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ABSTRACT

Potential societal and environmental effects such as the rapidly increasing
resource use and the associated environmental impact, reproducibility issues,
and exclusivity, the privatization of ML research leading to a public research
brain-drain, a narrowing of the research effort caused by a focus on deep learning,
and the introduction of biases through a lack of sociodemographic diversity in
data and personnel caused by recent developments in machine learning are a
current topic of discussion and scientific publications. However, these discussions
and publications focus mainly on computer science-adjacent fields, including
computer vision and natural language processing or basic ML research. Using
bibliometric analysis of the complete and full-text analysis of the open-access
literature, we show that the same observations can be made for applied machine
learning in chemistry and biology. These developments can potentially affect
basic and applied research, such as drug discovery and development, beyond the
known issue of biased data sets.

1 INTRODUCTION

The unprecedented progress of machine learning during the past two decades has been catalysed
and remains driven by the development of increasingly powerful computer hardware. This progress
is enabled by the ability of deep neural networks to scale exceptionally well with increasing data
availability and model complexity compared to other approaches. Thus, they can be trained for
linear regression on small data sets and, with conceptually simple changes to the network architec-
ture, for language translation or image generation on immense text corpora and image collections.
While comparatively exceptional, deep neural networks are understood to still only scale linearly
at an exponential cost (Schwartz et al., 2020), leading to diminishing returns (Thompson et al.,
2021). Among the machine learning community, this has raised concern over the future direction of
the field and a growing exclusivity driven by ever-increasing hardware and energy costs (Schwartz
et al., 2020; Thompson et al., 2021; Jurowetzki et al., 2021). After a discourse on the intertwined
recent history of deep learning and hardware advances, we will analyse the applicability of the most
prominent concerns raised in machine learning research to applied machine learning research in
biology and chemistry. We have categorised these concerns under socioeconimic, scientific, and
environmental considerations.

The hard- and software that catalysed rapid developments in machine learning In late 2002
and early 2003, the release of the Radeon 9700 and GeForce FX video cards introduced a fully
programmable graphics pipeline, extending and later replacing the existing fixed function pipelines.
Unlike the fixed function pipeline, which allowed the user to only supply input matrices and pa-
rameters to built-in operations, the programmable pipeline introduced the execution of user-written
shader programs on the GPU (Contributors, 2015). This fundamental change allowed programmers
and researchers to exploit the intrinsic parallelism of GPUs 2 years before Intel would introduce
its first dual-core CPU. Within months of the availability of this new hardware and the accompany-
ing APIs, researchers implemented linear algebra methods on GPUs and introduced programming
frameworks to use GPUs for general-purpose computations (Thompson et al., 2002; Krüger & West-
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ermann, 2003). This rapid development marked the dawn of general-purpose computing on graphics
processing units (GPGPU). In a presentation at ICS ’08, Harris presented the successes of GPGPU
by highlighting a speed-up in molecular docking, N-body simulations, HD video stream transcoding,
or image processing—applications in machine learning were not discussed. However, just one year
later, the introduction of GPUs as general-purpose processors catalysed the deep learning explosion
of the early 2010s by allowing deep learning algorithms pioneered by Alexey Ivakhnenko in 1971
to be run within practical time on widely available consumer hardware when Rajat et al. showed
that GPUs outperform CPUs by an order of magnitude in large-scale deep unsupervised learning
tasks (Ivakhnenko, 1971; Raina et al., 2009).

Hardware and energy requirements increase in machine learning research In 2010, Ciresan
et al. (2010) introduced a multi-layer perceptron (MLP) with up to 12.11 million free parameters
where forward and backward propagation were implemented on a GPU using NVIDIA’s proprietary
CUDA API introduced by Harris at ICS ’08 two years before, speeding up the routines by a factor
of 40. In their arXiv paper, they also report the computer’s hardware specifications as ”Core2 Quad
9450 2.66GHz processor, 3GB of RAM, and a GTX280 graphics card”. The GTX 280 graphics
card by NVIDIA was, at the time of the paper’s writing, two years old and cost USD 893 when first
released (adjusted for inflation). Equipped with this 2-year-old hardware that cost well below USD
1,000, Cireşan et al. were able to improve upon the state-of-the-art performance on the MNIST
classification benchmark set four years prior by Ranzato et al. (2006). As they not only reported the
hardware used but also the time it took to train the model, the power usage of the GPU and CPU,
with a thermal design power (TDP) of 236 and 95 Watt, respectively, can be calculated as 114.5h
× (236 + 95)W = 37.9kWh. Seven years later, Vaswani et al. (2017) introduced the transformer
architecture. The training used 8 NVIDIA Tesla P100 GPUs, whose price was ∼USD 55,100 at the
time, and took 84 hours, resulting in overall energy usage of 84h × 8 × 250W = 168kWh.

Hardware and energy requirements explode in applied machine learning Applying the novel
transformer architecture, NVIDIA reportedly trained the 345 million parameter BERT model in
2019, which was previously introduced by Google in the same year, on 4 DGX-2H servers (64 Tesla
V100s) in 79.2 hours, with a maximum power usage of 12,000 Watt, resulting in a total power use of
3.8 MWh (79.2h × 4 × 12kW) (Devlin et al., 2018). The cost of this system at the time of training
was USD 1,596,000. Alternatively, the BERT model could be trained on on-demand Google Cloud
GPUs for USD 2.48 per GPU hour, resulting in total costs of USD 12,570 (2.48 × 64 × 79.2).
The MT-NLG model presented by NVIDIA and Microsoft in 2021 represents the acceleration of
hardware and energy cost in the field (Smith et al., 2022). The 530 billion parameter model was
trained on 560 DGX A100 servers—a total of 4,480 NVIDIA A100 80GB Tensor Core GPUs—for
2,160 hours (Rajbhandari et al., 2022). The power usage of a cluster of 560 DGX A100 servers
during 2,160 hours is 7.862 GWh (2,160 × 560 × 6.5kW). Taking the world average electricity
price of USD 0.131 per kWh during December 2021, the total electricity bill for training MT-NLG
was USD 1,029,922. The total cost of the hardware is hard to estimate as specialised network
hardware is required to build such a cluster; however, the DGX A100 was priced at USD 199,000
on release, resulting in a minimum total cost of USD 111,440,000 (199,000 × 560). Training the
model on on-demand Google Cloud GPUs for USD 2,141.82 per GPU month results in a total cost
of USD 28,786,060.8 (3 × 4,480 × 2,141.82).

Hardware and energy costs drive the de-democratization of machine learning The examples
discussed above represent an increasing hardware and energy cost in conducting basic and applied
deep learning-based machine learning research. The resulting diminishing returns and the environ-
mental impact have previously been discussed by Thompson et al. (2021) and Schwartz et al. (2020).
The development of increasing costs following a potential breakthrough stands in contrast to similar
or even more disruptive changes in other fields, such as CRISPR-Cas9 lowering costs in molecular
biology or the ever-decreasing costs of genome and RNA sequencing (Ledford, 2015; Wetterstrand,
2021; Gierahn et al., 2017). While CRISPR-Cas9 and affordable sequencing has led to what has
been called the democratization of access to sequencing and genome editing (Guernet & Grumolato,
2017; McPherson, 2014; Srivathsan et al., 2019), cutting-edge machine learning research is becom-
ing potentially increasingly expensive and exclusive (Ahmed & Wahed, 2020). Indeed, in a 2020
article on the most cited research articles, all mentioned machine learning research was conducted
by, or in collaboration with, OpenAI, Microsoft, and Alphabet (Kingma & Ba, 2014; Ren et al.,
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2015; Mnih et al., 2015; Vaswani et al., 2017; Silver et al., 2016; Crew, 2020), suggesting a need for
resources not available within academia. While the involvement of these companies, whose R&D
budgets exceed those of most nations (Bajpai, 2021; Ballard, 2021; Uis, 2022), contributed greatly
to the advancement of machine learning, a potential technological dependency of academia on this
commercially driven progress combined with a brain-train from academia to industry may result in
a narrowing of machine learning research (Jurowetzki et al., 2021; Klinger et al., 2020; Hagendorff
& Meding, 2020). In the following paragraph we will discuss these developments and the concerns
raised with a focus on applied machine learning in chemistry and biology.

2000 2005 2010 2015 2020
Year

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Fr
ac

tio
n 

of
 M

L 
Pu

bl
ica

tio
ns

 [%
]

Biology
Chemistry

Figure 1: Fraction of applied machine learning publications in biology and chemistry. After an
increase in the early 2000s and a plateau lasting for 10 years, the introduction of general-purpose
GPUs and a renewed interest in deep neural networks making use of this capable hardware sparked
a unprecedented growth of machine learning research in biology and chemistry in the mid-2010s.

2 SOCIOECONOMIC CONSIDERATIONS

Available research funding differs greatly between countries and institutions. While discussing the
reasons and possible solutions to this situation are far beyond the scope of this research, it is im-
portant to note that cost of research being driven by ever increasing hardware and electricity re-
quirements has the potential to further drive inequity between nations, institutions, research groups,
and individual researchers based on available funding (Gerhards et al., 2018; Nielsen & Andersen,
2021; Wahls, 2018). In addition to direct funding, collaborations with leading big tech companies,
which led to the most cited recent publications (Crew, 2020), are equally unevenly distributed among
countries and institutions, further concentrating funding. Furthermore, the availability of necessary
hardware to conduct state-of-the-art deep learning research can depend on the current geopoliti-
cal situation, possibly disproportionately affecting researchers in low- and middle-income countries
negatively (Nellis & Lee, 2022). In this section, we discuss social and economic concerns raised
within the machine learning community, including machine learning in a divided society and that
diminishing returns limit participation.

Machine learning in a divided society In a wider social context, the concentration of resources
and talent needed to develop and operate machine learning systems in high-income countries form
the basis of what has been labelled colonialist AI (Birhane, 2020; Mohamed et al., 2020; Adams,
2021). The effects of this process recently came to light through the discovery of biases in models in
healthcare and policing, among others (Obermeyer et al., 2019; Hildebrandt et al., 2020). Causes of
these biases have been shown to go beyond biased data (Schwartz et al., 2022; Mehrabi et al., 2021).

These effects introduced above are of interest for the natural sciences, concretely biology and chem-
istry, as deep learning-based applied machine learning plays an ever more critical role in both fields
and issues being caused by said effects may affect crucial research such as drug development or
genetics. The increasing importance of machine learning in biology and chemistry is reflected by
an increasing share of machine learning-related publications, which have approximately doubled
within the past six years compared to the overall published literature in the respective fields (Fig-
ure 1). Here, the potential for the described societal and environmental effects within the scientific
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fields of biology and chemistry will be explored based on quantitative bibliometric analysis. The
utilised data was downloaded from the OpenAlex index of scholarly works (Priem et al., 2022). The
final data set contained 27,861 biology and 16,301 chemistry works filtered for machine learning
topics. For a list of filter keywords, see Appendix A.
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Figure 2: R&D funding of nation states and ”big tech” companies. (a) R&D funding per researcher
and year correlates well with a countries GDP. (b) The amount of R&D funding per researcher and
year differs greatly between countries. Comparing the R&D budgets per employee (includes non-
research employees) of ”big tech” companies places them among the top funded nations.

Diminishing returns that limit participation As current and future diminishing returns of deep
learning in basic and applied machine learning research threaten to drive costs up, the financial
barrier to participating in the respective fields also increases (Thompson et al., 2021; Schwartz et al.,
2020). Given the extreme disparities in R&D funding across countries (Figure 2) and institutions has
great potential to also increase the exclusiveness of participating in state-of-the-art research. Indeed,
potential downstream effects of such disparities have recently come in the focus in fields such as
health care, bioinformatics, and biometrics, where machine learning models are often biased towards
persons of European descent (Obermeyer et al., 2019; Gupta et al., 2020; Celi et al., 2022; Dias &
Torkamani, 2019; Kiseleva & Quinn, 2021; Drozdowski et al., 2020; Hazirbas et al., 2022). While
these issues are being tackled by increasing participation of students, developers, and researchers of
non-European descent and by debiasing data sets, it is being questioned whether these efforts alone
can adequately solve the bias-problem and avert a future long-term dependence of the global south
on the global north (Birhane, 2020; Bon et al., 2021).

In respect to machine learning in biology and chemistry, we make the assumption that an increase in
the correlation between available funding and the share of machine learning literature published in
each field would suggest a potential for exclusiveness and a measure for inequity. In order to iden-
tify a possible increase in correlation between available R&D funding and applied machine learning
in biology and chemistry, as well as the impact of deep learning-based machine learning, 137,506
affiliations from bioinformatics/computational biology and 80,206 affiliations from cheminformat-
ics/computational chemistry publications were analysed for the periods between 2000 to 2016 and
2017 to 2021 (Figure 3). Only countries with at least 100 publications per year during the specified
periods were included, and outliers were removed using a z-score cut-off of ±3. Plotting the frac-
tion of machine learning publications amongst the entire published literature for the chosen topics
from biology and chemistry for each country against the countries’ available funding per researcher
shows an increasing, however as of yet insignificant, correlation. While the average fraction of ma-
chine learning literature increased by 19.3% (21.7% to 41%) and 9% (20.4% to 29.4%) in biology
and chemistry, respectively, the Gini coefficient of the fraction of machine learning publications
remained stable in biology (0.287 to 0.287) and decreased in chemistry (0.343 to 0.304). The fund-
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Figure 3: Fraction of applied machine learning papers in biology and chemistry as a function of R&D
funding per researcher and year. (a) Biology 2000–2016, (b) chemistry 2000–2016, (c) biology
2017–2021, (d) chemistry 2017–2021. While not significantly so, a potential trend is emerging
where the fraction of applied machine learning publications (of each fields total) correlates with the
funding per researcher and year.

ing per researcher and year is an average of the available data between 2000 and 2021 for each
country—with an average Gini coefficient of 0.479 (0.452–0.497) over all stratifications.

3 SCIENTIFIC CONSIDERATIONS

Different concerns with a potential effect on the scientific community have been raised within the
machine learning field. In this section, we analyse the most prominent of these concerns including
the privatization of machine learning, a possible academic brain-drain, citation inequality, and a
narrowing of research.

The privatization of machine learning Beyond Universities, technology companies are major
contributors to basic and applied deep learning-based machine learning research across multiple
fields. Prominent examples are AlphaFold by DeepMind, BERT by Google, 3D human pose esti-
mation by Facebook and Google, or DALL·E by OpenAI (Jumper et al., 2021; Devlin et al., 2018;
Ramesh et al., 2021). In addition, the hardware company NVIDIA, which GPUs and CUDA frame-
work power most basic and applied deep learning research (with the notable exception of research
conducted by Google and DeepMind, both using Google’s TPUs), is active in both basic research
and deep learning applied to computer graphics (Karras et al., 2020; Wang et al., 2019). The involve-
ment of these corporations in research is significant, as their respective R&D budgets are higher than
those of most countries (Figure 2b). For 2020 (2021 for NVIDIA), the R&D spending of Google
(now Alphabet) was USD 27.57B, that of Facebook USD 18.45B, and that of NVIDIA USD 3.92B
and were higher than that of 120, 116, and 101 countries, respectively (Bajpai, 2021; Ballard, 2021).
For Google and Facebook, this includes countries such as Belgium, Spain, India, or the Russian Fed-
eration (Uis, 2022). The availability of this large amounts of funding for machine learning research
in industry can have three significant effects on public university research:

(i) During the past two decades, there has been an unprecedented brain drain of professors
from university to industry, a development that has been termed the ”privatization of AI
research(-ers)” (Gofman & Jin, 2019; Jurowetzki et al., 2021).

(ii) Industry collaborations that provide access to significant amounts of compute are often
limited to elite institutions in countries where funding is already comparatively high, fur-
ther increasing the divide in resource availability between institutions within a country and
globally (Jurowetzki et al., 2021; Ahmed & Wahed, 2020).

(iii) A narrowing of research driven by universities aligning with commercial interest through
collaborations, a reliance of universities on models, methods, and hardware developed in
industry, and the above mentioned brain-drain. (Klinger et al., 2020; Gofman & Jin, 2019).

Potential consequences of these developments have been shown to include stagnation of (method-
ical) diversity in machine learning research with a preference for compute-intensive and data-
hungry deep learning methods (Klinger et al., 2020). In addition, an analysis of research pre-

5



Under review as a conference paper at ICLR 2023

sented at NeurIPS, CVPR, and ICML showed that researchers in the field often fail to report con-
flicts of interest, that publications from the industry gather significantly higher citations than those
from academia, and that industry publishes on trending machine learning topics two years before
academia on average (Hagendorff & Meding, 2020).
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Figure 4: Transitions by researchers between education and industry. (a) In biology, the overall
transitions between academia and industry remain largely balanced over the observed period. (b) In
chemistry, we observe a recent steady increase of transitions from academia to industry. (c) Starting
in 2016, there is a steady net flow from acadamia to Tech, spiking in 2021. (d) A similar but less
pronounced spike can be observed in chemistry.

In order to assess the existence of such effects in biology and chemistry, the available data was la-
belled by affiliation-type. Industry affiliations were labelled with either Tech, Pharma, Chem, and
Other. Tech includes the large technology companies (Alphabet, Microsoft, Meta, Nvidia, Amazon,
IBM, Tencent, Baidu, and Twitter) and their subsidiaries. Pharma includes pharmaceutical com-
panies such as Novartis, Pfizer, and Bayer. Chem includes chemical and petrochemical companies
such as BASF, Exxon, and Lonza. Other includes companies not falling into the other categories,
such as Schrödinger, General Electrics, or Siemens. All other affiliations were labelled with None.

Academic brain-drain Following the approach by Jurowetzki et al. (2021), transitions between
academia and industry were defined as a year-over-year change in affiliation (if there were industry
as well as academic affiliations within the same year, the mode was chosen as the overall affiliation).
In the results, based on 92,496 and 54,243 authors of biology and chemistry articles, respectively,
trends that are similar to those observed by Jurowetzki et al. (2021) can be noticed (Figure 4). Over
the past six years, chemistry saw an unprecedented increase in net transitions of machine learning
practitioners from academia to industry (Figure 4b), while overall transitions in biology remain
slightly skewed towards industry (Figure 4a). However, biology, and to lesser degree chemistry, saw
a significant jump in academia to Tech transitions in 2021 (Figure 4c,d). Interestingly, the data shows
a lower baseline of academia to industry transitions compared to the data presented by Jurowetzki
et al. (2021), suggesting either fewer transitions from academia to industry overall or, more likely, a
tendency in the fields to stop publishing after leaving academia.

Citation inequality The observation by Hagendorff & Meding (2020) of significantly higher rates
of citations of papers authored by industry-affiliated authors can be replicated for machine learning
in chemistry and partially for machine learning in biology. In biology, citation rates by Pharma,
Tech, and Other are significantly higher than those in academia (with a mean of 6.31, 21.64, and
4.13 versus 3.03 citations per year, respectively. Figure 5a). In chemistry, the citations per year
are significantly higher for Pharma, Chem, Tech, and Other, compared to academia (with a mean
of 4.46, 4.00, 8.71, and 3.62 versus 2.99, respectively. Figure 5g). Breaking down the affiliations
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Figure 5: Industry affiliations and the effect on citations. For both biology (a) and chemistry (g),
publications with industry affiliations gather a higher amount of citations per year. This effect is, in
both fields, most pronounced for Tech affiliations. Breaking down the industry affiliations by country
(Figure 5b–f for biology, h–l for chemistry), it is little surprising that private research generally takes
place in countries with high ranking universities and highly developed industries.

by country, it is little surprising that private research generally takes place in countries with high-
ranking universities and highly developed industries (Figure 5b–f for biology, h–l for chemistry).

A narrowing of research A narrowing of machine learning research would certainly have the po-
tential to lead to negative downstream effects in the natural sciences. In addition, there is also the
potential for a narrowing of applied methods independently from developments in machine learning
research. Such a narrowing of applied methods can be driven by the same factors as a narrowing
in basic machine learning research. These factors include demand-side economies of scale or a
bandwagon effect, early fortuitous events that result in lock-in to a certain method, the availability
of and previous investments in suitable resources such as hardware or personnel, and social dilem-
mas (Klinger et al., 2020). To explore a potential narrowing of machine learning methods utilised
in biology and chemistry, articles have been labelled with the following broad categories: Dimen-
sionality Reduction/Feature Selection, Genetic/Evolutionary, Neural Networks, Other/Unspecified,
Regression, Statistic/Probabilistic, and SVM. Analysing the temporal development, the results show
that the largely deep learning-based Neural Networks in biology (Figure 6a) and Neural Networks
together with RF/Boosting in chemistry (Figure 6b) are mainly responsible for the recent explosive
growth of machine learning literature in the two fields. However, the continuous and roughly linear
growth of the other categories implies that the fast-growing methods do not seem to grow at the ex-
pense of methods from other categories. Plotting the mean of the citations per year for each category
shows that the publication of highly cited biology articles utilising Neural Networks predates and is
more sustained (Figure 6c) than the publication of highly cited chemistry articles utilising methods
from the same category (Figure 6d).
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Figure 6: Number of publications by machine learning method category. (a) Number of publications
by machine learning method category in biology. (b) Number of publications by machine learning
category in chemistry. (c) Mean citations/year by year and machine learning category in biology.
(d) Mean citations/year by year and machine learning category in chemistry.

4 ENVIRONMENTAL CONSIDERATIONS

In their publication ”Green AI”, Schwartz et al. (2020) showed that the carbon footprint of deep
learning has been growing continuously and suggest making efficiency an evaluation criterion in
addition to accuracy. They argue that this ever-increasing need for more compute would make
deep learning-based machine learning research not only environmentally problematic but also less
inclusive due to the previously discussed unequal distribution of access to compute.
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Figure 7: Hardware and energy use of applied machine learning in biology and chemistry. (a) GPU
models used by biology and chemistry researchers combined, showing an increase in the fraction
of machine learning-dedicated Tesla series GPUs used, while the share of consumer and enthusiast
oriented GPU series is shrinking. (b) The data on training times and exact GPU model that could be
extracted from open access literature shows a general increase in electricity use per publication.

The quantitative exploration of the environmental impact of applied machine learning in biology
and chemistry has been complicated by the low availability of information regarding the hardware
used and the time spent to train the models. From a total of 27,861 biology and 16,301 chemistry
articles, 14,365 (51.6%) and 4,184 (25.7%) were downloadable as open access articles. From these
downloaded articles, the GPU model could be extracted from 646 (4.5%) biology articles and from
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243 (5.8%) chemistry articles, and the GPU model as well as the training time from 56 (0.4%) and 14
(0.3%), respectively. Based on this sparse data, the statistical power of the analysis is relatively low.
However, certain trends in the GPU model-use can be observed between 2018 and 2021 (Figure 7a):
The fraction of Nvidia Titan GPUs has been steadily declining during the entire period. Consumer-
focused GPUs from the GeForce 10, 20, and 30 series continue to be used in research, with the
fraction of GeForce 20 GPUs increasing. In contrast, GeForce 10 series cards experienced a decline
starting in 2019. However, the most important trend is the increase in the fraction of Tesla GPUs.

As newer GPU models are becoming more energy efficient (Špeťko et al., 2021), efficiency remains
a second-class metric compared to accuracy in applied machine learning publications in biology and
chemistry. This situation is reflected in the lack of an increase in reported hardware use or training
times (Figure 7b). Indeed, the available data shows a general increase in power usage per publication
based on the reported GPU model, the number of GPUs used, and the training time. The values are
an estimation and only repreent the training time of the final model.

5 CONCLUSION

The societal and environmental impacts of recent developments in machine learning are actively
being discussed in machine learning research and closely adjoined fields such as natural language
processing or image processing. However, the effects driven by and experienced within applied ma-
chine learning in the natural sciences received little attention. This exploratory study into the social
and environmental impact of recent developments in machine learning on biology and chemistry
research brings to light the following insights:

(i) The introduction of deep learning methods has caused a rapid increase in the share of
machine learning-related articles in biology and chemistry literature.

(ii) There is a potential emerging trend towards an increase in inequity in applied machine
learning research conducted in biology and chemistry based on available funding when
corrected for overall publications in the respective field. While not yet statistically sig-
nificant, the trend should be monitored and countered. There is, however, a significant
difference between citation metrics of education vs industry affiliated researchers, with
university-affiliated research receiving fewer citations.

(iii) Based on transition patterns of researchers between academia and industry, big tech compa-
nies seem to get increasingly involved in conducting applied machine learning research in
biology and chemistry. Given the vast resources and R&D spending of these corporations
(even compared to nations), the concerns of a potential brain-drain away from academia
and a narrowing of the research conducted are also warranted in biology and chemistry.

(iv) As of yet and based on the number of publications, the growth of neural networks-based
deep learning research did not happen at the expanse of other, generally less compute-
intensive, categories of machine learning methods. However, citation metrics for neural
network-based deep learning methods have recently spiked compared to other categories.
While this data does not show a narrowing of the use of methods, continuous monitoring of
these metrics to avoid a potential method and technology lock-in, especially as investments
in specialized hardware continue, may be warranted.

(v) Data that allows an estimation of the environmental impact of applied machine learning in
biology and chemistry is scarce due to a failure to report used hardware and spent training
time in the vast majority of articles. This scarcity shows the need for an effort by both
authors and publishers to introduce measures concerning reporting these metrics, especially
as their importance goes beyond monitoring the environmental impact. Nevertheless, based
on the available data, a trend towards more specialized hardware and an overall increase in
energy use per paper could be observed.

Overall, these insights are similar to the ones made in machine learning research in general and
warrant action, given that research topics with a high societal impact, such as genetics or drug
development, can be affected. While each topic may be discussed in detail in future publications,
this overview provides the basis for discussion and draws attention to the crucial interfaces between
society, the economy, the natural sciences, and machine learning.

9
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6 REPRODUCIBILITY STATEMENT

All data used in this study is freely accessible. The code to reproduce that data as
well as the figures can be found in the following anonymised repository: https://
anonymous.4open.science/r/anon aichem-83F8
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A APPENDIX

A.1 OPENALEX QUERIES

The OpenAlex database was queried for works of type journal-article and proceedings-article and
filtered on machine learning concepts and biology or chemistry concepts.

The query for machine learning works in biology was https://api.openalex.org/
works?per-page=200&cursor=*&filter=concepts.id:C154945302|
C119857082|C108583219|C50644808|C8880873|C159149176|C126980161|
C58328972|C97541855|C12267149|C179717631|C81363708|C147168706|
C46686674|C169258074,concepts.id:C74187038|C64903051|C32909587|
C177801218|C99726746|C63222358|C103697762|C192071366|C164126121|
C69366308|C185592680|C147597530|C59593255|C161790260|C178790620|
C98274493,type:journal-article|proceedings-article.

The query for machine learning works in chemistry was https://api.openalex.org/
works?per-page=200&cursor=*&filter=concepts.id:C154945302|
C119857082|C108583219|C50644808|C8880873|C159149176|C126980161|
C58328972|C97541855|C12267149|C179717631|C81363708|C147168706|
C46686674|C169258074,concepts.id:C86803240|C60644358|C54355233|
C70721500|C140556311|C153911025|C78458016|C95444343|C89423630|
C203014093|C21565614|C46111723|C157585117|C191120209|C55493867|
C204328495,type:journal-article|proceedings-article.

The query for all biology works was: https://api.openalex.org/works?per-
page=200&cursor=*&filter=concepts.id:C74187038|C64903051|
C32909587|C177801218|C99726746|C63222358|C103697762|C192071366|
C164126121|C69366308|C185592680|C147597530|C59593255|C161790260|
C178790620|C98274493,publication year:<year>,type:journal-article|
proceedings-article&group by=authorships.institutions.country code

The query for all chemistry works was: https://api.openalex.org/works?per-
page=200&cursor=*&filter=concepts.id:C86803240|C60644358|
C54355233|C70721500|C140556311|C153911025|C78458016|C95444343|
C89423630|C203014093|C21565614|C46111723|C157585117|C191120209|
C55493867|C204328495,publication year:<year>,type:journal-article|
proceedings-article&group by=authorships.institutions.country code

• Machine learning concepts

– Artificial Intelligence: C154945302
– Machine Learning: C119857082
– Deep Learning: C108583219
– Artificial Neural Network: C50644808
– Genetic Algorithm: C8880873
– Evolutionary Algorithm: C159149176
– Simulated Annealing: C126980161
– Expert System: C58328972
– Reinforcement Learning: C97541855
– Support Vector Machine: C12267149
– Multilayer Perceptron: C179717631
– Convolutional Neural Network: C81363708
– Recurrent Neural Network: C147168706
– Boosting: C46686674
– Random Forest: C169258074

• Biology concepts

– Biology: C86803240
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