
PowerGraph: Using neural networks and principal components to determine
multivariate statistical power trade-offs

Ajinkya Mulay 1 Sean Lane 2 Erin Hennes 2

Abstract
Statistical power estimation for studies with multi-
ple model parameters is inherently a multivariate
problem. Power for individual parameters of in-
terest cannot be reliably estimated univariately
since correlation and variance explained relative
to one parameter will impact the power for an-
other parameter, all usual univariate considera-
tions being equal. Explicit solutions in such cases,
especially for models with many parameters, are
either impractical or impossible to solve, leaving
researchers to the prevailing method of simulat-
ing power. However, the point estimates for a
vector of model parameters are uncertain, and
the impact of inaccuracy is unknown. In such
cases, sensitivity analysis is recommended such
that multiple combinations of possible observable
parameter vectors are simulated to understand
power trade-offs. A limitation to this approach is
that it is computationally expensive to generate
sufficient sensitivity combinations to accurately
map the power trade-off function in increasingly
high-dimensional spaces for the models that social
scientists estimate. This paper explores the effi-
cient estimation and graphing of statistical power
for a study over varying model parameter combi-
nations. We propose a simple and generalizable
machine learning inspired solution to cut the com-
putational cost to less than 10% of the brute force
method while providing F1 scores above 90%.
We further motivate the impact of transfer learn-
ing in learning power manifolds across varying
distributions.

1. Introduction

Statistical power is quantitatively equal to the probability
of rejecting a null hypothesis. Thus, it plays a crucial role
in finding an effect of hypothesized interest in any study.
Historically, the simplest and most direct way to improve
power is to increase the study’s sample size, as mathemat-

ically, it has the most significant impact concerning what
the researcher can control (Cohen, 1992). However, there
are practical considerations to make when increasing the
sample size. In the case of a rare disease study, the total
population itself might be small, difficult to locate, and
even more challenging to engage, as in early- and late-stage
neuro-genetic syndromes (Button et al., 2013; Szucs & Ioan-
nidis, 2017). On the other hand, there could be access or
funding issues with increasing the number of participants a
researcher wishes to obtain.

In this article, we empirically show that tuning the model pa-
rameters (i.e., weights) can dramatically change the study’s
power. Thus, the change in model parameters can push the
survey from a mid-powered study to well-powered research
even for a constant sample size. For the rest of the article,
we assume that well-powered research is one where the
power is higher than 0.8. Fig. 1 demonstrates that even for
a fixed sample size, the power can considerab1y vary due
to a change in model parameters. In Fig. 1a we compute
power gradients by considering the directional difference
between clusters derived by KMeans, where the power and
the squared L2-norm of the model parameters represent the
point coordinates.

Thus, generating such a manifold, as shown in Fig. 1a can
exceptionally aid researchers in identifying areas of high
power. Enabling access to these plots is thus a simple way
of reducing the ideal sample size without sacrificing power.
However, as described in Algorithm 1, computing power
even once requires 200-1000 simulations. Further, the man-
ifold parameter space, including the model weights, sample
size, and additional hyperparameter choices, is enormous.
For instance, for a seven predictor model, with 11 choices
per predictor and 11 choices for the N , we have a parameter
space of 117+1. Computation for this vast space might even
take days.

Thus, in this work, we look at cheaper alternatives to simu-
lating the entire power manifold. We present three different
contributions

• We develop a neural network-based approach to pre-
dict power over a high-dimensional manifold for clas-
sification and regression purposes. Such an approach

PowerGraph

provides significant performance with even 10% of the
training data.

• We provide four baselines for alternatively predicting
power and test all our approaches on three models-=
regression, logistic and Repeated Measures ANOVA.

• To leverage the transfer of knowledge from one
model’s power manifold to another model’s manifold,
we first demonstrate the intuition behind such a trans-
fer. Next, we show that such a transfer can enable the
same or better results in every case. We organize the
rest of the article as follows. We first detail the relevant
literature and highlight the background information re-
quired to build our algorithm. We provide pseudocodes
for the core and auxiliary algorithms in this section.
Next, we present our empirical results, highlight the
significant wins, and report the limitations. Finally, we
also present potential future work.

(a)
(b) (c)

(d) (e) (f)

Figure 1: Impact of Model Parameters on Power: (a)
Change in power over varying model coefficients (β), N =
105. We observe significant power gradient over clusters
derived by KMeans for a 3-predictor regression model with
a partial f-test. (b, c, d, e, f) For the same partial f-test
and over popular regression datasets (KumarRajarshi, 2015;
Eso, 2019; Choi, 2018; Too, 2019; Par, 2022) (N = 50), we
demonstrate that if we perturb the estimated model parame-
ters (β̂) by even small amounts, the under-powered studies
can become well-powered (i.e., power > 0.8).

2. Related Work

Previous articles ((Bakker et al., 2012), (Bakker et al., 2016),
(Maxwell, 2004), (Cohen, 1992)) have pointed out that stud-
ies are frequently underpowered and thus lead to statistically

insignificant results. Underpowered studies are primarily a
result of a lack of a formal power analysis. Furthermore, in
(Card et al., 2020) the authors demonstrated that numerous
NLP models are typically underpowered. They mention
that datasets with sentences less than 2000 lead to a power
of only 75% and provide best practices to perform power
analyses. Next, the work in (Koehn, 2004) provides ways
to measure the statistical significance of the performance
improvement due to a system change in the domain of ma-
chine translation. The authors argue that just a change in
the system metric (ex., accuracy or F1-score) is not enough,
and we need to demonstrate that the change in the metric
is statistically significant. This work further broadens the
need for thorough power analysis. Finally, (Koehn, 2004)
takes into consideration the effects of model complexity in
extracting the maximum information from a given dataset.
Under a given class of models, the authors provide an al-
gorithm to identify the right-fit model. The right-fit model
avoids both underfitting and overfitting and has predictive
power asymptotically close to the best model in the given
model class. Such a method can replace cross-validation
and signifies the importance of improving predictive power.

(Bakker et al., 2012) suggested power simulations for stud-
ies using Questionable Research Practices (QRPs) (John
et al., 2012) and lower sample sizes with more trials.
QRPs could include running multiple tests with a much
smaller sample size (underpowered), rerunning analyses
after adding more subjects, or (even selectively) removing
outliers. The results show that such practices can signifi-
cantly inflate statistical power and provide misleading ev-
idence about the effect size while hampering the study’s
reproducibility. (Bakker et al., 2012) suggests that to avoid
such underpowered studies, we should use sample sizes
derived after a formal power analysis.

(Baker et al., 2021) solved the power issue by providing an
online tool with power contours to demonstrate the effect
of sample size (N) and trials per participant on statistical
power (k). With the results provided in the article, it is
clear that changes to N or even k can dramatically change
the power region and convert an underpowered study to
an appropriately powered one. (Rast & Hofer, 2014) also
demonstrates the strong (inversely correlated) impact of
sample size on both the effect size and study design.

(Lane & Hennes, 2018) and (Lane & Hennes, 2019) provide
a clear guide to conducting formal power analysis based on
simulation methods (rather than a formula-based approach).
Even though the simulation approach is universal, it often
requires many computational resources. The resource usage
increases exponentially with a linear increase in the number
of predictors or other factors impacting power. Thus, in this
work, we highlight machine learning-based approaches that
can seriously reduce resource usage with accuracies greater

PowerGraph

than 95%.

3. Proposed Work

3.1. Computing Power

We present a power computation algorithm in Algorithm 1
for t-tests in a linear regression model. We can extend this
algorithm to the f-test by replacing the t-test in Line 9 with
an f-test or a partial f-test. For extensions to other models,
we only need to modify the data generation process on Line
5. Computing power for multiple model weights requires us
to call the COMPUTE-POWER function each time. Thus,
the cost of computing power boils down to the number of
calls made to COMPUTE-POWER. We wish to reduce the
number of calls while still predicting power for the entire
parameter space in our work.

3.2. Feature Engineering with PCA

Complex datasets include several features, and it often be-
comes necessary to reduce data dimensionality to conserve
resources or speed up training. Furthermore, we wish to
remove redundancy in features. Removing highly correlated
features can improve training speeds or data processing
speeds, reduce bias, and improve the interpretability of our
dataset. A common way to achieve these goals is to use
Principal Component Analysis (PCA) (Wold et al., 1987).
For brevity, we add further details of PCA to the appendix.

We already know that increasing the sample size N can
increase the power of a study. To visualize the impact of
each parameter in the model, we take a look at a partial f-test.
The data follows the distribution of the first three variables
from Table 5. We compute the power of the partial f-test to
test for the significance of the first and third predictors.

To visualize the importance of each parameter, we draw a
correlation plot in Figure 13. We can easily verify that as
expected β1 and β3 have higher correlation with the power
(as the hypothesis depends on them). N has a high correla-
tion as we would expect. Further, we define a new feature

scaled weight computed as Nσ, wherein σ =
√∑k

i=1 β
2
i

(k denotes the number of predictors). We observe that the
Nσ feature has the highest correlation amongst non-PCA
features. After including the principal components the corre-
lation substantially increases to ≥ 0.90 for PC1. We believe
that transforming the data with PCA can further increase
the variance while ignoring the redundant features in our
dataset. We, provide exact details about our dataset in 4.2.

3.3. Primary Approach: The Neural Network
Approach

We employ a simple neural network as described in Table 4
trained on the new dataset. With the flexibility of a neural
network, we can train for both a classification and a regres-
sion task. We denote this approach by POWER-NETWORK
or POWER-Neural Network (PNN)). PNN also allows for
an easy extension to a multi-class classifier. However, we
do not explore this domain in this article.

3.3.1. Learning Faster with Transfer Learning

The primary goal of our article is to reduce the number of
calls to the power function and thus reduce the simulation
overhead for computing power. Thus, we now describe a
commonly used technique fine-tuning (Houlsby et al., 2019)
in Natural Language Processing (NLP) domains. Rather
than cold-starting model training with random weights, we
take the help of a previously trained model to initialize the
model weights. Thus, most layers are already trained, and
our new smaller dataset can be used to tune the neural net
for our new task. Note that when the number of input dimen-
sions is different we remove the unused dimensions (from
the pre-trained model) by specifying zero input columns for
those features.

Formally, the transfer learning algorithm P-Transfer only de-
viates from PNN in the fact that line 6 of the algorithm 4 has
an additional step of initializing the model (before training)
with the weights of a larger pre-trained model. Note that the
original pre-trained model needs more features than the new
model. Finally, the extra features in the larger model are
turned off by passing zero vectors to these features. Thus,
even a larger model can be used for our smaller models.

3.3.2. Intuition behind Transfer Learning

The intuition behind transfer learning may be sought from
this article (Chinn, 2000). We first note that each model
directly interacts with the linear model. However, due to the
difference in their composition, the effect size might differ.
The authors in(Chinn, 2000) empirically demonstrate that
given the standard deviation, we can find the correlation
between, say, the effect size of the logistic regression model
and the regression model. Thus, we would have the same
standard deviation and thus correlated/comparable effect
sizes for standardized predictors. Thus, we might be able to
use transfer learning to boost a model with similar traits as
long as the predictors are standardized and they both have
the same hypothesis.

PowerGraph

3.4. Baselines: Power Cluster, Power Label
Propagation and KNeighbors Classifier

POWERCLUSTER also referred to as P-CLUSTER) sim-
ply runs K-Means on PC1 and Nσ for identifying two
clusters with two vectors from our dataset. We provide its
pseudocode in Algorithm 2. K-Means identifies clusters of
points that minimize the intra-cluster distances. Since both
of our feature vectors are independent of power, we can
cluster our data points without computing the true power.

The intuition behind deploying P-CLUSTER is that it can
quickly identify appropriately varying power domains, as
seen from Fig. 2. If we compare the clustering to the stan-
dard definition of a high-powered study (i.e., power is more
significant than 0.8), we can segregate power with high per-
formance. We demonstrate the results in Figures 3a, 3b. We
can see that P-CLUSTER performs well arbitrarily. Thus,
we can conclude that not including label information will
lead to poor performance for models.

We provide two other strong baselines for power prediction-
the label propagation algorithm from (Zhu & Ghahramani,
2002), and the KNeighbors Classifier (Nelli, 2018). We
use the Label Propagation version implemented in Scikit-
Learn (Pedregosa et al., 2011). Label propagation works
by first creating a fully-connected graph between all data
points wherein each edge weight is directly dependent on
the euclidean distance between the two points. These edge
weights dictate the probability of propagating a label onto
another label. We direct the reader to section 2.2 of (Zhu &
Ghahramani, 2002) for further details on the Label Propaga-
tion algorithm. We also refer to it as PL-PROP.

KNeighbors classifier (Nelli, 2018) also provides good per-
formance, and we thus include it for completeness. Overall,
Label Propagation performs consistently better than the
KNeighbors classifier.

4. Experiments

4.1. Code

We test the efficacy of the baseline algorithms and 4 with
three kinds of statistical models. For simulation, we use
Google Colaboratory with the standard run-time.1 Other
experiment details are deferred to the appendix in sec-
tion B.1.1.

1Our code is available at the anonymized link https://
anonymous.4open.science/r/powergraph-4BFC.

Algorithm 1 Computing Power of a t-test for a Linear Re-
gression Model

1: Input: Distributions of columns in the dataset-D =
{DX1

, DX2
, ..., DXp

}, Sample Size-N , Model Weight-
β ∈ Rp, Number of predictors-p, sensitivity-α (default:
0.05), number of simulations-sims (default: 1000), Er-
ror Distribution-E

2: Output: Power of t-test
3: procedure COMPUTE-POWER(X, k)
4: significance← 0
5: for 1:sims do
6: X ← generate N data samples from
7: distribution(D)
8: e← generate error from distribution(E)
9: y ← (X × β) + e

10: M← Fit (X, y) to a linear regression model
11: if p-value of t-test for modelM≤ α then
12: significance += 1
13: end if
14: end for
15: power← significance

sims
16: return power
17: end procedure

Algorithm 2 Unsupervised clustering of the power surface
with PCA features

1: Input: Length of training set-L, model parameter space-
S of length L (each parameter consists of the weight
vector β and sample size N), power sensitivity-α (de-
fault 0.05), number of simulations-sims (default 200),
PCA variance (in %) to be retained-var, Number of
clusters-k

2: Output: Power Surface Graph
3: procedure POWERCLUSTER(S, α, sims)
4: SPCA ← PCA-FIT-TRANSFORM(S, variance=var)
5: Ck ← KMeans(SPCA, num clusters = k)
6: return clusters Ck derived from KMeans
7: end procedure

4.2. Dataset

For sampling parameters we use P-SAMPLER (algorithm 5)
to generate the parameter sample space and in conjunction
with algorithm 3 to compute power. Both of these algo-
rithms together make up the power computation black box.
After collecting the dataset, we pre-process it using PCA, as
explained below. P-SAMPLER is inspired by the fungible
weights described in (Waller, 2008). Next, we provide exact
details about the data we use for the methods introduced in
this work. For both supervised and unsupervised tasks we
use the same dataset albeit the unsupervised one does not
contain the labels or true power information. The dataset

https://anonymous.4open.science/r/powergraph-4BFC
https://anonymous.4open.science/r/powergraph-4BFC

PowerGraph

Algorithm 3 Training Data Collection

1: Input: Length of training set-L, model parameter space-
S of length L (each parameter consists of the weight
vector β and sample size N), power sensitivity-α (de-
fault 0.05), number of simulations-sims (default 200)

2: Output: Training Set S with parameters and corre-
sponding powers

3: procedure GENERATE-DATA(S, α, sims)
4: for parameter in S do
5: (β,N)← parameter
6: power← COMPUTE-POWER(β,N, α,sims)
7: S[powers]← power
8: end for
9: end procedure

Algorithm 4 Classifying/Predicting power surface with
PCA features

1: Input: Length of training set-L, model parameter space-
S of length L (each parameter consists of the weight
vector β and sample size N), power sensitivity-α (de-
fault 0.05), number of simulations-sims (default 200),
PCA variance (in %) to be retained-var

2: Output: Power Surface Graph
3: procedure POWERNETWORK(S, α, sims)
4: S∗ ← GENERATE-DATA(S, α, sims)
5: SPCA← PCA-FIT-TRANSFORM(S , variance=var)
6: Train Neural Network ModelM on (S∗ ∪ SPCA)
7: return trained modelM
8: end procedure

Algorithm 5 Sampling in High-Dimensions

1: Input: no. of training points-Ns, domain of the k
predictors and the sample size-D ∈ Rk, no. of local
training points-ns, local sigma for Gaussian sampling-
σl

2: Output: S model parameter space
3: procedure P-SAMPLER(Ns)
4: n← 0
5: while n < Ns do
6: Uniformly randomly pick a centroid β from D
7: Sl ← Sample ns datapoints from a Gaussian

distribution N (µ = β, σ = σl)
8: S ← S ∪ Sl
9: n← n+ 1 + ns

10: end whilereturn parameter space S
11: end procedure

details are included in Table 1. We assume that our original
linear model is denoted as

y = x1β1 + x2β2 + ...+ xkβk + e

wherein, e ∼ N (0, 1) is the error term, k is the number
of predictors, y is the model predictions, x = {x1, ..., xk}
and β = {β1, ..., βk} is our linear model parameter. Our
modified dataset includes X = {β,N,Nσ}. After includ-
ing the PCA induced features our final dataset is XPCA =
{β,N,Nσ,PC}.

4.2.1. Models

Three models are considered for understanding how the
power manifold is impacted by model complexity. x below
signifies the number of predictors in the model.

• Linear Model (REG-x): We run an f-test to understand
whether a simpler model works better than the full
model. Feature distribution listed in Table 5.

• Logistic Regression (LOGIT-x): Here, we run a Wald’s
test to understand how much a reduced model impacts
the predictive power. This is the only non-linear model
that we consider. Feature distribution listed in Table 6.

• Repeated Measures ANOVA (RMANOVA-x): We run a
within-subjects RMANOVA to measure the impact of
different factors (two) on the subjects. Feature distri-
bution listed in Table 5.

Throughout the paper, we use the same hypothesis HO
where we test whether the model parameters β1, β3 are zero
(in the form of a partial F-test or a Wald’s test). However,
for testing the robustness of our transfer learning algorithm
P-TRANSFER, we use the alternative hypothesisH′

O where
we test whether the model parameters β1, β7, β8 are zero or
not for both an F-test and a Wald’s test.

Feature Details
β As provided by the expected dataset’s distribution

N,Nσ Sample Size, Scaled Weight
PC = {PC1, ...,PCr} r Principal Components as extracted from X with 99% variance

Table 1: Dataset: Features included for model training

For the 3-predictor network we have 9 total features, 13
features for the 5-predictor network, 23 for the 10-predictor
network and 43 for the 20-predictor network.

4.3. Metrics

In our proposed algorithm, we solve two kinds of problems-
binary power classification and a regression problem with
actual power values.

PowerGraph

4.3.1. Classification

For binary classification, we normally simply use the he ac-
curacy. However, since we might have unbalanced datasets,
we instead report the F1 score over the test set. While using
multiple binary classifiers we could still use the F1-score
albeit in an one-vs-rest fashion. For multi-class classifica-
tion, we are first required to run the more restrictive binary
classifier, compute its performance, and then for the sec-
ond binary classifier we only compute its performance over
the remaining data points. Thus, suppose we have two bi-
nary classifiers- C1 (power > 0.8 and power ≤ 0.8) and
C2 (power > 0.6 and power ≤ 0.6). We first run C1 to
find all data points with power > 0.8 and then run C2 to
find data points with 0.8 ≥power > 0.6 and power ≤ 0.6.
Note that currently in the results we only provide separate
performance metrics for C1 and C2.

4.3.2. Regression

We use a Mean Squared Error loss function for the regres-
sion problem between the ground truth power and the sim-
ulated power values. However, power is the probability
of successfully rejecting a null hypothesis, and thus we
can consider the ground truth power P g and the simulated
power values P s as probability distributions. Note that the
KL Divergence between A and B is shown in equation 1.

LKL(A||B) =
∑
x

A(x)log
(A(x)

B(x)

)
(1)

Here, x denotes the feature space associated with the prob-
ability distribution (i.e., actual and simulated power), and
A,B represents the ground truth and the simulated powers
themselves. However, KL divergence is non-symmetric and
not a distance measure. Thus, we use the Jensen-Shannon
(JS) divergence which is an extension of the equation. 1.
The JS divergence between two probability distributions A
and B is given by the equation 2.

LJS(A||B) =
1

2
{LKL(A||B) + LKL(B||A)} (2)

4.4. A note about current baselines for predict-
ing power

From literature, previous approaches for computing a power
manifold used a brute-force approach by essentially running
the black box for computing power. Thus, given unlimited
time, they could achieve 100% accuracy by just literally
computing the power manifold. Specific greedy approaches
attempted to find optimal power but not the entire manifold.
Since our work aims to minimize the effort required to

(a) (b)

Figure 2: PNN-CLUSTER Performance: A simple un-
supervised learning algorithm can identify high and low
power domains. (left) Results for partial f-test performed on
a 3-predictor REG model. (right) Results for partial f-test
performed on a 5-predictor REG model.

compute the power manifold, we do not compare our work
directly to these brute-force approaches. Instead, we elect
to create our baselines using traditional predictive machine
learning.

5. Results

5.1. P-Transfer

We evaluate P-Transfer by first pre-training a REG-20 model
and then testing it over three different scenarios-(i) Same
feature distribution, Same Hypothesis, (ii) Different feature
distribution, Same Hypothesis, and (iii) Different feature
distribution, Different Hypothesis. We denote these cases
by TF1, TF2, TF3 respectively. Note that we always use
a model smaller or equal in size to the original pre-trained
model for transfer learning.

Our preliminary observations indicate that transfer learning
never hurts model performance. However, for the cases
where both the models have the same hypothesis (i.e., cases
(i) and (ii)), we see significant gains in the model perfor-
mance. Table 2 summarizes these results.

Thus, for comparison to PNN, we use our baselines -PL-
Rand, P-CLUSTER, PL-PROP and the PK-neighbors ap-
proach. Note that to accommodate the various trends in our
model, we only report the best performing baseline (over
all four baselines) in the plots. For brevity and due to many
baseline performance combinations, we skip the point-wise
results of the baselines. However, the code provided hosts
with all the information required to recreate these baselines.

We capture three primary trends in our experiments, the
performance over the change in model complexity, the num-
ber of predictors, and the amount of training data used for
predicting the power manifold.

PowerGraph

Type Model P-Transfer Perfor-
mance

Original Performance
(Same Amt. of Train
Data)

Original Performance
(8x Amt. of Train
Data)

TF1 REG3 0.9902† ± 0.0045 0.9827 0.9900
TF1 REG5 0.9804† ± 0.0064 0.9700 0.9800
TF1 REG10 0.9630± 0.0087 0.9600 0.9800
TF1 RMANOVA3 0.9458± 0.0104 0.945 0.9600
TF1 RMANOVA5 0.9650± 0.0084 0.9600 0.9700
TF1 RMANOVA10 0.9465± 0.0103 0.9200 0.9800
TF1 RMANOVA20 0.8513± 0.0164 0.8600 0.9300
TF2 LOGIT3 0.9717† ± 0.0076 0.9300 0.9700
TF2 LOGIT5 0.9524± 0.0098 0.9200 0.9600
TF2 LOGIT3 0.9361± 0.0112 0.8900 0.9700
TF2 LOGIT3 0.9099± 0.0132 0.8600 0.9300
TF2 REG10 0.9658± 0.0178 0.9659 0.9944
TF2 RMANOVA10 0.9260± 0.0256 0.8678 1.0000
TF3 RMANOVA20 0.815± 0.0380 0.815 0.815

Table 2: P-Transfer Test Performance: Models with the
same hypothesis may provide considerable performance
boost. Any other scenario does not seem to hurt transfer
learning performance.†-indicates that P-Transfer beat even
the 8x training data performance. The confidence ranges
indicate a 95% confidence interval.

The trend of increased performance with increased training
data usage is reported via Figures 3, 4. Interestingly, even
at lower training data proportions, we receive good perfor-
mance from the classifiers. From the exact figures, we can
see that predictions struggle over the RMANOVA model
while they are much easier for the REG model and moderate
for the LOGIT model. A similar trend can be observed for
regression tasks as seen in the Figs. 7, 8, 9 in the appendix.
Furthermore, with a change in the number of predictors as
seen in Figs. 10, 11 and 12, the model performance deterio-
rates for change in the number of predictors for REG and
LOGIT. However, for the RMANOVA model, we see an
arbitrary performance plot indicating our sub-optimal model
choice might be the reason. Here sub-optimal indicates the
model derived without using the validation set. It seems
that for both regression and classification tasks, PNN strug-
gles the most for the RMANOVA model family. However,
given that we see this is only the models with low access to
training data, we can say that these classifiers are biased.

Finally, we can observe the number of calls v/s the perfor-
mance in Fig. 15. Clearly, for multiple models using fewer
data points can still provide high utility.

Even though we do not fully report the baselines, we would
like to highlight a few notable observations. As expected,
P-RAND performs the worst, followed by P-CLUSTER. De-
pending on the simulated data’s distribution P-CLUSTER
surprisingly beats both PK-neighbors and PL-PROP when
fewer training data points are used. Amongst, PL-PROP and
PK-neighbors, the PL-PROP approach is the more robust
one and it is the closest one to PNN.

(a)

(b)

Figure 3: PNN Classification Performance: Comparison
of model performance over change in proportion of training
data used (increasing from left to right). (left) 10-predictor
performance, and (right) 20-predictor network performance.

6. Limitations and Future Work

This work primarily investigates the utility of training a
neural network for predicting statistical power over a mani-
fold. Furthermore, we also provide baselines- Random (P-
Rand), K Neighbors Classifier (PK-Neighbors), Label Prop-
agation (PL-Prop), and an unsupervised clustering method
(P-CLUSTER).

Note that each of the baselines fails to generalize for com-
plex models.

• P-RAND: The random mechanism works as advertised
and provides the least performance throughout.

• P-CLUSTER: This approach can be compelling for vi-
sualizing the power manifold in 2 dimensions space
effectively. However, we note that its performance is
inconsistent, and the linear classifier might not always

PowerGraph

be able to predict exactly between high and low power
regions. Further, the lack of label information makes
this approach useful for pre-processing but not for pre-
dicting power classes. Alternatively, we might be able
to identify and eliminate low powered regions using
this approach, and we again propose this as an open
problem.

• PK-neighbors: This approach is a supervised cluster-
ing alternative to P-CLUSTER. However, it does not
necessarily perform consistently. We, however, note
that we have not fine-tuned this approach for the num-
ber of neighbors. We leave this investigation as part of
our future work.

• PL-PROP: The most promising baseline is PL-PROP
with its rbf kernel. PL-PROP is better than the rest
but fails to generalize for complex models or more
predictors. Furthermore, it requires much more data
compared to the neural network. We, however, have
not used any guidance for tuning this algorithm’s pa-
rameters, and we leave this aspect for future work.

• Model Limitations: PNN provides excellent empiri-
cal performance and generalizes well over increasing
model complexity while providing competitive per-
formance even with only 10% of the data. We note
that PNN is not yet trained using methods like early
stopping or an adaptive learning rate. We would pur-
sue these optimizations in subsequent work. Partic-
ularly we do not use a validation dataset to improve
the model generalization, and we set 500 epochs as
an arbitrary stopping point. We have seen at least one
instance of such an approach leading to a sub-optimal
model choice, thus leaving a gap in the empirical per-
formance.

• Dataset Limitations: Our most complex model cur-
rently is the RMANOVA with two within-subjects fac-
tors. To further understand the generalization error,
we hope to extend our approach to higher complexity
models, including other non-linear models. Further, we
would like to explore multi-class classifications to pro-
vide the user with more options in terms of choosing
the power manifold.

• Theoretical Limitation: Finally, the current implemen-
tations do not provide any formal theoretical guaran-
tees for the convergence of any of these methods. We
do provide intuition about why our transfer learning
methods work. However, we would like to explore how
different distributions with the same hypothesis impact
the power manifold in greater detail.

7. Conclusion

In this work, we show that PCA-derived features are bene-
ficial for exploring the high-dimensional manifolds of the
power surface. We provide multiple algorithms that provide
reasonable alternatives to the original brute force method of
a power analysis. We show that using a simple, fully con-
nected neural network, we can generalize across complex
and even non-linear models to consistently predict power.
We showcase that even using 10% training data can lead to
high prediction accuracy for regression and classification
tasks. Finally, with transfer learning, we can learn a single
model and boost the performance of other models again
with only 10% training data.

References
2019. URL https://www.rdocumentation.
org/packages/datasets/versions/3.6.2/
topics/esoph.

2019. URL https://www.rdocumentation.
org/packages/datasets/versions/3.6.2/
topics/ToothGrowth.

2022. URL https://archive.ics.uci.edu/ml/
datasets/parkinsons+telemonitoring.

Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M.
Optuna: A next-generation hyperparameter optimization
framework. In Proceedings of the 25th ACM SIGKDD
international conference on knowledge discovery & data
mining, pp. 2623–2631, 2019.

Baker, D. H., Vilidaite, G., Lygo, F. A., Smith, A. K., Flack,
T. R., Gouws, A. D., and Andrews, T. J. Power contours:
Optimising sample size and precision in experimental psy-
chology and human neuroscience. Psychological Meth-
ods, 26(3):295, 2021.

Bakker, M., Van Dijk, A., and Wicherts, J. M. The rules of
the game called psychological science. Perspectives on
Psychological Science, 7(6):543–554, 2012.

Bakker, M., Hartgerink, C. H., Wicherts, J. M., and van der
Maas, H. L. Researchers’ intuitions about power in psy-
chological research. Psychological science, 27(8):1069–
1077, 2016.

Button, K. S., Ioannidis, J. P., Mokrysz, C., Nosek, B. A.,
Flint, J., Robinson, E. S., and Munafò, M. R. Power
failure: why small sample size undermines the reliability
of neuroscience. Nature reviews neuroscience, 14(5):
365–376, 2013.

https://www.rdocumentation.org/packages/datasets/versions/3.6.2/topics/esoph
https://www.rdocumentation.org/packages/datasets/versions/3.6.2/topics/esoph
https://www.rdocumentation.org/packages/datasets/versions/3.6.2/topics/esoph
https://www.rdocumentation.org/packages/datasets/versions/3.6.2/topics/ToothGrowth
https://www.rdocumentation.org/packages/datasets/versions/3.6.2/topics/ToothGrowth
https://www.rdocumentation.org/packages/datasets/versions/3.6.2/topics/ToothGrowth
https://archive.ics.uci.edu/ml/datasets/parkinsons+telemonitoring
https://archive.ics.uci.edu/ml/datasets/parkinsons+telemonitoring

PowerGraph

Card, D., Henderson, P., Khandelwal, U., Jia, R., Mahowald,
K., and Jurafsky, D. With little power comes great re-
sponsibility. arXiv preprint arXiv:2010.06595, 2020.

Chinn, S. A simple method for converting an odds ratio to
effect size for use in meta-analysis. Statistics in medicine,
19(22):3127–3131, 2000.

Choi, M. Medical cost personal datasets, 2018. URL
https://www.kaggle.com/mirichoi0218/
insurance.

Cohen, J. Things i have learned (so far). In Annual Con-
vention of the American Psychological Association, 98th,
Aug, 1990, Boston, MA, US; Presented at the aforemen-
tioned conference. American Psychological Association,
1992.

Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B.,
De Laroussilhe, Q., Gesmundo, A., Attariyan, M., and
Gelly, S. Parameter-efficient transfer learning for nlp.
In International Conference on Machine Learning, pp.
2790–2799. PMLR, 2019.

John, L. K., Loewenstein, G., and Prelec, D. Measuring
the prevalence of questionable research practices with
incentives for truth telling. Psychological science, 23(5):
524–532, 2012.

Koehn, P. Statistical significance tests for machine transla-
tion evaluation. In Proceedings of the 2004 conference
on empirical methods in natural language processing, pp.
388–395, 2004.

KumarRajarshi. Life expectancy (who), 2015. URL
https://www.kaggle.com/kumarajarshi/
life-expectancy-who?select=Life+
Expectancy+Data.csv.

Lane, S. P. and Hennes, E. P. Power struggles: Estimating
sample size for multilevel relationships research. Journal
of Social and Personal Relationships, 35(1):7–31, 2018.

Lane, S. P. and Hennes, E. P. Conducting sensitivity analyses
to identify and buffer power vulnerabilities in studies
examining substance use over time. Addictive behaviors,
94:117–123, 2019.

Maxwell, S. E. The persistence of underpowered studies
in psychological research: causes, consequences, and
remedies. Psychological methods, 9(2):147, 2004.

Nelli, F. Machine learning with scikit-learn. In Python Data
Analytics, pp. 313–347. Springer, 2018.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-
napeau, D., Brucher, M., Perrot, M., and Duchesnay, E.

Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12:2825–2830, 2011.

Rast, P. and Hofer, S. M. Longitudinal design considerations
to optimize power to detect variances and covariances
among rates of change: simulation results based on actual
longitudinal studies. Psychological methods, 19(1):133,
2014.

Szucs, D. and Ioannidis, J. P. Empirical assessment of
published effect sizes and power in the recent cognitive
neuroscience and psychology literature. PLoS biology,
15(3):e2000797, 2017.

Waller, N. G. Fungible weights in multiple regression. Psy-
chometrika, 73(4):691–703, 2008.

Wold, S., Esbensen, K., and Geladi, P. Principal compo-
nent analysis. Chemometrics and intelligent laboratory
systems, 2(1-3):37–52, 1987.

Zhu, X. and Ghahramani, Z. Learning from labeled and
unlabeled data with label propagation. 2002.

https://www.kaggle.com/mirichoi0218/insurance
https://www.kaggle.com/mirichoi0218/insurance
https://www.kaggle.com/kumarajarshi/life-expectancy-who?select=Life+Expectancy+Data.csv
https://www.kaggle.com/kumarajarshi/life-expectancy-who?select=Life+Expectancy+Data.csv
https://www.kaggle.com/kumarajarshi/life-expectancy-who?select=Life+Expectancy+Data.csv

PowerGraph

A. Appendix

B. PNN Performance

We demonstrate additional results about the model’s performance across changes in the number of predictors, for different
classification boundaries (0.6 instead of 0.8), and the performance for regression tasks.

We first consider changes in the classification boundary from 0.8 to 0.6 to observe models with lower power as potentially
interesting. We observe from Figs. 5 and 6.

(a) (b)

Figure 4: PNN Classification Performance: Comparison of model performance over change in proportion of training data
used (increasing from left to right). (left) 3-predictor performance, and (right) 5-predictor network performance.

(a) (b)

Figure 5: PNN Classification Performance: Comparison of model performance over change in proportion of training
data used (increasing from left to right). Results for the 0.6 classification boundary for (left) 3 predictors , and (right) 5
predictors.

For all regression tasks in Figs. 7, 8, 9 (even over the change in the classification boundary from 0.8 to 0.6) we can observe
that the JS divergence over the test set is always better than the random baseline by at least 10x and going up to even 200x
performance.

PowerGraph

(a) (b)

Figure 6: PNN Classification Performance: Comparison of model performance over change in proportion of training
data used (increasing from left to right). Results for the 0.6 classification boundary for (left) 10 predictors , and (right) 20
predictors.

The performance over the change in the number of predictors as seen in Figs. 10, 11 and 12 shows a downward trend for the
REG and LOGIT models and so the classifier consistently provides poor performance with an increase in model complexity
due to the number of predictors. This can be explained by the massive increase in the dimensionality of the space. However,
for RMANOVA we do not see such a trend at all, and rather the models can have higher performance for even the complex
models. We believe this is a current limitation due to sub-optimal model choice (not driven by the validation set).

(a) (b)

Figure 7: PNN REG Regression Performance: Regression task is a super set of the classification task and thus inherently
much harder. We report the performance of this task over change in the number of training points. Interestingly, even with
just 10% of the data the neural network performs close enough to the neural network using 8x training data. Results for the
REG model family (left) (classification boundary 0.8) and (right) (classification boundary 0.6).

B.1. Parameter Tuning

Tuning the algorithms used in this work is critical to improving the performance of the Power Network and Power Cluster. It
turns out that choosing the variance captured by PCA directly affects the Power Network. Moreover, PCA variance and the
number of clusters selected in Power Clustering can improve its performance.

PowerGraph

(a) (b)

Figure 8: PNN RMANOVA Regression Performance: Regression task is a super set of the classification task and thus
inherently much harder. We report the performance of this task over change in the number of training points. Interestingly,
even with just 10% of the data the neural network performs close enough to the neural network using 8x training data.
Results for the RMANOVA model family (left) (classification boundary 0.8) and (right) (classification boundary 0.6).

(a) (b)

Figure 9: PNN LOGIT Regression Performance: Regression task is a super set of the classification task and thus inherently
much harder. We report the performance of this task over change in the number of training points. Interestingly, even with
just 10% of the data the neural network performs close enough to the neural network using 8x training data. Results for the
LOGIT model family (left) (classification boundary 0.8) and (right) (classification boundary 0.6).

B.1.1. Experiment Details

We have standardized the parameter distribution for data collection to provide a consistent comparison. These parameters
can be found in Table 3. For tuning the neural network’s learning rate, we use the library Optuna ((Akiba et al., 2019)).

B.1.2. PCA

Usually, increasing the sample size improves power. Furthermore, our feature engineered dimension denoted by Nσ i.e.,
(scaled weight) also affects the power significantly. We can observe the correlation values concerning power in Fig. 13.
Thus, we expect the variance covered in PCA transformed data to require at least two dimensions.

PowerGraph

(a) (b)

Figure 10: PNN REG Classification Performance: We demonstrate how the change in model complexity due to increase
in predictors affects PNN’s performance. (left) (classification boundary 0.8) and (right) (classification boundary 0.6).

(a) (b)

Figure 11: PNN RMANOVA Classification Performance: We demonstrate how the change in model complexity due to
increase in predictors affects PNN’s performance. (left) (classification boundary 0.8) and (right) (classification boundary
0.6).

Experimentation Details Values
No. of power simulations for each record 1000

Total Datapoints per model 2000
No. of training epochs 500

Training Data Split 10, 20, 40, 60, 80 (%)
Power Classification Boundary 0.6, 0.8

Optimizer Adam
Model Performance confidence interval 95%

Table 3: Experimental Parameters

We consistently observe excellent performance after selecting 99% variance from PCA. Furthermore, we concatenate these
new features to the original matrix and use this to train the Neural Network. As we see from figure 13, the impact of the

PowerGraph

(a)
(b)

Figure 12: PNN LOGIT Classification Performance: We demonstrate how the change in model complexity due to increase
in predictors affects PNN’s performance. (left) (classification boundary 0.8) and (right) (classification boundary 0.6).

PCA features is sizeable.

Figure 13: Impact of PCA: Correlation of parameters with true power. With feature engineering and PCA we are able to
obtain correlation > 0.9 for a linear regression model with 3 parameters.

B.1.3. Choice of clusters in Power Cluster

Depending on how the data is clustered, the Choice of several clusters can directly impact the classification performance.
However, empirically this method is unreliable and requires a visual inspection of the dataset to be helpful.

B.1.4. Other Considerations

We employ a few techniques during neural network training with increasingly complex models and parameter spaces. (1)
The training is sensitive to the choice of the learning rate. Tuning needs to be achieved after using a hyperparameter tuner
like Optuna (Akiba et al., 2019). (2) Training tends to fluctuate a lot, and a higher number of epochs and early stopping
seem to help.

PowerGraph

Figure 14: P-CLUSTER Performance (multi-clustering): P-CLUSTER can identify multiple zones in the power domain
quite efficiently. (left) displays 5 clusters and, (right) displays 10 clusters.

B.1.5. Neural Network Architecture

Layer Parameters
Dense (input) 64 units + ReLU

Dense (hidden) 32 units + ReLU
Dense (output) 1 unit + Sigmoid

Table 4: PNN Architecture: We report the fully connected layers. The input dimensions depend on the number of predictors
and additional PCA features.

B.1.6. List of Model Parameters

DX1 DX2 DX3 DX4 DX5

CAT[-1, 1] N (0, 1) X1 ×X2 N (0, 2) X4 ×X2

DX6 DX7 DX8 DX9 DX10

CAT[0, 1, 2] N (0, 2) X6 ×X7 N (0, 1) X2 ×X6

DX11
DX12

DX13
DX14

DX15

N (0, 3) N (0, 1) X1 ×X11 N (0, 2) X11 ×X12

DX16
DX17

DX18
DX19

DX20

N (0, 2) N (0, 2) X11 ×X14 N (0, 1) X6 ×X16

Table 5: DO: Distribution of model features. For predictors k < 20, we only select the first k predictors. Note that CAT
refers to a categorical variable while N (µ, σ) is the Normal Distribution with mean µ and standard deviation σ.

PowerGraph

DX1 DX2 DX3 DX4 DX5

N (0, 1) CAT[-1, 1] N (0, 1) N (0, 1) X2 ×X1

DX6 DX7 DX8 DX9 DX10

X2 ×X3 X2 ×X4 N (0, 1) N (0, 1) X2 ×X8

DX11 DX12 DX13 DX14 DX15

N (0, 3) N (0, 1) X1 ×X11 N (0, 2) X11 ×X12

DX16
DX17

DX18
DX19

DX20

N (0, 2) N (0, 2) X11 ×X14 N (0, 1) X6 ×X16

Table 6: DA: Alternate Distribution of model features (used for non-linear models and testing purposes). For predictors
k < 20, we only select the first k predictors. Note that CAT refers to a categorical variable while N (µ, σ) is the Normal
Distribution with mean µ and standard deviation σ.

Figure 15: Cost of Power Computation: We report the calls required to compute the power manifold over a subset of the
parameter space. Visualizing from left to right, we can see that we can yield high-performing classifiers even with a fraction
of the training data.

C. Computational Costs

C.1. Details about Principal Component Analysis

PCA works by finding the direction with maximal variance. Next, it finds the direction with the maximal variance such
that this direction is uncorrelated with the previous direction. We continue in this fashion so that any pair of directions are
uncorrelated. We then reorient our dataset with these new components to compute our new dataset. Suppose our original
dataset is X ∈ RN×p and v ∈ Rp×k are the derived Principal Components (PCs) where N is the total samples in X ,

PowerGraph

p =dim(X) and k is the number of PCs to be selected. Then the new dataset is given by,

X
′
= X × v.

	Introduction
	Related Work
	Proposed Work
	Computing Power
	Feature Engineering with PCA
	Primary Approach: The Neural Network Approach
	Learning Faster with Transfer Learning
	Intuition behind Transfer Learning

	Baselines: Power Cluster, Power Label Propagation and KNeighbors Classifier

	Experiments
	Code
	Dataset
	Models

	Metrics
	Classification
	Regression

	A note about current baselines for predicting power

	Results
	P-Transfer

	Limitations and Future Work
	Conclusion
	Appendix
	PNN Performance
	Parameter Tuning
	Experiment Details
	PCA
	Choice of clusters in Power Cluster
	Other Considerations
	Neural Network Architecture
	List of Model Parameters

	Computational Costs
	Details about Principal Component Analysis

