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ABSTRACT

Few shot learning is an important problem in machine learning as large labelled
datasets take considerable time and effort to assemble. Most few-shot learning
algorithms suffer from one of two limitations— they either require the design of
sophisticated models and loss functions, thus hampering interpretability; or em-
ploy statistical techniques but make assumptions that may not hold across dif-
ferent datasets or features. Developing on recent work in extrapolating distribu-
tions of small sample classes from the most similar larger classes, we propose
a Generalized sampling method that learns to estimate few-shot distributions for
classification as weighted random variables of all large classes. We use a form
of covariance shrinkage to provide robustness against singular covariances due to
overparameterized features or small datasets. We show that our sampled points
are close to few-shot classes even in cases when there are no similar large classes
in the training set. Our method works with arbitrary off-the-shelf feature extrac-
tors and outperforms existing state-of-the-art on miniImagenet, CUB and Stanford
Dogs datasets by 3% to 5% on 5way-1shot and 5way-5shot tasks and by 1% in
challenging cross domain tasks.

1 INTRODUCTION

Few-shot learning (FSL) refers the problem of learning from datasets where only a limited number
of examples (typically, one to tens per class or a problem in general) are available for training a
machine learning model. FSL has gained importance over the years since obtaining large labelled
datasets requires a significant investment of time and resources. There is a rich history of research
into various methodologies for FSL, two primary ones being model development approaches and
representation learning. (Wang et al., 2020).

Model development approaches aim at capturing the data distribution so that new points can be
sampled to improve few-shot classification accuracy (Park et al., 2020), (Wang et al., 2019), (Chen
et al., 2019b), (Zhang et al., 2019). They have typically relied on complex models and loss functions
to understand data from only a few examples, which limits the interpretability of the model and
hampers generalization. Representation learning, on the other hand, aims at identifying feature
transformations which can allow simple statistical techniques like nearest neighbor and bayesian
classification generalize on few-shot tasks for novel classes (Chen et al., 2020), (Xue & Wang,
2020). Starting from early works (Miller et al., 2000) and building to recent methodologies (Yang
et al., 2021), (Zhang et al., 2021b), representation learning strategies have relied on simple statistical
assumptions that may not hold across diverse datasets.

Recently, (Yang et al., 2021) showed that classes which are semantically similar in meaning are
also correlated in the means and covariances of their feature distributions. They used the statistics
of classes with plentiful datapoints (called base classes) to learn the distribution of classes with
a few datapoints (called novel classes). Despite some limiting assumptions, their method, called
Distribution Calibration, outperformed much more complex models that relied on non-parametric
optimization and generative models (Park et al., 2020), (Wang et al., 2019), (Chen et al., 2019b),
(Zhang et al., 2019). Building on this idea and inspired by traditional statistics, we present a rigorous
generalized sampling method for Few-Shot Learning, called DC+ that outperforms existing state-
of-the-art classification accuracy without introducing additional statistical assumptions or complex
generative models. Our main contributions are:
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1. Introducing a principled approach to estimate novel class mean and covariance from the
moments of a random variable weighted by the distance between the novel and the base
classes,

2. Incorporating the statistical technique of variance shrinkage, which not only helps increase
the accuracy but also stabilizes covariance estimation in cases when the feature extractor is
over-parametrized (a common occurrence in modern deep learning models),

3. Extending the applicability of the statistical sampling approach to arbitrary feature extrac-
tors by introducing general Gaussianization transformations,

4. Presenting a single scaling parameter in Euclidean distance weighting that mitigates the
need to search among Euclidean, Mahalanobis, and generalized distances for novel class
estimation, and

Combined, our contributions put statistical sampling approach on a sound foundation, close open
questions in earlier research, and demonstrate 3% to 5% improvement over competitive states-of-
the-art for 5way-1shot and 5way-5shot tasks for miniImageNet (Ravi & Larochelle, 2017), CUB
(Welinder et al., 2010), StanfordDogs (Khosla et al., 2011), highest level classes of tieredImagenet
(Ren et al., 2018) and 1% improvement Cross Domain 5way-1shot task of miniImagenet −→ CUB.

2 RELATED WORKS

Learning good features or manipulating the features to help generalize few-shot tasks is an active
research area (Hou et al., 2019) (Hao et al., 2019), (Li et al., 2019a). Miller et al. (2000) proposed a
congealing process which learned a joint distribution among all available classes. This distribution
could then be used as a prior knowledge for constructing efficient few-shot classifiers. Chen et al.
(2020) showed that by pre-training first on entire base classes, few shot classification accuracies on
novel classes could be improved with a simple meta-learning on nearest-centroid based classification
algorithm. Their main focus was on the pretraining methods which could improve a cosine based
classifier on the centroids of the extracted features. DC+ can be applied on top of these feature
extractor techniques to further explore improvements.

To correct bias in centroid or prototype estimations, several rectification methods were proposed—
RestoreNet (Xue & Wang, 2020) transforms the feature space to move the images closer to their
true centroids. Our proposed method approximates this transformation with scaled Euclidean dis-
tances and weighted random variables for novel classes, without any additional learnable parameters.
Zhang et al. (2021a) proposed a 4-step method consisting of learning base class details as priors and
then using these priors for correcting bias in novel prototype estimation. They then jointly fine tuned
the feature extractor and bias corrector. Our method does not have this multi-step process and works
with off-the-shelf feature extractors. Liu et al. (2020c) attempted to reduce the bias in distance esti-
mation through reducing intra-class bias by label propagation and cross-class bias through shifting
features. Their method works in the transductive setting where entire data, including the query set is
consumed without label information. Our method does not need additional unlabelled data from the
query set. Again their method improves upon Prototypical Networks (Snell et al., 2017) whereas we
show that our method can be applied with any feature extractor.

DC+ can be broadly categorized as a data augmentation method. Several methods have been pro-
posed earlier in this space. Antoniou & Storkey (2019) learn few-shot tasks by randomly labelling a
subset of images and then augmenting this subset with different techniques like random crops, flips
etc. Park et al. (2020) tried to transfer variance between different classes in order to simulate the
query examples that can be encountered during test. Other works like Wang et al. (2019) and Liu
et al. (2020b) utilized the intra-class variance to perform augmentation. These methods leverage
complex neural networks with large number of learnable parameters to generate new examples. Our
method does not require any additional learnable parameter and uses simple statistical techniques
while still outperforming all previous deep learning methods.

Closest to DC+, Yang et al. (2021) estimated the novel class distributions based on their similarity
with the base classes. Their method implicitly assumed that the base classes were semantically
independent of each other when constructing covariance estimates, did not consider the similarity
strength between the base and novel classes when estimating novel class statistics, and could not be
applied to arbitrary off-the-shelf feature extractors (with activation functions different from relu)

2



Under review as a conference paper at ICLR 2022

and large feature dimensions often capable of producing ill-defined covariances. Our method does
not make independence assumptions, leverages similarity information in the base classes, and can
be applied to any off-the-shelf feature extractor.

3 PROPOSED APPROACH

3.1 PROBLEM DEFINITION

Few-shot classification problems are defined as Nway-Kshot classification tasks T (Vinyals et al.,
2016) where given a small support set S of features x̃ and labels y, S = {(x̃i, yi)}N×Ki=1 , x̃i ∈
Rd, yi ∈ C, consisting of K points from N classes, the model should correctly classify a query set
Q = {(x̃i, yi)}N×K+N×q

i=N×K+1 with q points from each of the N classes in the support set. The entire
dataset D, is divided into Cb base, Cv validation and Cn novel classes such that Cb ∩ Cv ∩ Cn = φ
and Cb ∪ Cv ∪ Cn = C. The goal is to train a model with tasks T sampled from Cb and use
Cv for hyperparameter tuning, where each task T is an Nway-Kshot classification problem on N
unique classes of the set under consideration, for example base, validation set Cb,Cv here. The
performance of few-shot learning algorithms is reported as the average accuracy on the query set Q
of tasks T sampled from Cn.

3.2 ALGORITHM

Our proposed methodology, DC+, is outlined in Algorithm 1. In the following subsections, we
incrementally go through the steps of DC+ in detail.

3.2.1 GAUSSIANIZATION OF THE DATA

Following Yang et al. (2021), our sampling methodology assumes that the input features follow a
multivariate normal distribution. There are many methods of data gaussianization like Tukey’s Lad-
der of Powers (Tukey, 1977), Yeo-Johnson Transformation (Weisberg, 2001), and Iterative Gaus-
sianization (Chen & Gopinath, 2000). In our experiments, we observed that Tukey’s Ladder of Pow-
ers outperformed other methods, but the fractional powers and log transform could only be applied
to non-negative features (feature extractors which have relu and equivalent activation functions in
their final layers). Expanding the applicability of the sampling method to arbitrary feature extractors
and activation functions in deep learning models, we make a choice on the transformation of input
features denoted by random variable x as per equation 1 below,

x̂ =

{
tukey(x) if x ≥ 0 always
yeo johnson(x) otherwise

(1)

We give the definitions of tukey and yeo johnson in Appendix A.

3.2.2 PROPOSED RANDOM VARIABLE

We extrapolate the distribution of a given novel class as a weighted average of the distributions of k
closest base classes. Formally, if x̃ ∈ Rd is a d dimensional support point from a novel class, and
Xi ∈ Rd is a random variable denoting points of base class i, then we compose a random variable
X′ representing our estimate of that novel class as

X′ =
x̃ +

∑
i∈Sk wiXi

1 +
∑
i∈Sk wi

, (2)

where wi are the weights assigned to the closest base classes in Sk. The associated mean and the
covariance of this random variable are (since x̃ is a constant vector, it does not affect the covariance
in Σ′),

µ′ =
x̃ +

∑
i∈Sk wiµi

1 +
∑
i∈Sk wi

Σ′ = cov(X′) (3)

where µi = E[Xi]. There are many ways of estimating wi. One of the simplest is to look at the
distance of the novel point from the base classes. In particular, we find the k closest base classes to
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x̃ in Sk,

di = ||x̃− µi||2, i ∈ Cb (4)
Sk = {i| − di ∈ topk(−di), i ∈ Cb} (5)

Based on di (for alternative distance formulations, see Appendix B), we construct the weights wi of
each base class in Sk as,

wi =
1

1 + dmi
, i ∈ Sk (6)

where m is a hyperparameter that helps in decaying wi as a function of di and gives us control
in the relative weights of the classes in Sk. This form of weighted variable estimation is remi-
niscent of (though not the same as) inverse distance weighting, which is widely used to estimate
unknown functions at interpolated points (Shepard, 1968), (Łukaszyk, 2004) It is worth noting that
limdi→0 wi = 1. Hence as the base class i moves closer to the support point x̃, it gains increasing
weight until µi overlaps with x̃, at which point the weight is 1, same as DC method.

3.2.3 SHRINKING THE COVARIANCE

When the number of data points in base class Xi is less than the feature dimensions, i.e. |Xi| < d,
cov(Xi) = Σi is in general non-invertible, which prohibits constructing a normal distribution with
Σ′ and poses a serious limitation since most off-the-shelf deep learning feature extractors have large
feature dimensions (Zagoruyko & Komodakis, 2016), (Szegedy et al., 2015). We propose a variant
of covariance shrinkage (Van Ness, 1980), (Friedman, 1989) to stabilize the Σ′ in equation 3 against
singularities by introducing two hyperparameters that dictate the relative strength of the dimension
variances and the off-diagonal covariance interactions as,

Σ′s = Σ′ + α1σ1I + α2σ2(1− I), (7)

where σ1 is the average diagonal variance and σ2 is the average off-diagonal covariance of Σ′.

3.2.4 SAMPLING THE NOVEL CLASS

With µ′,Σ′s now formulated, we have both the mean and covariance to represent the ground truth
distribution of the novel class associated with the support point x̃. Hence we can sample n points
from this extrapolated distribution and append them to the existing support set,

Dy = {(x, y)|x ∼ N (µ′,Σ′s)} (8)

where y denotes the class of x̃. Steps from Section 3.2.1 to 3.2.4 are repeated for every point x̃ in
the support set S, which has N classes with K points in each class constituting an Nway-Kshot
classification task T . Hence the total dataset D after augmentation can be written as,

D = ∪{Dy∀(x̃, y) ∈ S} ∪ S (9)

D can be used to construct a classifier like Logistic Regression, SVM etc. and the performance is
reported as the average accuracy on the query set Q in T .

4 EXPERIMENTS

In this section we compare the performance of DC+ with other states-of-the-art, show that our
sampled points are closer to query data than DC, give theoretical insights with empirical results on
the generalization improvement of DC+, and perform an ablation study to show the effectiveness of
each component in our method.

4.1 IMPLEMENTATION DETAILS

4.1.1 DATASETS

We compare our proposed method with existing states-of-the-art on miniImagenet (Ravi &
Larochelle, 2017), CUB (Welinder et al., 2010) and Stanford Dogs (Khosla et al., 2011). The
details of the train/test/validation splits of each dataset is given in Appendix D. To show that our
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Algorithm 1 DC+: Generalized Sampling Method for Few-shot learning
Require: Base class features Xi ∈ Rd, i ∈ Cb
Require: Support set features S = {(x̃j , yj)}N×Kj=1 : x̃j ∈ Rd, yj ∈ Cn

for (x̃j , yj) ∈ S do
Gaussianize x̃ with equation 1
Find the nearest k base classes using di, Sk (equation 4, 5)
Calculate weights wi for each base class i ∈ Sk (equation 6)
Use wi to find the weighted random variable X′ (equation 2)
Calculate µ′,Σ′ (equation 3)
Shrink Σ′ to get Σ′s (equation 7)
Sample features for class yj using {(x, yj)|x ∼ N (µ′,Σ′s)} (equation 8)

end for
Construct D by appending all sampled features to the support set S (equation 9)
Train a logistic regression classifier on D (Details in Appendix C)
Report the accuracy on query set Q = {(x̃j , yj)}N×K+N×q

j=N×K+1

method gives superior performance when the base classes are dissimilar to the novel classes, we
evaluate our method on Cross Domain dataset by training on tasks sampled from one distribution
and evaluating on a different distribution. Specifically, we follow Patacchiola et al. (2020) and
show results on miniImagenet −→ CUB, i.e. train split from miniImagenet and test/validation split
from CUB. We also compare our method with DC (Yang et al., 2021) on a meta-tieredImagenet
dataset of the 34 broad categories from tieredImagenet, split into 20 base, 8 novel and 6 validation
classes, as laid out in Ren et al. (2018). Note that there is a high dissimilarity between the base and
novel/validation classes in this meta-tieredImagenet as seen in Table 6 of Appendix D.

4.1.2 FEATURE EXTRACTOR

We used a WRN-28-10 (Zagoruyko & Komodakis, 2016) feature extractor trained using S2M2
Method (Mangla et al., 2020) for miniImagenet, CUB, Stanford Dogs and meta-tieredImagenet
experiments. For our cross domain results on miniImagenet −→ CUB, we used a Conv-4 backbone
to compare our results with other states-of-the-art as done in Patacchiola et al. (2020). Details of our
feature extractor training can be found in Appendix E.

The extracted features were 640 dimensional for miniImagenet and CUB which had 600 and 44
points in each base class. Feature dimensions were 1600 for miniImagenet −→ CUB experiments
with 600 points in each base class. Note that such mismatch between the feature dimensions and
the number of datapoints leads to singularities when trying to estimate the covariance matrix. Our
shrinkage method takes care of these pathological situations. To show that our proposed algorithm
works equally well for non-singular cases, we extracted 64 dimensional representation for Stanford
Dogs and meta-tieredImagenet which had 148 and 12950 points in each of their base classes.

To demonstrate that our gaussianization approach (Section 3.2.1) generalizes, our features in mini-
Imagenet and CUB come from a penultimate relu layer hence are all non negative. For Stanford
Dogs and meta-tieredImagenet, we project 640 dimensional features from WRN-28-10 to 64 dimen-
sions in the penultimate layer and hence the features span in both positive and negative regions.

4.1.3 HYPERPARAMETER SEARCH

To circumvent combinatorial explosion from grid search of a larger number of hyperparameters,
we used optuna (Akiba et al., 2019) library for tuning our hyperparameters β,m, k, α1, α2, n. All
tunings are 1000 trials long with a Median Pruner. We give complete details of our optuna
setting and picking the best hyperparameters in Appendix F.

4.2 COMPARISON WITH STATES-OF-THE-ART

Tables 1 and 2 summarize the performance of our proposed DC+ with existing states-of-the-arts. We
report the average classification accuracy of 5000 random tasks T sampled from the novel classes
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Table 1: Comparing the results of our proposed algorithm DC+ on Stanford Dogs and CUB with
95% confidence intervals. Best results highlighted in bold.

Stanford Dogs CUB
Methods 5way-1shot 5way-5shot 5way-1shot 5way-5shot
RelationNet (Sung et al., 2018) 43.33 ± 0.42 55.23 ± 0.41 62.45 ± 0.98 76.11 ± 0.69
adaCNN (Munkhdalai et al., 2018) 41.87 ± 0.42 53.93 ± 0.44 56.57 ± 0.47 61.21 ± 0.42
PCM (Wei et al., 2019) 28.78 ± 2.33 46.92 ± 2.00 42.10 ± 1.96 62.48 ± 1.21
CovaMNet (Li et al., 2019c) 49.10 ± 0.76 63.04 ± 0.65 60.58 ± 0.69 74.24 ± 0.68
DN4 (Li et al., 2019b) 45.41 ± 0.76 63.51 ± 0.62 52.79 ± 0.86 81.45 ± 0.70
PABN+cpt (Huang et al., 2021) 45.65 ± 0.71 61.24 ± 0.62 63.56 ± 0.79 75.35 ± 0.58
LRPABN+cpt (Huang et al., 2021) 45.72 ± 0.75 60.94 ± 0.66 63.63 ± 0.77 76.06 ± 0.58
MML (Chen et al., 2021) 59.05 ± 0.68 75.59 ± 0.51 63.86 ± 0.67 80.73 ± 0.46
DC (Yang et al., 2021) - - 79.56 ± 0.87 90.67 ± 0.35
DC+ (Ours) 65.35 ± 0.61 80.56 ± 0.45 84.57 ± 0.48 93.46 ± 0.25

Table 2: Comparing the results of our proposed algorithm DC+ on miniImagenet and Cross Domain
miniImagenet −→ CUB tasks with 95% confidence intervals. Best results highlighted in bold.

miniImagenet miniImagenet −→ CUB
Methods 5way-1shot 5way-5shot 5way-1shot 5way-5shot
MatchingNet (Vinyals et al., 2016) 43.56 ± 0.84 55.31 ± 0.73 36.98 ± 0.06 50.72 ± 0.36
ProtoNet (Snell et al., 2017) 54.16 ± 0.82 73.68 ± 0.65 33.27 ± 1.09 52.16 ± 0.17
MAML (Finn et al., 2017) 48.70 ± 1.84 63.11 ± 0.92 34.01 ± 1.25 48.83 ± 0.62
RelationNet (Sung et al., 2018) 50.44 ± 0.82 65.32 ± 0.70 37.13 ± 0.20 51.76 ± 1.48
Baseline++ (Chen et al., 2019a) 51.87 ± 0.77 75.68 ± 0.63 39.19 ± 0.12 57.31 ± 0.11
DKT (Patacchiola et al., 2020) 49.73 ± 0.07 64.00 ± 0.09 40.22 ± 0.54 56.40 ± 1.34
E3BM (Liu et al., 2020d) 63.80 ± 0.40 80.29 ± 0.25 - -
Negative-Cosine (Liu et al., 2020a) 62.33 ± 0.82 80.94 ± 0.59 - -
Meta Variance Transfer (Park et al., 2020) - 67.67 ± 0.70 - -
DC (Yang et al., 2021) 68.57 ± 0.55 82.88 ± 0.42 35.08 ± 0.55 50.81 ± 0.43
DC+ (ours) 73.00 ± 0.50 87.22 ± 0.33 41.08 ± 0.53 54.69 ± 0.41

Cn along with their 95% confidence intervals. The exact value of each hyperparameter that give the
reported accuracy along with other candidate hyperparameters are given in Appendix G.

We observe that a logistic regression constructed on our sampled data achieves consistent perfor-
mance improvements of 3% (CUB 5way-5shot) to 5% (CUB 5way-1shot) compared to the 2nd best
method. We also achieve 1% improvement on challenging cross domain 5way-1shot classification
of miniImagenet −→ CUB. Finally, for the case when base classes and novel classes share very lit-
tle similarity (as is the case for the meta-tieredImagenet), we outperform DC by more than 9% for
5way-5shot task as shown in Table 3.

Note that these accuracy improvements are derived from a simple statistical model that leverages
just 3 additional hyperparameters compared to the 2nd best method of DC Yang et al. (2021). We
also do not make any assumptions about the feature values, the feature dimensions, and show these
improvements across different cases of singular (miniImagenet, CUB, miniImagenet −→ CUB) and
non-singular covariances (Stanford Dogs, meta-tieredImagenet).

4.3 VISUALIZATION OF SAMPLED POINTS

In Figure 1 we compare the t-SNE representation (van der Maaten & Hinton, 2008) of sampled
points for both DC (Yang et al., 2021) and our method DC+ to visualize whether our sampled
points are closer to the ground truth as indicated quantitatively from results in Tables 1, 2, 3. We can
see that our method produces clusters of sampled points which are more compact and overlap with
more query points than the sampled points of DC. We analyse this in the next section 4.4. For more
visualizations refer to Appendix H.
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Table 3: Comparing the results of our proposed algorithm DC+ on meta-tieredImagenet 5way-1shot
and 5way-5shot tasks with 95% confidence intervals. The results below are reported for 5000 tasks
sampled from the novel classes.

meta-tieredImagenet
Methods 5way-1shot 5way-5shot
No Method (baseline) 20.00 ± 0.00 20.00 ± 0.00
DC (Yang et al., 2021) 39.54 ± 0.64 47.11 ± 0.78
DC+ (Ours) 43.51 ± 0.50 56.79 ± 0.64

Figure 1: t-SNE visualization for 5 randomly sampled novel classes for DC (left) and our method
DC+ (right) in miniImagenet dataset. The support points are indicated with a ’+’ sign within black
circles, sampled points are semi-transparent indicated with a ’o’ sign, and the query points are
opaque denoted by ’*’. Note that our sampled points are on average closer to the query points.

4.4 WHY SHOULD DC+ GENERALIZE BETTER THAN DC?

To motivate the generalization and performance improvements of DC+, we start with a comparison
of the weighting scheme between DC and DC+. Figure 2 (left) shows the estimated position of X′

as the closest base class moves away from x̃ for the simple case of one base class. The unweighted
random variable X′ in DC can be written as X′ = (x̃+

∑
i∈Sk Xi)/(1+k) = (x̃+X1)/2, for k=1.

Hence as µi = E(X1) moves away from x̃, X′ moves further apart in DC as seen in Figure 2.
Thus even though the method borrows stable values of mean and covariance from the base class in
question, the values themselves are far from the support point, which acts as a proxy location for the
query points during training. In contrast, with a higher m in DC+, the weight wi assigned to base
class i drops polynomially with distance from x̃ and X′ saturates at x̃ when the base class is far
from x̃. Hence our sampled points should be much closer to x̃ giving us better generalization than
DC.

To confirm this hypothesis, we visualize the sampled points for k = 1 in miniImagenet −→ CUB
experiment in Figure 2. We chose this dataset to also show how a higher m can help offset noise
from base classes by minimizing their wi in estimating the distribution X′ when they are not similar
to the novel class of x̃. We can see that points produced by DC andm = 0, 1 are far from the support
point x̃. As m increases, the cluster moves closer to x̃ where at m = 4 the cluster overlaps with x̃.
Our peformance improvement of 5% on 5way-1shot and 4% on 5way-5shot tasks of Cross Domain
miniImagenet −→ CUB experiments compared to DC further confirms this hypothesis.

This same trend can also be seen in the results of meta-tieredImagenet in Table 3 where DC+
converges on a high value ofm (m = 2.25 in 5way-1shot andm = 2 in 5way-5shot) giving weights
to base classes that are 10 to 100 smaller than miniImagenet, and 100 times smaller than DC. We
further analyse this case and visualize the histogram of these weights comparing them with DC, and
weights from miniImagenet experiments in Appendix I.
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Figure 2: Left: Novel class estimate X′ as a function of µi for a 1 dimensional example. x̃ is at
origin. Note that as base class imoves away from x̃, the error in DC’s estimation of X′ accumulates.
With m = 4, DC+ still produces X′ close to x̃. Right: t-SNE plots of sampled points along with
their mean (denoted by ’*’) confirming analysis in Left figure. Note that the sampled points of
m = 4 overlaps with x̃. Sampled clusters of m = 0, 1 overlap with each other.

4.5 ABLATION STUDY

We ran a 5way-1shot ablation study on the Stanford Dogs dataset to estimate the effect of each
hyperparameter of our method. For each experiment, the hyperparameter range were defined as,

m ∈[low = 0, high = 3, step = 0.25] k ∈[low = 1, high = 20, step = 1]

α1 ∈[low = 0, high = 600, step = 100] α2 ∈[low = 0× α1, high = 600× α1, step = 100]

We fixed n = 750, and the total number of trials in our optuna hyperparameter search to 100 so
that the accuracy improvements with the addition of each hyperparameter were independent of the
search time. For each trial, the number of tasks T was also fixed to 200.

Table 4 summarizes the results of our study and shows that each component of DC+ is important in
giving improvements over state-of-the-art. For the Gaussianization step, the final logistic regression
model was trained on one data point from each novel class in a 5way classification task. Notice that
β = 1 in our study implies that raw features from 64 dimensional linear layer give best accuracy.
The results for m = 1 show that introducing weighted random variables to model novel class distri-
butions helps even without tuningm. Further control on decayingwi as a function of di as discussed
in Section 4.4 with a tuned m helps in achieving state-of-the-art.

Table 4: Ablation study of DC+ on Stanford Dogs 5way-1shot task showing the change in accuracy
(with 95% confidence interval over 200 tasks) as each component of our model is added incremen-
tally. The cumulative improvement in accuracy is a significant 4% compared to the baseline.

Fixed Tuned
Step Hyperparameter Hyperparameter 5way-1shot
Gaussianization Baseline, only hyper-

parameter is β
β=1 60.44 ± 0.98%

Top-k Selection α1=0, α2=0, m=0 k=1 61.27 ± 0.97% (↑0.8%)
Distance-weighted random
variable

α1=0, α2=0, m=1 k=1 61.98 ± 0.98% (↑0.7%)

Shrinkage (with α1) α2=0, m=1 k=4, α1=100 63.46 ± 0.95% (↑1.5%)
Shrinkage (with α1 and α2) m=1 k=12,α1=400,

α2=200α1

63.92 ± 0.97% (↑0.4%)

All parameters tuned simul-
taneously

None k=10,α1=400,
α2=100α1,m=1.5

64.33 ± 0.99% (↑0.4%)
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Figure 3: Left: Accuracy v/s n the number of sampled features for validation and novel classes
in 5way-1shot Stanford Dogs dataset. Right: Accuracy v/s α1, α2 in 5way-1shot Stanford Dogs
dataset. The accuracy for each point for both n and α1, α2 experiment is an average over 200 tasks.

4.5.1 EFFECT OF k

We investigated whether the weight decay parameter m can remove the need for the hyperparameter
k, since increasing m reduces the weight wi of a base class that is farther from a given novel point.
In Table 4 we see that the best k equals 10 for the case when all hyperparameters are tuned together.
This indicates that k and m work together to estimate novel class statistics (otherwise the best value
would be k = 30 = |Cb|, number of base classes in Stanford Dogs dataset). To see how much
the introduction of k is helping the accuracy, we tuned all hyperparameters in Stanford Dogs 5way-
1shot task and find that without k, the accuracy was 63.46% with m = 1.5, α1 = 600, α2 = 0. This
was 0.9% lower than the best result with all k, α1, α2,m tuned in the last row of Table 4.

4.5.2 EFFECT OF n, α1, α2

The value of n, the number of sampled points, was fixed to 750 in all our experiments. Figure 3
shows the trend of accuracy v/s n in our ablation study on Stanford Dogs 5way-1shot task. We can
see that the accuracy keeps increasing with slight noise until n = 750 after which it saturates. It
indicates that the sampling more points after a certain number does not cover additional query points
in this specific feature space.

From Table 4 we see that α1, α2 play a key role in improving accuracy. In Figure 3 the heatmap
of accuracy versus α1 and α2 shows that accuracy increases with increasing α1, α2 and then starts
dropping beyond α1 > 200. This could be due to overlapping clusters of sampled points with a
higher covariance, where the decision boundaries start overlapping.

5 CONCLUSION

In this work, we have proposed a principled approach to estimate novel class distributions by for-
mulating a similarity-based weighted random variable of closest base classes. We showed that in-
corporating statistical techniques of covariance shrinkage and Gaussianization not only generalize
our method (DC+) to arbitrary pretrained feature extractors, but also increase the accuracy over
state-of-the-art significantly. Our experiments effectively demonstrate cumulative performance im-
provements of 1% to 9% over DC including challenging cross domain tasks. Exploring the trade-off
between more hyperparameters and accuracy along with generalizations to different tasks like non-
Gaussian distributions can be productive avenues to pursue.
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APPENDIX

A TUKEY AND YEO-JOHNSON

Tukey transformation on a random vector x with parameter β is defined as,

tukey(x) =

{
xβ β 6= 0
log(x) β = 0

(10)

Yeo-Johnson transformation on a random vector x with parameter β is defined as,

yeo johnson(x) =


((x + 1)β − 1)/β β 6= 0,x ≥ 0
log(x + 1) β = 0,x ≥ 0
−[(−x + 1)2−β − 1]/(2− β) β 6= 2,x < 0
− log(−x + 1) β = 2,x < 0

(11)

B EFFECT OF DISTANCES

For normally distributed features, the probability of a novel point x̃ being in class i with distribution
N (µi,Σi) can be written quite generally as,

p(class = i|x̃) ≈ p(i) 1√
| Σi |

exp
−1

2
(x̃− µi)

TΣ−1i (x̃− µi), (12)

Taking ln on both sides of this probability, and assuming that each base class is equally probable in
priors p(i), we get a natural distance between x̃ and µi as:

di = ln | Σi |+ (x̃− µi)
TΣ−1i (x̃− µi) (13)

equation 13 is the squared Mahalanobis distance between x̃ and µi along with an added ln term.
Replacing Σ−1i = I for all i, our di reduces to squared Euclidean distance,

di = (x̃− µi)
T (x̃− µi) (14)

The above formulations assume that both x̃,µi come from the same distribution. Keeping this in
mind, we also derive a metric called squared δ distance with δ as a hyperparameter in Formulation
1 (Section B.1) as,

di = (Ix̃− δIµi)T (Ix̃− δIµi) (15)

Table 5: Accuracy with different distance measures in Stanford Dogs 5way-1shot task. Note that
m = 1 in all distances except the scaled Euclidean distance in the last row.

Distance (di) 5way-1shot
Squared Mahalanobis with log, equation 13 63.95%
Squared Euclidean, equation 14 64.33%
Squared δ distance, equation 15 64.57%
Scaled Euclidean m = 1.5 64.58%

Experimenting with these different distance metrics, in Table 5, we observe no advantage of using
Mahalanobis distance or squared δ distance over a simpler Euclidean distance when defining di in
Section 3.2.2. We also see that the scaled Euclidean with m as a hyperparameter gives improved
accuracy compared to Euclidean with m = 1. Hence, we propose using our scaled Euclidean
distance (equation 6) instead of a searching for multiple distance metrics in the feature space to
improve accuracy.
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B.1 FORMULATION 1: GENERAL DISTANCE: SQUARED δ

Consider two points x1,x2 ∈ Rd sampled from different multivariate distributions
N (µ1,Σ1),N (µ1,Σ1),µ1,µ2 ∈ Rd,Σ1,Σ2 ∈ Rd×d. Multiple distance measures can be con-
structed between the populations, e.g., the Bhattacharya distance (Bhattacharya, 1943). Here, we
consider a general distance of the form

d = (L−1x1 −M−1x2)T (L−1x1 −M−1x2) (16)

where, LLT = Σ1, MMT = Σ2

Here L,M ∈ Rd×d are the cholesky decompositions of Σ1,Σ2 respectively. If Σ1 = Σ2, equation
16 reduces to squared Mahalanobis distance. If x1 is the support point x̃ and x2 is the mean of base
class Xi, then Σ2 = Σi =covariance of the base class i. The covariance of the distribution of x̃ is
unknown since we are trying to estimate it. Assuming Σ1 = ψI, i.e. a diagonal covariance, we get,

di =(L−1x̃−M−1µi)
T (L−1x̃−M−1µi)

=(
√
ψIx̃−M−1µi)

T (
√
ψIx̃−M−1µi)

where, LLT = ψI, MMT = Σi

From our experiments we observed that the off-diagonal covariances in the base classes of mini-
Imagenet, CUB and Stanford Dogs, were at least 2 orders of magnitudes smaller than the diagonal
variance. Hence assuming Σi = σI, i.e. a diagonal matrix with constant variance, we get,

di =(
√
ψIx̃−

√
σIµi)

T (
√
ψIx̃−

√
σIµi)

=ψ(Ix̃−
√
σ√
ψ

Iµi)
T (Ix̃−

√
σ√
ψ

Iµi)

=ψ(Ix̃− δIµi)T (Ix̃− δIµi) , where δ =

√
σ√
ψ

(17)

Since ψ is common to all base classes Xi, it does not affect our closest base class calculation. Hence
dropping we ψ we get a general distance as,

di = (Ix̃− δIµi)T (Ix̃− δIµi) (18)

where δ is a hyperparameter that can be optimized for accuracy.

C DETAILS OF LOGISTIC REGRESSION

We performed Logistic Regression using torch library. For all datasets– miniImagenet, CUB,
StanfordDogs and for all experiments, the following hyperparameters were used,

batch size = 1024,

epochs = 200,

learning rate = 0.08,

optimizer = Stochastic Gradient Descent (torch.optim.SGD),

scheduler = None,
Loss Function = Cross Entropy (torch.nn.CrossEntropyLoss),

Loss Regularization = None
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D DATASETS

miniImagenet (Ravi & Larochelle, 2017) is derived from the ILSVRC-12 dataset (Russakovsky
et al., 2014). It contains 100 different classes with 600 examples per class. The images sizes are
84× 84× 3. We follow the train, validation, test split of 64 base, 16 validation and 20 novel classes
as done in previous work of Ravi & Larochelle (2017).

CUB (Welinder et al., 2010) is a fine grained classification dataset consisting of different bird
species. Each class has varying number of examples in this dataset so we take the minimum avail-
able number of 44 examples from each of 200 classes. The image sizes are again 84 × 84 × 3.
Following Chen et al. (2019a) we split train, validation, test as 100 base, 50 validation and 50 novel
classes respectively.

Stanford Dogs (Khosla et al., 2011) is another fine grained classification dataset of dogs species
derived from ILSVRC-12 dataset. Here again each class has varying number of points so we take
100 points from each of 120 classes. Following existing state-of-the-art results of Chen et al. (2021),
we use train, validation and test splits of 70 base, 20 validation and 30 novel classes respectively.

Cross Domain datasets: To show that our method gives superior performance even when the base
classes are dissimilar to the novel classes, we evaluate our proposed method by training on tasks
sampled from one distribution and evaluating on a different distribution. Specifically, we follow
Patacchiola et al. (2020) and show results on miniImagenet −→ CUB, i.e. train split from miniIma-
genet and test/val split from CUB. We also compare our method against DC (Yang et al., 2021) on
a meta-tieredImagenet of 34 broad categories from tieredImagenet, split into 20 base, 8 novel and
6 validation classes, as laid out in Ren et al. (2018). Note that there is a high dissimilarity between
the base and novel/validation classes in this meta-tieredImagenet as seen in Table 6.

Table 6: 34 broad categories of tieredImagenet dataset forming a meta-tieredImagenet. We can see
that there is a high dissimilarity between the base and novel classes here. The only similar class
between base and novel is ‘working dog’ and ‘hound, hound dog’.

#Num Base class Novel class Validation class
1 protective covering, obstruction, obstructor, durables, durable goods,

protective cover, protect obstructer, impediment consumer durables
2 Garment geological formation, formation motor vehicle, automotive vehicle
3 building, edifice solid machine
4 establishment substance furnishing
5 electronic equipment vessel mechanism
6 game equipment aquatic vertebrate sporting dog, gun dog
7 Tool working dog
8 Craft insect
9 ungulate, hoofed mammal
10 musical instrument, instrument
11 Primate
12 feline, felid
13 hound, hound dog
14 Terrier
15 snake, serpent, ophidian
16 Saurian
17 passerine, passeriform bird
18 aquatic bird
19 restraint, constraint
20 instrument
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E FEATURE EXTRACTOR BACKBONE

We used S2M2 Method (Mangla et al., 2020) to train a WRN-28-10 (Zagoruyko & Komodakis,
2016) feature extractor for miniImagenet, CUB, Stanford Dogs and meta-tieredImagenet. The back-
bone was first allowed to overfit for 400 epochs on all base classes to minimize the classification +
self supervised rotation loss. Next the decision boundaries were smoothened using the validation
classes with a cosine classifier on the feature extractor until the loss on validation classes stopped
improving. For our cross domain results on miniImagenet −→ CUB, we used identical setting as
(Patacchiola et al., 2020) with a Conv-4 backbone.

F HYPERPARAMETER SEARCH METHODOLOGY

We used optuna (Akiba et al., 2019) library to tune our hyperparameters β,m, k, α1, α2, n. For
all datasets (miniImagenet, CUB, Stanford Dogs, meta-tieredImagenet and miniImagenet −→ CUB)
the search space for β,m, k, n was,

β ∈ [low = 0, high = 10, step = 0.25], m ∈ [low = 0, high = 3, step = 0.25],

k ∈ [low = 2, high = |Cb|, step = 2], n ∈ [low = 100, high = 1000, step = 50]

where |Cb| denotes the number of base classes.

For miniImagenet and CUB we set

α1 ∈ [low = 0, high = 10000, step = 1000], α2 ∈ {0, 0.1, 1, 10, 100} × α1

whereas for Stanford Dogs, meta-tieredImagenet, and miniImagenet −→ CUB,

α1 ∈ [low = 0, high = 1000, step = 100], α2 ∈ [low = 0, high = 1000, step = 100]× α1

Note that a larger range of α2 was needed in Stanford Dogs owing to the average off-diagonal
covariance of Σ′ (equation 3) being 2 orders of magnitude smaller than the average variance.

All hyperparameters were jointly tuned using TPESampler in optuna. For each hyperparameter
setting sampled, we evaluated its average accuracy over 200 random tasks T sampled from the val-
idation classes Cv . During this phase, we pruned any hyperparameter setting which had less than
median accuracy after 100 runs using MedianPruner. Once every hyperparameter setting was
validated, we picked the top-3 candidates from this experiment and ran these specific hyperparame-
ters for 5000 random tasks sampled from the novel classes, i.e. T ∼ Cn. We report our accuracy and
mean confidence of the best candidate in comparison with state-of-the-art in Tables 1, 2. Accuracies
of all 3 candidates can be found in Appendix G.
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G TUNED HYPERPARAMETERS

In Table 7, we give the accuracy of each of the top 3 candidates from our optuna hyperparameter
search. Note than the first row of every setting (5way-1shot or 5way-5shot) is the result we used for
comparing to other methodologies in Tables 1, 2.

Table 7: Accuracy for each of top 3 candidates during our optuna hyperparameter search. The
accuracies are reported after evaluating on 5000 random tasks sampled from the novel classes, i.e.
T ∼ Cn

Dataset Setting Accuracy Hyperparameters

miniImagenet

5way-1shot
73.00 +- 0.50 m = 1, k = 8, α1 = 3000, α2 = 10α1, β = 0.5, n = 750
72.80 +- 0.43 m = 1, k = 8, α1 = 6000, α2 = 10α1, β = 0.5, n = 750
72.30 +- 0.51 m = 1, k = 8, α1 = 2000, α2 = 10α1, β = 0.5, n = 750

5way-5shot
87.22 +- 0.33 m = 3, k = 30, α1 = 9000, α2 = 10α1, β = 0.5, n = 750
86.91 +- 0.32 m = 3, k = 30, α1 = 8000, α2 = 10α1, β = 0.5, n = 750
86.82 +- 0.39 m = 3, k = 30, α1 = 7000, α2 = 10α1, β = 0.5, n = 750

CUB

5way-1shot
84.57 +- 0.48 m = 1, k = 4, α1 = 8000, α2 = 10α1, β = 0.5, n = 750
84.49 +- 0.50 m = 1, k = 6, α1 = 10000, α2 = 10α1, β = 0.5, n = 750
84.22 +- 0.46 m = 1, k = 4, α1 = 9000, α2 = 10α1, β = 0.5, n = 750

5way-5shot
93.46 +- 0.25 m = 2, k = 4, α1 = 5000, α2 = 10α1, β = 0.5, n = 750
93.16 +- 0.21 m = 1, k = 10, α1 = 2000, α2 = 100α1, β = 0.5, n = 750
93.15 +- 0.26 m = 1, k = 16, α1 = 3000, α2 = 100α1, β = 0.5, n = 750

StanfordDogs

5way-1shot
65.35 +- 0.61 m = 1.5, k = 10, α1 = 400, α2 = 100α1, β = 1, n = 750
65.12 +- 0.61 m = 1.75, k = 10, α1 = 500, α2 = 100α1, β = 1, n = 750
64.91 +- 0.58 m = 1.5, k = 12, α1 = 500, α2 = 100α1, β = 1, n = 750

5way-5shot
80.56 +- 0.45 m = 1.5, k = 12, α1 = 300, α2 = 200α1, β = 1, n = 750
80.12 +- 0.46 m = 1.25, k = 12, α1 = 300, α2 = 400α1, β = 1, n = 750
80.01 +- 0.41 m = 1.25, k = 12, α1 = 100, α2 = 200α1, β = 1, n = 750

miniImagenet −→ CUB

5way-1shot
41.08 +- 0.53 m = 0.5, k = 64, α1 = 400, α2 = 100α1, β = 0.5, n = 750
39.11 +- 0.51 m = 0.5, k = 62, α1 = 500, α2 = 100α1, β = 0.5, n = 750
39.02 +- 0.58 m = 2.5, k = 10, α1 = 400, α2 = 100α1, β = 0.5, n = 750

5way-5shot
54.69 ± 0.41 m = 0.5, k = 18, α1 = 100, α2 = 100α1, β = 0.5, n = 750
52.12 +- 0.45 m = 0.5, k = 12, α1 = 100, α2 = 100α1, β = 0.5, n = 750
49.14 +- 0.44 m = 1.5, k = 18, α1 = 100, α2 = 200α1, β = 0.5, n = 750

meta-tieredImagenet

5way-1shot
43.51 ± 0.50 m = 2.25, k = 8, α1 = 100, α2 = 100α1, β = 1, n = 750
41.12 +- 0.61 m = 2.0, k = 10, α1 = 100, α2 = 100α1, β = 1, n = 750
40.01 +- 0.58 m = 1.5, k = 12, α1 = 200, α2 = 100α1, β = 1, n = 750

5way-5shot
56.79 ± 0.64 m = 2.0, k = 10, α1 = 100, α2 = 100α1, β = 1, n = 750

(tieredImagenet) 53.13 +- 0.66 m = 2.25, k = 12, α1 = 200, α2 = 100α1, β = 1, n = 750
50.01 +- 0.61 m = 1.25, k = 12, α1 = 100, α2 = 200α1, β = 1, n = 750
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H ADDITIONAL T-SNE VISUALIZATION

Figure 4: t-SNE visualization for 5 randomly sampled novel classes for DC (left) and our method
DC+ (right) for miniImagenet, supplementing the visualization in the main text section. The sup-
port points are indicated with a ’+’ sign within black circles, sampled points are semi-transparent
indicated with a ’o’ sign, and the query points are opaque denoted by ’*’. Note that our sampled
points ( o ) are on average closer to the ground truth query points ( * ).

I META-TIEREDIMAGENET

We used the same S2M2 method for training the backbone feature extractor, the feature dimensions
were set to 64 with no activation function. Hyperparameter search ranges were,

β ∈ [low = 0, high = 10, step = 0.25], m ∈ [low = 0, high = 3, step = 0.25],

k ∈ [low = 2, high = |Cb|, step = 2]

α1 ∈ [0, 1000, step = 100], α2 ∈ [0, 1000, step = 100]× α1

In Table 3, we see that DC+ also outperforms DC and baseline (no method) on meta-tieredImagenet
even when there is a high dissimilarity between the base and novel/validation classes. The hyperpa-
rameters corresponding to these results were,

DC+ 5way-1shot m = 2.25, k = 8, α1 = 100, α2 = 100, β = 1, n = 750

DC+ 5way-5shot m = 2, k = 10, α1 = 100, α2 = 100, β = 1, n = 750

DC 5way-1shot k = 2, α = 1000, β = 1, n = 750

DC 5way-5shot k = 2, α = 900, β = 1, n = 750

An explanation as to why our method outperforms DC on this meta dataset is because of the high
m (m = 2.25 in 5way-1shot and m = 2 in 5way-5shot) our method discovers. With such high m,
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Figure 5: Histogram visualization of weights wi for meta-tieredImagenet (top) and miniImagenet
(bottom) for both 5way-1shot (left) and 5way-5shot (right) tasks. Note how the weights in meta-
tieredImagenet are at least an order of magnitude smaller than miniImagenet.

Table 8: wi for k base classes in meta-tieredImagenet experiment

Method 5way-1shot 5way-5shot

DC+
[0.0034, 0.0030, 0.0025, 0.0024, [0.0064, 0.0056, 0.0049, 0.0047, 0.0044,
0.0023, 0.0022, 0.0021, 0.0019] 0.0042, 0.0041, 0.0039, 0.0034, 0.0032]

DC [0.33, 0.33] [0.33, 0.33]

our wi is 100 times smaller than the weights assigned by DC method as seen in Figure 5. Hence
very small contribution of the k base classes are extrapolated in DC+ method while calculating the
calibrated µ′,Σ′, compared to DC where a hard contribution of 1/(k+1) exists.

Figure 5 and Table 8 shows the weights of the k base classes calculated by our method DC+ and DC
method averaged over 5 random selection of 5way-K shot task (random selection of novel classes
and support points)

To put these wi into perspective, the wi for best hyperparameters in miniImagenet are 10 times
larger as shown in Figure 5 and Table 9, (m = 1, k = 8 for 5way-1shot, and m = 3, k = 30 for
5way-5shot) showing that the classes are much more similar in miniImagenet than in the current
meta-tieredImagenet.

Table 9: wi for k base classes in miniImagenet experiment

Method 5way-1shot 5way-5shot

DC+

[0.1008, 0.0979, [0.0442, 0.0393, 0.0355, 0.0332, 0.0323, 0.0318, 0.0307, 0.0303, 0.0298, 0.0291,
0.0953, 0.0935, 0.0287, 0.0281, 0.0273, 0.0267, 0.0264, 0.0261, 0.0258, 0.0255, 0.0253, 0.0250
0.0928, 0.0924, 0.0244, 0.0242, 0.0239, 0.0236, 0.0234, 0.0231, 0.0225, 0.0218, 0.0214, 0.0210]
0.0916, 0.0912]

20


	Introduction
	Related Works
	Proposed Approach
	Problem Definition
	Algorithm
	Gaussianization of the Data
	Proposed Random Variable
	Shrinking the Covariance
	Sampling the novel class


	Experiments
	Implementation Details
	Datasets
	Feature Extractor
	Hyperparameter Search

	Comparison with states-of-the-art
	Visualization of Sampled Points
	Why should DC+ generalize better than DC?
	Ablation Study
	Effect of k
	Effect of n, 1, 2


	Conclusion
	Tukey and Yeo-Johnson
	Effect of Distances
	Formulation 1: General Distance: Squared 

	Details of Logistic Regression
	Datasets
	Feature Extractor Backbone
	Hyperparameter Search Methodology
	Tuned Hyperparameters
	Additional t-SNE Visualization
	meta-tieredImagenet

