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ABSTRACT

Cryogenic electron tomography (Cryo-ET) is a powerful method for visualizing
cellular structures in their native state (Lucic et al., 2005), but its effectiveness is
limited by anisotropic resolution caused by the missing-wedge problem, compli-
cating the interpretation of tomograms. IsoNet (Liu et al., 2022), a deep learning
method, addresses these challenges by iteratively reconstructing missing-wedge
information and improving the signal-to-noise ratio of tomograms. However,
IsoNet relies on recursively updating its predictions, which can result in train-
ing instability and potential model collapse. In this study, we present CryoGEN,
an enhanced energy-based method that effectively addresses resolution anisotropy
without requiring recursive subtomogram generation. Our approach is about 10×
faster and offers a more stable and consistent methodology. Applying CryoGEN to
various datasets, including immature HIV particles and ribosomes, demonstrates
its capability to enhance structural interpretability. Moreover, CryoGEN holds
significant potential for improving the functional interpretation of cellular tomo-
grams in future high-resolution Cryo-ET studies, thereby providing substantial
value and advancing progress in biological research.

1 INTRODUCTION

(a) WBP-reconstructed (b) IsoNet-corrected (baseline)

(c) CryoGEN-corrected (ours) (d) Real structure

Figure 1: Reconstructed 3D structure comparison
among (a) WBP (b) IsoNet and (c) our method
using simulated Cryo-ET data of (d) C13 Vipp1
stacked rings (EMDB:18424).

Cryo-ET is a cutting-edge technique that en-
ables the visualization and analysis of the three-
dimensional (3D) structure of biomolecules,
cellular components, and even entire organ-
isms in a near-native, hydrated state with near-
atomic resolution. It offers unique insights into
the molecular organization within cells, facil-
itating the precise identification and in-depth
study of individual proteins and their interac-
tions at subnanometer resolution. Recogniz-
ing the potential of Cryo-ET, the developers of
AlphaFold3 (Abramson et al., 2024) anticipate
that the increased availability of high-quality
experimental data from this technique will sig-
nificantly improve the model’s performance in
unraveling the complexity of molecular regula-
tion within cells.
The rapid frozen, hydrated sample is imaged in
a transmission electron microscope (TEM) as
it is tilted through a series of angles, captur-
ing a set of two-dimensional (2D) projections
known as a “tilt series”. These 2D images are

then computationally reconstructed into a 3D model or tomogram of the sample. The most com-
monly used tomographic reconstruction technique is weighted back-projection (WBP) (Raderma-
cher, 2006). However, due to the mechanical limitations of the TEM stage, the tilt range is typically
restricted to around ±60◦. This limited tilt range results in a “missing wedge” in Fourier space,
where data is not properly collected. The missing wedge leads to anisotropic resolution in the final
WBP-reconstructed tomogram, as illustrated in Figure 1 (a), with the lowest resolution along the
z-axis (the direction of the electron beam). This manifests as distortions and elongation of features
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in the reconstructed 3D structure, making it challenging to accurately interpret the sample’s native
architecture. Figure 2 illustrates the core process of Cryo-ET.

Electron Beam

Transmission Imaging

TEM Stage

Tilt Series

Frozen Specimen

Missing Wedge Reconstructed Result

Fourier 
Transform

WBP
Reconstruct

Figure 2: Cryo-ET imaging and reconstruction.

Indeed, the missing wedge effect is a funda-
mental limitation of Cryo-ET, as it is inherent
to the data collection process. Efforts to mit-
igate this issue have included techniques such
as dual-axis tomography, which collects two
tilt series at perpendicular angles to reduce the
missing wedge to a smaller missing pyramid.
However, these methods add complexity to the
data collection and processing workflows. Tra-
ditional computational approaches MBIR (Yan
et al., 2019), ICON (Deng et al., 2016) utilize
statistical and optimization methods to resolve
the missing wedge problem. In addition to the
missing wedge, Cryo-ET also suffers from a
low signal-to-noise ratio (SNR) due to the low
electron dose used to prevent specimen dam-
age. Common solutions include applying var-
ious filters and deconvolution methods to par-
tially denoise the tomograms. However, these
computational strategies alone are insufficient
to fully recover the lost information caused by

the missing wedge, often leading to poor reconstructions with significant artefacts and distortions.

We introduce CryoGEN, a generative method that leverages energy models and deep learning neu-
ral networks. Our contributions can be summarized in three key aspects: a more precise problem
formulation compared to previous work, the development of a novel framework for isotropic recon-
struction in electron tomography, and improved generation quality by incorporating an energy-based
model into our framework. This integration offers flexibility and compatibility with techniques such
as generative adversarial networks (Goodfellow et al., 2014).

To be more specific, our approach consists of three main phases: first, we approach the problem
from a probabilistic modeling perspective; second, we design an energy model E to capture the
distribution of missing-wedge subtomograms; and third, we train a prediction model gθ, a neural
network parameterized by θ, to generate complete tomograms by combining the missing-wedge
input with the energy model. Figure 1 provides an illustrative example where we compare our
method with WBP and IsoNet (Liu et al., 2022), two state-of-the-art techniques.

The remainder of the paper is organized as follows: the Related Work section formulate Cryo-ET
reconstruction from Bayesian perspective and further explains how it could be linked to energy-
based models. The Motivation section outlines the rationale behind our method, accompanied by
several illustrative examples. The Methodology section presents the objective and the complete
algorithm. The Experiment section applies our method to real tomogram cases, and the final section
provides the conclusion.

2 RELATED WORK

2.1 CRYO-ET RECONSTRUCTION

Recently, deep learning-based methods have shown promise in recovering missing information and
improving the signal-to-noise ratio, leading to higher contrast. IsoNet (Liu et al., 2022) has achieved
notable success in filling in missing data, and many recent approaches build on it with minor mod-
ifications. Additionally, Noise2Noise-based denoising techniques, such as CryoCARE (Buchholz
et al., 2019), Topaz (Bepler et al., 2020), and Warp (Tegunov & Cramer, 2019), have significantly en-
hanced volume clarity. More recently, several approaches (Wiedemann & Heckel, 2024; Zeng et al.,
2024) have attempted to address denoising and missing wedge correction simultaneously, achieving
performance comparable to two-step methods. However, current missing wedge correction tech-
niques remain suboptimal, as they only partially restore the missing information, highlighting the
need for more powerful tools.
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2.2 BAYESIAN FRAMEWORK

In this context, we consider the original data x drawn from the domain X , with the corresponding
observation y from domain Y . Specifically:

• Y represents the observation domain, with its data distribution denoted by py , where y ∼ py
corresponds to a WBP-reconstructed tomogram with a missing wedge.

• X represents the source domain, with its data distribution denoted by px, where x ∼ px corre-
sponds to an original sample whose missing wedge has been properly filled in.

We define a Cryo-ET transmission imaging operator TM , resulting in Y = {TM (x) | x ∈ X}. The
imaging process is typically formulated as:

y = TM (x) + ϵn, ϵn ∼ N (0, σ2
nI), (1)

where ϵn represents additive Gaussian noise with zero mean and variance σ2
nI . Notably, TM is

generally a many-to-one operator. Our objective is to determine the x that generates the observed
under-sampled y, which constitutes a classical inverse problem.

Notice that Equation (1) can be rewritten as:

y ∼ N (TM (x), σ2
nI) (2)

By applying Bayes’ theorem, we have p(x|y) ∝ p(y|x) · p(x), which leads to:

log p(x|y) = log p(y|x) + log p(x) + constant. (3)

However, the distribution p(x) is inaccessible in the Cryo-ET reconstruction scenario, which is also
a limitation of current state-of-the-art methods. These issues will be addressed after we introduce
the energy model in the following section.

2.3 ENERGY-BASED MODELS

Energy-based models (EBMs) (Lecun et al., 2006) are a type of probabilistic framework that for-
mulates machine learning problems using the concept of energy. An energy function assigns lower
energy values to configurations that are more likely or preferable, and higher energy values to less
likely or undesirable configurations. The system’s objective is to identify the states that minimize
the energy and shape the energy landscape accordingly.

After defining the non-negative energy function E, the Boltzmann distribution (Boltzmann, 1974)
can be expressed in terms of E as px(x) = 1

Z exp(−E(x)), where Z is the normalization constant,
also referred to as the partition function. In this paper, we directly apply generative adversarial
networks (GANs) (Goodfellow et al., 2014) to model this probabilistic framework, although other
approaches, such as contrastive learning (Chen et al., 2020), could also be explored.

3 MOTIVATION

For each observation y ∈ Y , we can obtain the optimal x∗ through Equation 4:

x∗(y) = argmax
x∈X

log p(x|y) = argmax
x∈X

[
− 1

2σ2
n

∥TM (x)− y∥22 + log p(x)

]
(4)

However, since the sampling or optimization process is slow, a natural idea is to shift the objective
towards finding a parameterized function gθ with parameters θ that learns the mapping gθ : y 7→
x∗(y). This approach, which focuses on learning the mapping directly, is not immediately obvious
but is fundamentally similar to the methods like (Johnson et al., 2016) (i.e., using a neural network
to learn the high-probability targets rather than generating them iteratively on the fly). This concept
also forms the foundation of IsoNet (Liu et al., 2022) and its variants (Buchholz et al., 2019), whose
limitations we will discuss shortly, along with an explanation of why incorporating a generative
model may be necessary. We consider a straightforward scenario with a single observation sample,
that is, Y = {y0}. We assume that both x1 and x2 map exactly to y0 under the operation TM , so:

∥TM (x1)− y0∥22 = 0, ∥TM (x2)− y0∥22 = 0.
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Thus, the likelihood is maximized when x lies on the line connecting x1 and x2, as a result of the

linear property of TM . Furthermore, we also assume σ2 <
1

4
∥x1 − x2∥22 (i.e., this may indicate that

the features are relatively distinct in X ) and define the prior distribution of x as the following:

p(x) =
1

2
√
2πσ2

[
exp

(
−∥x− x1∥2

2σ2

)
+ exp

(
−∥x− x2∥2

2σ2

)]
.

Alternatively, this can be expressed using mixture of Gaussian distributions:

p(x) =
1

2

[
N (x | x1, σ

2I) +N (x | x2, σ
2I)

]
,

where N (x|xi, σ
2I) denotes a single Gaussian distribution centered at xi with covariance matrix

σ2I . We seek to maximize the posterior p(gθ(y0)|y0), but according to IsoNet’s steps (as described
in Appendix A.1), the objective ultimately reduces to solving:

θ̃ = argmin
θ

1

2

(
∥gθ(y0)− x1∥22 + ∥gθ(y0)− x2∥22

)
.

This formulation seeks the parameter θ̃ that minimizes the mean squared error between the function’s
output gθ(y0) between both x1 and x2. However, this leads to gθ̃(y0) =

1
2 (x1 + x2), and thus

p
(
x = gθ̃(y0)

)
=

1√
2πσ2

exp

(
−∥x1 − x2∥2

8σ2

)
. (5)

This result may be unfavorable because

p(x = x1 or x = x2) =
1

2
√
2πσ2

[
1 + exp

(
−∥x1 − x2∥2

2σ2

)]
. (6)

It can be shown that Equation (5) yields a lower probability compared to Equation (6) under our
assumptions, meaning that the result learned by gθ̃(y0) is worse than directly choosing either x1 or
x2. This typically happens when the probability density function of the prior distribution is non-
convex, and thus simply averaging the minima lacks meaningful interpretation, highlighting a key
limitation we have observed with IsoNet. By introducing an energy function as E(x) = − log p(x),
the situation is depicted in Figure 3(a), where it is demonstrated that E( 12 (x1 + x2)) does not
correspond to a low-energy state.

Domain

Domain

(a) Energy landscape

(b) Find a minimum

Figure 3: Limitations of IsoNet formulation.

The core issue stems from the one-to-many
mapping, making it impossible to define a func-
tion that maps a single observation y to all pos-
sible minima x’s. In other words, the prob-
lem arises because the cardinality of gθ(Y)
cannot exceed that of Y , leading to the un-
desired outcome. A straightforward way to
address this issue is by introducing a random
noise through input augmentation. By adding
noise to the input, represented as y + ϵg , where
ϵg ∼ N (0, σ2

gI) and the support of ϵg lies in the
whole real space (which has uncountably infi-
nite cardinality).

By combining the energy model E along with
gθ(y+ϵg), we generate distributions that could
match the desired target distribution, allowing
us to identify an appropriate minimum rather
than averaging across multiple minima. Addi-

tionally, this approach eliminates the need for real-time sampling and thus offers similar advantages
to IsoNet while effectively addresses the previously noted issue. As shown in Figure 3(b), the added
noise ϵg helps guide the model toward different low-energy states, as we minimize E, directing
the model to a local minimum instead of averaging multiple minima. More interestingly, we will
demonstrate that this can be effectively approached as a generative task, as shown in Equation (9) in
the next section.
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4 METHODOLOGY

We define the desired source space as X = {x ∈ X | TM (x) ∈ Y}, with the goal that gθ generates
samples within X . However, we cannot directly train the energy model on the domain X due to the
lack of real data; instead, we can only train it on observation space Y . Consequently, if a generated
sample x lies within X , its energy E(TM (x)) should be low. Afterward, we define the distribution
py using the trained energy model through the Boltzmann distribution, as described earlier.

Drawing inspiration from (Lecun et al., 2006), we do not explicitly define the energy function.
Instead, we learn the energy function in a manner similar to contrastive learning, assigning low
energy to samples and high energy to other regions. This method belongs to the class of implicit
probabilistic models (Diggle & Gratton, 1984). In this section, we first define the objective to
achieve this goal, followed by the presentation of the complete algorithm.

4.1 OBJECTIVE

We integrate two components for training our model: the consistency loss and the posterior maxi-
mization. The consistency loss, akin to the original loss used in IsoNet, may benefit the early stages
of training but could negatively impact final model performance due to its drawbacks as mentioned
in Section 3. In contrast, the energy penalty is a more sophisticated choice, but it converges slowly.

4.1.1 CONSISTENCY LOSS

In general, we can assume that gθ serves as an approximate inverse function of TM . Therefore, we
first introduce a consistency loss to ensure that the inverse condition is met.:

Consistency Loss = Ey∼py,ϵ∼N (0,σ2
hI)

[
λ

|R|
∑
R∈R
∥R−1 ◦ gθ ◦ TM ◦R (gθ(y) + ϵh)− gθ(y)∥22

]
,

(7)
where ◦ denotes the composition of functions. However, if TM is not a one-to-one mapping, which
is likely the case, the issue outlined in Section 3 may arise. To address this during training, we can
gradually reduce the weight λ of Equation (7).

Remark. Equation (7) closely resembles the objective function of IsoNet (Liu et al., 2022), except
that there is no refinement step. Conversely, we decrease the penalty term λ for enforcing recon-
struction, which fundamentally distinguishes our method from theirs.

4.1.2 MAXIMUM A POSTERIOR

Next, our goal is to generate results that maximize the log posterior log p(x|y) by incorporating
the previously discussed energy penalty term. The objective is to minimize the error on X using a
model trained on theY . Therefore, we must ensure that E(TM (x)) is low when TM (x) ∈ Y and high
otherwise. Moreover, we assume that if x ∈ X , then R(x) ∈ X as well, where R denotes a rotation
operation selected from a predefined set of rotations R detailed in Appendix A.2. Consequently,
for x ∈ X , 1

|R|
∑

R∈R E(TM ◦ R(x)) should result in a low energy state as well. Specifically, this
rotation operation presumes that distributions are uniform in all directions except for the missing
wedge angles, which is a core assumption for Cryo-ET reconstruction.

Therefore, we can define the posterior as:

Posterior = Ey∼py,ϵ∼N (0,σ2
gI)

[
− 1

|R|
∑
R∈R

E (TM ◦R ◦ gθ(y + ϵg)) +
1

2σ2
n

∥TM ◦ gθ(y + ϵg)− y∥22

]
,

(8)
where σ2

n is a hyperparameter introduced in Equation (1).

4.2 ENERGY MODEL

The energy model E can be derived through several approaches. In this work, we opt to use GANs
(Goodfellow et al., 2014). Specifically, we define our energy model Eϕ as the discriminator pro-
posed in (Goodfellow et al., 2014), which, like gθ, is typically represented by parameterized neural
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networks. This approach allows us to train both the energy model Eϕ and gθ simultaneously. Con-
sequently, the energy model is learned through adversarial training, as described in Equation (9):

max
ϕ

min
θ

[
Ey∼py,ϵ∼pϵ,ϵg∼N (0,σ2

gI)
1

|R|
∑
R∈R

E (TM ◦R ◦ gθ(y + ϵg))− E(y + ϵ)

]
. (9)

Furthermore, we consider a similar formulation as (Arjovsky & Bottou, 2017). Let y follow the
distribution py with support on Y , and let ϵ be an absolutely continuous distribution with density pϵ.
Then, the distribution py+ϵ is also absolutely continuous with density:

py+ϵ(z) = Ey∼py [pϵ(z − y)] =

∫
Y
pϵ(z − y) dpy (10)

Especially, If ϵ ∼ N (0, σ2I), then py+ϵ(z) ∝
∫
Y e−

∥z−y∥2

2σ2 dpy, and Equation (9) reaches Nash
equilibrium when pgθ (z) = py+ϵ(z), as follows:

pgθ (z) =
1

|R|

∫
y∈Y

∫
ϵg∈Rd

∑
R∈R

1z=TM◦R◦gθ(y+ϵg) · pϵg (ϵg) py(y) dϵg dy. (11)

This result is analogous to the conclusion presented in the original GAN paper by (Goodfellow et al.,
2014), but in this case, the data distribution is obtained by convolving the original data distribution
with a Gaussian.

4.3 ALGORITHM

The complete CryoGEN algorithm consists of two stages: training and inference. First, we train a
generative model gθ to minimize the pre-trained energy model. Then, we use this generative model
to fill in the missing wedges of tomograms.

Building on the idea from Section 4.1, we combine both the consistency loss and posterior terms.
The complete algorithm for training CryoGEN is presented in Algorithm 1.

Algorithm 1 Train prediction model.

Require: Tomogram dataset Y , noise levels σ2, σ2
g , σ

2
h > 0, estimated noise variance σ2

n, penalty
term λ ≥ 0, energy model Eϕ : Rd → R+, prediction model gθ : Rd → Rd, learning rate η.
repeat

Randomly generate noise ϵ, ϵg, ϵh ∼ N (0, σ2I), N (0, σ2
gI), N (0, σ2

hI).
Set f(ϕ, θ) = − Eϕ (TM ◦R ◦ gθ(y + ϵg)) + 1/2σ2

n · ∥TM ◦ gθ(y + ϵg)− y∥22
Update ϕ← ϕ− η · ∂

∂ϕ
[Eϕ(y + ϵ)− f(ϕ, θ)]

Update θ ← θ − η · ∂
∂θ

[f(ϕ, θ)− λ · ∥R−1 ◦ gθ ◦ TM ◦R (gθ′(y) + ϵh)− [gθ′(y)] ∥22]
Reduce the penalty term λ and assign the value of θ to θ′

until convergence
return gθ

At the inference stage, we begin by cropping the complete tomogram into multiple overlapping
subtomograms, which are then processed through gθ to yield refined subtomograms. These refined
subtomograms are subsequently reassembled into a complete tomogram, with the overlapping re-
gions averaged using a weighted approach to mitigate edge effects.

5 EXPERIMENT

In this section, we compare our method to the state-of-the-art missing wedge correction technique,
IsoNet, across various experiments. First, we validate our hypothesis using simple shapes, as de-
tailed in Section 5.1. Next, we evaluate our algorithm on a simulated dataset and compare it with
other approaches in Section 5.2. Finally, we apply our method to real-world examples to assess its
robustness, as discussed in Section 5.3. Implementation and data processing details are provided in
the Appendix, where we present results from the latest simultaneous missing wedge correction and
denoising method, DeepDeWedge (Wiedemann & Heckel, 2024) as well.
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(a) IsoNet-corrected sphere. (b) IsoNet-corrected prism.

(c) CryoGEN-corrected sphere. (d) CryoGEN-corrected prism.

Figure 6: CryoGEN and IsoNet corrected shapes.

5.1 SIMPLE SHAPES

(a) Sphere. (b) Prism.

Figure 4: Central Fourier slice of the
original missing-wedged shapes.

First, we apply the algorithm to simple shapes to demon-
strate its effectiveness. The data is synthetically gener-
ated, with the ground truth available. Specifically, we cre-
ate a 3D sphere and a triangular prism with an artificially
introduced missing wedge. To further clarify, we trans-
form the X-Z slice into the Fourier domain to highlight
the presence of the missing wedge as shown in Figure 4.

Our goal is to fill in these missing wedge regions, and we
will demonstrate that our algorithm significantly outper-
forms the baseline in this task. It can be observed that the
generated synthetic images exhibit lower resolution in the directions corresponding to the missing
wedge (the X-Y slice closely matches the ground truth as designed) as illustrated in Figure 5.

(a) Original missing-wedged sphere.

(b) Original missing-wedged prism.

Figure 5: Original missing-wedged shapes.

We first apply both IsoNet and CryoGEN to the two
shapes, with the results shown in Figure 6. Both
methods aim to restore the corrupted regions. While
IsoNet successfully reconstructs the sphere, some
artefacts remain, and it fails to restore the prism, pro-
ducing a distorted oval in the X-Z and Y-Z slices.
In contrast, CryoGEN achieves an almost perfect
restoration of both shapes, with the slices closely
resembling the original clean images. Our experi-
ments reveal that CryoGEN can effectively recover
more of the missing wedge regions and capture high-
frequency signals.

Next, to quantitatively assess the performance, we
compute the Peak Signal-to-Noise Ratio (PSNR) and
the Structural Similarity Index (SSIM) between the

ground truth and the generated results. The definitions of PSNR and SSIM are provided in Ap-
pendix A.3.1. We present the corrupted datasets, comparing the results corrected by IsoNet and
DeepDeWedge to those corrected by CryoGEN. As demonstrated in Table 1, our method consis-
tently outperforms the baseline.

5.2 SIMULATED DATA

In this section, we applied our algorithm to more complex protein assemblies. Following the ap-
proach of IsoNet, we first evaluated our performance on the publicly available atomic model apo-
ferritin (PDB:6Z6U) (Yip et al., 2020). Additionally, we selected the recently published electron
microscopy dataset of C13 Vipp1 stacked rings (EMDB:18424) (Junglas et al., 2024). The results
show that CryoGEN delivers more consistent outcomes in both the spatial and Fourier domains.
Additionally, CryoGEN demands significantly less training time compared to IsoNet.

7
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Table 1: Quantitative evaluation of image quality for tomography re-
constructions using different methods, comparing PSNR and SSIM
metrics (higher values indicating better performance for both met-
rics) on sphere, prism and Vipp1 assembly datasets.

Data State Sphere Prism Vipp1 assembly

PSNR SSIM PSNR SSIM PSNR SSIM

Corrupted
Iso-corrected

Dewedge-corrected
CryoGEN-corrected

21.12 0.8113 14.82 0.6931 26.68 0.8000
22.98 0.8770 19.11 0.8857 27.12 0.8191
23.17 0.8824 21.10 0.9278 28.75 0.8758
29.19 0.9706 32.69 0.9949 30.65 0.9199

Apoferritin. We per-
formed reconstructions
using the atomic model of
apoferritin (PDB:6Z6U), a
widely-used benchmark in
high-resolution CryoGEN.
The simulated maps were
then randomly rotated in
ten different directions,
and a missing wedge was
applied in Fourier space,
resulting in simulated
subtomograms with miss-

ing wedge artefacts. In this experiment, CryoGEN delivered considerably better results than IsoNet,
while also reducing the training time significantly. This improvement is clearly visible when
visualizing the low-density volume using ChimeraX (Goddard et al., 2018), as shown in Figure 7.

(a) WBP reconstructed missing-
wedged apoferritin, displaying
both corrupted and missing re-
gions in the low-density volume.

(b) Structure generated by IsoNet,
displaying a corrupted region with
visible inconsistencies in the low-
density volume.

(c) Structure generated by Cryo-
GEN, showing a much smoother
and coherent low-density volume
representation.

Figure 7: Comparison of low-density volumes generated by WBP (a), IsoNet (b) and CryoGEN (c).
The results indicate that IsoNet produces synthetic artifacts stemming from the reconstruction of the
missing wedge, which CryoGEN effectively resolves.

C13 Vipp1 Stacked Rings. We evaluated our method on the recently published C13 Vipp1 stacked
rings dataset (EMDB:18424), which represents complex assemblies. This dataset was sourced from
the Electron Microscopy Data Bank (wwPDB Consortium).

(a) IsoNet-corrected Vipp1 assembly.

(b) CryoGEN-corrected Vipp1 assembly.

Figure 8: CryoGEN and IsoNet corrected Vipp1 assembly. The results shown in IsoNet exhibit strong
streaking artifacts. In contrast, our method does not exhibit these streaking artifacts.

In line with IsoNet, we randomly rotate the tomography to create ten different samples before intro-
ducing missing wedge corruption. The results, as shown in Table 1, confirm that CryoGEN outper-
forms IsoNet, achieving superior PSNR and SSIM. We present the original results in Figure 1, along
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with both spatial and Fourier domain comparisons in Figure 8. In the Fourier domain, CryoGEN
captures essential details more accurately and produces more consistent and symmetrical results.
Additionally, the volume generated by IsoNet still contains corrupted regions, whereas CryoGEN
produces a much smoother result in the spatial domain.

5.3 REAL-WORLD EXAMPLES

In this section, we apply the method to real-world examples to evaluate its effectiveness. We use
a well-known Cryo-ET particle selection benchmark, specifically the dataset of purified ribosomes
(Zhang et al., 2016), as well as the virus-like particle dataset of immature HIV-1 in both single-
particle and tomography reconstruction (Schur et al., 2016). CryoGEN minimizes the ringing effect
and achieves significantly higher contrast, while offering better compensation for the missing wedge
compared to IsoNet’s irregular distribution.

Furthermore, IsoNet requires careful fine-tuning at each iteration, which can lead to error accu-
mulation and result in instability. Specifically, IsoNet’s prediction model is dependent on previous
predictions, so any intermediate failure can propagate through subsequent cycles, compromising the
entire training process. In contrast, our algorithm does not rely on recursive updates, allowing for
faster training and greater stability. Additionally, CryoGEN completes the process in just two hours,
whereas IsoNet takes 20 hours on an NVIDIA V100.

(a) IsoNet-corrected purified ribosomes.

(b) Central Fourier slice of the IsoNet-corrected
purified ribosomes.

(c) CryoGEN-corrected purified ribosomes.

(d) Central Fourier slice of the CryoGEN-
corrected purified ribosomes.

Figure 9: Comparison of IsoNet-corrected and CryoGEN-corrected purified ribosomes, including
their corresponding central fourier slices. The CryoGEN-corrected images exhibit higher contrast
and reduced high-frequency features. While both methods effectively fill in the missing wedge, the
IsoNet correction shows an irregular distribution of high-frequency components in the central re-
gion, whereas CryoGEN achieves a more consistent distribution.

Purified Ribosomes. The ribosomes dataset is commonly used as a Cryo-ET benchmark. We col-
lected all seven tilt series from the EMPIAR-10045 dataset and applied the same preprocessing
steps as IsoNet, detailed in Appendix A.8.5. Figure 9 shows the correction results for both IsoNet
and CryoGEN. Ribosomes in the CryoGEN-corrected volume appear clearer and exhibit higher con-
trast, which significantly aids in particle selection. Additionally, there is less noise and fewer sharp
artifacts in the background. Notably, the IsoNet-corrected volume displays a frequency spectrum
with an irregular concentration of high-frequency components in the central region, introducing no-
ticeable noise and artifacts. In contrast, the CryoGEN-corrected volume shows a much smoother
and more consistent frequency distribution, with better control over central frequencies. The more

9
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symmetrical pattern suggests reduced distortion and better alignment with the expected smooth be-
havior, indicating improved data integrity.

(a) IsoNet-corrected immature HIV capsid.

(b) Central Fourier slice of the IsoNet-corrected
immature HIV capsid.

(c) CryoGEN-corrected immature HIV capsid.

(d) Central Fourier slice of the CryoGEN-
corrected immature HIV capsid.

Figure 10: A comparison of IsoNet-corrected and CryoGEN-corrected immature HIV capsids, along
with their corresponding central Fourier slices, reveals distinct differences. The IsoNet-corrected
images exhibit noticeable ringing effects, whereas the CryoGEN-corrected images feature minimal
noise and a smoother background. Additionally, while both methods address the missing wedge
region, IsoNet correction introduces more prominent streak artifacts.

HIV Capsid. The results of HIV capsid dataset are presented in Figure 10. Following IsoNet’s pre-
processing procedure, we collected three tilt series from the EMPIAR-10164 dataset and processed
the volume as detailed in Appendix A.8.6. The CryoGEN-corrected HIV capsid is noticeably clearer
than the IsoNet-corrected version, with minimal noise and a much smoother background. In con-
trast, the IsoNet-corrected volume exhibits a pronounced ringing effect around the gold beads, with
bright rings surrounding them and unwanted white dust scattered throughout the image. Our algo-
rithm effectively eliminates all these artefacts. Additionally, CryoGEN compensates for the missing
wedge region more effectively than IsoNet. As shown in the top windows of Figure 10 (a) and Fig-
ure 10 (c), the virus particle in the CryoGEN-corrected volume is more intact, with fewer defects
compared to the IsoNet-corrected version. In the Fourier domain, while both methods attempt to fill
the missing wedge region, IsoNet’s correction introduces more noticeable line artefacts.

6 CONCLUSION

In this work, we introduce CryoGEN, a method for addressing the missing wedge problem in Cryo-
ET using energy-based models. Our approach not only converges faster and more reliably than
state-of-the-art techniques but also delivers significantly improved results. Moreover, even though
developed for Cryo-ET, CryoGEN presents a more general framework for solving inverse problems
by incorporating an energy model as a core component. To the best of our knowledge, this is the
first energy-based framework proposed for tackling inverse problems in Cryo-ET reconstruction
from a probabilistic perspective. Finally, our framework can integrate other advanced energy-based
methods, such as Wasserstein GANs (Arjovsky et al., 2017) and energy-based diffusion models (Du
et al., 2023), significantly broadening its potential applications. In the future, we plan to extend our
method to efficiently handle larger and more complex datasets.
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A APPENDIX

A.1 ALGORITHM FLOWCHART

Consistency Loss

Gaussian Noise

Rotation

Inverse Rotation

CryoET Imaging

Complementary
CryoET Imaging

Add

(a) IsoNet

(b) CryoGEN

Stop Gradient

Figure 11: Algorithm flowchart of (a) IsoNet and (b) CryoGEN

IsoNet formulates the task of filling y’s missing wedge information to reconstruct x as an inpainting
problem, solving it in a self-supervised manner as illustrated in Figure 11. It trains a U-Net, denoted
as gθ, where θ represents trainable parameters, following these steps:

1. y is processed by gθ to obtain a missing-wedge-filled x̃ = gθ(y).
2. x̃ is rotated by a rotation operator R, randomly selected from a pre-defined rotation set R,

and then subjected to a missing wedge by a simulated TM operation: ỹ = TM ◦R(x̃).
3. ỹ is fed to gθ, yielding x̂ = gθ(ỹ).
4. The inpainted part is extracted by (1 − TM )(x̂) and added with TM ◦ R(y), then rotated

back to get ŷ = R−1((1− TM )(x̂) + TM ◦R(y))

5. ŷ and y form paired data to train gθ, with y serving as ground truth. During training, no
gradient is generated from gθ(y).

6. These steps are iterated until convergence.

By constructing (ŷ, y) pairs, IsoNet effectively makes a one-to-one mapping assumption of TM .
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A.2 ROTATION LIST DEFINED IN THE ISONET

The cropped subtomograms are cube-shaped with six faces, resulting in 24 possible rotations for
reorientation. However, we exclude the four rotations that maintain the same missing wedge in the
X-Z direction as the original, unrotated subtomogram. Further details and a schematic diagram are
provided in the supplementary information of IsoNet (Liu et al., 2022).

A.3 ADDITIONAL RESULTS

A.3.1 ADDITIONAL RESULTS FOR SECTION 5.1

Formally, v̂ represents the predicted volume, and v∗ denotes the ground truth. PSNR and SSIM are
defined as follows:

PSNR = 10 log10
Im

∥v̂ − v∗∥2
, SSIM(v̂, v∗) =

(2µv̂µv∗ + C1)(2σv̂v∗ + C2)

(µ2
v̂ + µ2

v∗ + C1)(σ2
v̂ + σ2

v∗ + C2)
.

In the PSNR formula, Im represents the maximum possible pixel value, which we define as the
maximum value of the ground truth image.

In the SSIM formula:

• µv̂ and µv∗ are the mean intensities of images v̂ and v∗.

• σ2
v̂ and σ2

v∗ are the variances of images v̂ and v∗.

• σv̂v∗ is the covariance between images v̂ and v∗.

• C1 and C2 are small constants used to stabilize the division when the denominator is close to zero.

The central Fourier slices of the corrected sphere and prism are displayed in Figure 12, while the
original clean sphere and prism are shown in Figure 13.

(a) Central fourier slice of the
IsoNet-corrected sphere.

(b) Central fourier slice of the
IsoNet-corrected prism.

(c) Central fourier slice of the
CryoGEN-corrected sphere.

(d) Central fourier slice of the
CryoGEN-corrected prism.

Figure 12: Central fourier slices of sphere and prism. The IsoNet’s corrected has less information
both at low and high-frequency signals with missing regions, while CryoGEN fills in most of the
missing wedge. It is consistent with the spatial domain results.
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(a) Orignal clean prism.

(b) Original clean prism.

Figure 13: Original clean shapes.

Compared to the corrected tomograms, the CryoGEN-corrected versions more closely resemble the
original clean shapes.

A.3.2 ADDITIONAL RESULTS FOR SECTION 5.2

(a) Original missing wedged apoferritin.

(b) IsoNet-corrected apoferritin.

(c) CryoGEN-corrected apoferritin.

Figure 14: Missing wedged, CryoGEN and Iso-Net corrected apoferritin.
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We present the central X-Y, X-Z, Y-Z slices, as well as the central Fourier slices for the corrupted,
IsoNet-corrected, and CryoGEN-corrected volumes in Figure 14. In the IsoNet-corrected X-Y slice,
there are faint white artifacts in the background, consistent with Figure 7, and line artifacts in the
X-Z slice, which are absent in the CryoGEN-corrected results. Additionally, the central Fourier slice
of the IsoNet-corrected volume displays a distinct borderline, which is not present in the CryoGEN-
corrected slice.

Figure 15: Original clean Vipp1 assembly.

The original clean Vipp1 assembly are shown in Figure 15.

A.3.3 RECONSTRUCTION FROM NOISY SAMPLES

We also demonstrated the robustness of our algorithm under higher noise levels, such as SNR=0.2.
The results are presented in Figure 16. Even in this challenging scenario, CryoGEN outperforms
IsoNet, demonstrating its strong denoising capabilities.

(a) Original noisy Vipp1 assembly.

(b) IsoNet-corrected Vipp1 assembly.

(c) CryoGEN-corrected Vipp1 assembly.

Figure 16: CryoGEN and IsoNet corrected noisy Vipp1 assembly SNR=0.2.
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A.4 ARTIFACTS

In this section, we summarize the artifacts observed during our experiments, including streak ar-
tifacts, synthetic artifacts, and ringing artifacts. Throughout all experiments, CryoGEN consis-
tently outperforms the baseline methods.

A.4.1 STREAK ARTIFACTS

Streak artifacts commonly appear around dense materials, such as gold particles, in Cryo-ET re-
constructions, primarily due to two factors: (1) the restricted tilt angle range during data acquisition,
and (2) the sensitivity of reconstruction algorithms, such as weighted back-projection (WBP), to
high-intensity variations (see Figure 2). These bright spots generate ripples or streaks during the
back-projection process, resulting in visual distortions that degrade the overall image quality.

(a) IsoNet-corrected Vipp1 assembly.

(b) CryoGEN-corrected Vipp1 assembly.

Figure 17: CryoGEN and IsoNet corrected Vipp1 assembly.

Although these artifacts are clearly depicted in Figure 17, their visibility may be constrained by the
size of the gold nanoparticles and ribosomes in Figure 9. To address this, we provide an additional
view in Figure 18, where the artifacts are more noticeable.

(a) IsoNet-corrected purified ribosomes.

(b) DeepDeWedge-corrected purified ribosomes.

(c) CryoGEN-corrected purified ribosomes.

Figure 18: Comparison of IsoNet-corrected and CryoGEN-corrected purified ribosomes.
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A.4.2 SYNTHETIC ARTIFACTS

Synthetic artifacts refer to unintended distortions or features that emerge in generated images or
data, often resulting from generative models trained on datasets with incomplete distributions. As
shown in Figure 19, the IsoNet method introduces synthetic artifacts caused by the reconstruction
of the missing wedge, whereas the CryoGEN approach effectively resolves these issues.

(a) WBP. (b) IsoNet. (c) CryoGEN.

Figure 19: Comparison of low-density volumes generated by WBP (a), IsoNet (b) and CryoGEN (c).

A.4.3 RINGING ARTIFACTS

Ringing artifacts are undesirable distortions that appear as bands, typicallynear sharp edges in
tomographic imaging. These artifacts often arise from reconstruction using band-limited signals that
lack the high-frequency components required to accurately capture sharp transitions. In experiments
with both purified ribosomes and immature HIV capsids, CryoGEN outperforms baseline methods,
displaying minimal ringing artifacts.

(a) IsoNet-corrected purified ribo-
somes.

(b) DeepDeWedge-corrected puri-
fied ribosomes.

(c) CryoGEN-corrected purified
ribosomes.

Figure 20: A comparison of purified ribosomes corrected by IsoNet, DeWedge, and CryoGEN.

(a) IsoNet-corrected immature HIV
capsid.

(b) DeepDeWedge-corrected imma-
ture HIV capsid.

(c) CryoGEN-corrected immature
HIV capsid.

Figure 21: A comparison of immature HIV capsids corrected by IsoNet, DeWedge, and CryoGEN.
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A.5 ADDTIONAL RESULTS BY DEEPDEWEDGE

First, we present the DeepDeWedge-corrected simple shapes in Figure 22, where defects similar to
those in the IsoNet-corrected versions are apparent. Both methods exhibit spatial domain artifacts,
resulting in distorted volumes, and neither DeepDeWedge nor IsoNet effectively fills in the missing
information in Fourier space.

(a) DeepDeWedge-corrected sphere.

(b) DeepDeWedge-corrected prism.

Figure 22: DeepDeWedge-corrected shapes.

Next, the DeepDeWedge-corrected simulated data is displayed in Figure 23. Similar to IsoNet,
DeepDeWedge encounters the same issues, generating faint shadows and distinct line artifacts in the
background, as well as a noticeable borderline in the central Fourier slice.

Finally, we test the DeepDeWedge on the real-world examples as shown in Figure 24. The
DeepDeWedge-corrected ribosomes exhibit the same irregular distribution of high-frequency com-
ponents in the central region and yield unsatisfactory results for the HIV capsid, with noticeable
artifacts. A potential reason for the poor performance on the HIV capsid may be the loss of infor-
mation caused by even-odd splits.

(a) DeepDeWedge-corrected apoferritin.

(b) DeepDeWedge-corrected Vipp1 assembly.

Figure 23: DeepDeWedge-corrected simulated data.
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(a) DeepDeWedge-corrected purified ribosomes.

(b) Central fourier slice of the DeepDeWedge-
corrected purified ribosomes.

(c) DeepDeWedge-corrected HIV capsid.

(d) Central fourier slice of the DeepDeWedge-
corrected HIV capsid.

Figure 24: DeepDeWedge-corrected ribosomes and HIV capsid, along with their corresponding
central Fourier slices.

A.6 VISUALIZATION OF A SINGLE RIBOSOME

In Figure 25, we present a visualization of an individual ribosome. The average of all ribosomes is
compared to those reconstructed by IsoNet and CryoGEN, using the fitmap command in ChimeraX1

for rigid-body optimization to align the maps. While the IsoNet reconstructions may appear to ex-
hibit more details in 2D grayscale images, as shown in Figure 9, this effect is likely due to undesired
noise or synthetic artifacts, highlighting the superior denoising capabilities of CryoGEN.

Figure 25: Single Ribosome Visualization: We compared
CryoGEN with IsoNet and the averaged results of all ribo-
somes across two examples at different rotation angles.

Furthermore, we compute the corre-
lation between the ribosome recon-
structions generated by IsoNet and
CryoGEN with the average, obtain-
ing correlation coefficients of ρIsoNet =
0.1792 and ρCryoGEN = 0.5134, respec-
tively. Both qualitative and quanti-
tative results demonstrate that Cryo-
GEN outperforms IsoNet, providing
smoother reconstructions.
A.7 IMPLEMENTATION DETAILS

Following struct2map GAN (Zhang
et al., 2024), the architecture consists
of a generator and discriminator with
specific design choices. The gen-
erator is a modified U-Net architec-
ture, known as U-Net++, which en-
hances the standard U-Net with dense
skip connections for improved per-
formance (Zhou et al., 2018). The

discriminator is composed of four 3D convolutional layers, each using a 3 × 3 × 3 kernel. Fol-
lowing the final convolutional layer, an adaptive average pooling layer reduces the dimensions of
the feature map to 1 × 1 × 1. This output is then flattened and fed into a series of three fully con-
nected layers, with ReLU activations between each layer. The final layer produces a single output,
which serves as the result of binary classification.

1https://cgl.ucsf.edu/chimerax/docs/user/commands/fitmap.html
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The CryoGEN are trained with the Adam optimizer (Kingma & Ba, 2015) with batch size one for
simulated shapes and protein subtomograms and with batch size 4 for real-world examples. The
learning rate is set to 10−4 with a linear warm-up phase in the initial one-tenth steps, which is
followed by a linear decay schedule thereafter. Different from IsoNet, which progressively increases
the noise scale, we apply random noise levels across all training steps. Specifically, a random number
is sampled from a uniform distribution within the range (0,1] and multiplied by the set noise scale
for each step. Additionally, the penalty term λ is kept constant during the first epoch and then decays
linearly throughout the subsequent epochs.

A.8 EXPERIMENT DETAILS

A.8.1 SPHERE

A hollow sphere with an outer diameter of 70 pixels and a thickness of 4 pixels is positioned at
the center of a 140×140×140 volume. Corruption is applied by setting values to zero within the
missing wedge angles in Fourier space. For training, the volume is split into ten 96×96×96 pixel
subtomograms with randomly chosen origins. These subtomograms are then randomly cropped to
64×64×64 pixels before being input into the models.

A.8.2 PRISM

A prism with a thickness of 20 pixels is placed inside a 96×96×96 volume. It is randomly rotated
in ten directions. Corrupted prisms are generated by setting zero values within the missing wedge
angles in Fourier space. The entire volume is directly fed into the model during training.

A.8.3 SIMULATED APOFERRITIN

Ten randomly rotated apoferritin datasets are downloaded from a link provided by IsoNet and gen-
erated using ChimeraX’s molmap function. During training, the datasets are directly fed into the
model without further modifications.

A.8.4 SIMULATED STACKED RINGS

C13 Vipp1 stacked ring data are downloaded from the EMDB database and binned twice, resulting
in 200×200×200 pixels. The data is randomly rotated in ten different directions. Corrupted stacked
rings are generated by setting zero values within the missing wedge angles in Fourier space. For
training, the data is split into ten 96×96×96 pixel subtomograms with random zero origins, then
randomly cropped to 64×64×64 pixels before being fed into the models.

A.8.5 RIBOSOMES

Ribosome data is downloaded from the EMPIAR database and binned six times, yielding a pixel size
of 13.02 Å. IsoNet’s deconvolution is applied, following the same procedure as described by (Liu
et al., 2022). To ensure that subtomograms contain sufficient data, IsoNet’s mask generation tool
is used to extract subtomograms with at least 40% non-zero pixels based on the density mask. For
training, a tomogram is split into seventy 80×80×80 pixel subtomograms, resulting in a total of 490
subtomograms. These are randomly cropped to 64×64×64 pixels before being fed into the models.

A.8.6 HIV CAPSID

Raw tilt series for the HIV capsid is downloaded from the EMPIAR database. The movie stacks are
drift-corrected and reconstructed using the WBP algorithm, aided by the latest tomogram processing
tools such as Aretomo2. The processed tomograms, TS-01, TS-43, and TS-45, are then subjected
to IsoNet’s deconvolution, following the procedure outlined by (Liu et al., 2022). IsoNet’s mask
generation tool is applied to ensure that each subtomogram contains at least 50% non-zero pixels.
During training, each tomogram is split into one hundred 96×96×96 pixel subtomograms, resulting
in 300 subtomograms. These are randomly cropped to 64×64×64 pixels before being fed into the
models.
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