by our procedure, which again shines the
spotlight on BERT as the only model in our experiments to find and take advantage of transferable
information.

7.3 TRANSFER OR SIMPLE RETRAINING?

Our results on classification tasks show that English-pretrained BERT can achieve high performance
when fine-tuned and evaluated on scrambled data. Is this high performance uniquely enabled by
transfer from BERT’s pretrained representations, or is BERT simply re-learning the token identities
from its scrambled fine-tuning data?

To distinguish between these two hypotheses, we first examine whether randomly-initialized BERT
models can also achieve high performance when fine-tuned and evaluated on scrambled data. We
study models of varying capacity by modulating the number of BERT Transformer blocks. See
Appendix B for details about the training procedure for these randomly-initialized models.

We compare these varying-depth randomly-initialized models against BERT models pretrained on
English. To modulate the capacity of these pretrained models, we progressively discard the later
Transformer layers (i.e., we make predictions from intermediate layers). Comparing these models is
a step toward disentangling the performance gains of pretraining from the performance gains relating
to model capacity.

Figure 3 summarizes these experiments. The red line represents our fine-tuning results, across dif-
ferent model sizes. The shaded area represents the performance gain from pretraining when training
and testing on scrambled data. Pretraining yields consistent gains across models of differing depths,
with deeper models seeing greater gains.

For sequence labeling tasks, the patterns are drastically different: the areas between the two lines are
small. Since the random-initialized and pretrained models achieve similar performance when fine-
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Figure 4: Performance results when fine-tuning only the classifier head by freezing all proceeding
layers in BERT (red line) vs. fine-tuning end-to-end, which includes the classifier head and all pro-
ceeding layers in BERT (green line). Numbers are scores for the red lines. Scoring for each task is
defined in Section 5.

tuned and tested on scrambled data, pretraining is not beneficial. This suggests that BERT hardly
transfers knowledge when fine-tuned for sequence labeling with scrambled data.

Table 4 shows our results when training LSTMs without any pretrained embeddings. Unlike with
BERT, GloVe initialization (a pretraining step) hardly impacts model performance across all tasks.
Our leading hypothesis here is that the LSTMs may actually relearn all weights without taking
advantage of pretraining. All of our LSTM models have parameter sizes around 1M, whereas the
smallest BERT model (i.e., with a single Transformer layer) is around 3.2M parameters. Larger
models may be able to rely more on pretraining.

Overall, these results show that we do see transfer of knowledge, at least for classification tasks, but
that there is variation between tasks on how much transfer actually happens.

7.4 ASSESSING TRANSFER WITH FROZEN BERT PARAMETERS

We can further distinguish the contributions of pretraining versus fine-tuning by freezing the BERT
parameters and seeing what effect this has on cross-domain transfer. Ethayarajh (2019) provides
evidence that early layers are better than later ones for classifier fine-tuning, so we explore the
effects of this freezing for all the layers in our BERT model.

As shown in Figure 4, performance scores drop significantly if we only fine-tune the classifier head
and freeze the rest of the layers in BERT across three of our tasks. However, we find that per-
formance scores change significantly depending on which layer we append the classifier head to.
Consistent with Ethayarajh’s findings, contextualized embeddings in lower layers tend to be more
predictive. For example, if we freeze BERT weights and use the contextualized embeddings from
the 2nd layer for SST-3, the model reaches peak performance compared with contextualized embed-
dings from other layers. More importantly, the trend of the green line follows the red line in Figure 4,
especially for SST-3 and QNLI. The only exception is MRPC, where the red line plateaus but the
green line keeps increasing. This could be an artifact of the size of the dataset, since MRPC only
contains around 3.7K training examples. Our results suggest that pretrained weights in successive
self-attention layers provide a good initial point for the fine-tuning process.

7.5 PROBING FOR WORD IDENTITY REASSOCIATIONS

We further investigate the learning dynamics of our fine-tuned models. Specifically, we study
whether our fine-tuned models reassociate word identities with tokens for our sequence classifi-
cation tasks. To do this, we measure the cosine similarities between words and their scrambled
counterparts before and after the fine-tuning process.2 To the extent that these similarities are in-
creased after fine-tuning, we have evidence that fine-tuning has learned to ressociate words with
their scrambled counterparts. However, we find essentially no evidence for such changes. As shown
in figure 5, the correlation distributions before fine-tuning and after are extremely similar. This
suggests that our fine-tuned models rarely reassociate word identities in the embedding layer.

2We only consider shared words in the model vocabulary and our scrambling maps, which includes 30% of
words in the model vocabulary.
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Figure 5: Correlations between cosine similarities of word embeddings before fine-tuning v.s. fine-
tuning with scrambled datasets. Measurements of correlations are defined in Section 7.5.

Figure 6: Accuracy of word identity probes when applied to hidden states of each layer comparing
to the control task introduced by Hewitt & Liang (2019). Measurements of accuracies are defined in
Section 7.5.

To push this analysis a step further, we probe whether word identities are recovered through trans-
former layers by adapting the probing method with control task from Hewitt & Liang (2019). For-
mally, we use an MLP classifier to predict the word identity for w using the contextualized hidden
representations of its scrambled counterpart w′. For our control task, we ask the probe to predict
random word identities. The difference in performance between these two conditions is know as
selectivity, and it estimates the degree to which the word identities are recoverable, taking the power
of the probe model into account. As shown in figure 5, our results suggest that relatively little infor-
mation about the scrambling map is latent in these representations, across tasks and model layers.

8 CONCLUSION

In this paper, we propose an evaluation pipeline for pretrained models by testing their transferability
without word identity information. Specifically, we take an English pretrained BERT off-the-shelf
and fine-tune it with a scrambled English dataset. We conduct analyses across six tasks covering both
classification and sequence labeling. By evaluating performance against multiple baselines, we aim
to assess where BERT can transfer knowledge even without word identities. We find considerable
transfer for BERT as compared to even powerful baselines, by only for classification tasks.

What is the source of successful cross-domain transfer with BERT? We find that word frequency
contributes, but only to a limited extent: scrambling with matched word frequencies consistently
outperforms scrambling with unmatched word frequencies, but transfer still occurs robustly even
with random scrambling. We are also able to determine that both pretraining and fine-tuning are im-
portant and interacting factors in this transfer; freezing BERT weights during task-specific training
leads to much less transfer, but too much task-specific training erodes the benefits of pretraining and
in turn reduces the amount of transfer observed.

These analyses begin to piece together a full account of these surprising transfer results for BERT,
but they do not fully explain our experimental results. Recent literature suggests at least two new
promising avenues to explore. First, Sinha et al. (2021) seek to help characterize the rich distribu-
tional prior that models like BERT may be learning, which suggests that higher-order notions of
frequency play a significant role in transfer. Second, the findings of Ethayarajh (2019) may be in-
structive: through successful layers, BERT seems to perform specific kinds of dimensionality reduc-
tion that help with low-dimensional classification tasks. Our results concerning layer-wise variation
are consistent with this. And there may be other paths forward. The more we can learn about the
extent of cross-domain transfer, the more effectively we can train and fine-tune these models on
challenging tasks.
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APPENDIX FOR ‘IDENTIFYING THE LIMITS OF CROSS-DOMAIN KNOWLEDGE
TRANSFER FOR PRETRAINED MODELS’

A DATASETS

Table 3 in our main text shows statistics for the six datasets included in our experiments. We use the
Dataset interface provided by the Hugging Face library Wolf et al. (2020) to foster reproducibility.
For each scrambling test, we use the same splits as in the original datasets.

B MODEL AND TRAINING SETUP

BERT Model Our BERT model has 12 heads and 12 layers, with hidden layer size 768. The model
uses the WordPiece tokenizer, with a maximum sequence length of 128. We fine-tune our model
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with a dropout probability of 0.1 for both attention weights and hidden states. We employ early
stopping with a patience of 5. This ensures a fair comparison between different settings.

We use original BERT Adaam optimizer (Kingma & Ba, 2014) with the default cross-entropy loss as
our loss function. Through our experiments, we discover the initial learning rate plays an important
role for performance across all datasets. Thus, we optimize over a wide range of initial learning rates
including {2e−5, 4e−5, 6e−5, 8e−5, 1e−4, 4e−4, 8e−4}. For each initial learning rate, we repeat our
experiments for 3 different random seeds. Table 2 shows the best averaged performance. To foster
reproducibility, our training pipeline is adapted from the Hugging Face library Wolf et al. (2020).
We use 6 × GeForce RTX 2080 Ti GPU each with 11GB memory. The training process takes about
1 hour to finish for the largest dataset and 15 minutes for the smallest dataset.

LSTM Model Similar to our BERT model, we use a maximum sequence length of 128. We employ
a training batch of 1024, and early stopping with a patience of 5. This ensures a fair comparison
between different settings. It is worth to noting that we find that BERT converges with scrambled
datasets as quickly as (i.e., with same amount of steps) fine-tuning with original datasets.

We use the Adam optimizer with the cross-entropy loss as our loss function. We experiment with
learning rates of {1e−3, 1e−4, 1e−5, 1e−6} and choose the best one to report averaged performance
results over 3 runs with different random seeds. We use 6 × GeForce RTX 2080 Ti GPU each with
11GB memory. The training process takes less than 1 hour to finish for all datasets.

BoW Model Similar with the BERT model, we use dev sets to select the best model during training.
We employ early stopping with a patience of 5. This ensures a fair comparison between different
settings.

We use the Adam optimizer with the cross-entropy loss as our loss function. We experiment with
learning rates of {1e−3, 1e−4, 1e−5} and choose the best one to report averaged performance results
over 3 runs with different random seeds. For Conditional Random Fields models (CRFs), we use
sklearn-crfsuite library with default settings.3 All models are trained using CPUs. The training
process takes less than 15 minutes to finish for all datasets.

Dummy Model We use the dummy classifier in the sklearn library4 with stratified strategy as our
random model.

Non-pretrained BERT Model For training from scratch, we try two stop conditions. First, we
employ early stopping with a patience of 5. Next, we also try another condition where we left the
model to run for 500 epochs for every dataset except MRPC. For MRPC, we train it for 5000 epochs
due to its small data size. We select the best performance out of these two options. This ensures
the model to explore in the parameter space exhaustively and fair comparison between fine-tuned
models and train-from-scratch models.

We use the BERT Adam optimizer with the cross-entropy loss as our loss function. We fix the initial
learning rate at 1e−4, and choose the best one to report averaged performance results over 3 runs
with different random seeds. We use 8 × GeForce RTX 2080 Ti GPU each with 11GB memory. The
training process takes about 4 hours to finish for the largest dataset and 50 minutes for the smallest
dataset. For the fixed epoch approach, the training process takes about 16 hours to finish for the
largest dataset, and 5 hours for the smallest dataset.

C FREQUENCY MATCHING

To study the effect of word frequencies on the transferability of BERT, we control word frequencies
when scrambling sentences. Figure 7 shows the differences in frequencies of matched pairs. Our
results show that the difference in frequency for a frequency-matched pair is significantly smaller
than a randomly matched pair.

3https://sklearn-crfsuite.readthedocs.io/en/latest/
4https://scikit-learn.org/stable/modules/generated/sklearn.dummy.DummyClassifier.html
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To match word frequency during scrambling, we first preprocess sentences by lower-casing and
separating by spaces and punctuation. We then use the original BERT WordPiece tokenizer to deter-
mine the sub-token length for each word, where the sub-token length is the number of word pieces
a word contains. To randomly match words with similar frequencies, we first bucket words by their
sub-token length. Then, we iterate through words within each bucket in the order of word frequen-
cies. For each word, we use the round-robin method to find the closest neighbor with the closest
frequency.

A perfect match is not always possible as not every word can be paired with another word with
an identical word frequency. We include the distributions of the difference in frequency for every
matched word pair in Appendix C to illustrate word frequencies are preserved.

D SCRAMBED SENTENCE

In Table 5 and Table 6, we provide one example sentence from each dataset destructed by our 4
scrambling methods. We also include the original English sentence (OR) at the top for each dataset.
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Scrambling Method

the worst titles in recent cinematic history Original Sentence
a engaging semi is everyone dull dark Similar Frequency
kitsch theatrically tranquil andys loaf shorty lauper Random

(a) Scrambled Examples from the SST-3 dataset with different types of scrambling methods.

Scrambling Method

premise: a lady wearing a batman shirt is walking along the boardwalk . Original Sentence
hypothesis: a woman is swimming in a lake .

premise: . car , . peach playing the outside hands is lay a Similar Frequency
hypothesis: . with the baseball man . helmet a

premise: moist cleaver surf moist blades smurf hover bugger unto locals pinnies
cotton

Random

hypothesis: moist songs hover starves blacktop moist beam

(b) Scrambled Examples from the SNLI dataset with different types of scrambling methods.

Scrambling Method

question: what objects do musicians have to have in order to play woodwind
instruments ?

Original Sentence

sentence: despite their collective name, not all woodwind instruments are made
entirely of wood .

question: a pubs people bomb first and first , areas and october confessor wit-
nesses of

Similar Frequency

sentence: video its rebels states in his world confessor witnesses ) under guam
? hall the

question: warranties mundine encountered froschwiller nir entering nir litatio
pachomius entering mille says mc diaspora

Random

sentence: mosfet bigua satisfactory merv gooding daewoo kennedy says mc
iditarod scrofula depositing unprotected ubaidian oran

(c) Scrambled Examples from the QNLI dataset with different types of scrambling methods.

Table 5: Comparisons between the original English sentence and scrambled sentences.
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Scrambling Method

sentence1: the court then stayed that injunction , pending an appeal by the cana-
dian company .

Original Sentence

sentence2: the injunction was immediately stayed pending an appeal to the fed-
eral circuit court of appeals in Washington .

sentence1: . cents executive airways for simon to needs 1 economy from .
custody no the

Similar Frequency

sentence2: . simon at loss airways needs 1 economy , . share sending cents in
stores of dollar the

sentence1: najaf render analyzed threatening earners bethany hurlbert melville
517 riyadh birdie najaf hail weighs warden

Random

sentence2: najaf bethany roared jackson threatening melville 517 riyadh eves
najaf credentials manfred render mission noting deceptive things warden

(a) Scrambled Examples from the MRPC dataset with different types of scrambling methods.

Scrambling Method

relations with Russia , which is our main partner , have great importance ”
Kuchma said .

Original Sentence

overseas 0 NEW . are 4 city children Draw . after Wasim Mia . on turning ’s Similar Frequency
providing 585 soliciting Pushpakumara Grabowski dissidents Kuwait flick-on
Sorghum Pushpakumara Goldstein Batty secure Pushpakumara 0#NKEL.RUO
Gama 603 LUX

Random

(b) Scrambled Examples from the EN-EWT dataset with different types of scrambling methods.

Scrambling Method

We walked in to pick our little man at 10 minutes to closing and heard laughter
from kids and the staff .

Original Sentence

any murder is themselves good Iraq second my family Your hell a .? phenomenal
n’t death a . every the

Similar Frequency

northward Darfur Bert stink Minimum descriptive Ã³l gunning Turns discomfort
TERRIBLE stink Washington passcode Ham’s blurred human 15 passcode agree
faction Goldman

Random

(c) Scrambled Examples from the CoNLL-2003 dataset with different types of scrambling methods.

Table 6: Comparisons between the original English sentence and scrambled sentences.
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(a) Scrambling with similar frequency for SST-3. (b) Random scrambling for on SST-3.

(c) Scrambling with similar frequency for SNLI. (d) Random scrambling for on SNLI.

(e) Scrambling with similar frequency for QNLI. (f) Random scrambling for on QNLI.

(g) Scrambling with similar frequency for MRPC. (h) Random scrambling for on MRPC.

(i) Scrambling with similar frequency for EN-EWT. (j) Random scrambling for on EN-EWT.

(k) Scrambling with similar frequency for CoNLL-
2003. (l) Random scrambling for on CoNLL-2003.

Figure 7: Distributions of difference in word frequency for each dataset.
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