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ABSTRACT

Neural networks have matched or surpassed human abilities in many tasks that
humans solve quickly and unconsciously, i.e., via Kahneman’s “System 1”, but
have not been as successful when applied to “System 2” tasks that involve con-
scious multi-step reasoning. In this work, we argue that the kind of training that
works for System 1 tasks is not sufficient for System 2 tasks, propose an alterna-
tive, and empirically demonstrate its effectiveness. Specifically, while learning a
direct mapping from inputs to outputs is feasible for System 1 tasks, we argue that
algorithmic System 2 tasks can only be solved by learning a mapping from in-
puts to outputs through a series of intermediate steps. We first show that by using
enough intermediate steps a 1-layer 1-head Transformer can in principle compute
any finite function, proving the generality of the approach. We then show em-
pirically that a 1-layer 1-head Transformer cannot learn to compute the sum of
binary numbers directly from the inputs, but is able to compute the sum when
trained to first generate a series of intermediate results. This demonstrates, at a
small scale, how a fixed-size neural network can lack the expressivity to encode
the direct input-output mapping for an algorithmic task and yet be fully capa-
ble of computing the outputs through intermediate steps. Finally, we show that
a Frozen Pretrained Transformer is able to learn binary addition when trained to
compute the carry bits before the sum, while it fails to learn the task without using
intermediates. These results indicate that explicitly guiding the neural networks
through the intermediate computations can be an effective approach for tackling
algorithmic tasks.

1 INTRODUCTION

Daniel Kahneman has pointed out that there is a fundamental difference in how humans solve the
following two tasks (Kahneman, 2011):

(1) complete the phrase “bread and . . . ”;
(2) complete the equation “17× 24 = . . . ”.

The answer to (1) comes to mind instantly, with no mental effort, and is a result of a computation
that one is not consciously aware of and could not explain. The answer to (2) requires time and
effort to come up with, and is a result of a sequence of computations that one consciously carries
out. The former mode of cognition is what Kahneman calls System 1, the latter System 2.

We currently have separate tools for solving each of these two kinds of problems on a computer, but
it is not yet clear how to build a single system capable of both modes of cognition simultaneously.
Many tasks that exercise System 2 in humans involve executing some fully-specified algorithm and
thus are quite straightforward to solve using conventional computer programs. However, classical
programming is not applicable to System 1 tasks as these typically correspond to functions that we
do not know how to implement. Instead, System 1 tasks are usually tackled by approximating the
target functions from observed input-output pairs. Whether such a learning-based approach could
be successfully extended to System 2 tasks is an open question, and one that we aim to explore in
this paper.

We argue that the classical System 1 paradigm of training neural networks to approximate functions
from inputs and outputs corresponding to a given task is not a scalable approach for tackling tasks
from the System 2 domain. We claim that, given only inputs and outputs, neural networks will
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not receive enough supervision to converge to a solution when trained to perform algorithmic tasks
that humans solve via System 2. To circumvent this, we propose to supplement the training data
with intermediate results that would be helpful to compute before arriving at the final output. By
modifying the training data in this way, we are effectively changing the training objective — instead
of having to learn any arbitrary way of mapping inputs to outputs, the neural networks are now
trained to compute the outputs from the inputs through a particular sequence of intermediate steps.
We hypothesize that such additional guidance might be necessary in order for neural networks to
learn algorithmic tasks, and we empirically evaluate this hypothesis.

Much of existing work in applying neural networks for System 2 tasks has been focused on making
neural architectures more aligned with the execution of algorithms. While fine-tuning the model
architectures may ultimately lead to superior System 2 capabilities (after all, the architecture of a
calculator allows it to perform arithmetic at a super-human level), we instead explore the challenge
of extending the capabilities of existing state-of-the-art System 1 models — namely, the Trans-
former — towards the System 2 domain. In particular, we take inspiration from the human ability
to solve algorithmic tasks by writing down symbols on paper and propose to formulate such tasks
as sequence-to-sequence problems where the target sequence includes both the outputs and all the
intermediate symbols that a human would write (or more). That is, instead of modifying the models,
we experiment with modifying the data. Our main contributions can be summarized as follows:

• We show that it is possible to hand-code a 1-layer 1-head Transformer to compute any finite
function if enough intermediate steps are used;

• We show that a 1-layer 1-head Transformer can be trained to perform binary addition if
the target sequences include intermediate results, whereas it fails to learn the task when
predicting the outputs directly from the inputs; and

• We show that a Frozen Pretrained Transformer can be trained to perform binary addition
if the target sequences include intermediate results, whereas it fails to learn the task when
predicting the outputs directly from the inputs.

2 RELATED WORK

The need of bridging the gap between System 1 and System 2 capabilities in current deep learning
models has recently been emphasized by Yoshua Bengio (Bengio, 2019; Bengio et al., 2021). The
work of Bengio and colleagues addresses the higher-level cognition in its broadest sense, seeking to
model and incorporate into current systems concepts such as consciousness (Bengio, 2017), causal-
ity (Bengio et al., 2020), agency (Thomas et al., 2018), and global workspace (Goyal et al., 2021). In
Goyal & Bengio (2020), they question the paradigm of classical statistical learning and propose to
shift from training models on curated datasets towards training agents in complex non-stationary en-
vironments. In contrast to that, our approach lies within a conventional learning framework (namely,
sequence-to-sequence modeling with Transformers), and addresses System 2 in a slightly narrower
sense (namely, as algorithmic execution).

A considerable fraction of recent work in applying neural networks for algorithmic tasks has been
concerned with modifying or augmenting neural architectures to make them more suitable for algo-
rithmic execution. One very common approach involves trying to bring components from classical
computer architecture into the neural setting: Neural Turing Machines give neural networks access
to dynamic external memory (Graves et al., 2014; 2016), Stack-augmented RNNs augment the net-
works with an infinite pushdown stack (Joulin & Mikolov, 2015), Neural Random Access Machines
use registers and introduce the ability to manipulate and dereference pointers (Kurach et al., 2016),
while Neural Arithmetic Logic Modules represent neural versions of the ALU (Trask et al., 2018;
Madsen & Johansen, 2020). A parallel but closely related line of research frames these new kinds of
augmented architectures as neural controllers endowed with access to external interfaces and applies
reinforcement learning techniques to train them to solve algorithmic tasks by interacting with the
interfaces (Zaremba & Sutskever, 2015; Zaremba et al., 2016).

The approach of using variable amount of computation per input, known as Adaptive Computation
Time (ACT), has been introduced by Graves (2016). Universal Transformers (Dehghani et al., 2019)
integrate ACT into the Transformer architecture, allowing each output symbol to be a result of a
variable number of applications of a single Transformer layer. While these works are, like ours,
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motivated by the apparent necessity of intermediate processing in certain tasks, they use learned
ponder time and learned ponder content whereas our work uses given ponder time and given ponder
content. The main advantage of learned ponder time and content is that the model is free to discover
and learn to perform the intermediate computations that it finds most useful. This also means that the
researcher does not need to know the correct intermediate steps to train the model and can thus tackle
a potentially larger class of problems. The main disadvantage of learned ponder time and content
is that the amount of supervision per forward pass decreases as the model uses more intermediate
steps, and the signal can quickly become too weak for the model to train at all. It is also worth
noting that intermediate steps are typically given when humans are taught to perform algorithmic
tasks (rather than being asked to infer intermediate computations by just looking at input-output
pairs), which might be an important argument for given ponder content.

The idea of providing supervision beyond input-output examples has already appeared in several
projects, although, in our view, it still remains largely underexplored. Reed & de Freitas (2016) train
Neural Programmer-Interpreters by providing supervision on the correct action sequences (execution
traces) of the recurrent controller, Mirman et al. (2018) train differential Neural Computational
Machines with extra supervision on the movements of the read-write heads, and Mirman et al. (2018)
train Neural Execution Engines with extra supervision on the attention masks. While the added
training signal does lead to better sample efficiency and improved generalization, a major limitation
of all of these approaches, as acknowledged by Mirman et al. (2018), is that the extra supervision
needs to be highly specialized as it applies to very specific components of each architecture. Our
approach of supplementing the target sequences with intermediate results is completely architecture-
independent and thus does not share this limitation. Veličković et al. (2020) use extra supervision at
the data level as well, though their work is focused specifically on tasks involving graph-structured
inputs and is thus based on neural network architectures that are tailored for processing graphs. In
contrast to that, we adopt a general sequence-to-sequence modeling framework, with an intention to
imitate a human executing an algorithm on a piece of paper. Our main goal is to explore how and
whether powerful existing System 1 models could be used in the System 2 domain, rather than to
find a neural architecture that would be most suitable for executing algorithms. We therefore use
vanilla decoder-only Transformers in our experiments.

3 MOTIVATION

The distinguishing characteristic of System 1 tasks is that they can be solved instantly and uncon-
sciously, in something akin to a single “forward pass” through a human neural network. It thus
seems plausible that all input-output mappings corresponding to System 1 tasks are in principle
computable via a single forward pass through a sufficiently large artificial neural network. Recent
success in deep learning shows that training bigger models on more data indeed makes it possible to
solve more and more System 1 tasks, and it is not unreasonable to expect this trend to continue.

When it comes to solving System 2 tasks, however, scaling up appears to be a dead-end. Consider
the problem of completing the sentence “The first digit of the n-th Fibonacci number is . . . ”, where
n is replaced by some positive integer. Since a single forward pass through a neural network (no
matter how large) involves a constant amount of computation, there will be some number N ∈ N
such that for all n > N the correct output is not computable. It follows that the only viable approach
for solving these kinds of algorithmic tasks is to arrive at the output through intermediate steps.

The main value of introducing intermediate steps is that it gives control over the level of model
expressivity required to implement a solution to a particular task. No matter how many atomic
operations separate the outputs from the inputs in a given algorithmic problem, performing those
exact operations in sequence would make each execution step only as complex as a single atomic
operation. This is arguably the main reason why a human brain can “implement” something like
integer multiplication even though it does not contain a circuit for multiplying arbitrarily large num-
bers directly — the key is that a complex problem can be decomposed into simpler ones until each
sub-problem becomes solvable “atomically” via System 1. By the same token, a neural network that
is not expressive enough to compute some output through 0 intermediate steps may be expressive
enough to compute the same output through l intermediate steps for some l > 0, since each of the l
steps would involve computing a simpler function. Since many System 2 tasks are algorithmic, their
outputs can be made arbitrarily distant from the inputs (in terms of the number of atomic operations
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separating the two), which implies that step-by-step processing is the only scalable approach for
solving them.

The necessity of intermediate processing does not by itself imply the amount of guidance that the
neural networks should receive during training. The exact intermediate computations can either
remain unspecified and be inferred by the model, or be fixed and provided as part of the training
data. Although there are pros and cons to both alternatives (as we have outlined in section 2),
we see the latter as more promising and choose to include the intermediate results in the target
sequences used during training. Our position is based on the following three observations: first,
it is natural to provide complete supervision over the intermediate computations when teaching
humans to perform algorithmic tasks; second, learned intermediates create the vanishing supervision
problem (the longer the ponder time, the less training signal is received per forward pass); and third,
for all algorithmic tasks the exact intermediate results are fully known anyway. While manually
increasing the amount of supervision goes against the tradition of minimizing the reliance on expert
knowledge that arguably lead to most of the recent achievements in the System 1 domain, System 2
tasks represent a structurally different class of problems for which a different set of constraints may
apply.

The arguments laid out above have the following important implications:

• Expressiveness: a neural network implementing only some very basic atomic operations
should in principle be capable of expressing arbitrarily complex functions as long as enough
intermediate steps are used;

• Training: a neural network that fails to learn some algorithmic task when trained without
intermediate processing may be able to learn the same task if enough intermediate steps are
used; and

• Composability: a neural network that is pretrained on some general-purpose task and does
not contain a circuit implementing some algorithmic computation directly may nevertheless
be able to solve the same task by computing the output through simpler operations which
it does contain circuits for.

We establish the first of these implications in Section 4 and we empirically validate the latter two
in Sections 5 and 6. Even though demonstrating a single example where a statement holds does not
prove it in general, our empirical results confirm that the hypothesized phenomena do occur in the
particular contexts we considered in this work and thus serve as evidence in favor of the latter two
implications.

4 EXPRESSIVENESS

Human beings are able to solve algorithmic problems, such as integer multiplication, by writing
down sequences of symbols, usually with outputs at the end, where each new symbol is a result
of some basic operation applied to some of the symbols preceding it. Intuitively, it seems that the
Transformer architecture should have just the right ingredients for emulating this kind of processing:
it is typically used for generating sequences of symbols by iteratively predicting the next one, and its
attention mechanism allows each predicted symbol to be a function of selected preceding ones. We
prove this intuition by demonstrating that it is possible to construct a 1-layer 1-head Transformer to
compute any finite function through intermediate steps by emulating NOR circuits. The full details
are included in Appendix A, but the general argument goes as follows:

(1) Since NOR is a universal gate, for every finite function f : {0, 1}n → {0, 1}m there is a
Boolean circuit made up of NOR gates that computes f .

(2) By sorting the gates of such a NOR circuit according to their topological order, we can rep-
resent the circuit as a sequence of binary symbols (s1, . . . , sn+l+m), where (s1, . . . , sn) are
the inputs, (sn+l+1, . . . , sn+l+m) are the outputs, and, for each i > n, si = NOR(sji , ski)
with ji, ki < i.

(3) Given (s1, . . . , sn), we can correctly complete the sequence with a 1-layer 1-head decoder-
only Transformer if its attention matrix A satisfies Ai,z = 0.5 if z ∈ {ji, ki} and Ai,z = 0
otherwise (the model attends to the correct pair of symbols at each step) and the position-
wise feed-forward module computes the NOR of the two symbols attended to.
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Figure 1: Attention matrices from the hand-coded Transformer implementing binary addition with
n = 8.

We present a concrete setting of all of the weights of a 1-layer 1-head decoder-only Transformer that
makes (3) possible in Appendix A, confirming the first implication from Section 3.

While implementing NOR gates is sufficient for the proof due to the universality of the NOR gate,
a slight modification to the weights of the feed-forward module allows us to choose between NOR,
AND, and XOR operations at each position in the output sequence. As a concrete example, we
used this construction to implement addition of fixed-length bit strings (with guaranteed perfect
accuracy), proving that addition, with the right number of intermediates, is in the space of programs
computable by a 1-layer 1-head Transformer. In particular, for each position i along the inputs,
letting ai and bi denote the input bits and ci denote the carry bit (obtained from the previous position,
i.e., from the sum ai−1 + bi−1 + ci−1), we compute

di = XOR(ai, bi)
ei = XOR(ci, di)
fi = AND(ai, bi)

gi = AND(ci, di)

ci+1 = XOR(fi, gi)

where ei is the i-th bit of the sum and ci+1 is the carry bit for the next position (defining c1 = 0).
We can thus represent the addition of, say, 3-bit numbers a1a2a3 and b1b2b3 (in little-endian order,
where a1 is the least significant bit) as the sequence

(representation 1) a1a2a3b1b2b3c1d1e1f1g2c2d2e2f2g2c3d3e3f3g3c4,

or, by reordering the symbols to put the sum at the end and intermediates in between the inputs and
the outputs,

(representation 2) a1a2a3b1b2b3︸ ︷︷ ︸
inputs

d1d2d3f1f2f3c1g1c2g2c3g3c4︸ ︷︷ ︸
intermediates

e1e2e3︸ ︷︷ ︸
outputs

,

which is the representation that we actually use in our training experiments. Figure 1 shows the
attention matrices corresponding to both representations (row i of the attention matrix indicates
which symbols are attended to when predicting the i-th symbol from the output sequence). As can
be verified from the figure, the hand-coded Transformer does indeed implement the correct attention
patterns corresponding to two different representations of the Boolean circuit for binary addition.
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5 TRAINING

One of our core hypotheses in this work is that in many System 2 tasks the outputs will be too many
atomic operations away from the inputs to be computable in a single forward pass, regardless of how
much the neural networks are scaled up, and that introducing intermediate computation is one way of
solving the issue. If true, this phenomenon should manifest at small scale as well: a shallow model
may lack the expressivity to learn a direct mapping from inputs to outputs for a relatively simple
task but be expressive enough to learn the mapping from inputs to outputs through intermediates, as
decomposing the problem would reduce the minimum required complexity of a single operation to
the point where each individual step becomes computable in a single forward pass. We evaluate this
hypothesis empirically by training a 1-layer 1-head decoder-only Transformer on the task of binary
addition. (We use the minGPT implementation for our experiments (Karpathy, 2020).)

We chose to investigate binary addition primarily because of its simplicity. Conveniently, there
are very clear candidates for what intermediate computations to use – e.g., we can supplement the
training data with the carry bits (which are usually explicitly computed when a human is adding
numbers on a piece of paper), or the values of all non-output gates in a Boolean circuit implementing
binary addition (which is what we did in a previous section and do here as well). This means that,
even if the task is decomposed into the most elementary operations (i.e., binary Boolean gates), each
output symbol would be associated with at most 4 intermediate computations and so the gap between
the inputs and outputs that is left for storing the intermediate results will not be disproportionately
large.

We chose to investigate the 1-layer 1-head Transformer for three main reasons. First, we know
from Section 4 that this model is sufficient for emulating the Boolean circuit for binary addition and
we know what the target attention patterns look like (Figure 1). Second, using only a single layer
and a single attention head enhances the interpretability of the model as this makes it possible to
unambiguously determine its attention patterns (there is only a single attention matrix we need to
look at). Finally, recall that the goal of our experiment is to test whether a model that is unable to
learn a task without the use of intermediate computations could learn the same task if intermediates
were used. Thus, even though binary addition may well be a simple enough problem for a large
transformer to solve without any intermediate steps at all, our aim here is to artificially restrict
the expressivity of the transformer to a point where it is unable to learn the task without using
intermediate steps so that we could then add intermediate computations and test whether this makes
the task learnable. As the results of this section demonstrate, reducing both the number of layers
and the number of heads of the Transformer to 1 is sufficient to achieve this.

We frame binary addition as a task of sequence completion — that is, the model receives a prefix of
2n symbols representing the two input numbers and has to predict the subsequent l + n symbols,
where l is the number of intermediate symbols and the last n symbols represent the sum (ignoring
the overflow bit). We train the model in 3 different regimes:

(1) Weak supervision: the model is trained to predict the sum immediately after the inputs, i.e.,
l = 0. A single training example for n = 3 would have the form a1a2a3b1b2b3e1e2e3, with
loss computed on the model’s predictions of e1e2e3.

(2) Medium supervision: the model is trained to predict the sum after l = 4n+1 intermediates,
with loss computed only on the sum and not the intermediates. A single training example
for n = 3 would have the form a1a2a3b1b2b3d1d2d3f1f2f3c1g1c2g2c3g3c4e1e2e3, with
loss computed on the model’s predictions of e1e2e3.

(3) Strong supervision: the model is trained to predict both the sum and the l = 4n +
1 intermediates obtained by decomposing binary addition down to logic gates as ex-
plained in section 3. A single training example for n = 3 would have the form
a1a2a3b1b2b3d1d2d3f1f2f3c1g1c2g2c3g3c4e1e2e3, with loss computed on the model’s
predictions of d1d2d3f1f2f3c1g1c2g2c3g3c4e1e2e3.

In all three regimes we use teacher-forcing during training, meaning that when predicting the i-th
symbol of the sequence the model sees the correct target symbols at all positions up to i. During
testing, the model receives only the two input numbers (e.g., a1a2a3b1b2b3) and is used to generate
the completion (e.g., e1e2e3 for weak supervision and x1x2x3x4x5x6x7x8x9x10x11x12x13e1e2e3
for medium and strong supervision) autoregressively using greedy sampling.
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Table 1: Test set accuracy of a 1-layer 1-head Transformer on binary addition of up to n-bit numbers.

n = 8 n = 16 n = 24 n = 32 n = 40 n = 48

weak supervision 1.0000 0.2529 0.1773 0.1961 0.0720 0.0000
medium supervision 0.0473 0.0003 0.0000 0.0000 0.0000 0.0000
strong supervision 1.0000 1.0000 1.0000 1.0000 0.8916 0.9873

We run experiments with n ∈ {8, 16, 24, 32, 40, 48}. For each n, we perform a grid search over
5× 2× 3× 3 = 90 hyperparameter settings and run 4 randomly initialized trials for each of those.
The hyperparameters we vary are the embedding dimension (chosen from {32, 64, 128, 256, 512}),
the number of training examples (chosen from {1000, 10000}), the positional encodings (either fixed
and defined via the sine and cosine functions as in the original Transformer (Vaswani et al., 2017),
fixed and set to the hand-coded values as in Appendix A, or learned), and the training regime (weak,
medium, or strong supervision). In Table 1, we report the maximum accuracy achieved with weak,
medium, and strong supervision over all hyperparameter settings and random trials for each n. We
measure the exact-match accuracy against the target output bits representing the sum of the input
numbers. The test set consists of 10000 examples not seen by the model during training.

The results in Table 1 show that, for n ≥ 16, a 1-layer 1-head Transformer is not able to learn
binary addition from weak or medium supervision while it can learn to solve the problem when
strong supervision is used, supporting the second implication from Section 3. This experiment thus
serves as a demonstration of a concrete problem for which the use of intermediate steps is the key
factor determining whether a neural network will be able to solve a task or not. This supports our
main hypothesis that constant-size neural networks incapable of encoding the input-output mappings
corresponding to algorithmic tasks may be capable of solving these same tasks by encoding the
mappings from inputs to outputs through a series of intermediate steps.

We also include a visualization of the attention patterns of a Transformer trained with strong su-
pervision in Figure 2 (specifically, we plot the attention matrix averaged over 100 evaluations on
random inputs), along with the target patterns taken from the hand-coded model. As indicated by the
considerable resemblance between most of the corresponding rows from the two plots, the trained
Transformer does indeed learn to compute the intermediate results correctly and make use of them
when predicting the outputs. This confirms that guiding Transformers through particular chains of
intermediate computations can be instrumental in training them to perform algorithmic tasks.

Finally, for more context on the impact of hyperparameters on performance, Figures 3 and 4 compare
the maximum test accuracies achieved with different positional encodings and sizes of the training
dataset, respectively. We find that the best performance is achieved by using the sinusoidal positional
encodings as used in the original Transformer (Vaswani et al., 2017), and that the smaller dataset of
1000 examples is sufficient to achieve the best performance in most cases (the only exception being
the strong supervision case with n = 40).

6 COMPOSABILITY

Lu et al. (2021) have demonstrated that the weights of large pretrained Transformers encode general-
purpose computations which can be leveraged to solve tasks from a diverse set of modalities. They
show that it is possible to achieve competitive accuracies on a range of tasks by fine-tuning only
the input layer, the output layer, and the layer-norm parameters of a pretrained GPT-2 model while
freezing all of the remaining weights in the “body” of the model (which comprise more than 99.9%
of the parameters). This restricted version of the model is called a Frozen Pretrained Transformer
(FPT).

While it is demonstrated that FPT is able to achieve perfect accuracy on symbol manipulation tasks
like bit memory or bitwise XOR, these tasks only involve elementary single-step computations and
thus fall into the domain of System 1. The question we are interested in is whether the weights
of a pretrained language model contain circuits for solving non-trivial multi-step algorithmic tasks,
and if not, whether solutions to such tasks can be assembled by composing simpler circuits that are
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Figure 2: Attention matrices from the hand-coded vs. trained Transformer implementing binary
addition with n = 8.
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Figure 3: Test set accuracy of a 1-layer 1-head Transformer on binary addition of up to n-bit numbers
with different positional encodings.
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Figure 4: Test set accuracy of a 1-layer 1-head Transformer on binary addition of up to n-bit numbers
with different training set sizes.
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Table 2: Test set accuracy of a Frozen Pretrained Transformer on binary addition of up to n-bit
numbers.

n = 8 n = 16 n = 32 n = 64 n = 128

weak supervision 1.0000 0.0005 0.0000 0.0000 0.0000
medium supervision 0.0357 0.0000 0.0000 0.0000 0.0000
strong supervision 1.0000 1.0000 1.0000 1.0000 1.0000

contained within the weights. If the weights could encode a direct input-output mapping, fine-tuning
the FPT on example inputs and outputs would be sufficient for priming the model to perform the
task. However, if the solution could only be composed out of pieces, we would expect FPT to learn
the task only when fine-tuned to produce enough intermediate results before the output such that the
individual computations are expressible via the pretrained weights.

We investigate this by training a FPT on binary addition in the weak, medium, and strong supervision
regimes analogous to those described in Section 5, though, in contrast to the previous experiments,
we only use the carry bits as the intermediates (FPT is a full-size multi-layer Transformer and thus
may require fewer intermediate steps than a 1-layer 1-head model). For instance, with n = 3, FPT
would receive a1a2a3b1b2b3 as input and have to predict e1e2e3 in the weak supervision regime
and c2c3c4e1e2e3 in the strong supervision regime (using the same notation as before). We train
on 10000 examples for up to 100 epochs using teacher forcing and test on 10000 unseen examples
without teacher forcing. We report the exact match accuracies (against the sum bits) over the test
examples in Table 2. As we can see, FPT fails to learn binary addition in the weak and medium su-
pervision regimes while it is able to solve the task when being trained to compute the carry bits first.
This suggests that binary addition may not be directly implemented in the weights of a pretrained
language model but can nevertheless be expressed as a combination of more granular operations,
supporting the third implication from Section 3. This result seems to be an analog of a similar fea-
ture of the System 2 learning capabilities of humans — while it may not be possible to teach a child
to compute each digit of the sum in one unconscious step, the same child can easily learn to compute
the correct outputs by explicitly calculating and keeping track of the carries. Once again, we see that
guidance over intermediate computations is what a neural network’s ability to solve an algorithmic
task appears to hinge on.

7 CONCLUSION

In this work, we have argued that the only way for fixed-size neural networks to solve algorithmic
System 2 tasks is by computing the outputs through intermediate steps. If neural networks are going
to be trained to perform such tasks from data, the actual intermediate results will either be given or
have to be inferred. We here focused on the regime with given intermediates, called strong super-
vision. Our experiments demonstrated that a 1-layer 1-head Transformer and a Frozen Pretrained
Transformer can learn to perform binary addition only if strong supervision is used, supporting our
hypothesis that guidance over intermediate computations can be necessary for solving algorithmic
tasks.

We believe that strong supervision will be an integral part of any scalable attempt to use a learning-
based approach for tackling algorithmic tasks from the domain of System 2. We speculate that the
usefulness of strong supervision might even extend beyond the space of algorithmic tasks, since any
cognitive task that is characterized by distinct periods of thought leading to concrete intermediate
results would become easier to learn if examples of those intermediate results were given during
training. This leads us to believe that the idea of providing explicit guidance over intermediate
computations might point to fruitful directions for future research.
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A APPENDIX

A 1-layer 1-head decoder-only Transformer is a parameterized function mapping sequences of sym-
bols to next symbol probabilities, with parameters given by

θ = {Wemb,Wpos}
∪ {γln1, βln1,Wquery, bquery,Wkey, bkey,Wvalue, bvalue}
∪ {γln2, βln2,Wff1, bff1,Wff2, bff2}
∪ {γln3, βln3,Wout}.

Given an input sequence of b symbols (s1, s2, . . . , sb) from some vocabulary V , the Transformer
outputs b vectors h(i)prob ∈ [0, 1]|V| for i ∈ {1, 2, . . . , b} interpreted as conditional PMFs for next
symbol prediction and computed via the following definitions:

h
(i)
emb = (Wemb)si+1,: + (Wpos)i,: (1)

h
(i)
ln1 = LayerNormγln1,βln1

(
h
(i)
emb

)
(2)

q(i) = h
(i)
ln1Wquery + bquery (3)

k(i) = h
(i)
ln1Wkey + bkey (4)

v(i) = h
(i)
ln1Wvalue + bvalue (5)

Ki,: = k(i) (6)

a(i) = Softmax
(
q(i)K>√

d
+ Maski,:

)
(7)

h
(i)
att =

b∑
j=1

a
(i)
j v(j) (8)

h
(i)
res1 = h

(i)
att + h

(i)
ln1 (9)

h
(i)
ln2 = LayerNormγln2,βln2

(
h
(i)
res1

)
(10)

h
(i)
ff1 = ReLU

(
h
(i)
ln2Wff1 + bff1

)
(11)

h
(i)
ff2 = ReLU

(
h
(i)
ff1Wff2 + bff2

)
(12)

h
(i)
res2 = h

(i)
ff2 + h

(i)
res1 (13)

h
(i)
ln3 = LayerNormγln3,βln3

(
h
(i)
res2

)
(14)

h
(i)
prob = Softmax

(
h
(i)
ln3Wout

)
, (15)

where d is the embedding dimension, and Mask is an autoregressive attention mask, i.e., a d × d
matrix with all elements above the main diagonal equal to −∞ and all of the remaining elements
equal to 0. Predictions are made by interpreting the entries of h(i)prob as next-symbol probabilities,
that is,

Pθ(si+1 = Vj) =
(
h
(i)
prob

)
j
, (16)

for each j ∈ {1, 2, . . . , |V|}, where Vj represents the j-th symbol from the vocabulary.

Let n and m be some positive integers and let (s1, s2, . . . , sn+m) be a sequence of binary symbols
where, for each i > n, si = NOR(sji , ski) for some ji, ki < i. We are going to show a concrete
setting of the weights of a 1-layer 1-head decoder-only Transformer such that, given (s1, s2, . . . , sn),
it autoregressively predicts (sn+1, sn+2, . . . , sn+m) as the completion of the sequence. Specifically,
given any ε∗ > 0, we can hand-code the parameters θ such that, for each i ≥ n, Pθ(si+1 =
NOR(sji+1

, ski+1
)) > 1− ε∗.

12
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Choose any ε∗ > 0. Let b = n+m− 1 be the block size, d = 3 + b be the embedding dimension,
and define constants

c1 = 2

⌈
ln

(
(i− 2)(1/2− ε)

2ε

)⌉
, c2 =

⌈
ln

(
1− ε∗

ε∗

)⌉
, ε =

1

5 + 2d2
, δ = 1− 4ε− 2d2ε.

Let the parameters of a Transformer be hand-coded according to the following definitions:

Wemb ∈ R2×d with (Wemb)j,k =


−1 if (j, k) ∈ {(1, 1), (2, 2), (1, 3), (2, 3)}
1 if (j, k) ∈ {(1, 2), (2, 1)}
0 otherwise,

(17)

Wpos ∈ Rb×d with (Wpos)j,k =

{
1 if k = j + 3

0 otherwise,
(18)

γln1 ∈ Rd with (γln1)j = 1, (19)

βln1 ∈ Rd with (βln1)j = 0, (20)

Wquery ∈ Rd×d with (Wquery)j,k =

{
(d/4)−1/2c1 if k ∈ {jj , kj}
0 otherwise,

(21)

bquery ∈ Rd with (bquery)j = 0 (22)

Wkey ∈ Rd×d with (Wkey)j,k =

{
1 if j = k + 3

0 otherwise,
(23)

bkey ∈ Rd with (bkey)j = 0 (24)

Wvalue ∈ Rd×d with (Wvalue)j,k =

{
(d/4)−1/2 if (j, k) ∈ {(1, 4), (2, 5)}
0 otherwise,

(25)

bvalue ∈ Rd with (bvalue)j = 0 (26)

γln2 ∈ Rd with (γln2)j = 1, (27)

βln2 ∈ Rd with (βln2)j = 0, (28)

Wff1 ∈ Rd×4d with (Wff1)j,k =


−(d/4)1/2 if (j, k) = (4, 6)

(d/4)1/2 if (j, k) = (4, 7)

0 otherwise,
(29)

bff1 ∈ R4d with (bff1)j =


−2d2ε if j = 6

1− 4ε if j = 7

0 otherwise,
(30)

Wff2 ∈ R4d×d with (Wff2)j,k =


1 if (j, k) ∈ {(6, 6), (7, 7)}
−1 if (j, k) ∈ {(6, 8), (7, 9)}
0 otherwise,

(31)

bff2 ∈ Rd with (bff2)j = 0 (32)

γln3 ∈ Rd with (γln3)j = 1, (33)

βln3 ∈ Rd with (βln3)j = 0, (34)

Wout ∈ Rd×2 with (Wout)j,k =

{
δ−1d2c2 if (j, k) ∈ {(7, 1), (6, 2)}
0 otherwise.

(35)

Choose any i ≥ n. After the token embedding and positional encoding layers, the hidden represen-
tation corresponding to symbol i is given by

h
(i)
emb = (Wemb)si+1,: + (Wpos)i,:. (36)

13
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Since (
h
(i)
ln1

)
j
= LayerNormγln1,βln1

(
h
(i)
emb

)
j

(37)

= (γln1)j


(
h
(i)
emb

)
j
− 1

d

∑d
k=1

(
h
(i)
emb

)
k√

1
d

∑d
k=1

((
h
(i)
emb

)
k
− 1

d

∑d
k′=1

(
h
(i)
emb

)
k′

)2
+ (βln1)j (38)

= (d/4)1/2
(
h
(i)
emb

)
j
, (39)

after layer normalization the hidden representation is turned into

h
(i)
ln1 = (d/4)1/2h

(i)
emb. (40)

Then, since the only nonzero elements of h(j)ln1 are
(
h
(j)
ln1

)
1
,
(
h
(j)
ln1

)
2
,
(
h
(j)
ln1

)
3
, and

(
h
(j)
ln1

)
3+i

, and

the first three rows of Wkey are zero vectors, we get that the key corresponding to symbol j is given
by

k
(j)
k =

((
h
(j)
ln1

)>
Wkey + bkey

)
k

= (d/4)1/2(Wkey)3+i,k =

{
(d/4)1/2 if k = j

0 otherwise.
(41)

and the query corresponding to symbol j is given by

q
(j)
k =

((
h
(j)
ln1

)>
Wquery

)
k

= (d/4)1/2(Wquery)3+i,k =

{
c1 if k ∈ {ji+1, ki+1}
0 otherwise.

(42)

We thus have that the key matrix K (i.e., a matrix whose j-th row is the j-th key vector k(j)) will
be a b × d matrix whose first b columns are equal to (d/4)1/2 times the identity matrix and all the
remaining elements are 0. Consequently, the attention weights that will be used for computing the
hidden representation corresponding to the i-th symbol are given by

a(i) = Softmax
(
â(i) �Mask

)
, (43)

where

â
(i)
k =

(
q(i)K>

)
k√

d
=

{
c1/2 if k ∈ {ji, ki}
0 otherwise.

(44)

Then, since

c1 = 2

⌈
ln

(
(i− 2)(1/2− ε)

2ε

)⌉
=⇒ ec1/2 >

(i− 2)(1/2− ε)
2ε

(45)

=⇒ (1− 2(1/2− ε))ec1/2 > (i− 2)(1/2− ε) (46)

=⇒ ec1/2 > (1/2− ε)2ec1/2 + (i− 2)(1/2− ε) (47)

=⇒ ec1/2

2ec1/2 + (i− 2)
> (1/2− ε), (48)

we have that, for k ∈ {ji+1, ki+1},

a
(i)
k =

eâ
(i)
k∑b

j=1 e
â
(i)
j

=
ec1/2

2ec1/2 + 1 · (i− 2) + 0 · (b− i)
> 1/2− ε. (49)

This shows that that the hidden representation corresponding to symbol i after the attention module
can be made arbitrarily close to the average of the value vectors corresponding to symbols ji+1 and
ki+1.

Since the first two elements of h(j)emb are sign(sj) and −sign(sj), we get that the value vector corre-
sponding to symbol j is given by

v
(j)
k = (h>ln1Wvalue + bvalue)k =


sign(sj) if k = 4

−sign(sj) if k = 5

0 otherwise.
(50)

14
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The hidden representation corresponding to symbol i after the attention module is then given by

h
(i)
att =

b∑
j=1

a
(i)
j v(j) = a

(i)
ji+1

v(ji+1) + a
(i)
ki+1

v(ki+1) +
∑

j /∈{ji+1,ki+1}

a
(i)
j v(j), (51)

and we have that

si+1 = 1 =⇒ (sji+1
, ski+1

) = (0, 0) (52)

=⇒ v
ji+1

4 = v
ki+1

4 = −1 (53)

=⇒ (h
(i)
att )4 ∈ [−1, (1− 2ε)(−1) + (2ε)(1)], (54)

si+1 = 0 ⇐⇒ (sji+1
, ski+1

) 6= (0, 0) (55)

=⇒ v
ji+1

4 ∈ {0, 1}, vki+1

4 ∈ {0, 1} (56)

=⇒ (h
(i)
att )4 ∈ [(1− 2ε)(0) + (2ε)(−1), 1], (57)

that is, (
h
(i)
att

)
4
∈
{
[−1,−1 + 4ε] if si+1 = 1

[−2ε, 1] if si+1 = 0,
(58)

with (hiatt)5 = −(hiatt)4, and (hiatt)j = 0 for all j /∈ {4, 5}.
The hidden representation corresponding to symbol i after the first residual connection is given by

h
(i)
res1 = h

(i)
att + h

(i)
emb. (59)

Since (hiatt)5 = −(hiatt)4 and all other entries of h(i)att are zero, and h(i)emb has a mean of 0, we have that

mean
(
h
(i)
res1

)
= mean

(
h
(i)
att

)
+ mean

(
h
(i)
emb

)
= 0 + 0 = 0. (60)

Also, since h(i)att can contain non-zero entries,

std
(
h
(i)
res1

)
≥ std

(
h
(i)
emb

)
= (d/4)−1/2 (61)

and since the entries of h(i)res1 cannot exceed (d/4)1/2,

std
(
h
(i)
res1

)
≤

√√√√1

d

d∑
k=1

(
(d/4)1/2 − 0

)2
= (d/4)1/2. (62)

Then, since
h
(i)
ln2 = LayerNormγln2,βln2

(
h
(i)
res1

)
, (63)

we have that
(d/4)−1/2

(
h
(i)
res1

)
j
≤
(
h
(i)
ln2

)
j
≤ (d/4)1/2

(
h
(i)
res1

)
j

(64)

for all j ∈ {1, 2, . . . , d}, which implies that(
h
(i)
ln2

)
4
∈
{
[−(d/4)1/2, (d/4)−1/2(−1 + 4ε)] if si+1 = 1

[(d/4)1/2(−2ε), (d/4)1/2] if si+1 = 0.
(65)

Since (d/4)1/2 > 1, it follows that(
h
(i)
ln2

)
4
∈
{
[−d, (d/4)−1/2(−1 + 4ε)] if si+1 = 1

[−2dε, d] if si+1 = 0.
(66)

Using the definition of Wff1 and bff1 and the fact that (d/4)1/2 > 1, we get that(
h
(i)
ln2Wff1 + bff1

)
6
= −(d/4)1/2

(
h
(i)
ln2

)
4
− 2d2ε (67)

∈
{
[1− 4ε− 2d2ε, d2] if si+1 = 1

[−d2 − 2d2ε, 0] if si+1 = 0,
(68)
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and (
h
(i)
ln2Wff1 + bff1

)
7
= (d/4)1/2

(
h
(i)
ln2

)
4
+ 1− 4ε (69)

∈
{
[−d2, 0] if si+1 = 1

[1− 4ε− 2d2ε, d2 + 1− 4ε] if si+1 = 0.
(70)

Since ε = 1
5+2d2 <

1
4+2d2 , we have that δ = 1− 4ε+ 2d2ε > 0, and thus(
h
(i)
ff1

)
6
= ReLU

(
h
(i)
ln2Wff1 + bff1

)
6
∈
{
[δ, 2d2] if si+1 = 1

[0, 0] if si+1 = 0
(71)

and (
h
(i)
ff1

)
7
= ReLU

(
h
(i)
ln2Wff1 + bff1

)
7
∈
{
[0, 0] if si+1 = 1

[δ, 2d2] if si+1 = 0.
(72)

Then, using the definition of Wff2 and bff2, we get that(
h
(i)
ff2

)
6
= ReLU

(
h
(i)
ff1Wff2 + bff2

)
6
=
(
h
(i)
ff1

)
1
∈
{
[δ, 2d2] if si+1 = 1

[0, 0] if si+1 = 0,
(73)

(
h
(i)
ff2

)
7
= ReLU

(
h
(i)
ff1Wff2 + bff2

)
7
=
(
h
(i)
ff1

)
2
∈
{
[0, 0] if si+1 = 1

[δ, 2d2] if si+1 = 0,
(74)

while
(
h
(i)
ff2

)
8
= −

(
h
(i)
ff2

)
6
,
(
h
(i)
ff2

)
9
= −

(
h
(i)
ff2

)
7
, and

(
h
(i)
ff2

)
j
= 0 for all j ∈ {10, 11, . . . , d}.

Since
h
(i)
res2 = h

(i)
ff2 + h

(i)
res1, (75)

we have that
mean

(
h
(i)
res2

)
= mean

(
h
(i)
ff2

)
+ mean

(
h
(i)
att

)
= 0 + 0 = 0. (76)

Also, since the entries of h(i)res2 cannot exceed d2,

std
(
h
(i)
res2

)
≤

√√√√1

d

d∑
k=1

(d2 − 0)
2
= d2. (77)

Then, since
h
(i)
ln3 = LayerNormγln3,βln3

(
h
(i)
res2

)
, (78)

we have that (
h
(i)
ln2

)
j
=
(

std
(
h
(i)
res2

))−1 (
h
(i)
res2

)
j
≥ d−2

(
h
(i)
res2

)
j

(79)

for all j ∈ {1, 2, . . . , d}. It then follows that

si+1 = 1 =⇒
(
h
(i)
ln2

)
6
≥ δd−2 and

(
h
(i)
ln2

)
7
= 0, (80)

si+1 = 0 =⇒
(
h
(i)
ln2

)
6
= 0 and

(
h
(i)
ln2

)
7
≥ δd−2. (81)

Let
z = h

(i)
ln3Wout. (82)

Then, using the definition of Wout and the fact that c2 =
⌈
ln
(

1−ε∗
ε∗

)⌉
≥ ln

(
1−ε∗
ε∗

)
, we get that

si+1 = 1 =⇒ z1 =
(
h
(i)
ln2

)
7

(
δ−1d2c2

)
= 0 and z2 =

(
h
(i)
ln2

)
6

(
δ−1d2c2

)
≥ c2, (83)

=⇒ ez2 ≥ 1− ε∗

ε∗
(84)

=⇒ ez2 − ez2 + ez2ε∗ > 1− ε∗ (85)
=⇒ ez2 > ez2 − ez2ε∗ + 1− ε∗ (86)

=⇒ Pθ(si+1 = 1) = (Softmax(z))2 =
ez2

ez1 + ez2
=

ez2

ez2 + 1
> 1− ε∗, (87)
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and

si+1 = 0 =⇒ z1 =
(
h
(i)
ln2

)
7

(
δ−1d2c2

)
≥ c2 and z2 =

(
h
(i)
ln2

)
6

(
δ−1d2c2

)
= 0 (88)

=⇒ ez1 ≥ 1− ε∗

ε∗
(89)

=⇒ ez1 − ez1 + ez1ε∗ > 1− ε∗ (90)
=⇒ ez1 > ez1 − ez1ε∗ + 1− ε∗ (91)

=⇒ Pθ(si+1 = 1) = (Softmax(z))2 =
ez1

ez1 + ez2
=

ez1

ez1 + 1
> 1− ε∗. (92)

We conclude that, for each i ≥ n, Pθ(si+1 = NOR(sji+1 , ski+1)) > 1− ε∗.
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