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ABSTRACT

We investigate the decentralized safe multi-agent reinforcement learning (MARL)
problem based on homogeneous multi-agent systems, where agents aim to maxi-
mize the team-average return and the joint policy’s entropy, while satisfying safety
constraints associated to the cumulative team-average cost. A mathematical model
referred to as a homogeneous constrained Markov game is formally character-
ized, based on which policy sharing provably preserves the optimality of our safe
MARL problem. An on-policy decentralized primal-dual actor-critic algorithm
is then proposed, where agents utilize both local gradient updates and consensus
updates to learn local policies, without the requirement for a centralized trainer.
Asymptotic convergence is proven using multi-timescale stochastic approxima-
tion theory under standard assumptions. Thereafter, a practical off-policy version
of the proposed algorithm is developed based on the deep reinforcement learning
training architecture. The effectiveness of our practical algorithm is demonstrated
through comparisons with solid baselines on three safety-aware multi-robot coor-
dination tasks in continuous action spaces.

1 INTRODUCTION

Cooperative multi-agent reinforcement learning (MARL) involves multiple agents operating within
a shared environment, which learn to make sequential decisions that optimize a common objective.
Over the past few years, numerous efficient cooperative MARL algorithms have been developed fol-
lowing the centralized-training (CT) paradigm (Kuba et al., 2022; Liu et al., 2024). These algorithms
address the non-stationarity issue by training centralized critics, which also maintain scalability in
coordination through the use of decentralized policies. Moreover, the policy sharing mechanism is
widely used in CT-based algorithms for homogeneous agents, since it empirically enhances learning
scalability and efficiency (Gupta et al., 2017; Liu et al., 2019) and has been proven to preserve the
optimality of cooperative MARL problems (Chen et al., 2022). Nevertheless, in many real-world
scenarios, it requires centralized or all-to-all communication to achieve centralized training, which
makes CT-based algorithms impractical when communication resources are limited.

Decentralized MARL algorithms aim to solve the cooperative MARL problem under mild commu-
nication conditions (Zhang et al., 2019). Under the decentralized training setting, there only exists a
possibly time-varying and sparse communication network among agents. Each agent learns its pol-
icy based on local experiences and necessary information shared by its neighbors, such as network
parameters (Zhang et al., 2018) and local state-action pairs (Qu et al., 2022). Early works in this
field mainly focus on designing convergent decentralized algorithms under standard assumptions.
Based on the theoretical results, recent works further showcase the potential of applying decentral-
ized algorithms to challenging MARL tasks involving many decision-makers, such as multi-robot
coordination (Chen et al., 2022; Hu et al., 2024) and traffic control (Du et al., 2022; Ma et al.,
2024). Realizing that agents in the real world can be safety-critical systems, researchers have paid
increasing attention to the decentralized safe MARL problem, where the learned policies should
meet specific safety constraints. Despite that existing approaches have demonstrated promising per-
formance on safe MARL tasks with discrete action spaces (Lu et al., 2021; Ying et al., 2023b), it still
remains a challenge to design efficient decentralized algorithms for continuous safe MARL tasks.
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Contributions. We develop decentralized safe MARL methods for networked homogeneous multi-
agent systems. A decentralized safe MARL problem is formulated, which uses the entropy regular-
ization mechanism to address sample efficiency issues in high-dimensional spaces. The optimality
of our problem under the policy sharing setting is studied, based on which decentralized safe MARL
algorithms are proposed. The main contributions of this work are summarized as follows:

• A subclass of the constrained Markov game (MG) (Gu et al., 2023) is characterized, which extends
the model proposed in Chen et al. (2022) under the safe MARL setting. Based on this model, a
decentralized safe MARL problem is formulated employing an entropy regularizer in the objective
function design, where policy sharing is proven to preserve optimality and safety.

• An on-policy decentralized primal-dual actor-critic algorithm is proposed, where a novel decen-
tralized dual variable update step is designed to deal with the centralized constraint. Asymptotic
convergence of the proposed algorithm is established based on multi-timescale stochastic approx-
imation theory under standard assumptions.

• Compared with existing works on decentralized safe MARL (Lu et al., 2021; Ying et al., 2023b),
a practical off-policy decentralized algorithm is further proposed based on the deep reinforce-
ment learning (DRL) training architecture, which can effectively deal with continuous spaces.
Simulation results on safety-aware continuous multi-robot coordination tasks demonstrate the ef-
fectiveness of our practical decentralized algorithm.

Related Work. Decentralized MARL algorithms solve the cooperative MARL problem based on
a possibly time-varying and sparse communication network. Based on the use of the communica-
tion network, existing decentralized algorithms can be divided into two categories: communication
for parameter information and communication for state-action information. In the former category,
decentralized algorithms usually assume the availability of the global state due to the coupled state
transition function, where agents locally exchange parameter information over the communication
network to estimate global value functions (Zhang et al., 2018; Suttle et al., 2020; Ye et al., 2024).
These algorithms obtain theoretical convergence under practical communication conditions. Note
that some practical decentralized MARL algorithms have been proposed by combining theoretical
decentralized algorithms with DRL (Chen et al., 2022; Hu et al., 2024), achieving comparable per-
formance to solid CT-based MARL baselines. In the latter category, decentralized algorithms rely
on some spatial correlation decay assumptions of weakly coupled Markov decision processes (Qu
et al., 2022; Ying et al., 2023a). In these algorithms, each agent replaces the global state and action
with local state-action pairs received from its k-hop neighbors in its critic network during training.
Our algorithm is more pertinent to the former, where we assume that the global state and action
information is available to each agent. It is worth pointing out that the communication mechanism
employed in the latter can be effectively incorporated into our algorithm under the local observation
setting (see Appendix J.5 for more details).

Safe MARL has seen a surge of interest in recent years. Cai et al. (2021) combine the well-known
CT-based algorithm MADDPG (Lowe et al., 2017) with decentralized control barrier function (CBF)
shields to achieve safe exploration, which requires accurate system model of agents when designing
CBF conditions. Gu et al. (2023) develop a model-free safe multi-agent policy iteration algorithm
based on the multi-agent trust region learning theory (Kuba et al., 2022), which attains monotonic
improvement in reward and satisfaction of safety constraints at every iteration. Note that central-
ized units are required by these algorithms during the training process. Lu et al. (2021) propose
the first decentralized safe MARL algorithm for networked multi-agent systems, which employs a
primal-dual framework to search for the saddle point associated to reward and cost. However, each
agent must maintain and share a copy of the global policy, which may not be preferred in privacy-
sensitive applications and could result in scalability issues. Moreover, the learning performance of
this algorithm can be severely limited by the vanilla policy gradient method in high-dimensional
spaces (Lillicrap et al., 2016). Following the similar decentralized setting as Qu et al. (2022), Ying
et al. (2023b) propose a convergent primal-dual actor-critic algorithm for safe MARL, which utilizes
shadow rewards to deal with the general utility setting. Nevertheless, this algorithm inevitably faces
challenges in estimating local state-action occupancy measures in continuous spaces.

Notations. Let N = {1, . . . , N}. Let y = (y1, . . . , yN ) be an ordered list and M = [m1, . . . ,mN ]
be a permutation satisfying mi ∈ N and mp 6= mq if p 6= q, ∀p, q ∈ N . Then, a permutation of y
under M can be represented by My = (ym1 , . . . , ymN ). LetM be the set containing all possible
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M . Denote |P| as the cardinality of a finite set P . Denote ⊗ as the Kronecker product. Let 1 and I
be respectively the all-one vector and the identity matrix with proper dimensions.

2 SAFE MARL WITH DECENTRALIZED AGENTS

2.1 HOMOGENEOUS CONSTRAINED MARKOV GAME

We consider a constrained MG 〈N,S,A, P,R,C, γ〉 which contains N agents indexed by i ∈ N ,
where S and A =

∏N
i=1Ai are respectively finite state and action spaces, P : S × A × S → [0, 1]

is a state transition function, R = {Ri}i∈N and C = {Ci}i∈N are respectively reward and cost
functions with Ri, Ci : S × A → R for any i ∈ N , and γ ∈ [0, 1) is a discount factor. Denote
πi : S × Ai → [0, 1] as the local policy of agent i. At time step t, every agent i executes an action
ai,t ∈ Ai sampled from πi based on the current state st. Then, the constrained MG shifts to st+1 at
the next time step, and each agent i receives a reward ri,t+1 and a cost ci,t+1 satisfying Ri(st, at) =
E[ri,t+1|st, at] and Ci(st, at) = E[ci,t+1|st, at], ∀i ∈ N . When agents are homogeneous, we can
further characterize a subclass of constrained MGs, referred to as homogeneous constrained MGs,
which is defined as follows:
Definition 1. A constrained MG 〈N,S,A, P,R,C, γ〉 is homogeneous if

(i) The local action space is homogeneous to all agents, i.e., Ai = Aj , ∀i, j ∈ N . The state
space can be decomposed into N homogeneous local state spaces, i.e., s = (s1, . . . , sN ) ∈
S = S1 × · · · × SN with Si = Sj , ∀i, j ∈ N , where si ∈ Si, ∀i ∈ N .

(ii) Both the joint reward and cost functions are permutation preserving, and the state transition
function is permutation invariant, i.e., for any M ∈ M, st = (s1,t, . . . , sN,t) ∈ S, and
at = (a1,t, . . . , aN,t) ∈ A, it holds

Z(Mst,Mat) = MZ(st, at), P (st+1|st, at) = P (Mst+1|Mst,Mat),

where Z(st, at) = (Z1(st, at), . . . , ZN (st, at)) for any Z ∈ {R,C}.

(iii) Each agent i ∈ N determines its observation through a bijective function oi : S → O,
where the observation spaceO is homogeneous to all agents. Furthermore, the observation
functions are permutation preserving, i.e., for any s ∈ S and M ∈M, it holds

(o1(Ms), . . . , oN (Ms)) = M(o1(s), . . . , oN (s)).

The homogeneous constrained MG given in Definition 1 is a natural extension of the homogeneous
MG established in Chen et al. (2022) under the safe MARL setting. An illustrative example of this
model is given in Appendix A.1, and some practical examples are given in Appendix A.2.

2.2 PROBLEM FORMULATION

We consider a decentralized safe MARL problem over homogeneous constrained MGs. Following
the decentralized setting in Zhang et al. (2018); Chen et al. (2022), we assume that neither centralized
nor all-to-all communication is applicable in our problem. Instead, there exists a time-varying sparse
communication network among agents, characterized by an undirected graph Gt = (N , Et), where
Et ⊆ {(m,n) : m,n ∈ N ,m 6= n} denotes the edge set. Agents m and n can share information at
time step t if (m,n) ∈ Et. In addition, each agent can observe the global state and the joint action,
but it only has access to its local policy and reward information. Let π(·|s) =

∏N
i=1 πi(·|s) with

Π being the set of all possible π. To incentivize exploration, the entropy regularization mechanism
is employed (Geist et al., 2019). Denote V rπ (s) = E [

∑∞
t=0 γ

t(r̄t+1 + αH(π(·|st)))|s0 = s] as the
value function associated to the reward, where r̄t+1 = 1

N

∑
i∈N ri,t+1, α > 0, and H(π(·|s)) =

−
∑
a∈A π(a|s) log(π(a|s)) is the entropy functional. Let V cπ (s) = E [

∑∞
t=0 γ

tc̄t+1|s0 = s] be the
value function associated to the cost, where c̄t+1 = 1

N

∑
i∈N ci,t+1. Denote ρ as the known initial

state distribution over S. Given a threshold b, the target of the agents is to collaboratively learn an
optimal joint policy π∗ for the following constrained optimization problem:

max
π∈Π

Jr(π) = Es∼ρ [V rπ (s)] , s.t. Jc(π) = Es∼ρ[V cπ (s)] ≤ b. (1)
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The method proposed in this paper can generalize to the case of multiple constraints directly, and it
is reasonable to assume that all agents have the same number of cost functions due to homogeneity.
Compared with existing works on decentralized safe MARL, the constraint considered in this work is
centralized, which includes the costs of all agents. This poses a huge challenge for the decentralized
safe MARL algorithm design.

3 DECENTRALIZED PRIMAL-DUAL ACTOR-CRITIC ALGORITHM DESIGN

The observation function introduced in condition (iii) of Definition 1 inspires us to further design
the local policy πi as πi,o(·|oi(s)). Denote πo(·|s) =

∏N
i=1 πi,o(·|oi(s)) with Πo being the set of all

possible πo.
Theorem 1. In homogeneous constrained MGs, suppose π∗ ∈ Π is the optimal joint policy for the
constrained optimization problem (1). Then, there exists an optimal joint policy π∗o =

∏N
i=1 π

∗
i,o ∈

Πo with π∗i,o = π∗j,o, ∀i, j ∈ N , which satisfies Jr(π∗o) = Jr(π∗) and Jc(π∗o) = Jc(π∗) ≤ b.

The proof for Theorem 1 is given in Appendix A.3. Theorem 1 clearly indicates that we can consider
the constrained optimization problem (1) on the set Πo, and policy sharing of observation-based local
policies does not harm the optimality of (1) in homogeneous constrained MGs. This result justifies
the use of the policy sharing mechanism in the safe MARL algorithm design for the first time. In
the remainder of this paper, we focus on learning observation-based local policies to solve (1).

Let πi,θi be the parameterized policy of πi,o with θi ∈ Θi. Let πθ =
∏N
i=1 πi,θi be the parameterized

joint policy with θ = [θT1 , . . . , θ
T
N ]T ∈ Θ, where Θ =

∏N
i=1 Θi is compact. Let ΠΘ be the

set including all πθ. For simplicity of notation, denote V rθ and V cθ as the value functions of πθ
associated to the reward and the cost, respectively. According to Cayci et al. (2021) and Sutton
et al. (1999), the action-value functions of πθ associated to the reward and the cost take the forms
Qrθ(s, a) = R̄(s, a) + γEs′ [V rθ (s′)] and Qcθ(s, a) = C̄(s, a) + γEs′ [V cθ (s′)], respectively, where
R̄(s, a) = E[r̄t+1|st = s, at = a] and C̄(s, a) = E[c̄t+1|st = s, at = a]. Then, the constrained
optimization problem (1) can be equivalently represented by

max
θ∈Θ

Jr(θ) = (1− γ)Es∼ρ [V rθ (s)] , s.t. Jc(θ) = (1− γ)Es∼ρ[V cθ (s)] ≤ (1− γ)b. (2)

Note that both the objective function and the constraint in (2) are non-convex, making this problem
difficult to solve even in a centralized fashion. Hence, we employ the primal-dual method to obtain
approximate solutions of (2). Define the Lagrangian associated to (2) as

L(θ, λ) = Jr(θ)− λ(Jc(θ)− (1− γ)b), (3)

where λ ≥ 0 is the Lagrangian multiplier. Define the dual function as fd(λ) = maxθ∈Θ L(θ, λ).
Then, the dual problem of (2) takes the form

min
λ≥0

fd(λ) = min
λ≥0

max
θ∈Θ

L(θ, λ). (4)

The solution to (4) determines the tightest upper bound for the primal problem (2) (Boyd & Van-
denberghe, 2014). Provided that the dual gap is small, the optimal parameter θ∗ obtained from (4)
is close to that of the primal problem (2) (Paternain et al., 2023).

Let Pθ(st) be the marginal state distribution with respect to (w.r.t.) πθ, then the visitation measure
of a state s ∈ S is represented by dθ(s) = (1 − γ)

∑∞
t=0 γ

tPθ(st = s). Given the Lagrangian (3),
we first establish a policy gradient theorem for safe MARL and provide its proof in Appendix B.
Theorem 2. Suppose that πi,θi is continuously differentiable w.r.t. θi over Θi for any i ∈ N , s ∈ S,
and ai ∈ Ai. Let Aλθ (s, a) = Qrθ(s, a)−α log(πθ(a|s))− λQcθ(s, a). Then, the gradient of L(θ, λ)
w.r.t. θi takes the form

∇θiL(θ, λ) = Es∼dθ,a∼πθ [Aλθ (s, a)∇θi log(πi,θi(ai|oi(s)))]. (5)

We then propose a decentralized actor-critic algorithm based on the policy gradient formula (5). For
any z ∈ {r, c}, the action-value functionQzθ(·, ·) is approximated by a family of critic approximators
Qz(·, ·;ωz) parameterized by ωz ∈ RKz with Kz � |S| × |A|, and each agent i ∈ N estimates
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Qzθ(·, ·) withQz(·, ·;ωzi ), where ωzi is maintained locally. DenoteWt = [wt(i, j)]N×N as the weight
matrix associated to Gt, which satisfies wt(i, j) ≥ 0 for any i, j ∈ N , and wt(i, j) = 0 if (i, j) /∈ Et.
Denote Ni,t = {j : (i, j) ∈ Et}. Once a tuple (st, at, ri,t+1, ci,t+1, st+1, at+1) is collected from
the environment by agent i ∈ N , its critic parameters are updated by

ω̃zi,t+1 = ωzi,t + βω,tδ
z
i,t∇ωzQzt (ωzi,t), ωzi,t+1 =

∑
j∈Ni,t

wt(i, j)ω̃
z
j,t+1, ∀z ∈ {r, c}, (6)

where βω,t > 0 is the stepsize, Qzt (ω
z
i,t) = Qz(st, at;ω

z
i,t), δci,t = ci,t+1 + γQct+1(ωci,t)−Qct(ωci,t)

and δri,t = ri,t+1 + γ(Qrt+1(ωri,t)−Nα log(πi,θi,t(ai,t+1|oi(st+1))))−Qrt (ωri,t) are local temporal
difference (TD) errors. In (6), the critic parameters of each agent i ∈ N are first updated based
on local reward, cost, and policy information, and are then processed through the consensus update
using critic parameters shared by neighboring agents. This allows each agent to update its critic pa-
rameters in a decentralized manner. Compared to existing decentralized MARL algorithms (Zhang
et al., 2018; Chen et al., 2022; Hu et al., 2024), each agent in our algorithm additionally maintains a
critic for Qcθ, which will be employed in the policy update.

For the actor parameter update, we assume that all agents share the same policy class from Theorem
1, such that we have Θ1 = · · · = ΘN ⊆ Rm. We then define a copy operator [·] : Rq → RNq ,
which satisfies [v] = 1 ⊗ v for any v ∈ Rq , where 1 ∈ RN and q is an arbitrary positive integer.
Based on (5), the actor parameter of agent i is updated by

θ̃i,t+1 = θi,t + βθ,tNηi,tψi,t, θi,t+1 =
∑
j∈Ni,t

wt(i, j)θ̃j,t+1, (7)

where βθ,t > 0 is the stepsize for the actor, ηi,t = Qrt (ω
r
i,t) − α log(π[θi,t](at|st)) − λi,tQct(ωci,t),

ψi,t = ∇θi log(πi,θi,t(ai,t|oi(st))), and λi,t is the local Lagrangian multiplier maintained by agent
i. Inspired by Theorem 1, the policy consensus step is incorporated into (7), which allows us to esti-
mate the entropy regularization term in (5) with log(π[θi,t](at|st)) =

∑N
j=1 log(πi,θi,t(aj,t|oj(st))).

Note that oj(st) is available to agent i based on the permuted observation oi(Mst) with mi = j
using condition (iii) in Definition 1, so that the term log(π[θi,t](at|st)) can be calculated locally. As
a result, each agent can update its actor parameter in a decentralized manner.

Finally, each agent i updates its dual variable by

λ̃i,t+1 = Γλ

[
λi,t − βλ,tEs̃∼ρ,ã∼π[θi,t]

[b−Qc(s̃, ã;ωci,t)]
]
, λi,t+1 =

∑
j∈Ni,t

wt(i, j)λ̃j,t+1, (8)

where βλ,t > 0 is the stepsize, and Γλ projects any scalar onto the set [0, λmax] satisfying λmax > 0.
For each agent i ∈ N , s̃ is sampled from the known initial state distribution ρ, and every ãi in
ã = (ã1, . . . , ãN ) is sampled from πi,θi,t(·|oi(Ms̃)) with mi = j, ∀j ∈ N . Following the similar
analysis for the actor update, (8) can also be executed by each agent in a decentralized manner.

4 CONVERGENCE ANALYSIS

In this section, the convergence of the proposed decentralized actor-critic algorithm (6)-(8) is ana-
lyzed based on multi-timescale stochastic approximation theory. We begin by introducing standard
assumptions taken from existing decentralized MARL works, where detailed discussions on these
assumptions can be found in Appendix C.
Assumption 1. For any s ∈ S , ai ∈ Ai and i ∈ N , πi,θi(ai|oi(s)) is continuously differentiable
w.r.t. θi, which satisfies πi,θi(ai|oi(s)) ≥ κ for some κ > 0. Let Pθ be the state transition matrix of
the Markov chain {st}t≥0 w.r.t. πθ for any θ ∈ Θ, such that Pθ(s′|s) =

∑
a∈A πθ(a|s)P (s′|s, a),

∀s, s′ ∈ S. The Markov chain {st}t≥0 is irreducible and aperiodic under any policy πθ.
Assumption 2. The weight matrix sequence {Wt}t≥0 satisfies the following conditions: (i) Wt is
row stochastic and E[Wt] is column stochastic, ∀t ≥ 0, i.e., Wt1 = 1 and 1TE[Wt] = 1T . (ii)
The spectral norm of E[WT

t (I − 11T /N)Wt] is strictly smaller than one. (iii) Wt is conditionally
independent of ri,t+1 and ci,t+1 for any i ∈ N provided the σ-algebra generated by the random
variables before time t.
Assumption 3. The instantaneous reward ri,t+1 and cost ci,t+1 are uniformly bounded for any agent
i ∈ N and t ≥ 0.
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Assumption 4. Qzθ(s, a) is approximated by linear critic functions Qz(s, a;ωz) = φz(s, a)Tωz for
any z ∈ {r, c}. The feature vectors φz(s, a) are uniformly bounded for any s ∈ S and a ∈ A, and
the feature matrix Φz ∈ RNas×Kz has full column rank, where Na

s = |S| × |A|.
Assumption 5. Stepsize sequences {βω,t}t≥0, {βθ,t}t≥0 and {βλ,t}t≥0 satisfy βω,t, βθ,t, βλ,t > 0,∑∞
t=0 βω,t =∞,

∑∞
t=0 βθ,t =∞,

∑∞
t=0 βλ,t =∞,

∑∞
t=0 β

2
ω,t+β2

θ,t+β2
λ,t <∞, βθ,t = o (βω,t),

βλ,t = o (βθ,t), and limt→∞ βω,t+1β
−1
ω,t = limt→∞ βθ,t+1β

−1
θ,t = limt→∞ βλ,t+1β

−1
λ,t = 1.

Assumption 6. The critic update is stable almost surely (a.s.) for any i ∈ N , i.e., supt→∞ ‖ωzi,t‖ <
∞ a.s. for any z ∈ {r, c}. For the actor update, {θi,t}t≥0 belongs to a compact set in Θi for any
i ∈ N and t ≥ 0.

Convergence of the critic. Assumption 5 indicates that the critic parameters update at the fastest
timescale, which allows us to analyze their convergence under fixed θ and λ̄ = [λ1, . . . , λN ]T

based on the multi-timescale stochastic approximation theory (Borkar, 2008). By abuse of notation,
let Pθ be the transition matrix of the state-action pairs with Pθ(s′, a′|s, a) = P (s′|s, a)πθ(a

′|s′).
Based on Assumption 1, denote the stationary distribution of each state s ∈ S by νθ(s), satisfying
νθ(s) = limt→∞ Pθ(st = s), based on which we define a stationary distribution matrix as Ds,a

θ =

diag [νθ(s)πθ(a|s), s ∈ S, a ∈ A]. Then, we denote R̄ = col[R̄(s, a), s ∈ S, a ∈ A] ∈ RNas , C̄ =
col[C̄(s, a), s ∈ S, a ∈ A] ∈ RNas , and Ωθ = col[α log(πθ(a|s)), s ∈ S, a ∈ A] ∈ RNas . For any
vectorQ = col[Q(s, a), s ∈ S, a ∈ A] ∈ RNas , we can define two operators T rθ , T cθ : RNas → RNas ,
which respectively take the forms

T rθ [Q̄] = R̄+ γPθ(Q̄− Ωθ), T cθ [Q̄] = C̄ + γPθQ̄. (9)
Theorem 3. Under Assumptions 1-6, for any policy πθ with the sequences {ωri,t}t≥0 and {ωci,t}t≥0

generated by (6), it satisfies limt→∞ ωzi,t = ωzθ a.s. for any i ∈ N , where

(Φz)TDs,a
θ (T zθ [Φzωzθ ]− Φzωzθ) = 0, ∀z ∈ {r, c}. (10)

The proof of Theorem 3 can be found in Appendix D. Note that the learned critic parameters ωrθ
and ωcθ in (10) correspond to the Mean Square Projected Bellman Error (MSPBE) minimizers re-
spectively associated to Qrθ and Qcθ (Zhang et al., 2018). This theorem indicates that each agent in
our algorithm can learn good approximators for the global action-value functions using parameter
information from its neighbors only.

Convergence of the actor. We then show the convergence of the actor parameters under fixed λ̄.
Denote ηλii,t,θ = (φrt )

Tωrθ−α log(π[θi](at|st))−λi(φct)Tωcθ and ψi,t,θ = ∇θi log(πi,θi(ai,t|oi(st))),
where φzt = φz(st, at) ∈ RKz for any z ∈ {r, c}.
Theorem 4. Under Assumptions 1-6, for any fixed λ̄, with the sequences {θi,t}t≥0 generated by (7),
we have limt→∞ θi,t = θ̂λ̄ a.s. for any i ∈ N , where θ̂λ̄ is a point in the set of asymptotically stable
equilibria of

˙̂
θ = Est∼d[θ̂],at∼π[θ̂]

[∑
i∈N

ηλi
i,t,[θ̂]

ψi,t,[θ̂]

]
. (11)

The proof of Theorem 4 can be found in Appendix E. Note that the ordinary differential equation
(ODE) (11) is different from those in Chen et al. (2022); Hu et al. (2024), which additionally contains
the terms w.r.t. λ̄ and Qc due to that all agents aim to maximize the Lagrangian (3) rather than the
objective function in (2).

Convergence of the dual variable. Based on the projection operator Γλ in (8), we define an operator
Γ̂λ as Γ̂λ[f(λ)] = limη→0+ {Γλ[λ+ ηf(λ)]− λ} /η, where λ ∈ [0, λmax] and f : [0, λmax] → R
is a continuous function. We then introduce an additional assumption from Bhatnagar (2010) for the
convergence analysis of the dual variables.

Assumption 7. For any dual variable vector λ̄, the convergent point θ̂λ̄ of (11) is continuous in λ̄.
Theorem 5. Under Assumptions 1-7, for the sequences {λi,t}t≥0 generated by (8), it satisfies
limt→∞ λi,t = λ∗ a.s. for any i ∈ N , where λ∗ is a point in the set of asymptotically stable
equilibria of

λ̇ = Γ̂λ

[
Es̃∼ρ,ã∼π[θ̂[λ]]

[Qc(s̃, ã;ωc
[θ̂[λ]]

)− b]
]
. (12)
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The proof of Theorem 5 is given in Appendix F. We then analyze the constraint satisfaction for the
learned policy π[θ̂[λ∗]]

. Let Λ = {λ : Γ̂λ[Es̃∼ρ,ã∼π[θ̂[λ]]
[Qc(s̃, ã;ωc

[θ̂[λ]]
) − b]] = 0, λ ∈ [0, λmax]},

and Λ̂ = {λ : Γ̂λ[Es̃∼ρ,ã∼π[θ̂[λ]]
[Qc(s̃, ã;ωc

[θ̂[λ]]
)− b]] = 0, λ ∈ [0, λmax)}.

Proposition 1. For any λ∗ ∈ Λ̂, we have Es̃∼ρ,ã∼π[θ̂[λ∗]]
[Qc(s̃, ã;ωc

[θ̂[λ∗]]
)] ≤ b.

Proposition 2. For any λ∗ ∈ Λ, if it satisfies Es̃∼ρ,ã∼π[θ̂[λ∗]]
[Qc(s̃, ã;ωc

[θ̂[λ∗]]
)] < b, then we have

λ∗ = 0.

The proofs of Propositions 1 and 2 can be found in Appendix G. It is indicated in Proposition 1 that
the safety constraint in (2) can be approximately satisfied by π[θ̂[λ∗]]

when λ∗ ∈ Λ̂, where the value
function associated to the cost in (2) is estimated using the critic approximator based on the Bellman
equation (Sutton & Barto, 2018). In practice, we can select a sufficiently large λmax to ensure
that the learned λ∗ belongs to Λ̂. Proposition 2 demonstrates that λ∗ = 0 when the approximated
safety constraint is strictly satisfied. In this case, the constrained MG problem (2) will reduce to a
regular MG problem described by maxθ∈Θ J

r(θ) approximately (Bhatnagar, 2010). Apart from the
theoretical analysis, we also empirically evaluate the convergence of our decentralized algorithm on
a toy experiment, where the simulation results can be found in Appendix H.

5 PRACTICAL ALGORITHM DESIGN

Even though the decentralized algorithm proposed in Section 3 is theoretically convergent, the per-
formance of this algorithm can be severely limited by the standard assumptions, such as finite state
and action space setting, the linear critic approximator and the decreasing learning rate. Note that
this algorithm can also be sample inefficient due to the on-policy training architecture. To this end,
we propose a practical decentralized algorithm by modifying the local update steps in (6)-(8) using
DRL (Lillicrap et al., 2016).

In our practical algorithm, both the critic and the actor are modeled as neural networks (NNs). Each
agent i ∈ N maintains a replay buffer Bi = {(st, at, ri,t+1, ci,t+1, st+1)}t and two target critic NNs
denoted by Qz(·, ·; ω̄zi ) for z ∈ {r, c}. Let oi,t = oi(st). Based on (6), we consider the following
loss function for the local update of critic parameters:

JzQ(ωzi ) = E(st,at,ri,t+1,ci,t+1,st+1)∼Bi
[
(Qz(st, at;ω

z
i )− yzi )2

]
, ∀z ∈ {r, c}, (13)

in which yri = ri,t+1 + γ(Qr(st+1, at+1; ω̄ri ) − Nα log(πi,θi(ai,t+1|oi,t+1))) and yci = ci,t+1 +
γQc(st+1, at+1; ω̄ci ). Based on the consensus update of the actor parameters, each agent i ∈ N
approximates the other agents’ policies with its own policy, such that each aj,t+1 in (13) is sampled
from πi,θi(·|oj,t+1). Let ∇̂ωzi J

z
Q(ωzi ) denote the stochastic gradient of (13) calculated using a batch

of data Di from Bi. Based on (7), we consider the following loss function for the local update of the
actor parameters:

Jπ(θi) = Est∼Bi,at∼πθ [α log(πθ(at|st))−Qr(st, at;ωri ) + λiQ
c(st, at;ω

c
i )] . (14)

Note that (14) indicates the similar parameter update direction as (7) with the only difference that
the gradient of (14) is calculated based on the experiences stored in Bi rather than those collected
in an on-policy manner, which is a common trick used in existing DRL algorithms (Lillicrap et al.,
2016). In Appendix I.1, we provide a detailed analysis on the relationship between (7) and (14).
Similar to the setting in (13), each agent i ∈ N samples the other agents’ actions in (14) using its
local policy due to the policy consensus. Let ∇̂θiJπ(θi) be the stochastic gradient of (14). For the
local update of dual variables, we consider the following loss function based on (8):

JD(λi) = E(st,at)∼Bi [λi(b−Qc(st, at;ωci ))] . (15)

Here, the joint action at is sampled from the replay buffer together with st, rather than being obtained
from the current policy π[θi]. Note that this trick can effectively enforce constraint satisfaction, and
has been employed in existing DRL-based off-policy primal-dual algorithms (Ray et al., 2019; Yang
et al., 2021). Let ∇̂λiJD(λi) be the stochastic gradient of (15). Finally, we employ the automatic
entropy adjustment mechanism (Haarnoja et al., 2019) to balance exploration and exploitation during
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training. Let αi be the local temperature parameter of agent i ∈ N . We consider the following loss
function:

J(αi) = Est∼Bi,ai,t∼πi,θi [−αi(log(πi,θi(ai,t|oi,t)) +H0)] , (16)

whereH0 denotes the target policy entropy. Let ∇̂αiJ(αi) be the stochastic gradient of (16). Recall
that all the loss functions can be calculated by each agent using local information only. Hence, our
practical algorithm can still maintain its decentralized training nature. Finally, the pseudocode of this
algorithm, named decentralized primal-dual actor-critic with entropy regularization (DPDAC-ER),
is shown in Appendix I.2.

6 EXPERIMENTS

Environments. We build three safety-aware swarm robotic tasks1 to evaluate the proposed algo-
rithm, which are Aggregation, Swapping and Formation. All the tasks are implemented in the classic
Multi-Agent Particle Environment (Lowe et al., 2017), where all agents follow a discrete second-
order dynamics model and move within a shared 2D space. Each task contains 10 agents, and the
action space for each agent is continuous. Note that the tasks are visualized in Appendix J.1, which
are also briefly described as follows. Aggregation: Each agent aims to aggregate at the origin. It
receives a higher reward as its position gets closer to the origin, and incurs a penalty if it collides
with other agents. There exists a hazardous area in the environment that covers the origin. Each
agent i incurs a cost of ci,t+1 = 1 if it enters this area, and ci,t+1 = 0 otherwise. Swapping (Hu
et al., 2023): Each agent aims to move to the initial position of the agent located in the diagonal area.
It receives a higher reward as it approaches the target position, and incurs a penalty if it collides with
other agents. There exists velocity saturation constraints on the agents. Each agent i incurs a cost
of ci,t+1 = 1 if the 2-norm of its velocity exceeds a given threshold, and ci,t+1 = 0 otherwise.
Formation (Agarwal et al., 2020): All agents aim to evenly distribute themselves along a circumfer-
ence centered at their mean position. They share a team reward which increases as the total distance
between their positions and the ideal formation positions decreases. There exists a landmark in the
environment. The team cost function is defined as the distance between the agents’ mean position
and the landmark’s position, which is shared by all agents.

Baselines. In our experiments, two CT-based off-policy MARL algorithms MASAC and MASAC-
Lagrangian (MASAC-Lag) are chosen as baselines. MASAC (Willemsen et al., 2021) solely aims
to maximize the total reward, without considering safety. MASAC-Lag extends SAC-Lagrangian
(Ray et al., 2019; Yang et al., 2021) under the MARL setting, which also employs the primal-dual
method for learning safe policies. In these CT-based algorithms, only one actor NN is built due to the
homogeneity of agents, which is trained using the mean reward and cost directly. In addition, two
decentralized MARL baselines named DPDAC and DAC-ER are incorporated. DPDAC is a variant
of our algorithm, which doesn’t employ the entropy regularizer, such that α = 0. DAC-ER (Hu et al.,
2024) reported state-of-the-art learning performance on multi-robot coordination tasks considering
continuous action spaces. Similar to MASAC, this algorithm doesn’t consider constraint satisfac-
tion. In Appendix J.2, the differences between DPDAC-ER and the baselines are summarized, and
the implementation details of these algorithms are introduced.

Results. The learning performance of all algorithms is evaluated over five independent trials across
three tasks, where the smoothed learning curves are shown in Fig. 1. Note that the policies learned
by DAC-ER and MASAC obtain the largest returns in all the tasks, but they are unsafe for largely
violating the constraints. Our proposed algorithm DPDAC-ER demonstrates similar learning per-
formance to MASAC-Lag in terms of both reward and cost, which also exhibits excellent learning
stability across all the trials. Both the algorithms can converge to safe policies across all the tasks
at the cost of relative lower returns. Note that DPDAC-ER outperforms MASAC-Lag in terms of
reward in the Formation task. This result could be explained by that the agents in DPDAC-ER have
different policies at the early stage of the training process, which helps to sample richer experiences
for policy learning. It is worth pointing out that DPDAC has the worst learning stability among the
algorithms, which fails to learn safe policies in the Formation task. This result can be attributed to
the poor exploration capability of the vanilla policy gradient method in continuous spaces, which
highlights the importance of incorporating the entropy regularization mechanism in our algorithm.

1https://github.com/ICLR2025anonymous/DPDAC-ER/
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Figure 1: Learning curves of five algorithms across three tasks. The cost curves are displayed in the
upper row (with lower values being better), while the reward curves are displayed in the bottom row
(with higher values being better).

Ablation: communication. We then study the influence of communication networks on our de-
centralized algorithm. Apart from the sparse communication, we additionally consider two extreme
communication scenarios: all-to-all communication and no communication. The learning curves of
DPDAC-ER in all the scenarios are displayed in Fig. 5 in Appendix J.3. It can be observed that
DPDAC-ER has the worst learning performance in the no communication scenario, which fails to
learn safe policies in two tasks. This demonstrates the necessity for performing parameter consensus
in our algorithm. Note that blindly increasing communication links doesn’t improve learning perfor-
mance of DPDAC-ER. This inspires us to consider sparse communication networks at the beginning
when deploying this algorithm in practice.

Ablation: constraints. We also evaluate DPDAC-ER under different cost thresholds to study how
it balances the trade-off between performance and safety. The learning curves can be found in Fig.
6 in Appendix J.4. We can learn that DPDAC-ER obtains higher returns at the end of training when
the safety constraints become weaker, which demonstrates that the effectiveness of our algorithm
can be maintained across different safety levels.

Ablation: local observation. We finally evaluate DPDAC-ER under the local observation setting,
where the global state information is not available to each agent. We provide detailed modifications
of our algorithms and experimental settings in Appendix J.5. The simulation results show that the
modified version of our algorithm can maintain its learning performance under the local observation
and decentralized training settings.

Additional experiments. In Appendix J.6, we further compare our algorithm with DAC-ER, which
employs a reward-shaping mechanism to address safety constraints. The simulation results reveal
that agents employing this method face challenges in balancing reward maximization and constraint
satisfaction in most scenarios. Additionally, we compare DPDAC-ER with DPDAC in a customized
3D Formation task. The results reveal a significant decline in the learning stability of DPDAC-ER.
In contrast, our algorithm maintains both sample efficiency and learning stability, highlighting the
importance of incorporating the entropy regularization mechanism for high-dimensional tasks.

7 CONCLUSION

In this paper, a decentralized safe MARL problem for networked multi-agent systems has been
investigated under the entropy-regularized setting. A subclass of constrained MGs considering ho-
mogeneous agents has been characterized, where policy sharing provably preserves both optimality
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and safety. An on-policy decentralized primal-dual actor-critic algorithm has been proposed, which
is asymptotically convergent under the linear critic assumption. For practical applications, a decen-
tralized off-policy version of the proposed algorithm has been developed based on the DRL training
architecture. Simulation results on three safety-aware continuous multi-robot tasks demonstrate the
effectiveness of the proposed decentralized algorithm. Our future work aims to develop practical
decentralized safe MARL algorithms under the local observation setting.
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A APPENDIX FOR THE HOMOGENEOUS CONSTRAINED MG

A.1 AN ILLUSTRATIVE EXAMPLE

Figure 2: A safe position swapping task for two agents.

Consider a scenario where two agents control two homogeneous robots to perform a safe position-
swapping task. For simplicity, the robots follow a first-order discrete dynamics model, and we denote
pL,t (pR,t) as the robot’s position controlled by agent 1 (2) before permutation. As shown in Fig.
2, the environment also contains landmarks including two targets and two static obstacles, whose
positions are denoted by ptj and pok, respectively, where j, k ∈ {1, 2}. Under the full observation
setting, the local states at time t are s1,t = (pL,t, p

t
1, p

t
2, p

o
1, p

o
2) and s2,t = (pR,t, p

t
1, p

t
2, p

o
1, p

o
2),

and it is apparent that S1 = S2. The action of each agent is the feasible velocity command sent to
its robot, such that A1 = A2 due to the homogeneity of robots. The reward for each agent is the
negative of the distance between the robot it controls and its corresponding target, such that we have
R1(st, at) = −‖pL,t − pt2‖ and R2(st, at) = −‖pR,t − pt1‖. The cost for each agent is an indicator
function, which becomes 1 the robot it controls collides with other landmarks or agents. From Fig.
2, we have C1(st, at) = 1 and C2(st, at) = 0. Each agent’s local observation includes the absolute
position of the robot it controls and a list of the relative positions between the robot and landmarks,
sorted by distance. Here, we have o1(st) = (pL,t, pL,t − pt1, pL,t − pt2, pL,t − po1, pL,t − po2) and
o2(st) = (pR,t, pR,t − pt2, pR,t − pt1, pR,t − po2, pR,t − po1). After the permutation M = [2, 1],
we have M(s1,t, s2,t) = (s2,t, s1,t) and M(a1,t, a2,t) = (a2,t, a1,t) based on the definition of
the permutation M , i.e., agent 1 (2) now controls the robot on the right (left) with the action a2,t

(a1,t). Due to that the robots are homogeneous, the state transition function is permutation invariant.
We can obtain that R1(Mst,Mat) = R2(st, at) and R2(Mst,Mat) = R1(st, at) based on the
definition of the reward. Thus, the permutation preserving property holds for the reward. Note that
this property also holds for the cost due to that C(Mst,Mat) = (0, 1) = MC(st, at). Finally,
we have o1(Mst) = o2(st) and o2(Mst) = o1(st), which means that the permutation preserving
property holds for the observation. As a result, this safe position swapping task is an example of the
homogeneous constrained MG.

A.2 PRACTICAL EXAMPLES

Apart from the illustrative example, we now show that practical multi-agent coordination tasks can
also be examples of the homogeneous constrained MG, which are shown as follows:

Leader-following flocking. In this task, each follower agent must maintain specific distances from a
moving leader and other agents. The local state of an individual agent is defined as the concatenation
of its own system state and the leader’s system state. The agent’s observation includes its own
system state and the relative system state information of both the other agents and the leader. An
agent receives a higher reward when its distance to the leader approaches a predefined value, while
incurring costs if its distances from other agents are either too large or too small.

Data collection with UAVs. In this task, a team of homogeneous UAVs operates in an urban en-
vironment to collect as much data as possible from several Internet of Things (IoT) devices. Each
UAV is rewarded based on the amount of data collected within a given time interval and incurs a
cost if it collides with other UAVs or enters no-fly zones. Each UAV’s observation includes its ab-
solute position, the relative positions of other UAVs, IoT devices, and no-fly zones, as well as the
remaining data at each IoT device.
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A.3 PROOF OF THEOREM 1

Based on condition (iii) in Definition 1, there exists a one-to-one mapping between Π and Πo due to
that the observation function oi is bijective for any i ∈ N . Thus, for the optimal joint policy π∗ ∈ Π,
there exists an observation-based joint policy π∗o =

∏N
i=1 π

∗
i,o ∈ Πo satisfying Jr(π∗o) = Jr(π∗)

and Jc(π∗o) = Jc(π∗) ≤ b. On the other hand, for any permutation M = [m1, · · · ,mN ] ∈ M and
πo =

∏N
i=1 πi,o ∈ Πo, if it satisfies πi,o(·|oi(s)) = πj,o(·|oj(Ms)) with i = mj for any s ∈ S and

i ∈ N , then the entropy of πo is permutation invariant, i.e., H(πo(·|s)) = H(πo(·|Ms)). Thus, due
to the permutation invariance of the state transition probability, the average reward, the average cost
and the policy entropy, we have π∗i,o(·|oi(s)) = π∗j,o(·|oj(Ms)). Recall that oi(s) = oj(Ms) from
condition (iii) in Definition 1. We can obtain that π∗i,o(·|o) = π∗j,o(·|o) for any i ∈ N and o ∈ O.
Note that the permutation M ∈ M can be arbitrary. Thus, we have π∗1,o(·|o) = · · · = π∗N,o(·|o),
which completes the proof.

B PROOF OF THEOREM 2

For the Lagrangian (3), it holds

∇θL(θ, λ) = ∇θJr(θ)− λ∇θJc(θ). (17)

Then, based on the entropy-regularized policy gradient theorem (Cayci et al., 2021) and the vanilla
policy gradient theorem (Sutton et al., 1999), we can directly obtain

∇θJr(θ) = Es∼dθ,a∼πθ [(Qrθ(s, a)− α log(πθ(a|s)))∇θ log(πθ(a|s))], (18)
∇θJc(θ) = Es∼dθ,a∼πθ [Qcθ(s, a)∇θ log(πθ(a|s))]. (19)

As a result, we have

∇θL(θ, λ) = Es∼dθ,a∼πθ [Aλθ (s, a)∇θ log(πθ(a|s))], (20)

where Aλθ (s, a) = Qrθ(s, a) − α log(πθ(a|s)) − λQcθ(s, a). Recall that θ = [(θ1)T , . . . , (θN )T ]T

and log(πθ(a|s)) =
∑
i∈N log(πi,θi(ai|oi(s))). The gradient of L(θ, λ) w.r.t. θi takes the form

∇θiL(θ, λ) = Es∼dθ,a∼πθ [Aλθ (s, a)∇θi log(πi,θi(ai|oi(s)))], (21)

which completes the proof.

C DISCUSSIONS ABOUT ASSUMPTIONS

Assumption 1. This assumption is standard in early works on actor-critic algorithms with function
approximation (Bhatnagar et al., 2009; Suttle et al., 2019). Note that the first part of this assumption
is reasonable due to that entropy regularization penalizes overly deterministic policies.

Assumption 2. The conditions on the weight matrices {Wt}t≥0 in this assumption are widely con-
sidered in existing works on decentralized MARL (Zhang et al., 2018; Chen et al., 2022; Hu et al.,
2024). In condition (i), the row stochasticity ofWt requires each agent to make the weights assigned
to the updates coming from its neighbors summing to one. The column stochasticity of Wt is only
required to hold on average. This allows us to incorporate various gossip types of communication
schemes, such as the broadcast gossip scheme and the pairwise gossip scheme, for the networked
multi-agent system (Bianchi & Jakubowicz, 2013). Condition (ii) is related to the connectivity of
the communication topology, which holds for the random gossip schemes mentioned above if and
only if the underlying communication graph is connected (Bianchi & Jakubowicz, 2013). Condition
(iii) means that Wt, ri,t+1 and ci,t+1 are independent conditioned on the past. This is common for
practical multi-agent systems, since the random communication link failures and the gossip schemes
are usually independent of the past and irrelevant to the rewards as well as the costs received by the
agents (Zhang et al., 2018).

Assumption 3. This assumption can be easily satisfied as the reward and cost functions are typically
designed manually and can be bounded within limited state and action spaces.

Assumption 4. This assumption can also be naturally satisfied if we properly select the features for
the linear critics.
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Assumption 5. This assumption has been used in existing safe reinforcement learning algorithms
which enjoy convergence based on multi-timescale stochastic approximation theory (Borkar, 2005;
Bhatnagar, 2010). Note that the condition in the last sentence of this assumption will be employed
to analyze parameter consensus (Zhang et al., 2018; Chen et al., 2022; Hu et al., 2024).

Assumption 6. In the first part of this assumption, the stability requirement on the critic parameters
ωzi,t, ∀z ∈ {r, c} can be relaxed if the lower boundedness of the nonzero elements in Wt can be
ensured (Zhang et al., 2018), and this assumption can also be satisfied empirically through using the
clip trick which can constrain the parameters of NNs within certain ranges. The second part of the
assumption is commonly used in decentralized MARL works (Zhang & Zavlanos, 2019; Chen et al.,
2022; Hu et al., 2024), which can be satisfied in practice when the policy parameter space is large.

D PROOF OF THEOREM 3

We denote rt = [r1,t, . . . , rN,t]
T , ct = [c1,t, . . . , cN,t]

T , ωzt = [(ωz1,t)
T , . . . , (ωzN,t)

T ]T , and δzt =

[δz1,t, . . . , δ
z
N,t]

T with δzi,t defined in (6) for any z ∈ {r, c}. Then, we can rewrite (6) in a compact
form, represented by

ωzt+1 = (Wt ⊗ I)(ωzt + βω,ty
z
t+1), ∀z ∈ {r, c}, (22)

where I ∈ RKz×Kz , yzt+1 = [δz1,t(φ
z
t )
T , . . . , δzN,t(φ

z
t )
T ]T ∈ RKzN and φzt = φz(st, at) ∈ RKz .

Let us define an average operator 〈·〉 : RNq → Rq for any positive integer q, which satisfies

〈χ〉 =
1

N
(1T ⊗ I)χ =

1

N

∑
i∈N

χi (23)

for any χ = [χT1 , . . . , χ
T
N ]T with χi ∈ Rq . Then, we have ωzt = 1⊗〈ωzt 〉+ωz⊥,t, where 1⊗〈ωzt 〉 is

the agreement component in ωzt , and ωz⊥,t is the disagreement component in ωzt . We first show that
all ωzi,t will achieve consensus through proving that limt→∞ ωz⊥,t = 0 a.s. for any z ∈ {r, c}.

Consensus analysis. Let Ft,1 = σ (rτ , cτ , ω
r
τ , ω

c
τ , sτ , aτ ,Wτ−1, τ ≤ t) be an increasing σ-algebra

up to time t. Let J = 1
N (11T ⊗ I), then it holds that Jωzt = 1⊗〈ωzt 〉, ∀z ∈ {r, c}, based on which

we can obtain

ωz⊥,t+1 = (I − J)ωzt+1 = (I − J)(Wt ⊗ I)(1⊗ 〈ωzt 〉+ ωz⊥,t + βω,ty
z
t+1)

= (I − J)(Wt ⊗ I)(ωz⊥,t + βω,ty
z
t+1), (24)

where the last equality holds due to that Wt is row stochastic. Then, we have

E
[
‖β−1

ω,t+1ω
z
⊥,t+1‖2|Ft,1

]
≤

β2
ω,t

β2
ω,t+1

E
[
(β−1
ω,tω

z
⊥,t + yzt+1)T (WT

t (I − 11T /N)Wt ⊗ I)(β−1
ω,tω

z
⊥,t + yzt+1)|Ft,1

]
≤

β2
ω,t

β2
ω,t+1

ρ̃E
[
(β−1
ω,tω

z
⊥,t + yzt+1)T (β−1

ω,tω
z
⊥,t + yzt+1)|Ft,1

]
,

≤
β2
ω,t

β2
ω,t+1

ρ̃(‖β−1
ω,tω

z
⊥,t‖2 + 2‖β−1

ω,tω
z
⊥,t‖E[‖yzt+1‖2|Ft,1]

1
2 + E[‖yzt+1‖2|Ft,1]), (25)

where the first inequality holds since WT
t (I−11T /N)T (I−11T /N)Wt = WT

t (I−11T /N)Wt,
the second inequality holds due to conditions (ii) and (iii) in Assumption 2, and the last inequality
holds based on the Cauchy–Schwarz inequality. Recall that

δri,t = ri,t+1 + γ((φrt+1)Tωri,t −Nα log(πi,θi,t(ai,t+1|oi(st+1))))− (φrt )
Tωri,t,

δci,t = ci,t+1 + γ(φct+1)Tωci,t − (φct)
Tωci,t. (26)

From Assumptions 3 and 4, both zi,t+1 and φzt are uniformly bounded for any z ∈ {r, c} and t ≥ 0.
Moreover, log(πi,θi,t(ai,t|oi(st))) is uniformly bounded for any st ∈ S and ai,t ∈ Ai due to As-
sumption 1. Thus, given any Mz > 0, we obtain that E[‖yzt+1‖2|Ft,1] = E

[∑
i∈N ‖δzi,tφzt ‖2|Ft,1

]
15
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is bounded on the set {supτ≤t ‖ωzτ‖ ≤Mz} for any z ∈ {r, c}. As a result, we can follow the proof
of Lemma B.3 in Zhang et al. (2018) to obtain that limt→∞ ωz⊥,t = 0 a.s. for any z ∈ {r, c}.

Convergence analysis. We now analyze the asymptotic behavior of 〈ωzt 〉 to establish the conver-
gence of critic parameters. With the average operator 〈·〉, we can rewrite (22) as

〈ωzt+1〉 = 〈(Wt ⊗ I)(ωzt + βω,ty
z
t+1)〉

= 〈ωzt 〉+ βω,t〈(Wt ⊗ I)(yzt+1 + β−1
ω,tω

z
⊥,t)〉

= 〈ωzt 〉+ βω,tE[〈δzt 〉φzt |Ft,1] + βω,tξ
z
t+1, (27)

where ξzt+1 = 〈(Wt ⊗ I)(yzt+1 + β−1
ω,tω

z
⊥,t)〉 − E[〈δzt 〉φzt |Ft,1], and

〈δrt 〉 = r̄t+1 + γ((φrt+1)T 〈ωrt 〉 − α log(πθt(at+1|st+1)))− (φrt )
T 〈ωrt 〉,

〈δct 〉 = c̄t+1 + γ(φct+1)T 〈ωct 〉 − (φct)
T 〈ωct 〉. (28)

Based on (28), we have that E[〈δzt 〉φzt |Ft,1] is Lipschitz continuous in 〈ωzt 〉 for any z ∈ {r, c}. Then,
{ξzt+1}t≥0 is a martingale difference sequence since

E
[
〈(Wt ⊗ I)(yzt+1 + β−1

ω,tω
z
⊥,t)〉|Ft,1

]
= E

[
〈yzt+1 + β−1

ω,tω
z
⊥,t〉|Ft,1

]
= E

[
〈yzt+1〉|Ft,1

]
= E [〈δzt 〉φzt |Ft,1] , (29)

where the first equality holds due to conditions (i) and (iii) in Assumption 2. Moreover, we have

E[‖ξzt+1‖2|Ft,1] ≤ 2E
[
‖yzt+1 + β−1

ω,tω
z
⊥,t‖2Gt |Ft,1

]
+ 2‖E [〈δzt 〉φzt |Ft,1] ‖2, (30)

where Gt = 1
N2W

T
t 11

TWt ⊗ I , and ‖ · ‖Gt is the Euclidean norm weighted by Gt. Recall that the
term log(πθt(at+1|st+1)) is uniformly bounded from Assumption 1. Thus, following similar steps
in the proof of Theorem 4.6 in Zhang et al. (2018), for any Mz > 0, there exists Lz <∞, such that

E[‖ξzt+1‖2|Ft,1] ≤ Lz(1 + ‖〈ωzt 〉‖2) (31)

on the set {supt→∞ ‖ωzτ‖ ≤ Mz}, ∀z ∈ {r, c}. For the critic recursion (27), the associated ODEs
take the form

˙〈ωr〉 = (Φr)TDs,a
θ

(
R̄+ γPθ(Φ

r〈ωr〉 − Ωθ)− Φr〈ωr〉
)
,

˙〈ωc〉 = (Φc)TDs,a
θ

(
C̄ + γPθ(Φ

c〈ωc〉)− Φc〈ωc〉
)
, (32)

which can be further rewritten as
˙〈ωr〉 = (Φr)TDs,a

θ (γPθ − I)Φr〈ωr〉+ (Φr)TDs,a
θ (R̄− γPθΩθ),

˙〈ωc〉 = (Φc)TDs,a
θ (γPθ − I)Φc〈ωc〉+ (Φc)TDs,a

θ C̄. (33)

Note that (Φz)TDs,a
θ (γPθ − I)Φz , ∀z ∈ {r, c} is negative definite based on Assumption 4 (Bhat-

nagar, 2010). As a result, the ODEs in (32) are globally asymptotically stable. Let ωrθ and ωcθ be the
equilibria for 〈ωr〉 and 〈ωc〉, respectively, such that

(Φr)TDs,a
θ

(
R̄+ γPθ(Φ

rωrθ − Ωθ)− Φrωrθ
)

= (Φr)TDs,a
θ (T rθ [Φrωrθ ]− Φrωrθ) = 0,

(Φc)TDs,a
θ

(
C̄ + γPθΦ

cωcθ − Φcωcθ
)

= (Φc)TDs,a
θ (T cθ [Φcωcθ]− Φcωcθ) = 0. (34)

Note that the sequence {ωzt }t≥0, ∀z ∈ {r, c} is bounded a.s. from Assumption 6, so is {〈ωzt 〉}t≥0.
Based on Theorem D.2 in Zhang et al. (2018), it holds limt→∞〈ωzt 〉 = ωzθ a.s. for any z ∈ {r, c}.
Recall that limt→∞ ωzi,t−〈ωzt 〉 = 0 a.s. Therefore, we have limt→∞ ωzi,t = ωzθ a.s. with ωzθ defined
in (34) for any i ∈ N and z ∈ {r, c}, which completes the proof.

E PROOF OF THEOREM 4

Since the sequence {ωzi,t}t≥0 converges to ωzθ at the faster timescale for any i ∈ N and z ∈ {r, c},
we consider the following actor update step:

θ̃i,t+1 = θi,t + βθ,tNη
λi
i,t,θt

ψi,t,θt , θi,t+1 =
∑
j∈Ni,t

wt(i, j)θ̃j,t+1. (35)
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We further rewrite (35) in a compact form, represented by

θt+1 = (Wt ⊗ I)(θt + βθ,ty
λ
t,θt), (36)

where θt = [θT1,t, . . . , θ
T
N,t]

T and yλt,θt = [Nηλ1

1,t,θt
ψT1,t,θt , . . . , Nη

λN
N,t,θt

ψTN,t,θt ]
T . We first show

that the actor parameters of all agents will achieve consensus asymptotically.

Consensus analysis. With the average operator 〈·〉 defined in (23), we have θt = 1 ⊗ 〈θt〉 + θ⊥,t,
where 1 ⊗ 〈θt〉 is the agreement component in θt, and θ⊥,t is the disagreement component in θt.
Recall that ηλii,t,θt = (φrt )

Tωrθt − α log(π[θi,t](at|st))− λi(φct)Tωcθt . Then, due to the boundedness
of feature vectors based on Assumption 4, we have that (φzt )

Tωzθt is uniformly bounded provided
that ωzθt is the MSPBE minimizer associated to θt for any z ∈ {r, c}. Note that log(π[θi,t](at|st)) is
uniformly bounded based on Assumption 1. For any st ∈ S and ai,t ∈ Ai, we have that ψi,t,θt =
∇θi log(πi,θi,t(ai,t|oi(st))) is bounded as it is continuous over a compact set based on Assumptions
1 and 6. Note that both the state and action spaces are discrete. Hence, the boundedness of yλt,θt can
be ensured. Following similar lines as in the consensus analysis in Appendix D, we can obtain that
limt→∞ θ⊥,t = 0 a.s., so that limt→∞ θi,t = 〈θt〉 a.s. for any i ∈ N .

Convergence analysis. Let Ft,2 = σ (θτ ,Wτ , τ ≤ t) be an increasing σ-algebra up to time t. Then,
it holds

〈θt+1〉 = 〈(Wt ⊗ I)(θt + βθ,ty
λ
t,θt)〉 = 〈θt〉+ βθ,t〈(Wt ⊗ I)(yλt,θt + β−1

θ,t θ⊥,t)〉

= 〈θt〉+ βθ,tEst∼d[〈θt〉],at∼π[〈θt〉]
[〈yλt,[〈θt〉]〉|Ft,2] + βθ,tζ

θ
t+1,1 + βθ,tζ

θ
t+1,2, (37)

where ζθt+1,1 and ζθt+1,2 take the forms

ζθt+1,1 = 〈(Wt ⊗ I)(yλt,θt + β−1
θ,t θ⊥,t)〉 − Est∼d[〈θt〉],at∼π[〈θt〉]

[〈yλt,θt〉|Ft,2],

ζθt+1,2 = Est∼d[〈θt〉],at∼π[〈θt〉]
[〈yλt,θt〉 − 〈y

λ
t,[〈θt〉]〉|Ft,2]. (38)

Following similar lines to the proof of Lemma 1 in Bhatnagar (2010), we can prove that ωrθ and ωcθ
are continuously differentiable in θ. Hence, we have limt→∞ ζθt+1,2 = 0 a.s. due to limt→∞ θt −
[〈θt〉] = 0 a.s. Following the similar analysis for ξzt+1 in Appendix D, we have

E[〈(Wt ⊗ I)(yλt,θt + β−1
θ,t θ⊥,t)〉|Ft,2] = E[〈yλt,θt + β−1

θ,t θ⊥,t〉|Ft,1] = E[〈yλt,θt〉|Ft,1], (39)

which shows that {ζθt+1,1}t≥0 is a martingale difference sequence. Recall that {yλt,θt}t≥0 is bounded.
It holds that {ζθt+1,1}t≥0 is bounded as well. Denote Mt =

∑t
τ=0 βθ,τζ

θ
τ+1,1, such that {Mt}t≥0

is a martingale sequence. Thus, it holds that
∑∞
t=0 ‖Mt+1 −Mt‖2 =

∑∞
t=1 ‖βθ,tζθt+1,1‖2 <∞ by

Assumption 5. Along the similar lines as the proof of Theorem 4.7 in Zhang et al. (2018), based on
the Kushner-Clark lemma, 〈θt〉 converges a.s. to a point in the set of asymptotically stable equilibria
of the ODE

˙̂
θ = Est∼d[θ̂],at∼π[θ̂]

[
〈yλ
t,[θ̂]
〉
]

= Est∼d[θ̂],at∼π[θ̂]

[∑
i∈N

ηλi
i,t,[θ̂]

ψi,t,[θ̂]

]
. (40)

Recall that limt→∞ θi,t = 〈θt〉 a.s. for any i ∈ N . Thus, each θi,t will converge to this point a.s.,
which completes the proof.

F PROOF OF THEOREM 5

Note that the dual variables update at the slowest timescale from Assumption 5. Based on Theorems
3 and 4, we consider a variant of (8) by respectively replacing ωci,t and π[θi,t] with ωc

[θ̂λ̄t ]
and π[θ̂λ̄t ]

,

∀i ∈ N , which is expressed as

λ̃i,t+1 = Γλ

[
λi,t − βλ,tEs̃∼ρ,ã∼π[θ̂

λ̄t
]
[b−Qc(s̃, ã;ωc

[θ̂λ̄t ]
)]

]
, λi,t+1 =

∑
j∈Ni,t

wt(i, j)λ̃j,t+1.

(41)
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Recall that λ̄t = [λ1,t, . . . , λN,t]
T . The compact form of (41) is

λ̄t+1 = WtΓλ
[
λ̄t + βλ,tỹt,λ̄t

]
, (42)

where ỹt,λ̄t = 1⊗Es̃∼ρ,ã∼π[θ̂
λ̄t

]
[Qc(s̃, ã;ωc

[θ̂λ̄t ]
)− b]. By abuse of notation, the operator Γλ here is

used to project any element of a vector onto the set [0, λmax].

Consensus analysis. With the average operator 〈·〉 defined in (23), we have λ̄t = 1⊗ 〈λ̄t〉+ λ̄⊥,t,
where 1 ⊗ 〈λ̄t〉 is the agreement component in λ̄t, and λ̄⊥,t is the disagreement component in λ̄t.
Given the projection operator Γλ, we have Γλ

[
λ̄t + βλ,tỹt,λ̄t

]
= λ̄t + βλ,tỹt,λ̄t + βλ,tỹ

p

t,λ̄t
, where

βλ,tỹ
p

t,λ̄t
is the vector of the shortest Euclidean length required to take λ̄t + βλ,tỹt,λ̄t back to the set

[0, λmax]N if it doesn’t belong to this set (Kushner & Yin, 1997). Recall that ωc
[θ̂λ̄t ]

is the MSPBE

minimizer by Theorem 3, and the feature vectors are uniformly bounded by Assumption 4. Thus,
the boundedness of ỹt,λ̄t can be guaranteed. It is worth noting that λ̄t ∈ [0, λmax]N due to that Wt

is row stochastic for any t ≥ 0. As a consequence, we can obtain that ỹp
t,λ̄t

is bounded since it is the
projection term. Let yt,λ̄t = ỹt,λ̄t + ỹp

t,λ̄t
, then we can rewrite (42) as λ̄t+1 = Wt[λ̄t + βλ,tyt,λ̄t ].

Following similar lines as in the consensus analysis in Appendix D, we obtain that limt→∞ λ̄⊥,t = 0
a.s., i.e., limt→∞ λi,t = 〈λ̄t〉 a.s. for any i ∈ N .

Convergence analysis. Let Ft,3 = σ
(
λ̄τ ,Wτ , τ ≤ t

)
be an increasing σ-algebra up to time t.

Then, it holds

〈λ̄t+1〉 = 〈WtΓλ[λ̄t + βλ,tỹt,λ̄t ]〉. (43)

Let ỹt,λ̄t = [ỹ1,t,λ̄t , . . . , ỹN,t,λ̄t ]
T and ỹp

t,λ̄t
= [ỹp

1,t,λ̄t
, . . . , ỹp

N,t,λ̄t
]T . In the following analysis, it is

assumed that the projection term ỹp
t,λ̄t

satisfies one of the following conditions at each time t ≥ 0:
(i) ỹp

i,t,λ̄t
< 0, ∀i ∈ N . (ii) ỹp

i,t,λ̄t
> 0, ∀i ∈ N . (iii) ỹp

i,t,λ̄t
= 0, ∀i ∈ N . Note that this assumption

is mild since ỹ1,t,λ̄t = · · · = ỹN,t,λ̄t , and all λi,t will achieve consensus. Since Wt is row stochastic
by Assumption 2, we can further obtain that

〈λ̄t+1〉 = 〈WtΓλ[λ̄t + βλ,tỹt,λ̄t ]〉 = Γλ
[
〈Wt(λ̄t + βλ,tỹt,λ̄t)〉

]
, (44)

based on which we have

〈λ̄t+1〉 = Γλ

[
〈λ̄t〉+ βλ,t〈Wt(ỹt,λ̄t + β−1

λ,t λ̄⊥,t)〉
]

= Γλ

[
〈λ̄t〉+ βλ,t〈ỹt,[〈λ̄t〉]〉+ βλ,tζ

λ
t+1,1 + βλ,tζ

λ
t+1,2

]
, (45)

where ζλt+1,1 and ζλt+2,2 take the forms

ζλt+1,1 = 〈Wt(ỹt,λ̄t + β−1
λ,t λ̄⊥,t)〉 − 〈ỹt,λ̄t〉,

ζλt+1,2 = 〈ỹt,λ̄t〉 − 〈ỹt,[〈λ̄t〉]〉. (46)

Recall that both πθ and ωcθ are continuous in θ. We can obtain that ỹt,λ̄t is continuous in λ̄t based
on Assumption 7. As a result, it holds limt→∞ ζλt+1,2 = 0 a.s. due to that limt→∞ λ̄t − [〈λ̄t〉] = 0
a.s. Based on Assumption 2, we can obtain that

E[〈Wt(ỹt,λ̄t + β−1
λ,t λ̄⊥,t)〉|Ft,3] = E[〈ỹt,λ̄t〉|Ft,3] = 〈ỹt,λ̄t〉, (47)

which shows that {ζλt+1,1}t≥0 is a martingale difference sequence. Following the similar analysis for
ζθt+1,1 in Appendix E, we can obtain that {ζλt+1,1}t≥0 is bounded. As a consequence, 〈λ̄t〉 converges
a.s. to a point in the set of asymptotically stable equilibria of the ODE

λ̇ = Γ̂λ
[
〈ỹt,[λ]〉

]
= Γ̂λ

[
Es̃∼ρ,ã∼π[θ̂[λ]]

[Qc(s̃, ã;ωc
[θ̂[λ]]

)− b]
]
. (48)

Recall that limt→∞ λi,t = 〈λ̄t〉 a.s. for any i ∈ N . Thus, each λi,t will converge to this point a.s.,
which completes the proof.
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G PROOFS OF PROPOSITIONS 1 AND 2

Proof of Proposition 1. Recall that Λ̂ = {λ : Γ̂λ[Es̃∼ρ,ã∼π[θ̂[λ]]
[Qc(s̃, ã;ωc

[θ̂[λ]]
) − b]] = 0, λ ∈

[0, λmax)}. Using a contradiction argument, suppose that Es̃∼ρ,ã∼π[θ̂[λ∗]]
[Qc(s̃, ã;ωc

[θ̂[λ∗]]
)] > b for

some λ∗ ∈ Λ̂. Then, we have

Γ̂λ[Es̃∼ρ,ã∼π[θ̂[λ∗]]
[Qc(s̃, ã;ωc

[θ̂[λ∗]]
)− b]]

= lim
η→0+

Γλ

[
λ∗ + η(Es̃∼ρ,ã∼π[θ̂[λ∗]]

[Qc(s̃, ã;ωc
[θ̂[λ∗]]

)− b])
]
− λ∗

η

= lim
η→0+

λ∗ + η(Es̃∼ρ,ã∼π[θ̂[λ∗]]
[Qc(s̃, ã;ωc

[θ̂[λ∗]]
)− b])− λ∗

η

= Es̃∼ρ,ã∼π[θ̂[λ∗]]
[Qc(s̃, ã;ωc

[θ̂[λ∗]]
)− b] > 0, (49)

where the second equality holds for sufficiently small η > 0 since λ∗ ∈ [0, λmax), and the inequality
further indicates that λ∗ /∈ Λ̂. Hence, we prove the proposition by contradiction.

Proof of Proposition 2. Given the condition Es̃∼ρ,ã∼π[θ̂[λ∗]]

[
Qc(s̃, ã;ωc

[θ̂[λ∗]]
)
]
< b, it is apparent

that the limit of (49) equals zero when λ∗ = 0. Moreover, for the case λ∗ ∈ (0, λmax], we can
follow the similar lines as the proof of Proposition 1 to obtain that the limit of (49) is negative under
the condition Es̃∼ρ,ã∼π[θ̂[λ∗]]

[
Qc(s̃, ã;ωc

[θ̂[λ∗]]
)
]
< b. Note that this result contradicts the fact that

λ∗ ∈ Λ, such that the proposition is proved.

H SIMULATION RESULTS OF THE THEORETICAL DECENTRALIZED
ALGORITHM IN SECTION 3

We now empirically demonstrate the effectiveness of our theoretical decentralized primal-dual actor-
critic algorithm (6)-(8) on a toy experiment.

The environment. Consider an environment withN agents, whereN is even. The local state of each
agent i ∈ N is si = cos( i−1

N−1π). All agents have the same local action space Ai = {0, 1}. After
the joint action a = (a1, . . . , aN ) is executed in the environment, the global state s = (s1, . . . , sN )
transitions to a terminal state. The agents share the same reward function, defined by

Ri(s, a) =

N/2∑
k=1

I{ak=1} −
N∑

k=N/2+1

I{ak=1}, ∀i ∈ N , (50)

where I is the indicator function. It is obvious that the largest reward N
2 can be obtained if ai = 1

for i ≤ N
2 , and ai = 0 for i > N

2 . Define the local observation of each agent i ∈ N as oi =
(si, s1, . . . , sN ). Then, this environment can be cast as a homogeneous MG (Chen et al., 2022). In
our setting, the agents further have the same cost function, defined by

Ci(s, a) =

N∑
k=1

I{ak=1}, ∀i ∈ N . (51)

Note that the cost function (51) satisfies condition (ii) in Definition 1. Hence, our environment can
be cast as a homogeneous constrained MG. In our experiment, N is set as 10, and the threshold b in
(1) is set as 4. In this case, the optimal reward is 4, i.e., one of the first five agents should choose the
action 0.

Experimental setting. Our algorithm is compared against two baselines. The first baseline is the
centralized version of our algorithm, which employs a centralized unit to directly train the parameter
θ̂ for the joint policy π[θ̂] based on Theorem 1. The second baseline is taken from Hu et al. (2024),
which is decentralized, and also employs the entropy regularization mechanism for policy learning.
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Figure 3: Learning curves of three algorithms on the toy experiment, where the dotted line in the
left subfigure indicates the optimal reward for our problem, and the dotted line in the right subfigure
indicates the threshold b.

Nevertheless, this baseline only aims to maximize the reward, without taking the constraint into
consideration. Following Chen et al. (2022), the feature vector of the linear critics is designed as
φz(s, a) = concat

[
{si, one hot(ai)}i∈N

]
, ∀z ∈ {r, c}, which is shared by all the three algorithms.

The actor is parameterized as a liner function, which generates the distribution over two actions by
the softmax function. At each iteration t, we generate Gt by randomly placing 18 communication
links among agents. Following Zhang et al. (2018), the element wt(i, j) in the weight matrix Wt is
determined by

wt(i, j) =
1

1 + max{dt(i), dt(j)}
, ∀(i, j) ∈ Et,

wt(i, i) = 1−
∑
j∈Ni,t

wt(i, j), ∀i ∈ N , (52)

where dt(i) = |Ni,t| is the degree of agent i. The expectation in (8) is estimated using Monte Carlo
samples. In addition, the Adam optimizer is employed to update parameters with adaptive learning
rates, and α is set as 0.01.

Results. The learning curves of three algorithms are represented in Fig. 3. The blue curves indicate
that the decentralized algorithm from Hu et al. (2024) achieves the highest reward after training but
fails to meet the safety constraint. This can be attributed to the fact that the algorithm only tries to
maximize the reward without considering the constraint. On the contrary, the other two algorithms
can achieve the optimal reward of the constrained problem while satisfying the safety constraint after
training, which is attributed to the primal-dual training method. The simulation results empirically
verify the convergence conclusion in Section 4.

I APPENDIX FOR THE PRACTICAL ALGORITHM IN SECTION 5

I.1 ANALYSIS ON THE LOSS FUNCTION (14)

Let Gλiθ (st, at) = α log(πθ(at|st))−Qr(st, at;ωri ) + λiQ
c(st, at;ω

c
i ), then we have

∇θiJπ(θi) = ∇θi
[
Est∼Bi,at∼πθ [G

λi
θ (st, at)]

]
= Est∼Bi

[∑
at∈A

∇θi(G
λi
θ (st, at)πθ(at|st))

]

= Est∼Bi

[∑
at∈A

(∇θiG
λi
θ (st, at))πθ(at|st) +Gλiθ (st, at)(∇θiπθ(at|st))

]
. (53)
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Realize that∑
at∈A

(∇θiG
λi
θ (st, at))πθ(at|st) = α

∑
at∈A

(∇θi log(πθi(ai,t|oi,t)))πθ(at|st) = 0, (54)

where the last equality holds due to (B.3) in Zhang et al. (2018). As a result, we have

∇θiJπ(θi) = Est∼Bi

[∑
at∈A

Gλiθ (st, at)(∇θiπθ(at|st))

]

= Est∼Bi

[∑
at∈A

Gλiθ (st, at)πθ(at|st)(∇θi log(πθi(ai,t|oi,t)))

]
= Est∼Bi,at∼πθ

[
Gλiθ (st, at)∇θi log(πθi(ai,t|oi,t))

]
. (55)

Note that the only difference between −∇θiJπ(θi) and the local actor parameter update direction in
(7) is the state distribution. Realize that it is a common trick in DRL to use experiences stored in the
replay buffer for updating current policy parameters (Lillicrap et al., 2016).

I.2 PSEUDOCODE

We now present the pseudocode of our decentralized algorithm DPDAC-ER in Algorithm 1.

Algorithm 1 Decentralized Primal-Dual Actor-Critic with Entropy Regularization (DPDAC-ER)

1: Initialize {ωri }Ni=1, {ωci }Ni=1, {θi}Ni=1, {λi}Ni=1, {αi}Ni=1.
2: Set Bi ← ∅, ω̄zi ← ωzi for each i ∈ N and z ∈ {r, c}.
3: for each iteration do
4: for each environment step do
5: Each agent i ∈ N samples ai,t ∼ πi,θi(oi,t).
6: Update state st+1 ∼ P (·|st, at).
7: Each agent i ∈ N obtains st+1, ri,t+1 and ci,t+1.
8: Each agent i ∈ N updates its replay buffer Bi ← Bi ∪ {(st, at, ri,t+1, ci,t+1, st+1)}.
9: end for

10: for each gradient step do
11: for each agent i ∈ N do
12: Sample a batch of data Di from Bi.
13: ωzi ← ωzi − lQ∇̂ωzi J

z
Q(ωzi ) for each z ∈ {r, c}.

14: θi ← θi − lπ∇̂θiJπ(θi).
15: λi ← (λi − lλ∇̂λiJD(λi))+.
16: αi ← (αi − lα∇̂αiJ(αi))+.
17: ω̄zi ← τωzi + (1− τ)ω̄zi for each z ∈ {r, c}.
18: end for
19: end for
20: for each consensus step do
21: for each agent i ∈ N do
22: ω̃zi ←

∑
j∈Ni,m wm(i, j)ωzj for each z ∈ {r, c}.

23: θ̃i ←
∑
j∈Ni,m wm(i, j)θj .

24: λ̃i ←
∑
j∈Ni,m wm(i, j)λj .

25: end for
26: for each agent i ∈ N do
27: ωzi ← ω̃zi for each z ∈ {r, c}.
28: θi ← θ̃i.
29: λi ← λ̃i.
30: end for
31: end for
32: end for
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J EXPERIMENTS

J.1 SIMULATION ENVIRONMENTS

Figure 4: Snapshots of three task environments at the end of episodes based on the policies trained
by DPDAC-ER, where every purple disk represents an agent and every black disk represents a land-
mark. Left: the Aggregation task. Middle: the Swapping task. Right: the Formation task.

Note that our algorithm DPDAC-ER can learn desirable safe policies. In the Aggregation task, all
agents distribute themselves along the circumference of the hazardous area to maximize the reward
while ensuring safety. In the Swapping task, all agents move slowly to the target positions to comply
with the velocity saturation constraint. In the Formation task, all agents form a circular formation
with a center near the landmark. Videos demonstrating the coordination performance of the learned
safe and unsafe policies are available at https://github.com/ICLR2025anonymous/DPDAC-ER/.

J.2 IMPLEMENTATION DETAILS

Table 1: Comparison of DPDAC-ER with four baselines.

Safe Decentralized Entropy
Number
of Critics
(Reward)

Number
of Critics

(Cost)

Number
of Actors

DPDAC-ER (ours) X X X N N N
DPDAC (ours) X X N N N
MASAC-Lag X X 1 1 1
DAC-ER X X N N N
MASAC X 1 1 N

The differences between our algorithm DPDAC-ER and four baselines are summarized in Table 1.
For fair comparison, all algorithms share the same critic and actor NN structures. Realize that the
dimension of the global state increases rapidly as the number of agents grows, leading to severe
scalability issues for MARL algorithms that use conventional NNs such as multi-layer perceptrons
(MLPs) (Liu et al., 2019). To this end, we employ the graph neural network (GNN)-based critic
with the same hyperparameters as in Hu et al. (2024) as separate critics for both the reward and the
cost in our algorithm. In this case, it is more convenient for each agent i ∈ N to directly store ot =
(o1,t, . . . , oN,t) rather than st in its replay buffer Bi, which can be achieved due to the observability
of the global state and the permutation preserving property in homogeneous constrained MGs. Note
that for environments like Safe Multi-Agent MuJoCo (Gu et al., 2023), we can still store st in Bi
and use MLPs to construct critic NNs, as the observation of an individual agent is the concatenation
of the state of robots and a one-hot vector. In our implementation, the double Q-learning trick is
used for the critic NN for rewards. To handle continuous action spaces, we design the actor NN as a
Gaussian policy, which includes two hidden layers and two linear layers2. Here, each hidden layer
consists of 128 neurons, with ReLU as its activation function. For all the decentralized algorithms,
the communication graph Gt is generated through randomly placing 18 communication links among

2https://github.com/pranz24/pytorch-soft-actor-critic
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agents. Note that there exist at most 45 links when all-to-all communication is allowed. Therefore,
the communication condition considered in our experiment is relatively mild. All agents perform
the gradient and consensus update steps once after each episode ends, where the weight matrix is
determined by (52). The hyperparameters of DPDAC-ER in three tasks are given in Table 2. Note
that b̄ is the expected (undiscounted) cost threshold, such that the threshold b in our problem (3) is
approximated by (1−γL)b̄

(1−γ)L (Ray et al., 2019; Yang et al., 2021), where L denotes the episode length.
In addition, the hyperparameters for the baselines are also finely tuned. In our experimental results,
the reported return and cumulative cost are undiscounted.

Table 2: Hyperparameter Settings of DPDAC-ER.

Hyperparameters Aggregation Swapping Formation

Number of training episodes M 20000 20000 20000
Episode length L 25 25 25
Undiscounted cost threshold b̄ 0 0 2
Learning rate λQ 5e-3 5e-3 5e-3
Learning rate λπ 3e-4 4e-4 4e-4
Learning rate λλ 3e-5 2e-5 3e-5
Learning rate λα 3e-4 4e-4 4e-4
Discount factor γ 0.95 0.95 0.95
Target smoothing coefficient τ 0.01 0.01 0.01
Initial value of log λi 0.5 0.5 0.5
Initial value of logαi 0 0 0
Target entropyH0 -2 -2 -2
Buffer size |Bi| 500000 500000 500000
Batch size |Di| 256 256 256

J.3 ABLATION ON THE COMMUNICATION NETWORK

Figure 5: Learning curves of DPDAC-ER in three different communication scenarios.

J.4 ABLATION ON THE CONSTRAINT

In the Swapping task, DPDAC-ER is evaluated under three undiscounted cost thresholds: 0, 5, and
10. In the Formation task, DPDAC-ER is evaluated under three undiscounted cost thresholds: 0, 2,
and 5. The learning curves of DPDAC-ER under different cost thresholds can be found in Fig. 6.
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Figure 6: Learning curves of DPDAC-ER under different cost thresholds.

J.5 ABLATION ON THE LOCAL OBSERVATION

Figure 7: Learning curves of four algorithms in the simplified Formation task.

Under the local observation setting, the global state information is not available to agents, and each
agent i ∈ N can only obtain its local observation oi,t during training. To deal with this problem,
existing decentralized algorithms (Qu et al., 2022; Ying et al., 2023b; Chen et al., 2022) leverage the
communication network Gt to enable agents to exchange local state-action (observation-action) pairs
with their neighbors. Denote Ci,t ⊆ Ni,t as the set containing all neighbors for observation-action
communication for each agent i ∈ N . Then, the critic NNs in our algorithm can be reformulated as
Qz(ocoi,t, a

co
i,t), ∀z ∈ {r, c}, where ocoi,t = {ok,t}k∈C̄i,t and acoi,t = {ak,t}k∈C̄i,t with C̄i,t = {i} ∪ Ci,t,

and the replay buffer takes the form Bi = {(ocoi,t, acoi,t, ri,t+1, ci,t+1, o
co
i,t+1)}t. Based on the notations

above, the loss function (13) for the critics is modified as

JzQ(ωzi ) = E(ocoi,t,a
co
i,t,ri,t+1,ci,t+1,ocoi,t+1)∼Bi

[
(Qz(ocoi,t, a

co
i,t;ω

z
i )− yzi )2

]
, ∀z ∈ {r, c}, (56)

where yri = ri,t+1 + γ(Qr(ocoi,t+1, a
co
i,t+1; ω̄ri ) − Nα log(πi,θi(ai,t+1|oi,t+1))) and yci = ci,t+1 +

γQc(ocoi,t+1, a
co
i,t+1; ω̄ci ). The loss function (14) for the actor is modified as

Jπ(θi) = E
[
α log(πi,θi(ai,t|oi,t))−Qr(ocoi,t, acoi,t;ωri ) + λiQ

c(ocoi,t, a
co
i,t;ω

c
i )
]
, (57)

where ocoi,t ∼ Bi and ak,t ∼ πk,θk(·|ok,t) for any k ∈ C̄i,t. Recall that each agent i ∈ N estimates
πk,θk , where k ∈ Ci,t, using its local policy πi,θi based on the policy consensus. Finally, the loss
function (15) for the dual variable is modified as

JD(λi) = E(ocoi,t,a
co
i,t)∼Bi

[
λi(b−Qc(ocoi,t, acoi,t;ωci ))

]
. (58)

Denote DPDAC-ER-L as the modified version of DPDAC-ER under the local observation setting,
which uses the loss functions (56)-(58).

In our ablation experiment, we demonstrate the effectiveness of DPDAC-ER-L on a simplified ver-
sion of the Formation task. In this task, there exist 5 agents, and the mean position of all agents is
not available to any agent. In our implementation of DPDAC-ER-L, we set Ci,t = ∅, such that each
agent only uses its local observation-action pair (oi,t, ai,t) to estimate global action-value functions.
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We model the critic NN Qz(oi,t, ai,t) as an MLP, ∀z ∈ {r, c}, which contains two hidden layers
with 128 neurons per layer. We compare DPDAC-ER-L with DPDAC-ER and MASAC-Lag, which
can use global state information during training. In addition, we evaluate DPDAC-ER-L in the no
communication scenario. In this case, the agents learn to update their policies independently. The
learning curves can be found in Fig. 7. There is no doubt that DPDAC-ER and MASAC-Lag have
the best learning performance, which converge to safe policies with the highest return. This result
attributes to that the global state information is available to all agents in these algorithms. It can also
be observed that when no communication is available, DPDAC-ER-L performs significantly worse
than the other algorithms in terms of reward, which also has the worst learning stability. On the
contrary, when sparse communication is available among agents, the performance of DPDAC-ER-L
improves significantly in terms of both reward and cost, demonstrating the effectiveness of our al-
gorithm. We leave the evaluation of DPDAC-ER-L with Ci,t 6= ∅ on more challenging safe MARL
tasks as our future work.

J.6 ADDITIONAL EXPERIMENTS

Figure 8: Learning curves of DPDAC-ER and DAC-ER under different w.

To demonstrate the effectiveness of our algorithm in balancing reward maximization and constraint
satisfaction, a variant of DAC-ER is considered as a new baseline which uses the reward shaping
mechanism to deal with the constraints. Specifically, we replace the reward ri,t with ri,t − wci,t
in DAC-ER, where w ≥ 0. It can be found in Fig. 8 that safe policies can be learned by DAC-ER
with large w in the Aggregation task and the Swapping task. However, the safe policies learned
by DAC-ER yield significantly lower rewards compared to those learned by our algorithm. Note
that DAC-ER fails to learn safe policies in the Formation task across different values of w, with its
learning curve for rewards appearing to diverge when w = 10. These simulation results demonstrate
the importance of deal with constraints independently in safe RL.

Finally, we create a customized 3D environment for the Formation task to further evaluate the sample
efficiency of our algorithm. It can be found in Fig. 9 that the learning performance of our algorithm
is preserved when the dimension of the space increases. However, the learning performance of DP-
DAC declines significantly, which shows the importance of incorporating the entropy regularization
mechanism in our algorithm.
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Figure 9: Learning curves of DPDAC-ER and DPDAC in a customized 3D environment.
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