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ABSTRACT

Using zero-cost (ZC) metrics to estimate network performance instead of rely-
ing on expensive training processes has proven both its efficiency and efficacy
in Neural Architecture Search (NAS). However, a significant limitation of most
ZC proxies is their inconsistency, as reflected by the substantial variation in their
performance across different problems. Additionally, the design of current ZC
metrics is manual, which is a lengthy trial-and-error process and requires expert
knowledge to develop ZC metrics effectively. These challenges raise two ques-
tions: (1) Can we automate the design of ZC metrics? and (2) Can we utilize
the existing hand-crafted ZC metrics to synthesize a better one? In this study,
we propose a framework based on Symbolic Regression to automate the design
of ZC metrics. Our framework is not only highly extensible but also capable of
quickly producing a ZC metric with a strong positive rank correlation to network
performance across multiple problems within just a few minutes. Extensive exper-
iments on 13 problems in NAS-Bench-Suite-Zero, covering various search spaces
and tasks, demonstrate the superiority of our automatically designed proxies over
hand-crafted ones. By integrating our proxy metrics into an evolutionary algo-
rithm, we could identify a network architecture with comparable performance on
the CIFAR-10 dataset within 15 minutes using a single GeForce RTX 3090 GPU1.

1 INTRODUCTION

Figure 1: Comparisons in Kendall’s Tau rank correlations
between our automatically-designed ZC metric and state-
of-the-art ZC metrics (i.e., MeCo, ZiCo, and SWAP) on
NAS-Bench-101/201/301 (Left) and TransNAS-Bench-101-
Micro/Macro (Right). Highest Kendall’s τ scores for each
problem are presented. The results highlight the consistency
of our ZC metric across various search spaces and tasks.

Neural architecture search (NAS),
a subfield of Automated Machine
Learning (AutoML), focuses on
the automatic design of high-
performance network architec-
tures (Elsken et al., 2019). NAS can
be described as a procedure in which
a search algorithm explores a search
space containing potential architec-
tures. During the exploration, the
search algorithm assesses the quality
of candidate networks using a per-
formance estimation strategy. Early
NAS studies estimated the quality of
networks based on their performance
on the validation dataset (Zoph & Le,
2017; Real et al., 2019). Although
top-performing networks could be
obtained, a single NAS run took
several weeks or months to complete
and heavily depended on hardware
resource (i.e., Real et al. (2019)

1Our source code is provided in the supplementary material.
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used 800 GPUs for a single run). Recent works have proposed various approaches to deal with
this bottleneck such as weight-sharing (Pham et al., 2018), performance prediction (White et al.,
2021), or zero-cost metrics (Abdelfattah et al., 2021). Among these techniques, using zero-cost
metrics (also known as training-free metrics in the literature) offers the most efficiency since it
can shorten the search time from days to a dozen seconds or minutes. For example, Peng et al.
(2024) found a network architecture with competitive performance on CIFAR-10 within 6 minutes
using SWAP, which is a zero-cost proxy that measures the expressivity of the network. However,
a significant limitation of the zero-cost metrics (ZC metrics) is their order-preserving ability. The
order-preserving ability of ZC metrics can be assessed by examining the consistency between the
rankings of architectures produced by ZC proxies and those based on their true performance (Zhang
et al., 2024). Many studies have highlighted inconsistencies in network rankings based on ZC
metrics’ scores across different problems (Abdelfattah et al., 2021; Krishnakumar et al., 2022).
While ZC metrics exhibit positive rank correlations with network performance on some problems,
they may demonstrate negative correlations on others. Recent studies have attempted to address
this issue when newly proposed ZC proxies (e.g., ZiCo, MeCo, SWAP) achieve positive rank
correlations across all testing problems (Li et al., 2023; Jiang et al., 2023; Peng et al., 2024). In
these cases, a network that receives a high ZC score is also likely to exhibit high performance, and
vice versa. However, despite achieving positive rank correlations, the scores for some problems
remain close to 0.0, indicating a lack of correlation between the ZC scores and the networks’
performance. In this study, our target is to design a ZC metric that yields not only the consistent
order-preserving ability but also a high positive rank correlation across various problems2.

Table 1: List of frameworks that automatically design ZC metrics.

Name Method Features
Multiple-
problems

High-
extensibility

EZNAS (Akhauri et al., 2022) Symbolic Regression Low-level ✗ ✗

Auto-Prox (Wei et al., 2024) Symbolic Regression Low-level ✔ ✗

UP-NAS (Huang et al., 2024) Neural network High-level ✗ ✔

Ours Symbolic Regression High-level ✔ ✔

Most proposed ZC metrics are manually designed with expert knowledge. Can we automate the
design of efficient ZC metrics to form the proxies that are better than hand-crafted ones? The
practicability of this approach has been demonstrated in several studies. EZNAS (Akhauri et al.,
2022) implemented Symbolic Regression to form a ZC metric by combining three low-level features
of networks: weights, activations, and gradients. While EZNAS only considered convolutional
neural networks, Auto-Prox (Wei et al., 2024) extended the framework to design ZC metrics for
vision transformer architectures. Additionally, a single run of Auto-Prox aims to search for a ZC
metric that could perform well across multiple problems instead of a single problem as in EZNAS.
UP-NAS (Huang et al., 2024) designed a new ZC metric by combining higher-level features of
networks (i.e., hand-crafted ZC metrics) and taking their weighted sum, in which the weights of
metrics are found by using a neural network. However, a search process is needed to obtain suitable
weights whenever we handle a new problem. In this paper, we focus on the automatic designing
of efficient ZC metrics. Table 1 highlights the differences between our proposed framework and
previous approaches that also automate the design of ZC metrics. We discuss in detail the differences
in Section 3. Generally, our framework is designed to synthesize a new ZC metric from existing
hand-crafted ones, and the outcome metric could perform well across diverse problems. Our method
offers high extensibility, making it straightforward to adapt to various problems or modify input
features to enhance the performance of the resulting metric. Our main contributions are as follows:

• We propose a highly extensible framework for automatically designing a ZC metric that
not only consistently preserves the order of network performance but also achieves a high
positive rank correlation across multiple problems.

2In this paper, we define an NAS problem consisting of a single search space (e.g., NAS-Bench-101,
DARTS) and a single task (e.g., image classification on CIFAR-10 dataset, image classification on ImageNet
dataset, object detection on Taskonomy dataset). If we search network architectures within one search space
but evaluate them on two different tasks, we consider that we are solving two NAS problems. We list all 13
NAS problems in our experiments in Appendix C.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

• Our framework can synthesize a new ZC metric within only 10 minutes, which is signif-
icantly faster than the 24 hours required by EZNAS. Compared to previous ZC metrics,
including newly proposed ones (i.e., ZiCo, MeCo, SWAP), our metric achieves the state-
of-the-art Kendall’s tau correlation for NAS-Bench-101/201/301 search spaces and compa-
rable scores for TransNAS-Bench-101-Micro/Macro search spaces (see Figure 1).

• The performance of the best networks found by our synthesized ZC proxy surpasses those
found by hand-crafted ZC proxies in 8 out of 13 problems in NAS-Bench-Suite-Zero. By
integrating the found ZC metric with a simple evolutionary algorithm, we could find a net-
work with comparable performance on the CIFAR-10 dataset within 15 minutes, demon-
strating the practical applicability of our obtained ZC metric in real-world NAS scenarios.

2 RELATED WORK

Limitation of ZC-NAS metrics Zero-cost metrics are widely employed in NAS due to their ability
to estimate the network performance with a trivial cost (Krishnakumar et al., 2022). However, sev-
eral studies have indicated their inconsistent order-preserving ability across different problems (Ab-
delfattah et al., 2021; Krishnakumar et al., 2022). For example, the ZC metric Grad-norm has the
Spearman rank correlation to network performance of 0.58 for the NAS-Bench-201 search space
but has a score of −0.21 for the NAS-Bench-NLP search space (Abdelfattah et al., 2021). Recent
proposed ZC metrics (e.g., ZiCo, MeCo, SWAP) have tackled this issue since they consistently
yield a positive rank correlation across various problems. Nevertheless, their rank correlation scores
are close to 0.0 for some cases (e.g., the ZiCo metric for the TransNAS-Bench-101-Macro search
space), exhibiting the lack of correlation between the ZC metrics’ scores and the networks’ per-
formance. Designing a ZC metric that exhibits a high correlation to networks’ performance and a
strong order-preserving ability across various problems is essential.

Automatic designing of ZC-NAS metrics While most ZC metrics are manually designed with
expert knowledge, several studies aim to design ZC metrics automatically (Akhauri et al., 2022;
Wei et al., 2024; Huang et al., 2024). EZNAS (Akhauri et al., 2022) proposed a framework that
uses Symbolic Regression (SR) to synthesize a ZC metric from three basic statistics of convolutional
neural networks: weights, activations, and gradients. The empirical results shown that the ZC metric
found by EZNAS could surpass hand-crafted metrics. Auto-Prox (Wei et al., 2024) then modified
the framework of EZNAS to find a ZC metric for vision transformer networks. In EZNAS, the
dataset used by SR consists of networks’ information in a single problem. Such an approach might
make the resulting ZC metric overfitted on the experimented problem and perform worse on the
unseen problems. Auto-Prox solved this issue by combining multiple problems into the dataset of
SR instead of a single one. However, Auto-Prox only tested the proposed framework in finding
the ZC proxy for candidate networks within the same search space. When facing a different search
space, the search process was re-conducted to synthesize a new ZC proxy. On the other hand,
both EZNAS and Auto-Prox are restricted from discovering more robust ZC metrics when they
synthesize new ZC proxies using low-level features of the network. Compared to EZNAS and Auto-
Prox, the extensibility of UP-NAS (Huang et al., 2024) is higher when it synthesized new ZC metrics
from high-level features: hand-crafted ZC metrics. UP-NAS assumed there is a linear relationship
between hand-crafted ZC metrics and used a neural network to find the weights of 13 ZC metrics
listed in NAS-Bench-Suite-Zero. A new ZC proxy was then formed by taking their weighted sum.
However, the limitation of UP-NAS is similar to EZNAS as its dataset only covers a single problem.
A new ZC metric thus needs to be searched for whenever handling a different NAS problem.

NAS Benchmarks An NAS benchmark can be viewed as a database consisting of essential infor-
mation about candidate networks (e.g., train/validation/test performance, the number of parameters)
within the same search space. The NAS-Bench-101/201/301 benchmarks (Ying et al., 2019; Dong &
Yang, 2020; Siems et al., 2020) provide the performance of candidate networks for the image classi-
fication task with different datasets. The TransNAS-Bench-101-Micro/Macro benchmarks (Duan
et al., 2021) consider the network performance on other tasks beyond the image classification such
as scene classification, and object detection. The NAS-Bench-Suite-Zero benchmark (Krishnaku-
mar et al., 2022) is the collection of the aforementioned benchmarks and additionally computes the
scores for all candidate networks in terms of 13 various ZC metrics. The clear advantage of us-
ing NAS benchmarks is that we can quickly evaluate the effectiveness of our methods and fairly
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compare them to others in the same setting. In this paper, besides using NAS benchmarks to vali-
date our proposed method, we utilize NAS benchmarks to create the dataset for our framework to
automatically learn new ZC metrics.

3 PROPOSED FRAMEWORK

Our proposed framework for automating the design of ZC-NAS metrics is based on Symbolic Re-
gression (SR). Given existing hand-crafted ZC metrics, we use SR to search for the most effective
way to combine these metrics using mathematical operators (e.g., add, mul). In this section, we
first outline our approach to building the dataset for putting into SR in Section 3.1. The proposed
mechanism for evaluating the quality of ZC metrics during the search process is then detailed in
Section 3.2. The method for representing the synthesized ZC proxies and the ways that SR discov-
ers novel ZC proxies are presented in Sections 3.3 and 3.4, respectively. The entire search procedure
of our framework is discussed in Section 3.5. While the use of SR for automatically designing ZC
metrics was introduced in EZNAS (Akhauri et al., 2022) and Auto-Prox (Wei et al., 2024), there are
notable differences between our framework and theirs, particularly in the construction of the input
dataset for SR, the mechanism for evaluating synthesized ZC metrics, and the search procedure.
These differences are thoroughly discussed in the following sections.

3.1 DATASET BUILDING

Our approach to building the input dataset for SR closely resembles that of UP-NAS (Huang et al.,
2024), which uses hand-crafted ZC-NAS metrics as feature variables and validation performance of
networks as the ground truth. However, while the dataset of UP-NAS only covers a single problem,
our dataset encompasses the networks’ information across multiple problems. Although the sugges-
tion of integrating multiple problems into the input dataset of SR was proposed in Auto-Prox (Wei
et al., 2024), Auto-Prox uses the low-level features (i.e., network statistics), whereas we utilize the
high-level features (i.e., hand-crafted ZC metrics).

When creating the input dataset, while the cost of computing the ZC proxy values is negligible,
the most significant computational cost arises from defining the ground truth (i.e., the network per-
formance). However, we overcome this obstacle by employing existing NAS benchmarks (e.g.,
NAS-Bench-101, NAS-Bench-201), which provide the performance of numerous candidate archi-
tectures across various search spaces and tasks. Using NAS benchmarks also demonstrates strong
extensibility. Whenever a new NAS benchmark or hand-crafted ZC metric is introduced, we can
quickly compute the ZC metric scores of networks at a negligible cost and enrich the input dataset
by integrating the new information. Another way of defining the ground truth involves using super-
nets (e.g., Once-for-All (Cai et al., 2020)) or performance predictors (e.g., XGBoost (White et al.,
2021)), for which configurations and weights are available. In this study, we primarily focus on NAS
benchmarks to utilize truly trained performance rather than predicted performance.

3.2 OBJECTIVE EVALUATION

Our target is to design a ZC metric that ranks candidate networks in the same order as their true
performance. We thus use Kendall’s τ rank correlation to evaluate the quality of ZC metrics gen-
erated by SR during the search process, similarly to EZNAS, UP-NAS, and Auto-Prox. However,
the evaluation methods used in EZNAS and UP-NAS are not applicable to our framework, as our
dataset comprises multiple problems rather than a single one. Auto-Prox, which also uses multiple
problems to build the input dataset, evaluates the quality of an arbitrary ZC metric by computing its
Kendall’s τ value for each problem and taking the weighted sum. This approach has its limitation.
In particular, because the weight for each problem must be pre-defined before searching, it may
cause the resulting ZC metric to be biased towards the problem with the highest weight. Setting
equal weights for all problems is not effective due to the differences in Kendall’s τ values across
problems, leading SR to focus disproportionately on the problem that produces the highest rank
correlation and neglect others.

Our proposed mechanism for evaluating ZC metrics generated by SR is as follows. Given
{τ1, τ2, . . . , τN} as the set of Kendall’s τ values of an arbitrary ZC metric x on N problems, the
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quality of x (denoted as Score(x)) is defined as:

Score(x) =

N∑
i=1

τi − τ−i
τ+i − τ−i

, (1)

where τ−i and τ+i represent the lowest and highest Kendall’s τ values obtained so far for the i-
th problem. Equation 1 scales Kendall’s τ score for each problem into the range [0, 1], with the
new value being 0 and 1 if it corresponds to the lowest and highest scores obtained so far for the
problem, respectively. The maximum score for the ZC metric x is therefore N , if it yields the
highest Kendall’s τ values for all problems at the time of evaluation.

3.3 SOLUTION REPRESENTATION

Figure 2: Example of using expression tree to rep-
resent the expression Snip× (Snip+MeCo) in SR.

Our use of SR to design the ZC metric is
similar to finding the optimal function that
combines multiple hand-crafted ZC metrics,
which can be represented as an expression
tree. Figure 2 illustrates an example of a
function combining two ZC proxies and the
corresponding expression tree. In an expres-
sion tree, the leaf nodes represents variables
or constants (e.g., nodes ‘Snip’ and ‘MeCo’
in Figure 2), while the internal nodes repre-
sents mathematical operators (e.g., nodes ‘+’
and ‘×’ in Figure 2). In our experiments, we
constrain the search space by using a fixed
set of primitive mathematical operators {add,
sub, mul, div, neg, log, sqrt} (more details on
these operators are provided in Appendix B), and we exclude constants in the mathematical expres-
sions, meaning that the leaf nodes are exclusively ZC metrics. The minimum and maximum tree
depths are also restricted to 2 and 10, respectively.

3.4 VARIATION OPERATORS

We implement basic variation operators, including crossover, subtree mutation, hoist mutation, and
point mutation, to enable SR to discover novel expression trees (i.e., ZC metrics) during the search
process. Illustrations of these operators are exhibited in Figure 3.

Figure 3: Illustration of crossover and mutation operators for expression trees.

3.5 SEARCH PROCEDURE

Figure 4 illustrates the entire procedure we use SR for synthesizing new ZC metrics in this study.
Initially, SR generates a population of N synthesized ZC metrics, which are represented by expres-
sion trees as described in Section 3.3. We then evaluate the quality of these ZC metrics using the
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Figure 4: The procedure of searching new ZC metrics using Symbolic Regression. Our dataset
consists of multiple NAS problems and it thus contains multiple search spaces SS = {SS1, SS2,
. . ., SSi} and tasks T = {T1, T2, . . ., Ti}. SSi refers to the i-th search space in the list of search
spaces SS and Tj refers to the j-th in the list of tasks T .

method detailed in Section 3.2 and employ binary tournament selection to choose parents for gener-
ating offspring expressions. Given a set S of N individuals, we divide S into N/2 pairs and select
the winner from each pair based on their quality. This process is repeated until N parent expres-
sions (i.e., winners) are selected. The parent expressions then undergo the variation operators (i.e.,
crossover and mutation, as discussed in Section 3.4) to produce offspring expressions. The offspring
are evaluated for their quality, and along with the parents, form a set P +O with a size of 2×N . We
again perform tournament selection on the set P + O to select the N best expression trees for the
population in the next generation. The search process of SR is executed until the stopping criteria
are satisfied (e.g., reaching the maximum number of generations), and the final output of SR is the
best expression tree in the final population.

We highlight the differences between our search procedure and those used in EZNAS and Auto-Prox.
In their frameworks, after the offspring are produced and evaluated for quality, they are immediately
chosen as individuals for the next population, without comparing to the parents as in our approach.
The drawback of such non-elitist approaches is that good solutions could be inadvertently eliminated
and replaced with inferior ones. In contrast, by comparing parents and offspring, we ensure that
high-quality ZC metrics remain in the population until the end of the search process.

4 EXPERIMENTS AND RESULTS

The majority of our experiments are conducted on NAS-Bench-Suite-Zero (Krishnakumar et al.,
2022), which consists of five different NAS benchmarks: NAS-Bench-101 (Ying et al., 2019), NAS-
Bench-201 (Dong & Yang, 2020), NAS-Bench-301 (Siems et al., 2020), and TransNAS-Bench-
101-Micro/Macro (Duan et al., 2021)). The network architectures in NAS-Bench-101/201/301 are
evaluated for the Image classification task, while those in TransNAS-Bench-101-Micro/Macro
are evaluated on the tasks of Object detection, Scene classification, Jigsaw puzzle, and Autoen-
coding3. In summary, we experiment and validate our proposed method on 13 problems in NAS-
Bench-Suite-Zero (more details of each problem are provided in Appendix C). Beyond NAS bench-
marks, we also demonstrate the effectiveness of our SR-designed ZC metric in practice by testing
it on large-scale search spaces (i.e., DARTS (Liu et al., 2019), Once-For-All (Cai et al., 2020)) and
dataset (i.e., ImageNet). All experiments are conducted on a single GeForce RTX 3090 GPU.

4.1 SEARCHING FOR A ROBUST ZC METRIC ACROSS MULTIPLE PROBLEMS

We first run the proposed framework with the input dataset containing the values of 16 hand-
crafted ZC-NAS proxies and the validation accuracies of network architectures across three search
spaces: NAS-Bench-101, NAS-Bench-201, and NAS-Bench-301. Both the ZC scores and valida-
tion accuracies are measured on the CIFAR-10 dataset. For ZC proxies, we reuse the values of
13 ZC metrics that are logged in NAS-Bench-Suite-Zero, including FLOPs, Params, Jacov (Mel-
lor et al., 2020), NWOT (Mellor et al., 2021), Synflow (Tanaka et al., 2020), Snip (Lee et al.,

3There are three additional tasks Room Layout, Surface Normal and Semantic Segmentation for the two
TransNAS-Bench-101 search spaces, but we encountered a dataset issue similar to Peng et al. (2024).
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2019), EPE-NAS (Lopes et al., 2021), Fisher (Turner et al., 2020), Grad-norm (Abdelfattah et al.,
2021), Grasp (Wang et al., 2020), L2-norm (Abdelfattah et al., 2021), Zen (Lin et al., 2021),
Plain (Abdelfattah et al., 2021)). Additionally, we compute the values of three state-of-the-art ZC
metrics by using their published source code: ZiCo (Li et al., 2023), MeCo (Jiang et al., 2023), and
SWAP (Peng et al., 2024). For each search space, we add 70% of the total networks into the input
dataset for SR and use the remaining 30% for the test dataset. We run and test our framework for
31 independent runs with different seeds. The population size of SR is set to 100 and the search
process is terminated when SR reaches 50 generations. Consequently, we explore a total of 5,000
synthesized ZC metrics at each run. Additional hyperparameters for variation operators (e.g., the
crossover and mutation probabilities) are presented in Appendix D.

The obtained results reveal differences in the formulas of the ZC metrics designed by our framework
across 31 independent runs (see Appendix H). However, the quality of these expressions is relatively
consistent, as indicated by the small standard deviations (i.e., approximately 0.01 to 0.03) over 31
runs. The results also show the similarity in the rank correlation of SR-designed ZC metrics on
the input and test datasets, suggesting that the designed metrics are not overfitted to the input data
and perform well across the entire dataset. We also observe the differences in Kendall’s τ scores
achieved across different problems. While we can obtain an average score of 0.74 for the NB201-
CF10 problem, the scores for NB101-CF10 and NB301-CF10 problems are approximately 0.56 and
0.38, respectively. Nonetheless, it is noteworthy that our τ values are significantly higher than those
achieved by hand-crafted ZC proxies for these problems (comparisons are provided in Section 4.2).
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Figure 5: Frequency of hand-crafted ZC metrics
in the 31 final ZC metrics synthesized by SR.

We further analyze the ZC metrics designed
by our framework. As shown in Figure 5,
each hand-crafted ZC metric is used at least
once in the synthesized metrics. Notably, the
MeCo metric is selected by SR in all 31 runs,
whereas the SWAP metric is only chosen once.
Although SWAP exhibits relatively high rank-
correlation across the three experimental prob-
lems (see Figure 6), its combination with other
hand-crafted ZC metrics appears to be less
promising. Interestingly, Snip is the second
most chosen metric by our framework despite
its modest τ scores across the three experi-
mental problems. These findings suggest that
our framework does not merely favor metrics
with high rank-correlation but instead priori-
tizes those metrics that contribute most effec-
tively when combined with others.

Among 31 final ZC metrics returned by our framework, we evaluate Kendall’s τ for each problem
and compute the score for each candidate according to Equation 1. The metric with the highest score
is selected for use and comparison with other ZC metrics in later experiments. This ZC metric is
presented in Equation 2, which combines six hand-crafted ZC metrics: FLOPs, Snip, L2-norm,
Zen, ZiCo, and MeCo.

f(·) = ZiCo×MeCo2 × log(FLOPs)

(MeCo+ Zen)× (
√
Snip× (MeCo+ Zen+ 2× L2-norm) +MeCo)

(2)

4.2 COMPARISON TO OTHER ZC METRICS ON NAS-BENCH-SUITE-ZERO

Comparison to hand-crafted ZC metrics: Figure 6 exhibits the Kendall’s τ score comparisons be-
tween our obtained ZC metric (i.e., Equation 2) (denoted as SR-NAS) and hand-crafted ZC metrics
across 13 problems in NAS-Bench-Suite-Zero. We additionally visualize the correlation between
our ZC metric and the ground-truth performance in Appendix G. The results indicate that Kendall’s
τ scores of our ZC metric significantly surpass those of other metrics for the problems used to build
the input dataset of our framework (i.e., NB101-CF10, NB201-CF10, and NB301-CF10). For the
NB201-CF100 and NB201-IMGNT problems, which reside within the same search space as one
of the problems in the input dataset (i.e., NB201-CF10), our ZC metric also achieves the highest
Kendall’s τ scores. We further assess the generalizability of our metric by validating it on unseen
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(a) (b) (c)

Figure 6: Kendall’s τ rank correlation between ZC metrics values and networks’ ground truth per-
formance. The rows are arranged based on the average rank of metrics across all problems, with
problems within the same search space colored identically. The highest Kendall’s τ for each prob-
lem is highlighted with a red box. The results are presented in three groups: (a) Problems included
in the dataset used by our framework in the search procedure; (b) Problems within the same search
space as one of the problems in (a), but with different tasks; (c) Problems not included in the dataset
used by our framework in the search procedure. Our ZC metric is denoted as SR-NAS.

search spaces (i.e., TransNAS-Bench-101 Micro/Macro) and tasks (i.e., Object detection, Scene
classification, Jigsaw puzzle, and Autoencoding). As depicted in Figure 6, our metric yields the
highest scores in 3 out of 4 problems in the TransNAS-Bench-101-Micro and achieves comparable
scores for the remaining problems. Additionally, we rank the ZC metrics based on the sum of their
rankings across all problems. Figure 6 shows that SR-NAS holds the top rank, underscoring the
impressive stability of our ZC metric across various problems. These results demonstrate the effec-
tiveness of leveraging hand-crafted ZC metrics to automatically synthesize a robust ZC metric that
performs consistently well across multiple search spaces and tasks.

Comparison to other automatic frameworks: Table 2 presents a comparison of both Kendall’s τ

Table 2: Comparisons in Kendall’s τ rank correlation between frameworks that automate the design
of ZC metrics. The symbol ‘-’ indicates that the results were not reported in the original studies. The
best results are presented in red color. We do not compare to Auto-Prox (Wei et al., 2024) because
it serves for vision transformer networks and does not test on NAS-Bench-Suite-Zero.

Framework NB201-CF10 NB201-CF100 NB201-IMGNT Search Cost (hours)

EZNAS (Akhauri et al., 2022) 0.65 0.65 0.61 24.0
UP-NAS (Huang et al., 2024) 0.71 - - 0.03

SR-NAS (Ours) 0.76 0.76 0.72 0.17

scores and search costs between our framework and other frameworks that also automate the design
of ZC metrics, specifically EZNAS and UP-NAS. The results indicate that our metric consistently
yields the highest Kendall’s τ scores across all three problems in NAS-Bench-201. Notably, our
framework outperforms EZNAS, even though both frameworks utilize Symbolic Regression (SR) as
the search algorithm. This suggests the effectiveness of using high-level features (i.e., hand-crafted
ZC metrics) over low-level features (i.e., network statistics) to design a robust ZC metric. On the
other hand, the benefit of using SR in synthesizing ZC metrics is highlighted by our higher τ scores
compared to UP-NAS, despite both frameworks using hand-crafted ZC metrics as input features.
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In terms of search cost, our framework (0.17 hours ≈ 10 minutes) and UP-NAS (0.03 hours ≈ 2
minutes) are significantly lower than EZ-NAS (24 hours) due to leveraging the NAS benchmarks.
Although our time is slightly higher than UP-NAS (i.e., 8 minutes), it is important to note that
our framework only requires a single search, and our obtained ZC metric can be employed as an
effective proxy across different NAS problems. In contrast, UP-NAS requires re-conducting the
search process for each specific problem.

4.3 CAPABILITY OF SEARCHING TOP-PERFORMING NETWORKS

Table 3: Kendall’s Tau rank correlation and test accuracy on ImageNet of the best networks found
by ZC metrics within Once-For-All search spaces. Best results are presented in bold format.

Metric Kendall’s Tau Top-1 Accuracy (%)

MeCo (Jiang et al., 2023) 0.51 76.40
Zen (Lin et al., 2021) 0.59 76.43
FLOPs 0.60 76.30
Snip (Lee et al., 2019) 0.04 76.13
L2-norm (Abdelfattah et al., 2021) 0.41 76.51
ZiCo (Li et al., 2023) 0.68 76.44

Ours 0.60 76.65

Optimal (in 1000 networks) - 76.81

Table 4: Comparison of error rates (%) on the CIFAR-10 dataset for networks discovered in the
DARTS search space. For training-free methods, the specific ZC metrics used by the algorithms are
listed in parentheses. The search cost is measured in GPU days.

Method Test Error (%) Params (M) Search Cost Training-free

PNAS (Liu et al., 2018) 3.41± 0.09 3.2 225
DARTS (Liu et al., 2019) 3.00± 0.14 3.3 4.0
RandomNAS (Li & Talwalkar, 2020) 2.85± 0.08 4.3 2.7
DARTS-PT (Wang et al., 2021) 2.61± 0.08 3.0 0.8
PreNAS (Peng et al., 2023) 2.49± 0.09 4.5 0.6
PINAT (Lu et al., 2023) 2.54± 0.08 3.6 0.3

TE-NAS (NLR, NTK) (Chen et al., 2021) 2.63± 0.06 3.8 0.03 ✔

Zero-Cost-PT (ZiCo) (Li et al., 2023) 2.80± 0.03 5.1 0.04 ✔

Zero-Cost-PT (MeCo) (Jiang et al., 2023) 2.69± 0.05 4.2 0.08 ✔

SWAP-NAS† (SWAP) (Peng et al., 2024) 2.48± 0.09 4.3 0.004 ✔

Aging Evolution (SR-NAS) (Ours) 2.66± 0.04 3.9 0.01 ✔

† SWAP-NAS searches in a sub-space of DARTS, where the normal and reduction cells are similar.

In addition to the rank correlation with network performance, the ability to identify top-performing
networks is a crucial aspect of ZC metrics. Previous studies have highlighted the limitations of
ZC metrics in effectively identifying top-performing networks, even when they achieve high rank-
correlation scores (Jiang et al., 2023; Phan & Luong, 2024). We verify this ability of our obtained
ZC metric by testing it on the large-scale ImageNet dataset. Specifically, we randomly sample
1,000 networks from the Once-For-All (OFA (Cai et al., 2020)) search space and then compute
the rank correlation between our ZC metric score and the networks’ accuracy on the ImageNet
dataset. Table 3 reveal that our Kendall rank correlation is only slightly lower than ZiCo (i.e.,
0.60 compared to 0.68). However, the network with the highest score according to our ZC metric
achieves the highest top-1 accuracy among all networks identified by the competing ZC metrics.
This demonstrates the ability of our synthesized metric to reliably identify high-performing networks

9
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in large-scale search spaces such as OFA. We further employ our metric as the search objective
of Aging Evolution (Real et al., 2019), which is a widely-used evolutionary algorithm for NAS.
The algorithm is deployed in the DARTS search space (Liu et al., 2019) to seek high-performance
networks for the CIFAR-10 dataset. As shown in Table 4, the algorithm using our SR-designed
ZC metric as the search objective could figure out a network with comparable performance within
15 minutes (i.e., 0.01 GPU days) (the network architecture found by our algorithm is exhibited in
Appendix E). This result demonstrates both the efficiency and the effectiveness of our obtained ZC
metric in discovering high-performance networks. We additionally provide a comparison of the best
networks identified by our ZC metric versus other metrics across all problems in NAS-Bench-Suite-
Zero in Appendix F, showing that the networks found with our metric are the best compared to those
found with hand-crafted ZC metrics in 8 out of 13 total problems.

4.4 ABLATION STUDY

Extensibility: We demonstrate the extensibility of our proposed framework by additionally ex-
perimenting with two variants of the current input dataset (details of each dataset are presented in
Appendix A.1). The results detailed in Appendix A.1 demonstrate that augmenting the input dataset
with robust ZC metrics can further enhance the performance of our proposed framework. Addition-
ally, we hypothesize that the generalizability of our framework could be improved by using a dataset
that is augmented with a broader range of problems. Moreover, the metric found by the framework
using the dataset covering more problems delivers better general performance across all 13 problems
in NAS-Bench-Suite-Zero than the current best metric (i.e., Equation 2).

Lack of generalizability when searching on a single problem: We conduct additional experiments
to investigate the potential overfitting of our framework when searching with the input dataset that
only covers a single problem. The results detailed in Appendix A.2 reveal that the τ scores of
ZC metrics found by using the datasets that only cover a single problem significantly deteriorate
when evaluated on other problems. For instance, the metric found by using the dataset built on the
NB301-CF10 problem achieves a score of 0.48 for NB301-CF10 but has a negative score of -0.17
for NB201-CF10. Conversely, the ZC metric found by using the dataset containing three problems
achieves a more balanced performance across all problems.

Comparison to the search procedure in EZNAS: Appendix A.3 presents Kendall’s τ for the ZC
metrics designed using our proposed framework compared to the ones designed by the framework
in EZNAS on three problems: NB101-CF10, NB201-CF10, and NB301-CF10. The results show
that while our obtained ZC metrics are only slightly worse on one problem (i.e., NB301-CF10),
they are significantly better on the other two (i.e., NB101-CF10 and NB201-CF10), highlighting
the effectiveness of our approach over EZNAS. The potential issue with EZNAS, as indicated, is
that it could eliminate high-quality parents and replace them with lower-quality offspring, which
can lead to the offspring in the next generations being derived from inferior candidates. The search
framework of EZNAS is thus less effective than ours when searching under the same budget.

5 CONCLUSION

In this paper, we propose a novel framework that leverages Symbolic Regression (SR) to automati-
cally design robust zero-cost (ZC) metrics for various NAS search spaces and tasks. Our approach
introduces several notable features. First, unlike previous frameworks, the input dataset of our
framework comprises diverse problems instead of a single one. We further introduce a novel eval-
uation mechanism that assesses the quality of generated ZC metrics throughout the search process.
This mechanism not only guides SR to identify expressions that correlate well with network perfor-
mance across multiple problems but also prevents it from overfitting to a specific problem. Addi-
tionally, our framework is highly extensible; incorporating more powerful hand-crafted ZC metrics
and diverse problems into the input dataset could enhance the effectiveness of resulting metrics
across various problems. Extensive experiments on NAS-Bench-Suite-Zero demonstrate both the
efficacy and efficiency of our method. Our framework could design a ZC metric with state-of-the-
art Kendall’s τ correlation on NAS-Bench-101/201/301 search spaces within 10 minutes, and our
metric remains competitive to hand-crafted metrics on TransNAS-Bench-101-Micro/Macro search
spaces. When combining our obtained metric with an evolutionary algorithm, we could figure out a
network architecture with comparable performance in the DARTS search space within 15 minutes.
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A FULL RESULTS IN ABLATION STUDY

A.1 EXTENSIBILITY

Table 5: Kendall’s τ rank correlations of the best ZC metrics (over 31 runs) designed by our frame-
work with using three different input datasets: D, D−, and D+. Best results for each problem are
presented in red color.

Dataset NB101-CF10 NB201-CF10 NB301-CF10 TNB101-Micro-Scene TNB101-Macro-Scene

D− 0.54 0.72 0.39 0.19 -0.30
D+ 0.48 0.78 0.42 0.63 0.67

Dx 0.61 0.76 0.40 0.48 0.53

In this section, we present the full results of experiments to verify the extensibility of our proposed
framework (i.e., Section 4.4). Specifically, we experiment with three following input datasets:

1. D: The dataset used in Section 4.1 to search a robust ZC metric across multiple problems.
This dataset contains the scores of 16 hand-crafted ZC metrics (including 13 ZC metrics in
NAS-Bench-Suite-Zero and three newly-proposed metrics (i.e., ZiCo, MeCo, SWAP)) on
NB101-CF10, NB201-CF10, and NB301-CF10 problems.

2. D−: We remove the scores of three novel hand-crafted ZC metrics (i.e., ZiCo, MeCo, and
SWAP) from D.

3. D+: We integrate into D the ZC metrics scores and networks performance on two addi-
tional problems: TNB101-Micro-Scene and TNB101-Macro-Scene.

For each dataset, we execute 31 independent runs with the settings as presented in Section 4.1.
Table 5 exhibits the Kendall’s τ scores of the best ZC metrics designed by our framework with D,
D−, and D+ input datasets. The results demonstrate that using dataset D achieves higher Kendall’s
τ scores across all testing problems than using dataset D−. This suggests that augmenting the input
dataset with robust ZC metrics can further enhance the performance of our proposed framework.
Additionally, we hypothesize that the generalizability of our framework could be improved by using
a dataset that is augmented with a broader range of problems. While the τ score for the NB101-CF10
problem slightly decreases when using dataset D+, the τ scores or the remaining problems show an
increase compared to the framework using dataset D. Moreover, the metric found by the framework
using D+ delivers better general performance across all 13 problems in NAS-Bench-Suite-Zero than
the current best metric (i.e., Equation 2), which is found by using D.

A.2 LACK OF GENERALIZABILITY WHEN SEARCHING ON A SINGLE PROBLEM

Table 6: Comparisons in Kendall’s τ rank correlations of the best ZC metrics (over 31 runs) designed
by our framework using the input datasets that only cover a single problem (i.e., NB101-CF10,
NB201-CF10, and NB301-CF10) and using the input dataset containing all 3 problems NB101-
CF10, NB201-CF10, and NB301-CF10. Best results are presented in red color.

Search Problem NB101-CF10 NB201-CF10 NB301-CF10

NB101-CF10 0.66 0.70 0.37
NB201-CF10 0.47 0.79 0.27
NB301-CF10 0.36 -0.17 0.48

All 3 problems 0.61 0.76 0.40

We conduct additional experiments to investigate the potential overfitting of our framework when
searching with the input dataset that only covers a single problem. Specifically, we execute our
framework with the input datasets that only cover a single problem (i.e., NB101-CF10, NB201-
CF10, and NB301-CF10) and conduct a performance comparison to the framework that uses the
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input dataset containing simultaneously three problems. Table 6 reveals that the τ scores of ZC
metrics found by using the datasets that only cover a single problem significantly deteriorate when
evaluated on other problems. For instance, the metric found by using the dataset built on the NB301-
CF10 problem achieves a score of 0.48 for NB301-CF10 but has a negative score of -0.17 for NB201-
CF10. Conversely, the ZC metric found by using the dataset containing three problems achieves a
more balanced performance across all problems.

A.3 COMPARISON TO THE SEARCH PROCEDURE IN EZNAS

Table 7: Comparisons in the Kendall’s τ scores of ZC metrics designed by our framework and the
framework proposed in EZNAS. Best results are presented in red color.

Problem EZNAS Ours

Worst NB101-CF10 0.5057 0.5338
NB201-CF10 0.7279 0.7363
NB301-CF10 0.3684 0.3537

Median NB101-CF10 0.5372 0.5613
NB201-CF10 0.7345 0.7617
NB301-CF10 0.3779 0.3760

Best NB101-CF10 0.5843 0.6145
NB201-CF10 0.7396 0.7610
NB301-CF10 0.4040 0.4012

Table 7 presents Kendall’s τ for the ZC metrics designed using our proposed framework compared
to the ones designed by the framework in EZNAS on three problems: NB101-CF10, NB201-CF10,
and NB301-CF10. We compare both frameworks in three kinds of ZC metrics: the worst, the
median, and the best among 31 designed metrics. The results show that while our SR-designed ZC
metrics are only slightly worse on one problem (i.e., NB301-CF10), they are significantly better on
the other two (i.e., NB101-CF10 and NB201-CF10), highlighting the effectiveness of our approach
over EZNAS.
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B MATHEMATICAL OPERATORS

In our experiments, we implement the primitive mathematical operators for SR: {add, sub, mul, div,
neg, log, sqrt}. The details of each operator are presented in Table 8. Among these operators, three
operators have constraints in these input values: div (i.e., Y ̸= 0), log (i.e., X > 0), and sqrt (i.e.,
X ≥ 0). We return the value of -10,000,000 for these operators in cases where the input values
violate constraints.

Table 8: List of mathematical operators

Name Operation Type Description

add Addition Binary Z = X + Y
sub Subtraction Binary Z = X − Y
mul Multiplication Binary Z = X × Y
div Division Binary Z = X ÷ Y
log Logarithm Unary Z = log (X)

sqrt Square root Unary Z =
√
X

neg Negative Unary Z = −X

C LIST OF PROBLEMS

Table 9: NAS problem description

Problem Search Space Task

NB101-CF10 NAS-Bench-101 Image classification on CIFAR-10 dataset

NB201-CF10 NAS-Bench-201 Image classification on CIFAR-10 dataset
NB201-CF100 Image classification on CIFAR-100 dataset
NB201-IMGNT Image classification on ImageNet16-120 dataset

NB301-CF10 NAS-Bench-301 Image classification on CIFAR-10 dataset

TNB101-Micro-Scene TransNAS-Bench-101-Micro Scene classification on Taskonomy dataset
TNB101-Micro-Object Object detection on Taskonomy dataset
TNB101-Micro-AutoEnc Autoencoding on Taskonomy dataset
TNB101-Micro-Jigsaw Jigsaw puzzle on Taskonomy dataset

TNB101-Macro-Scene TransNAS-Bench-101-Macro Scene classification on Taskonomy dataset
TNB101-Macro-Object Object detection on Taskonomy dataset
TNB101-Macro-AutoEnc Autoencoding on Taskonomy dataset
TNB101-Macro-Jigsaw Jigsaw puzzle on Taskonomy dataset
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D HYPERPARAMETER SETTING

Table 10: Hyperparameters of Symbolic Regression

Hyperparameter Value

Population Size 100
Tournament Size 2
Probability of Crossover 0.7
Probability of Subtree Mutation 0.1
Probability of Hoist Mutation 0.5
Probability of Point Mutation 0.1
Maximum number of generations 50
Minimum depth of expression tree 2
Maximum depth of expression tree 10

Table 11: Hyperparameters of Aging Evolution

Hyperparameter Value

Population Size 100
Probability of Mutation 0.5
Maximum number of evaluations 3000
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E NETWORK ARCHITECTURE FOUND IN DARTS SEARCH SPACE
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(a) Normal cell
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c_{k}

dil_conv_5x5

(b) Reduction cell

Figure 7: Normal and reduction cells of the architecture found by our SR-designed ZC metric in the
DARTS search space for the CIFAR-10 dataset. The model size of this network is 3.97 MB.
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F PERFORMANCE COMPARISONS OF THE BEST NETWORKS FOUND BY ZC
METRICS FOR PROBLEMS IN NAS-BENCH-SUITE-ZERO

Table 12: Performance comparisons of the best networks found by ZC metrics for problems within
NAS-Bench-101, NAS-Bench-201, and NAS-Bench-301 search spaces. Best results for each prob-
lem are presented in red color.

Metric
NB101-
CF10

↑ NB201-
CF10

↑ NB201-
CF100

↑ NB201-
IMGNT

↑ NB301-
CF10

↑

Params 89.11 90.36 71.34 41.23 91.98
FLOPs 89.11 90.36 71.34 41.23 91.98
Snip (Lee et al., 2019) 86.78 81.45 47.62 23.40 91.98
Fisher (Turner et al., 2020) 86.78 81.45 47.62 25.93 91.09
Jacov (Mellor et al., 2020) 84.98 89.03 69.78 43.50 92.12
Synflow (Tanaka et al., 2020) 89.11 90.36 71.34 41.23 93.79
Grasp (Wang et al., 2020)] 86.21 81.45 47.62 27.60 92.91
Plain (Abdelfattah et al., 2021) 86.69 85.21 55.54 17.70 91.81
Grad-norm (Abdelfattah et al., 2021) 86.78 81.45 47.62 20.67 93.34
EPE-NAS (Lopes et al., 2021) 92.00 85.74 56.36 42.37 92.69
L2-norm (Abdelfattah et al., 2021) 92.56 88.73 72.04 45.43 91.98
Zen (Lin et al., 2021) 94.22 86.96 68.26 40.60 91.98
NWOT (Mellor et al., 2021) 93.33 89.78 70.14 45.90 93.54
ZiCo (Li et al., 2023) 94.22 90.36 71.34 41.23 91.98
MeCo (Jiang et al., 2023) 93.34 89.86 70.78 41.23 91.98
SWAP (Peng et al., 2024) 92.56 88.28 69.46 37.63 93.54

Ours 94.58 91.18 72.72 46.60 94.57

Optimal (in the benchmark) 94.72 91.57 73.26 47.33 94.69
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Table 13: Performance comparisons of the best networks found by ZC metrics for problems within
TransNAS-Bench-101-Micro search space. Best results for each problem are presented in red color.

Metric Scene ↑ Object ↑ Jigsaw ↑ AutoEnc ↑

Params 53.67 42.14 85.91 0.46
FLOPs 53.67 42.14 85.91 0.46
Snip (Lee et al., 2019) 48.72 36.92 80.32 0.33
Fisher (Turner et al., 2020) 48.72 36.92 83.49 0.00
Jacov (Mellor et al., 2020) 53.72 41.78 93.99 0.42
Synflow (Tanaka et al., 2020) 53.67 39.53 90.91 0.46
Grasp (Wang et al., 2020)] 50.19 31.17 91.08 0.33
Plain (Abdelfattah et al., 2021) 31.51 31.79 0.03 0.06
Grad-norm (Abdelfattah et al., 2021) 48.72 36.92 6.82 0.36
EPE-NAS (Lopes et al., 2021) 52.12 40.86 92.24 0.46
L2-norm (Abdelfattah et al., 2021) 53.30 42.74 91.84 0.45
Zen (Lin et al., 2021) 53.67 42.14 85.91 0.46
NWOT (Mellor et al., 2021) 53.16 43.02 92.29 0.41
ZiCo (Li et al., 2023) 53.67 42.14 85.91 0.46
MeCo (Jiang et al., 2023) 52.89 42.16 91.42 0.46
SWAP (Peng et al., 2024) 21.95 40.24 6.82 0.23

Ours 54.24 42.51 90.62 0.52

Optimal (in the benchmark) 54.94 45.59 95.37 0.58

Table 14: Performance comparisons of the best networks found by ZC metrics for problems within
TransNAS-Bench-101-Macro search space. Best results for each problem are presented in red color.

Metric Scene ↑ Object ↑ Jigsaw ↑ AutoEnc ↑

Params 54.26 42.71 94.26 0.37
FLOPs 55.52 45.29 96.51 0.66
Snip (Lee et al., 2019) 54.50 42.55 95.20 0.64
Fisher (Turner et al., 2020) 51.41 42.55 93.15 0.44
Jacov (Mellor et al., 2020) 56.01 46.05 95.20 0.65
Synflow (Tanaka et al., 2020) 56.27 45.29 96.51 0.41
Grasp (Wang et al., 2020)] 50.36 41.79 91.55 0.39
Plain (Abdelfattah et al., 2021) 51.70 43.33 92.09 0.41
Grad-norm (Abdelfattah et al., 2021) 53.01 42.55 93.48 0.64
EPE-NAS (Lopes et al., 2021) 52.61 45.22 92.93 0.41
L2-norm (Abdelfattah et al., 2021) 56.00 44.50 94.26 0.58
Zen (Lin et al., 2021) 56.00 44.50 95.35 0.62
NWOT (Mellor et al., 2021) 55.52 45.29 96.51 0.66
ZiCo (Li et al., 2023) 52.43 42.79 95.35 0.58
MeCo (Jiang et al., 2023) 56.27 46.66 96.51 0.64
SWAP (Peng et al., 2024) 55.52 45.29 96.51 0.66

Ours 54.78 45.74 96.50 0.73

Optimal (in the benchmark) 57.41 47.42 97.02 0.75
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G VISUALIZATION OF RANK CORRELATION BETWEEN OUR SR-DESIGNED
ZC METRIC AND THE NETWORK PERFORMANCE
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Figure 8: Visualizations of the network performance and our ZC metric scores for the problems
within the NAS-Bench-101, NAS-Bench-201, and NAS-Bench-301 search spaces.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

0 50 100 150 200 250
Our ZC metric Score

10

20

30

40

50

Gr
ou

nd
-tr

ut
h 

Sc
or

e

TNB101-Micro-Scene (Kendall's τ: 0.4836)

Best ZC Score

(a) TNB101-Micro-Scene

0 50 100 150 200 250
Our ZC metric Score

20

25

30

35

40

45

Gr
ou

nd
-tr

ut
h 

Sc
or

e

TNB101-Micro-Object (Kendall's τ: 0.4207)

Best ZC Score

(b) TNB101-Micro-Object

0 200 400 600 800 1000 1200 1400
Our ZC metric Score

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Gr
ou

nd
-tr

ut
h 

Sc
or

e

TNB101-Micro-AutoEnc (Kendall's τ: 0.3002)

Best ZC Score

(c) TNB101-Micro-AutoEnc

0 20 40 60 80
Our ZC metric Score

0

20

40

60

80

100

Gr
ou

nd
-tr

ut
h 

Sc
or

e

TNB101-Micro-Jigsaw (Kendall's τ: 0.4974)

Best ZC Score

(d) TNB101-Micro-Jigsaw

50 100 150 200 250 300
Our ZC metric Score

46

48

50

52

54

56

Gr
ou

nd
-tr

ut
h 

Sc
or

e

TNB101-Macro-Scene (Kendall's τ: 0.5308)

Best ZC Score

(e) TNB101-Macro-Scene

50 100 150 200 250 300
Our ZC metric Score

40

42

44

46

Gr
ou

nd
-tr

ut
h 

Sc
or

e

TNB101-Macro-Object (Kendall's τ: 0.6008)

Best ZC Score

(f) TNB101-Macro-Object

400 500 600 700 800 900 1000 1100
Our ZC metric Score

0.2

0.3

0.4

0.5

0.6

0.7

Gr
ou

nd
-tr

ut
h 

Sc
or

e

TNB101-Macro-AutoEnc (Kendall's τ: 0.4747)

Best ZC Score

(g) TNB101-Macro-AutoEnc

20 40 60 80 100 120 140 160
Our ZC metric Score

75

80

85

90

95

Gr
ou

nd
-tr

ut
h 

Sc
or

e

TNB101-Macro-Jigsaw (Kendall's τ: 0.3644)

Best ZC Score

(h) TNB101-Macro-Jigsaw

Figure 9: Visualizations of the network performance and our ZC metric scores for the problems
within the TransNAS-Bench-101-Micro and TransNAS-Bench-101-Macro search spaces.
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Figure 10: Visualizations of the network performance and our ZC metric scores on the ImageNet
dataset for 1000 networks within the Once-For-All search space.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

H ZERO-COST METRICS SYNTHESIZED BY OUR FRAMEWORK AT 31 RUNS

Kendall's 
NB101-CF10: 0.6069
NB201-CF10: 0.7631
NB301-CF10: 0.3878

(Run 1)

Kendall's 
NB101-CF10: 0.5801
NB201-CF10: 0.7428
NB301-CF10: 0.3935

(Run 2)

Kendall's 
NB101-CF10: 0.5279
NB201-CF10: 0.7590
NB301-CF10: 0.3804

(Run 3)

Kendall's 
NB101-CF10: 0.5895
NB201-CF10: 0.7408
NB301-CF10: 0.3942

(Run 4)

Kendall's 
NB101-CF10: 0.5371
NB201-CF10: 0.7523
NB301-CF10: 0.3811

(Run 5)

Kendall's 
NB101-CF10: 0.5371
NB201-CF10: 0.7523
NB301-CF10: 0.3811

(Run 6)
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Kendall's 
NB101-CF10: 0.5330
NB201-CF10: 0.7461
NB301-CF10: 0.3860

(Run 7)

Kendall's 
NB101-CF10: 0.5232
NB201-CF10: 0.7119
NB301-CF10: 0.3818

(Run 8)

Kendall's 
NB101-CF10: 0.5440
NB201-CF10: 0.7433
NB301-CF10: 0.3968

(Run 9)

Kendall's 
NB101-CF10: 0.5338
NB201-CF10: 0.7363
NB301-CF10: 0.3537

(Run 10)

Kendall's 
NB101-CF10: 0.5370
NB201-CF10: 0.7641
NB301-CF10: 0.3773

(Run 11)

Kendall's 
NB101-CF10: 0.6145
NB201-CF10: 0.7610
NB301-CF10: 0.4012

(Run 12)

Kendall's 
NB101-CF10: 0.5953
NB201-CF10: 0.7038
NB301-CF10: 0.3721

(Run 13)

Kendall's 
NB101-CF10: 0.5613
NB201-CF10: 0.7617
NB301-CF10: 0.3760

(Run 14)
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Kendall's 
NB101-CF10: 0.5914
NB201-CF10: 0.7467
NB301-CF10: 0.3982

(Run 15)

Kendall's 
NB101-CF10: 0.5382
NB201-CF10: 0.7583
NB301-CF10: 0.3757

(Run 16)
Kendall's 

NB101-CF10: 0.5641
NB201-CF10: 0.7428
NB301-CF10: 0.4007

(Run 17)

Kendall's 
NB101-CF10: 0.5247
NB201-CF10: 0.7387
NB301-CF10: 0.3850

(Run 18)

Kendall's 
NB101-CF10: 0.5605
NB201-CF10: 0.7581
NB301-CF10: 0.3792

(Run 19)

Kendall's 
NB101-CF10: 0.5372
NB201-CF10: 0.7144
NB301-CF10: 0.3778

(Run 20)
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Kendall's 
NB101-CF10: 0.5644
NB201-CF10: 0.7454
NB301-CF10: 0.3929

(Run 21)

Kendall's 
NB101-CF10: 0.5335
NB201-CF10: 0.7358
NB301-CF10: 0.3889

(Run 22)
Kendall's 

NB101-CF10: 0.5778
NB201-CF10: 0.7414
NB301-CF10: 0.3946

(Run 23)

Kendall's 
NB101-CF10: 0.5904
NB201-CF10: 0.7346
NB301-CF10: 0.4002

(Run 24)

Kendall's 
NB101-CF10: 0.5555
NB201-CF10: 0.6962
NB301-CF10: 0.3984

(Run 25)

Kendall's 
NB101-CF10: 0.5317
NB201-CF10: 0.7397
NB301-CF10: 0.3746

(Run 26)

Kendall's 
NB101-CF10: 0.5595
NB201-CF10: 0.7406
NB301-CF10: 0.4023

(Run 27)

Kendall's 
NB101-CF10: 0.5546
NB201-CF10: 0.6575
NB301-CF10: 0.4010

(Run 28)
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Kendall's 
NB101-CF10: 0.5488
NB201-CF10: 0.7438
NB301-CF10: 0.3915

(Run 29)

Kendall's 
NB101-CF10: 0.5690
NB201-CF10: 0.7486
NB301-CF10: 0.4049

(Run 30)

Kendall's 
NB101-CF10: 0.5555
NB201-CF10: 0.7464
NB301-CF10: 0.3682

(Run 31)

Figure 11: Expression trees of 31 ZC metrics designed by our framework. We also exhibit Kendall’s
τ scores across NB101-CF10, NB201-CF10, and NB301-CF10 problems for each ZC metric. The
best ZC metric presented in Equation 2 is obtained at the run 12-th.
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I FULL RESULTS IN SECTION 4.1

Table 15: Kendall’s τ correlation (mean ± standard deviation) of the returned expressions over 31
runs on the input/test/(input + test) datasets for NB101/201/301-CF10 problems.

Problem Input Test Input + Test

NB101-CF10 0.5587± 0.0258 0.5603± 0.0265 0.5592± 0.0255

NB201-CF10 0.7393± 0.0221 0.7369± 0.0228 0.7386± 0.0222

NB301-CF10 0.3883± 0.0133 0.3864± 0.0134 0.3877± 0.0121

J COMPARISONS TO AZ-NAS AND ROBOT

Table 16: Comparisons to AZ-NAS and RoBoT in the Kendall’s Tau rank correlation and valida-
tion accuracy (%) of the best found networks for the NB201-CF10, NB201-CF100, and NB201-
IMGNET problems. Best results are presented in red.

NB201-CF10 NB201-CF100 NB201-IMGNT

Metric Kendall’s Tau
Best

Architecture
Kendall’s Tau

Best
Architecture

Kendall’s Tau
Best

Architecture

AZ-NAS (Lee & Ham, 2024) 0.73 89.79 0.72 70.42 0.69 45.73
RoBoT (He et al., 2024) 0.55 90.93 0.57 73.18 0.57 46.43
Ours (Eqn. 2) 0.76 91.18 0.76 72.72 0.72 46.60

Optimal (Zhao et al., 2023) - 91.57 - 73.26 - 47.33

K INSIGHTS FROM ANALYZING THE SYNTHESIZED ZC METRIC AND THE
SEARCH PROCESS OF OUR SR FRAMEWORK

The ZC metrics used as input features for symbolic regression (SR) in this study can be catego-
rized into two types: data-agnostic metrics (e.g., L2-Norm, Params, Synflow, and Zen) and data-
dependent metrics (e.g., EPE-NAS, Fisher, FLOPs, Grad-norm, Grasp, Jacov, NWOT, Plain, SNIP,
ZiCo, MeCo, and SWAP). In this section, we assess the impact of each type on the performance of
our framework by comparing the best combination of data-agnostic metrics, the best combination of
data-dependent metrics, and our synthesized metric (Equation 2), (which integrates both types). We
note that the input dataset for SR comprises the NAS problems NB101-CF10, NB201-CF10, and
NB301-CF10.

Table 17: Comparisons to the best combination of data-agnostic ZC metrics and the best combina-
tion of data-dependent ZC metrics for the NB101-CF10, NB201-CF10, NB301-CF10, and TNB101-
Micro-Scene. Best and worst results are presented in red and blue, respectively.

ZC Metric NB101-CF10 NB201-CF10 NB301-CF10 TNB101-Micro-Scene

Data-Agnostic 0.41 0.60 0.31 0.41
Data-Dependent 0.44 0.71 0.39 0.20
Ours (Eqn. 2) 0.61 0.76 0.40 0.48

As shown in Table 17, the combination of data-dependent metrics is better than the combination
of data-agnostic ones for these problems included in the input dataset (i.e., NB101-CF10, NB201-
CF10, and NB301-CF10). However, when applied to TNB101-Micro-Scene (which is the problem
outside the input dataset), the data-agnostic metrics demonstrate better performance. This suggests
that relying solely on data-dependent metrics may lead to overfitting to the problems in the input
dataset, reducing their effectiveness when applied to unseen problems. Conversely, while data-
agnostic metrics show strong generalizability across diverse problems, their overall performance
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is less impressive. By simultaneously incorporating both types of metrics, our synthesized metric
achieves not only superior performance on problems within the input dataset but also demonstrates
high generalizability and strong performance across a variety of unseen problems.

We also obtain some interesting findings when comparing the best expression tree in the first gener-
ation (Equation 3) to the best one in the final generation (Equation 2).

f(·) = ZiCo

L2-norm
×

√
MeCo (3)

First, there is a noticeable increase in complexity, with the number of metrics rising from 3 (ZiCo,
L2-norm, MeCo) to 6 (ZiCo, MeCo, Zen, SNIP, L2-norm, FLOPs). We suppose that this increased
complexity enables the synthesized metric to capture more characteristics of architectures. Second,
the core metrics ZiCo, L2-norm, and MeCo are consistently retained across both versions, demon-
strating that the SR model effectively identifies and preserves metrics that contribute significantly to
high performance. Lastly, the increased complexity results in substantial improvements in Kendall’s
Tau scores, indicating a stronger correlation with true performance: from 0.39, 0.70, and 0.35 (for
the initial synthesized metric) to 0.61, 0.76, and 0.40 (for the final synthesized metric) across three
NAS problems.

We also explore the impact of replacing the most frequently used ZC metrics in our synthesized
metric (e.g., ZiCo, Snip, and MeCo in Equation 2) with the least frequently used ones (e.g., SWAP,
Grasp, and Plain) and compare the Kendall’s Tau scores of these two variants. As shown in Table 18,
the effectiveness of the synthesized metric is significantly reduced in all replacement cases. This
result, coupled with the presence of effective metrics like ZiCo and MeCo in both the initial and
final populations, demonstrates that our SR framework effectively identifies these metrics as crucial
components when combined with others to form potential “building blocks.” The SR framework
then assembles these building blocks to create high-performing ZC metrics. Therefore, substituting
components within these building blocks disrupts their structures, leading to a noticeable decline in
the performance of the synthesized metric.

Table 18: Kendall’s Tau score of our best synthesized ZC metric (Equation 2 when replacing the
most frequently used ZC metrics (i.e., ZiCo, Snip, and MeCo) with the least frequently used ZC
metrics (SWAP, Grasp, and Plain). The results are colored blue if the replacement causes a decreas-
ing in performance.

Replacing NB101-CF10 NB201-CF10 NB301-CF10

MeCo → SWAP 0.52 0.41 0.39
ZiCo → Grasp 0.15 0.45 0.22
SNIP → Plain 0.43 0.71 0.33

Ours (Eqn. 2) 0.61 0.76 0.40
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