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Abstract

Multimodal brain imaging provides complementary insights into brain structure
and function, but its capability is often limited by missing modalities. Traditional
imputation and subsampling strategies are computationally simple, but have the risk
of introducing bias or discarding valuable samples. Recently, generative models
have emerged as powerful alternatives for synthesizing missing modalities. In
this study, we introduce a GAN-guided diffusion framework for cross-modality
translation, designed to generate both T1-weighted MRI and functional network
connectivity (FNC) data. The framework integrates conditional diffusion modeling,
adversarial learning, and cycle-consistency, enabling training with both paired
and unpaired samples. On Alzheimer’s disease data, our approach outperformed
baseline methods, achieving higher peak signal-to-noise ratio (PSNR) (24.95) and
structural similarity index measure (SSIM) (0.86) for T1 synthesis, as well as
improved correlation with real FNCs (0.65). Furthermore, our results demonstrate
that the model captures variability across clinical groups without supervision from
diagnostic labels, producing realistic and clinically meaningful synthetic modalities
for downstream analysis and biomarker discovery.

1 Introduction

Multimodal brain imaging offers a comprehensive view and enables more accurate analysis of the
brain, by integrating complementary information from different modalities. For example, studies
have shown that structural and functional magnetic resonance imaging (MRI), while each captures
different aspects of brain anatomy and activity, can together provide stronger performance in disease
classification [1} 2], biomarker discovery [3. 4], and understanding underlying pathophysiological
mechanisms [S]. Despite these advantages, neuroimaging datasets are often incomplete, with one or
more modalities missing, posing significant challenges for robust analysis.

Commonly used approaches for handling missing modalities, such as mean or zero imputation
and subsampling (i.e., excluding subjects with missing modalities), are computationally simple
and easy to implement, but may introduce bias into the data distribution or result in the loss of
informative features. To overcome these limitations, generative models can be used to synthesize
missing modalities from the available ones. Generative adversarial networks (GANs) [6], as one
of such models, have been extensively explored for cross-modality synthesis in neuroimaging. For
example, conditional GANs have been used to translate between structural brain MRI modalities,
such as T1 and T2-weighted MRIs, demonstrating realistic modality translation in multimodal MRI
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reconstruction [7] and improving segmentation performance [8]]. Cycle GANs have also been used to
synthesize 7T MRI from 3T MRI, resulting in improved contrast and resolution [9].

Although GANSs are capable of generating realistic data, they can suffer from mode collapse, in-
stability, and limited diversity in the generated output. In contrast, diffusion models have recently
demonstrated more realistic, accurate, higher quality, and more diverse output in synthesis tasks
[LO, [11]]. For example, latent diffusion models have produced high-quality 3D brain magnetic res-
onance images with volumetric consistency that quantitatively outperform GAN-based methods
[12]. Conditional denoising diffusion probabilistic models (DDPMs) have demonstrated high-quality
anatomically consistent brain image synthesis that improves downstream tasks such as segmentation
[13], and disease classification [14]. In addition, cycle-guided diffusion models have been introduced
to enhance cross-modality MRI synthesis by conditioning the paired diffusion models against each
other, significantly improving image quality and consistency in state-of-the-art networks [[15].

In this study, we used a GAN-augmented diffusion model [[16] to generate T1-weighted MRI and
FNC data. The model is a conditional diffusion framework that synthesizes a target modality
from a conditioning source modality within a paired-unpaired hybrid cross-modality translation
setting. When paired samples are available, the model learns directly from supervised source—target
mappings; when one modality is missing, a synthetic version is generated via a cycle-consistent
network, enabling training with unpaired data. This design allows the framework to leverage both
paired and unpaired datasets, making it well-suited for medical imaging scenarios where missing
modalities are common. We focused on the challenging task of translating between FNC and
structural MRI, two modalities that differ substantially in structure, dimensionality, and underlying
signal representation, whereas most prior work has considered modalities of similar nature and
spatial dimensions, such as multi-contrast MRI or MRI-to-CT. Furthermore, we applied the model to
Alzheimer’s disease data to enhance the quality of the generated samples while preserving diagnostic
patterns, including disease-specific signatures, in contrast to prior studies that have largely focused
on healthy control datasets.

2 Methods

An overview of the model is illustrated in Fig.|l] Our framework is based on a conditional diffusion
model, enhanced with adversarial training and a cycle consistency structure. Fig.[T[A) depicts the
cycle-consistency path, which includes two generators, Gg and GZ, and a discriminator, DZ. The

generator G2 produces a synthetic sample 2 in the domain B given an input x{' from the domain A.
This generated sample is then translated back to the domain A using G¢, producing a reconstructed
sample X3'. The discriminator DZ distinguishes between real and generated samples in domain B.

The adversarial objectives used to train the generator and discriminator follow the non-saturating

formulation [16]]:
Léy = Epy(yixo) [~ 108(Da(¥))] M
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where pg (y | xo) denotes the estimated distribution of a target sample conditioned on the source,
while ¢(y | xo) denotes the true conditional distribution.

As shown in Fig. [I(B), the conditional diffusion process incorporates adversarial learning to ap-
proximate q(x;—1 | X¢,y) [17] with a small number of diffusion steps (T' & 4-10), enabling faster
reverse diffusion and sampling. The generator GGA progressively denoises the input to produce an

estimate X;_;. The discriminator Dg‘ distinguishes between real samples x;—1 ~ ¢(X;—1 | X¢,¥)
and generated samples X;—1 ~ pp(x:—1 | X¢,y).

The corresponding non-saturating loss terms can be expressed as follows:
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Figure 1: Model overview. (A) Cycle-consistency path: Gg translates an input x7' from modality A
(e.g., FNC) into modality B (e.g., T1), producing §7. The second generator G4 maps 37 back to
modality A, yielding a reconstruction x7'. The discriminator DZ evaluates generated yZ against real
samples from modality B. (B) Conditional diffusion path: Given a conditioning input (either a real
paired sample or a synthetic one from the cycle path), Gg‘ predicts denoised samples at intermediate
timesteps, progressively refining toward the target modality output. Dg‘ enforces adversarial realism
in the generated outputs.

where ¢t ~ U[0,T](step = 1), T =~ 4-10, and 7 controls the gradient penalty strength. Assuming
x¢ Ay | x0, g(x¢—1 | X¢,y) in Eq. E|can be approximated as q(x;—1 | X¢,Xo). Following [16]],
sampling can be performed via:

q(xe—k | X4, %0) = N(x¢—1; fu(xe,%0), V1)
The estimated distribution pg(x:—1 | X¢,y) is obtained via:

po(xi—1 | x4, y) = q(xe—1 | x4, %0 = Go(x4,y,t)) (%)

Furthermore, a cycle consistency loss was applied to the cycle path to ensure that the generated
sample y*Z could be reconstructed back, imposing a minimal difference between the real sample

x4 and the reconstructed sample 5(64’3, and to the diffusion path to enforce a minimal difference
between the real sample XE)A B and the synthetic target sample )264 B,
d_ ¢ 0 ||d _
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where )\?}C and /\ffyC denote the weights of the cycle path and the diffusion path components, respec-
tively.

Finally, we introduced a subject-aware loss to learn subject-specific mappings by minimizing the
L, distance between real and generated samples by the generators for paired subjects, as computed
below:

— b xd _ 0 |lcd _ d
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where )\ﬁlbj and )\fubj control the contributions of the cycle path and diffusion path generators,

respectively, to the subject-aware loss.
The total objective combines the adversarial, cycle-consistency, and subject-aware losses as:
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where A\ and )y are trade-off weights between the diffusion and cycle-consistency networks, and Acyc
and A control the contributions of the cycle-consistency and subject-aware losses, respectively.

3 Experimental Results

3.1 Dataset

In this study, we focus on two modalities: T1-weighted structural MRI and FNC derived from resting-
state fMRI. fMRI scans were processed using the NeuroMark independent component analysis
(ICA) framework [18], which extracts 53 reproducible functional brain components. The temporal
correlations between all pairs of these components were computed to form a 53 x 53 connectivity
matrix, referred to as the FNC map. These components are grouped into seven functional network
domains: subcortical (SC), auditory (AU), visual (VI), sensorimotor (SM), cognitive control (CC),
default mode (DM), and cerebellar (CB) [19]].

We utilized data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) [20], which contains
8,372 samples from 1,709 subjects. Table [T| summarizes the distribution of samples and subjects
between modalities and diagnostic groups, including control (CN), Alzheimer’s disease (AD), and
mild cognitive impairment (MCI). As shown in the last column (FNC and T1), only a small fraction
of the dataset contains both T1-weighted MRI and FNC for the same subject, with the FNC modality
being the least represented.

Table 1: Data distribution across modalities and diagnostic groups.

AD # of Samples (# of Subjects)
FNC T1 FNC and T1
CN | 411 (214) | 2246 (553) | 356 (170)
AD | 168(85) | 1640 (583) 151 (73)
MCI | 465 (203) | 3227 (883) | 412 (165)

3.2 Model Performance

Fig. 2] demonstrates the ability of the proposed model to generate realistic and diagnostically mean-
ingful FNC maps. Panel (A) shows the mean and variance across subjects, where the generated
FNCs closely replicate the functional connectivity structures observed in the real data. The cell-wise
variance plots further indicate that variability patterns are largely preserved in the generated FNCs,
suggesting that the model does not simply memorize the mean structure but also captures subject-level
variability. Panel (B) compares group-level FNC differences across diagnostic categories (CN, MCI,
AD) between real and generated samples. The results show the model’s ability to preserve diagnostic
contrasts and encode clinically meaningful differences, despite not being guided by diagnostic labels
during training.

Fig. [3]illustrates the quality and diagnostic relevance of the generated T1-weighted MRI images
compared with the real ones. Panel (A) shows the mean and variance across subjects, indicating that
the generated images closely match the anatomical structures and variability patterns of the real data.
Panel (B) presents group-level differences (CN-AD, CN-MCI, AD-MCI), showing that the generated
images not only reproduce the spatial distribution of differences but also capture disease-related
changes observed in the real data, such as atrophy in medial temporal and cortical regions.

Table 2] compares the proposed model with several baselines, including a conditional DDPM [11]] and
CycleGAN [21]]. We evaluated the generated T1 images against their corresponding real ones using
peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) [22], and the generated
FNC maps against their corresponding real ones using Pearson correlation (PCorr). The results
demonstrate the superiority of our model over the baselines. Specifically, our approach achieved a
PSNR of 24.95 and an SSIM of 0.86 in the T1 generation task, as well as a higher correlation of 0.65
in the FNC generation task. These results indicate improved image fidelity, structural similarity, and
preservation of functional connectivity patterns.
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Figure 2: (A) Mean and variance between real and generated FNC maps. (B) Real and generated FNC
group differences across diagnostic categories, CN, MCI, and AD. Each matrix shows the difference
in mean connectivity values between two groups in the upper triangle, and statistically significant
differences (p < 0.05, uncorrected) from two-sample t-tests in the lower triangle.
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Figure 3: (A) Mean and variance between real and generated T1 images. (B) Real and generated T1
group differences across diagnostic categories, CN, MCI, and AD.

Table 2: Comparison of evaluation metric across models.

FNC - >T1 T1 — > FNC
Model PSNR SSIM PCorr
Our model 24.95+£1.753 0.86+0.025  0.65+0.011
DDPM 24.48+2.635 0.83+0.097  0.56+0.021

cycle-GAN  23.63£1.426 0.82+0.027  0.49+0.035

4 Conclusion

In this study, we introduced a GAN-guided diffusion framework for cross-modality translation in
neuroimaging, with a focus on synthesizing T1-weighted MRI and functional network connectivity
(FNC) data. By combining conditional diffusion modeling, adversarial training, and cycle consistency,
our approach is able to leverage both paired and unpaired data, making it well suited to scenarios with
missing modalities. Experiments on Alzheimer’s disease data sets demonstrated that the proposed
model outperforms baseline approaches, achieving superior quantitative performance while preserving
anatomical detail, functional connectivity structure, and clinically relevant group differences. In



general, these results suggest its potential use in downstream tasks such as disease classification and
biomarker discovery.
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5 Technical Appendices and Supplementary Material

5.1 Data Preprocessing

The T1 data were segmented into tissue probability maps for gray matter, white matter, and cerebral
spinal fluid using SPM12. The gray matter images were then warped to standard space, modulated
and smoothed using a Gaussian kernel with an FWHM = 10mm. The preprocessed gray matter
volume images had a dimensionality of 121x145x121 in the voxel space, with the voxel size of
1.5x1.5x1.5 mm?3.

For the resting-state fMRI data sets, we removed the first five time points to ensure signal equilibrium
and adaptation of subjects to scanner noise. Then we performed slice timing correction and rigid
body motion correction using the SPM toolbox, followed by warping the images into the standard
Montreal Neurological Institute (MNI) template using an echo-planar imaging (EPI) template and the
old SPM12 normalization module. Lastly, the data were resampled to 3x3x3 mm? isotropic voxels,
resulting in image dimensionality of 53x63x52 in the voxel space, and smoothed using a Gaussian
kernel with a full width at half maximum of 6mm. We also implemented thorough quality control
(QC) on the preprocessed fMRI images to discard the images that exhibited (1) poor correlation
with individual and group data masks, (2) markedly briefer scan lengths, and (3) high head motion
parameters (>3° rotations and >3mm translations).



5.2 Implementation Details
5.2.1 Network Architectures

The diffusion generators Gg‘ and Gf were implemented using a UNet backbone [23]], each consisting
of multiple downsampling and upsampling residual blocks with skip connections, group normalization,
and Swish activations. Temporal information is injected at each residual block through a learned
projection of the sinusoidal timestep embedding, which is added to the feature activations. The input
to each generator is formed by concatenating the noisy target modality with the conditioning modality
along the channel dimension. The discriminators Dgx and Df are convolutional networks, each
consisting of a series of 4 x 4 convolutional layers with stride 2, doubling the number of feature maps
at each stage, followed by LeakyReLU activation. The conditioning modality is concatenated with
the generated or real target along the channel dimension.

The cycle-consistency generators Gé and Gg were based on ResNet-style architectures [24] with six
residual blocks. Each residual block contains two 3 x 3 convolutional layers, instance normalization,
and ReL.U activation, with reflection padding to avoid edge artifacts. The discriminators Dg and
Dy are PatchGANSs [23]], consisting of an initial 4 x 4 convolution with stride 2 and LeakyReLU,
followed by a sequence of stride-2 convolutions with doubling feature channels, and ending with a
4 x 4 convolution that outputs a grid of real/fake scores.

In baselines, in order to have a robust comparison, the DDPM model used similar network architec-
tures as the diffusion path in out network and CycleGAN used the similar network architectures for
generators and discriminators.

5.2.2 Symmetry Constraint

For experiments involving the synthesis of FNC matrices, we enforced the inherent symmetry property
of functional connectivity. After generating a predicted FNC matrix from the network, we retained
only the upper triangular portion (excluding the diagonal) and mirrored it to the lower triangular
portion. This step enforces the undirected nature of functional brain networks, reduces the number of
independent parameters that must be learned, and improves training stability.

5.2.3 Data Splits

We split the dataset into 60% training, 20% validation, and 20% test sets, while ensuring subject-level
separation to prevent data leakage across splits.

5.2.4 Hyperparameter Selection

Hyperparameters were tuned using the validation set to optimize Pearson correlation and structural
similarity (SSIM) between generated and real samples. We performed a grid search over learning
rates le—4, 2e—4, 5e—5, batch sizes 16, 32, diffusion timesteps T' € 4, A¢ye € 0.5,1,2, and Agupj €
0.5,1,2, while Ay and A\p were fixed at 1. Training was run for 100 epochs, and the model from the
final epoch was selected for evaluation. For the baselines, the DDPM was trained with 7' = 1000 and
a cosine scheduler on the paired data, while CycleGAN was trained on all the data. Both baselines
were trained for 100 epochs, with a learning rate of 1le—4 for CycleGAN and 2e—4 for DDPM.
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