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Abstract

Generating synthetic tabular data is critical in machine learning, especially when
real data is limited or sensitive. Traditional generative models often face challenges
due to the unique characteristics of tabular data, such as mixed data types and varied
distributions, and require complex preprocessing or large pretrained models. In this
paper, we introduce a novel, lossless binary transformation method that converts
any tabular data into fixed-size binary representations, and a corresponding new
generative model called Binary Diffusion, specifically designed for binary data.
Binary Diffusion leverages the simplicity of XOR operations for noise addition
and removal and employs binary cross-entropy loss for training. Our approach
eliminates the need for extensive preprocessing, complex noise parameter tuning,
and pretraining on large datasets. We evaluate our model on several popular tabular
benchmark datasets, demonstrating that Binary Diffusion outperforms existing
state-of-the-art models on Travel, Adult Income, and Diabetes datasets while
being significantly smaller in size. Code and models are available at: https!
//github.com/vkinakh/binary-diffusion-tabular

1 Introduction

The generation of synthetic tabular data is a critical task in machine learning, particularly when
dealing with sensitive, private, or scarce real-world data. Traditional generative models often struggle
with the inherent complexity and diversity of tabular data, which typically encompasses mixed data
types and complex distributions.

In this paper, we introduce a method to transform generic tabular data into a binary representation, and
a generative model named Binary Diffusion, specifically designed for binary data. Binary Diffusion
leverages the simplicity of XOR operations for noise addition and removal, fundamental components
of probabilistic diffusion models. This method eliminates the need for extensive preprocessing and
complex noise parameter tuning, streamlining the data preparation process.

Our approach offers several key advantages. First, by converting all columns into unified binary
representations, the proposed transformation removes the necessity for column-specific preprocessing
commonly required in handling mixed-type tabular data. Secondly, the Binary Diffusion model itself
is optimized for binary data, utilizing binary cross-entropy (BCE) loss for predictions during the
training of the denoising network.

We evaluate our model on several popular tabular benchmark datasets, including Travel [tej21], Sick
[SEDT 88|, HELOC [lial8| [FIC18], Adult Income [BK96]), California Housing [PB97, nug17]], and
Diabetes [SDG™ 14, [Kag21] tabular datasets. The Binary Diffusion model outperforms existing
state-of-the-art models on Travel, Adult Income and Dianetes datasets. Additionally, our model
is significantly smaller in size compared to contemporary models and does not require pretraining
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on other data modalities, unlike methods based on large language models (LLMs) such as GReaT

BSL™22].

2 Related Work

TVAE (Tabular Variational Autoencoder) adapts the Variational Autoencoder (VAE) framework to
handle mixed-type tabular data by separately modeling continuous and categorical variables. CTGAN
(Conditional Tabular GAN) employs a conditional generator to address imbalanced categorical
columns, ensuring the generation of diverse and realistic samples by conditioning on categorical
data distributions. CopulaGAN integrates copulas with GANSs to capture dependencies between
variables, ensuring that synthetic data preserves the complex relationships present in the original
dataset [XSCIV19].

GReaT (Generation of Realistic Tabular data) leverages a pretrained auto-regressive
language model (LLM) to generate highly realistic synthetic tabular data. The process involves
fine-tuning the LLM on textually encoded tabular data, transforming each row into a sequence of
words. This approach allows the model to condition on any subset of features and generate the
remaining data without additional overhead.

Existing data generation methods show several shortcomings. Models such as CopulaGAN, CTGAN,
and TVAE attempt to generate columns with both continuous and categorical data simultaneously, em-
ploying activation functions like softmax and tanh in the outputs. These models also require complex
preprocessing of continuous values and rely on restrictive approximations using Gaussian mixture
models and mode-specific normalization. Additionally, large language model-based generators like
GReaT need extensive pretraining on text data, making them computationally intensive with large
parameter counts with potential bias from the pretraining data.

The proposed data transformation and generative model address these shortcomings as follows: (i)
by converting all columns to unified binary representations; (ii) the proposed generative model for
binary data, with fewer than 2M parameters, does not require pretraining on large datasets and offers
both fast training and sampling capabilities.

3 Data transformation

To apply the Binary Diffusion model to tabular data, we propose an invertible lossless transformation
T, shown on the Figure[I] that converts tabular data columns into fixed-size binary representations.
The transformations is essential for preparing tabular data for the Binary Diffusion model, enabling
it to process and generate tabular data without the need for extensive preprocessing. This approach
ensures that the data retains its original characteristics.
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Figure 1: Transformation of tabular data tg into the binary form x. The considered transformation
is reversible. The continuous column records are presented with the length deopy = 32 and the
categorical ones with dc,; = log, K, where K stands for the number of categorical classes.



The transformation method converts each column of the table into a binary format. For continuous
data, this process includes applying min-max normalization to the columns, followed by converting
these normalized values into a binary representation via 32-bit floating-point encoding. For categorical
data, binary encoding is used. The encoded columns are concatenated into fixed-size rows.

The inverse transformation 7 ! converts the binary representations back into their original form. For
continuous data, the decoded values are rescaled to their original range using metadata generated
during the initial transformation. For categorical data, the binary codes are mapped back to their
respective categories using a predefined mapping scheme.

4 Binary Diffusion

Binary Diffusion shown in Figure [2|is a novel approach for generative modeling that leverages the
simplicity and robustness of binary data representations. This method involves adding and removing
noise through XOR operation, which makes it particularly well-suited for handling binary data.
Below, we describe the key aspects of the Binary Diffusion methodology in detail.
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Figure 2: Binary Diffusion training (left) and sampling (right) schemes.

In Binary Diffusion, noise is added to the data by flipping bits using the XOR operation with a
random binary mask. The amount of noise added is quantified by the proportion of bits flipped. Let
Xo € {0, 1} be the original binary vector of dimension d, and z; € {0, 1} be a random binary noise
vector at timestep t. The noisy vector Xx; is obtained as: X; = X @ z; , where & denotes the XOR
operation. The noise level is defined as the fraction of bits flipped in z; in the mapper M at step ¢,
with the number of bits flipped ranging within [0, 0.5] as a function of the timestep.

The denoising network gg(Xo, Z¢|X¢, t,y,) is trained to predict both the added noise z; and the clean-
denoised vector X from the noisy vector x;. We employ binary cross-entropy (BCE) loss (1) to
train the denoising network. The loss function is averaged over both the batch of samples and the
dimensions of the vectors:
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where B is the batch size, 6 represents the parameters of the denoising network, x(()b) and f((()b) are the b

-th samples of the true clean vectors and the predicted clean vectors, respectively. Similarly, ng) and

igb) are the b-th samples of the true added noise vectors and the predicted noise vectors, respectively.
Y. = &y(y) denotes the encoded label y, one-hot encoded for classification and min-max normalized
for regression. £, and £, denotes binary cross-entropy (BCE) loss. The indices ¢ and b correspond
to the i-th dimension of the vectors and the b-th sample in the batch, respectively.

During training (Figure [2]left), we use classifier-free guidance [HS22]). For classification tasks, the
conditioning input class label y is a one-hot encoded label y,. For regression tasks, y consists of



min-max normalized target values y,, allowing the model to generate data conditioned on specific nu-
merical outcomes. In unconditional training, we use an all-zeros conditioning vector for classification
tasks and a value of —1 for regression tasks to indicate the absence of conditioning.

When sampling (Figure[2]right), we start from a random binary vector X, at timestep ¢t = 7', along with
the conditioning variable y, encoded into y,. For each selected timestep in the sequence [T,. .., 0],
denoising is applied to the vector. The denoised vector Xg and the estimated binary noise Z; are
predicted by the denoising network. These predictions are then processed using a sigmoid function
and binarized with a threshold. During sampling, we use the denoised vector X, directly. Then,
random noise z; is generated and added to X, via the XOR operation: x; = Xy @ z;. The sampling
algorithm is summarized in Algorithm T}

5 Results

We evaluate the performance of Binary Diffusion on widely-recognized tabular benchmark datasets,
including Travel [tej21]], Sick [SED™88]], HELOC [Iial8| [FIC18], Adult Income [BK96]], California
Housing [PB97, [nug17]], and Diabetes [SDG™ 14| [Kag21]]. For classification tasks (Travel, Sick,
HELOC, Adult Income, and Diabetes), classification accuracy was used as metric, while mean
squared error (MSE) was used for the regression task (California Housing). Following the evaluation
protocol established in [BSL"22], we employed Linear/Logistic Regression (LR), Decision Tree
(DT), and Random Forest (RF) as downstream models to assess the quality of the synthetic data.
The datasets were split into training and test sets with an 80/20 split. The generative models were
trained on the training set, and the test set was reserved for evaluation. To ensure robustness, 5 sets
of synthetic training data were generated, and the results are reported as average performances with
corresponding standard deviations. Table[I]shows the detailed results. Binary Diffusion achieved
superior performance compared to existing state-of-the-art models on the Travel, Adult Income,
and Diabetes datasets. Notably, Binary Diffusion maintained competitive results on the HELOC
and Sick datasets, despite having a significantly smaller parameter footprint (ranging from 1.1M
to 2.6M parameters) compared to models like GReaT, which utilize large language models with
hundreds of millions of parameters. Binary Diffusion does not require pretraining on external data
modalities, enhancing its efficiency and reducing potential biases associated with pretraining data. In
the regression task (California Housing), Binary Diffusion demonstrated competitive MSE scores.
Additionally, Binary Diffusion offers faster training and sampling times, as detailed in Appendix [C|
Implementation details are summarized in Appendix

Table 1: Quantitative results on table dataset benchmarks. The best results are marked in bold,
second-best are underlined. The number of parameters for every model and dataset are provided in
4-th row for every dataset.

Dataset Model Original TVAE CopulaGAN CTGAN Distill-GReaT GReaT Binary Diffusion

LR 82.72+£0.00  79.58+£0.00  73.30+0.00  73.30+0.00  78.53+0.00  80.10+0.00 83.79+0.08
DT 89.01£0.00 81.68+£1.28 73.61+0.26  73.30+0.00  77.38+0.51  83.56+0.42 88.90+0.57

Travel (1) RF 8503053 81.68=1.19 7330£000 7141£053 79.50+0.53 84.302033  89.95--0.44
Params - 36K 157K 155K 82M 355M 1LIM

LR 96695000 O4.70£000 O457E000 O444E000 96562000 97722000  96.14=0.63

Siek () DT 98.94+0.12 9539+0.18 93.7740.01 92.054041 0539%0.18 97.72+0.00  97.07+0.24

RE  9828+006 94914006 94574001 0457+0.00 97.7240.00 98.30+0.13  96.59+0.55
Params - 46K 226K 222K 82M 355M 1.4M

LR 71805000 7104000 42032000 57722000 70582000 7L90£0.00 71762030

HELOC (1) DT 81904106 76391050 4236010 6134£0.09 81.40+0.15 79.1040.07 70251043

RF 83.19+£0.71 77.24£0.25 42.354+0.34 62.35+0.35  82.14+0.13  80.93+0.28 70.47£0.32
Params - 62K 276K 277K 82M 355M 2.6M
LR 85.00+£0.00 80.53£0.00 80.614+0.00 83.20+0.00  84.65+0.00  84.77+0.00 85.45+0.11
DT 85.27+£0.01 82.80+£0.08 76.294+0.06 81.32+0.02  84.49+0.04  84.81+0.04 85.274+0.11
RF 85.93+0.11 83.48+0.11 80.464+0.21 83.53+£0.07  85.254+0.07  85.42+0.05 85.7410.11
Params - 53K 300K 302K 82M 355M 1.4M
LR 58.76+0.00 56.344+0.00  40.27+0.00  50.93£0.00  57.33+0.00  57.34+0.00 57.75+0.04
DT 57.294+0.03 53.304+0.08  38.50+0.02 49.73+£0.02  54.10+0.04  55.23+0.04 57.13+0.15
RF 59.00+0.08 55.174+0.10  37.59+0.31 52.23+£0.17  58.034+0.16  58.34+0.09 57.52+0.12
Params - 369K 9.4M 9.6M 82M 355M 1.8M
LR 0.40+0.00  0.654+0.00  0.98+0.00 0.61+0.00 0.5740.00 0.34+0.00 0.5540.00
California Housing (}) DT 0.324+0.01  0.4540.01 1.1940.01 0.8240.01 0.434+0.01 0.39+0.01 0.4540.00
) RF 0.21+0.01  0.3540.01 0.99+0.01 0.6240.01 0.324+0.01 0.28+0.01 0.3940.00
Params - 45K 201K 197K 82M 355M 1.5M

Adult Income (1)

Diabetes (1)




6 Conclusions

This paper proposed a novel lossless binary transformation method for tabular data, which converts
any data into fixed-size binary representations. Building upon this transformation, we introduced the
Binary Diffusion model, a generative model specifically designed for binary data that utilizes XOR
operations for noise addition and removal and is trained using binary cross-entropy loss. Our approach
addresses several shortcomings of existing methods, such as the need for complex preprocessing,
reliance on large pretrained models, and computational inefficiency.

We evaluated our model on several tabular benchmark datasets, and demonstrated that Binary
Diffusion achieves state-of-the-art performance on these datasets while being significantly smaller in
size compared to existing models. Our model does not require pretraining on other data modalities,
which simplifies the training process and avoids potential biases from pretraining data. Our findings
indicate that the proposed model works particularly well with datasets that have a high proportion of
categorical columns.
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A Sampling algorithm

Algorithm 1 Sampling algorithm.

1: x4 < random binary tensor

2: y < condition/label

3: y, < apply condition enxoding

4: threshold < threshold value to binarize > Default 0.5
5: qo(Xo, Z¢|X¢, t,y,) < pre-trained denoiser network

6: fort € {T,...,0} do > Selected timesteps
7 ﬁOait «— qe(i07it|xt7taye)

8: X < o(Xg) > threshold > Apply sigmoid and compare to threshold
9: z; < get_binary_noise(t) > Generate random noise
10: X; < Xo D 74 > Update x; using XOR with z;
11: end for

12: return x;

B Evaluation models hyperparameters

During evaluation, we follow the evaluation proposed in [BSL™"22]. The hyperparameter configura-
tion of the evaluation models for the ML efficiency experiments are provided in Table[2]

Table 2: Evaluation models hyperparameters.

LR DT RF
Dataset max_iter max_depth max_depth n_estimators
Travel 100 6 12 75
Sick 200 10 12 90
HELOC 500 6 12 78
Adult Income 1000 8 12 85
Diabetes 500 10 20 120
California Housing - 10 12 85

C Runtime comparison

We compare the training and sampling times, the number of training epochs, batch sizes, and peak
VRAM utilization of generative models. The results, including the number of training epochs and
batch sizes required for each model to converge, are summarized in Table 3| Specifically, for TVAE,
CopulaGAN, and CTGAN, we employed the default batch size of 500 and trained for 200 epochs;
for Distill-GReaT and GReaT, we used a batch size of 32 and trained for 200 epochs; and for Binary
Diffusion, a batch size of 256 and 500 epochs were utilized to ensure model convergence. For this
study, we utilized the Adult Income dataset. All experiments were conducted on a PC with a single
RTX 2080 Ti GPU, an Intel Core i9-9900K CPU 3.60 GHz with 16 threads, 64 GB of RAM, and
Ubuntu 20.04 LTS as the operating system.

Table 3: Comparison of training and sampling times, and peak VRAM utilization.

Model Epochs Batch size Training time Sampling time (s) Peak VRAM use
TVAE 200 500 2 min 21 sec 0.036 £ 0.001 240 MiB
CopulaGAN 200 500 4 min 26 sec 0.101 £ 0.003 258 MiB
CTGAN 200 500 4 min 33 sec 0.055 £ 0.005 258 MiB
Distill-GReaT 200 32 5h 7 min 7.104 £ 0.025 8184 MiB
GReaT 200 32 7 h 33 min 11.441 £ 0.034 8548 MiB
Binary Diffusion 5000 256 53 min 2 sec 0.347 £ 0.006 266 MiB




D Implementation details

Denoiser Architecture. We use a similar denoiser architecture across all datasets, which takes as
input a noisy vector x; of size d, a timestep ¢, and an input condition y. The input size d corresponds
to the size of the binary vector in each dataset. The input vector x; is projected through a linear layer
with 256 output units. The timestep ¢ is processed using a sinusoidal positional embedding, followed
by two linear layers with 256 output units each, interleaved with GELU activation functions [HG16].
The input condition y is processed through a linear projector with 256 output units. The outputs of
the timestep embedding and the condition projector are then combined via element-wise addition.
This combined representation is subsequently processed by three ResNet blocks that incorporate
timestep embeddings. Depending on the size of the binary representation for each dataset, the number
of parameters varies between 1.1 million and 1.4 million.

Training and Sampling Details. We trained the denoiser for 50,000 steps using the Adam optimizer
[KB14] with a learning rate of 1 x 10~%, a weight decay of 0, and a batch size of 256. To maintain a
distilled version of the denoiser, we employed an Exponential Moving Average (EMA) with a decay
rate of 0.995, updating it every 10 training steps. This distilled model was subsequently used for
sampling. During training, we utilized classifier-free guidance with a 10% probability of using a zero
token. The diffusion model was configured to perform 1,000 denoising steps during training. Given
the relatively small size of our models, we opted for full-precision training. All training parameters
are summarized in Table [

Table 4: Binary Diffusion training details.

config value
optimizer Adam
learning rate le-4
weight decay 0
batch size 256
training steps 500000
EMA decay 0.995
EMA update frequency 10
classifier-free guidance zero token | 0.1
precision fp32
diffusion timesteps 1000

We empirically observed that model performance, measured by accuracy for classification tasks and
mean squared error (MSE) for regression tasks deteriorates as the number of sampling steps increases.
We selected 5 sampling steps and a guidance scale of 5 for all datasets to optimize performance.

Table 5: Binary Diffusion sampling details.
config | value
sampling steps | 5
guidance scale | 5
EMA True

Environment. All experiments were conducted on a PC with a single RTX 2080 Ti GPU, an
Intel Core 19-9900K CPU 3.60 GHz with 16 threads, 64 GB of RAM, and Ubuntu 20.04 LTS as
the operating system. We utilized PyTorch [PGM™19] with the Accelerate [GDW " 22] library for
training generative models, and the scikit-learn [PVG™ 11]] library for evaluating models.

E Effect of sampling steps

We empirically observed that model performance, measured by accuracy for classification tasks and
mean squared error (MSE) for regression tasks, deteriorates as the number of sampling steps increases.
Notably, for regression tasks, linear regression models show significantly poorer performance with an
increasing number of sampling steps. For our analysis, we utilized an Exponential Moving Average
(EMA) denoiser with a guidance scale of 5. Across all datasets, the optimal results were consistently



achieved when the number of sampling steps was 5. The relationship between the number of sampling
steps and model performance is illustrated in Figure 3]
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Figure 3: Analysis of model performance for different numbers of sampling steps. DT stands
for Decision Tree model, RF stands for Random Forest model and LR stands for Linear/Logistic

regression model.



	Introduction
	Related Work
	Data transformation
	Binary Diffusion
	Results
	Conclusions
	Sampling algorithm
	Evaluation models hyperparameters
	Runtime comparison
	Implementation details
	Effect of sampling steps

