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ABSTRACT

Large Language Models (LLMs) have the potential to automate reward engineering
for Reinforcement Learning (RL) by leveraging their broad domain knowledge
across various tasks. However, they often need many iterations of trial-and-error to
generate effective reward functions. This process is costly because evaluating every
sampled reward function requires completing the full policy optimization process
for each function. In this paper, we introduce an LLM-driven reward generation
framework that is able to produce state-of-the-art policies on the challenging Bi-
DexHands benchmark with 20x fewer reward function samples than the prior
state-of-the-art work. Our key insight is that we reduce the problem of generating
task-specific rewards to the problem of coarsely estimating task progress. Our
two-step solution leverages the task domain knowledge and the code synthesis
abilities of LLMs to author progress functions that estimate task progress from a
given state. Then, we use this notion of progress to discretize states, and generate
count-based intrinsic rewards using the low-dimensional state space. We show that
the combination of LLM-generated progress functions and count-based intrinsic
rewards is essential for our performance gains, while alternatives such as generic
hash-based counts or using progress directly as a reward function fall short.

1 INTRODUCTION

Automated reward engineering aims to reduce the human effort required when using Reinforcement
Learning (RL) for sparse-reward tasks. Multiple recent efforts towards automated reward engineering
have focused on leveraging Large Language Models (LLMs) to provide reward signals—either
employing the LLM output directly as the reward (Kwon et al.,[2023)), or using the LLM to generate
code for a dense reward function (Yu et al., 2023} [Ma et al., [2023)).

Traditionally, constructing an effective dense reward function is an intricate process of identifying
key task elements and carefully weighing different reward terms (Sutton & Barto, [2018; [Booth
et al.| 2023)). Prior works on reward function generation attempt to use LLMs both for their domain
knowledge and to optimize quantitative aspects of reward engineering (weighting, rescaling) (Yu
et al.,|2023; Ma et al.| [2023)—they can require many training runs as they search through many reward
functions in order to find a candidate that is effective for training (Ma et al., [2023)).

Our core insight is that we can reduce the problem of reward generation to the task of generating
rough measures of fask progress. Our framework uses LLMs to generate code for progress functions:
task-specific functions that map environment states to scalar measures of progress. For a given genre
of tasks, we follow the example from prior work on reward code generation (Yu et al., 2023) by
asking practitioners to provide a small helper function library (ex. dist(x,y)) for the particular genre’s
observation spaces. Then, given both the helper function library and a single-sentence description of
a task within the domain (ex. “This environment require a closed door to be opened and the door
can only be pushed outward or initially open inward.”), we leverage LLMs to generate the progress
functions.

We find that progress functions are most empirically effective when used within a count-based
intrinsic reward framework: we treat the outputs of the progress functions as a simplified state
space that groups together similar states from the environment, we discretize the states, and we
compute state visitation counts across the discretized state space. Then, we treat the inverse square
root of the visitation count as a count-based intrinsic reward, as in prior work (Kolter & Ng| 2009;
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Tang et al., [2017)), and learn policies using these count-based intrinsic rewards as task rewards. It
may seem straightforward to instead directly sum the outputs of the progress function and use the
sum as a reward — providing larger rewards for reaching states corresponding with greater progress
through the task. However, this approach neglects the typical reward scaling and weighting issues
common to dense reward shaping approaches (Sutton & Bartol 2018}, |Booth et al., 2023). Our
progress-and-counts algorithm, ProgressCounts, achieves SOTA performance on the challenging
Bi-DexHands benchmark, outperforming Eureka (Ma et al., [2023) by 4%. By limiting the role of
LLMs to generating progress functions and applying count-based intrinsic rewards to simplified
progress-based states, ProgressCounts achieves significantly greater sample efficiency compared to
approaches that use LLMs directly for estimating reward weighting and scaling (Yu et al.| 2023; Ma
et al.,[2023)). Specifically, ProgressCounts requires 20 times fewer training runs than Eureka.

Specifically, we make the following contributions:

1. We re-frame the problem of reward generation in terms of generating coarse measures of
task progress. Given a single-sentence task description and a small domain-specific library
of helper functions, we leverage LLMs to generate progress functions.

2. We generate rewards from progress functions by treating the output of the progress function
as a reduced state representation, discretizing progress in order to measure state visitation
counts, and generating count-based intrinsic rewards.

3. We demonstrate that our algorithm ProgressCounts is effective by obtaining state-of-the-art
performance on the Bi-DexHands benchmark. We outperform the prior state-of-the-art
Eureka (Ma et al.,2023) by 4% while requiring 20x fewer samples.

2 RELATED WORK

Automated reward engineering. Learning directly from sparse rewards can be challenging (Ng
et al., [1999; Hare| 2019; [Vecerik et al.,2017)). It is common for practitioners to carefully engineer
dense reward functions to shape the learning process (Ng et al.,|1999)—a labor-intensive (Sutton &
Bartol 2018)) and brittle (Booth et al.,[2023) process. Advancements in automation such as Population
Based Training (Jaderberg et al.,|2017) have shown promise in refining this process by automating
searches over fixed design spaces.

Foundation models offer the opportunity to automate reward engineering with powerful priors. The
output of foundation models can be used to propose tasks for open-ended learning curricula (Du
et al., 2023} |Zhang et al.||2023)) and add high-level structure to learning (Mirchandani et al., | 2021)).
Foundation models can also be used directly as rewards (Fan et al.l|2022; Kwon et al., 2023} Sontakke
et al., [2024)), and have the potential to generate reward function code, either scaffolded by reward
function templates (Yu et al.,[2023)) or in more freeform fashion (Ma et al.| [2023}; |Venuto et al., [2024;
Li et al.,[2024). We also leverage LLMs to inject task knowledge via code, but rather than attempting
to generate complex reward functions, we simply ask them to identify a few key features associated
with task progress.

Count-based intrinsic rewards. Our algorithm leverages the idea of count-based intrinsic rewards
in order to convert coarse progress-based state representations into rewards for policy learning.
Count-based intrinsic rewards are one of the main approaches to intrinsic motivation: estimating
the “novelty” of a given state via state visitation counts (Tang et al., 2017). Approaches that
hash continuous spaces to discrete representations have shown considerable promise when the
discretization function is domain-specific (Tang et al.,2017; [Ecoffet et al.,|2021). In particular, the
Go-Explore algorithm (Ecoffet et al., [2021)) pairs count-based intrinsic rewards along with simulator
state resets in order to achieve state-of-the-art results on several challenging Atari (Bellemare et al.,
2013) tasks. The main downside to these approaches is that domain-aware discretization typically
requires significant human engineering (Tang et al.,[2017; [Ecoffet et al.,|2021). In our algorithm, by
discretizing task progress, we already have access to automated domain-specific state discretizations.
Absent the need for extensive human-engineered discretization functions, count-based intrinsic
rewards are both practical and effective for learning policies from progress functions.
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(A) Step 1: Use LLM to Generate Task-Specific Progress Functions

Task Description

This environment involves two hands
and a dual handle cup, we need to use
two hands to hold and swing the cup
to a target orientation.

Environment Feature
Engineering Library
def 12_dist(x, tgt):

return torch.norm(x - tgt, p=2)

def rot_dist(cur_rot, tgt_rot):
# Compute rotational distance

LLM Progress
Function Generator

System Prompt:
You are a reinforcement learning
engineer trying to write progress
functions to solve reinforcement
learning tasks as effectively as

possible. Your goal is to identify
the variables for the environment
that are maximally relevant for

LLM-Generated Progress Function

def progress_fn(env):
# Stage 1: Are we gripping handles?
to_left = 12_dist(
env.hand_pos[0], env.cup_handles[0])
to_right = 12_dist(
env.hand_pos[1], env.cup_handles[1])
avg_dist = (to_left + to_right) / 2

# Stage 2: Is the cup rotated correctly?
orientation_error = rot_dist(
env.cup_rotation, env.target_rotation)

measuring progress in the task...

# Emit progress variables for each stage
return [avg_dist, orientation_error]

Environment State Description

Extracted from Environment

class Env:
hand_pos: Tensor[2, 3]
cup_handles: Tensor[2, 3]
cup_rotation: Tensor[4]
target_rotation: Tensor([4]

(B) Step 2: During Training, Progress Function Guides Count-Based Reward

N
RL Environment Progress
s Env State Variables
) LLM-Generated %%, ... ] p Binnd
Progress Function rogrei; nning
\
Intrinsic State Bin
Updated Reward Count-Based B(s)
Policy n(s) Reward
() RL Training I
Al
Figure 1: ProgressCounts: an algorithm for reward generation via LLM-generated task

progress functions and count-based rewards. (A) We leverage a LLM to generate code for a
progress function, which distills task-specific features from a high-dimensional state space into a
low-dimensional notion of task progress. The LLM takes as input a high-level task description, a
small library of feature engineering functions, and a description of the environment state space. On a
per-task basis, the user only needs to provide the task description as input. (B) We use heuristics to
discretize the output of the LLM-generated progress function, compute state visitation counts across
the discretized bins, and leverage standard count-based rewards to learn RL policies.

3 PRELIMINARIES

We consider the problem of automated reward generation for a sparse-reward task. The task is defined
as a Markov Decision Process (MDP) M = (S, A, P, R,~), where S is the state space, A is the
action space, P is the transition probability function, and R is a sparse reward function that provides
little guidance to the agent. The goal is to learn a policy 7 : S — A(.A) that maximizes the expected
cumulative reward J(7) = E| Y2 7" R(s¢, at) ‘so, W} , where s;, a; are the state and action at time
t.

We assume the availability of three potential inputs for reward engineering:

1. A description of the features available in the environment (Figure[I}A, grey). We provide

a description in the form of code, similar to[Ma et al.| (2023); Yu et al.| (2023)); [Singh et al.
(2023)

2. A short task description (Figure[T}A, green), similar to[Ma et al] (2023); Yu et al| (2023).

3. An environment feature engineering library, offering a palette of additional, higher-level
features that are not task-specific but may be generally useful for solving tasks in a given

domain (Figure[T}A, green). This is identical to the type of feature library in[Yu et al] (2023).
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Note that for (1), many learning scenarios with real-world deployment goals involve training in
simulators with access to environment code (Lin et al., [2024). For (2) and (3), an experienced
practitioner can quickly create a small feature engineering library, and the cost of making this library
is amortized across many tasks in the same domain.

4 METHODS

In this section, we first introduce our algorithm for leveraging LLM domain knowledge to generate
progress functions, which distill key features from a high-dimensional environment state space to a
coarse low-dimensional notion of progress in the task. Then, we outline how we use the generated
progress functions: we view progress as measure of state, and leverage count-based intrinsic rewards
for learning.

4.1 PROGRESS FUNCTIONS

4.1.1 PROGRESS FUNCTION DEFINITION

Given a new task description, the first step of our process is to generate a progress function P : § —
R*, which takes environment features s € S as input, and outputs information about the current
progress of the agent on the task. Especially for more complex tasks, it may be difficult to distill a
task to a single feature that tracks overall progress. Therefore, a progress function, given a state, is
asked to emit a positive scalar measure of progress for one or more subtasks. For instance, for the
SwingCup task (Figure[I}A), which involves 1) gripping the handles of the cup, 2) rotating the cup to
the correct orientation, a good progress function would break the task into two sub-tasks and return
scalars measuring progress for both sub-tasks.

Specifically, the progress function outputs [x1, xo, ...x)] where x; € R tracks task progress for
sub-task 4. It also outputs additional variables [y, Y2, ...y] that inform our framework whether the
progress variables x; are increasing or decreasing.

4.1.2 PROGRESS FUNCTION GENERATION

For any given task, domain knowledge is required in order to determine what features from the
environment are useful for assessing progress, and how to compute progress from those features. We
derive that domain knowledge from an LLM, which is used to generate code for the progress function
P. In order to translate domain knowledge into an effective progress function, we provide the LLM
with three inputs:

1. Function inputs: we specify the features available as inputs to the progress function via a
description of the features in the environment state (Figure[I}A, grey). This information is
available via the simulator.

2. Function outputs: we specify the desired output of the progress function via a short task
description (Figure[T}A, green). Humans specify this information on a per-task basis.

3. Function logic: we structure the process of translating feature inputs to progress output by
providing the LLM with access to a environment feature engineering library (Figure[I}A,
green). This library offers a palette of additional, higher-level features to optionally use to
compute progress, and also indirectly suggests that certain types of feature transformations
are beneficial to compute progress (ex. lodist(x, tgt)). Humans create this library once per
genre or benchmark of tasks.

Note that on a per-task basis, ProgressCounts only requires a user to provide the short task description.
Please see Appendix [A.3.2]for the libraries used for our Section [5|benchmarks.

Given the high-level task description, the small feature engineering library, and code describing the
environment state space, we follow standard LLM prompting strategies to generate the progress
function code (Figure [TFA), blue). Please see Appendix [A.4] for several examples of generated
progress functions.
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4.2 FROM PROGRESS TO REWARD

Given a perfect estimate of task progress, it may seem natural to directly use progress as a dense
reward: for a given state s, compute the sum of the progress outputs R sym = Zi x;, and use progress
sum Ry, as the reward for reaching s. However, learning from dense rewards can be brittle—small
mistakes in reward design can often lead to a failure to learn effective policies (Booth et al., 2023).
Progress functions offer highly simplified state representations—and given the coarse nature of these
representations, we look for a more forgiving mechanism to generate rewards from these simplified
representations. Therefore, we use a count-based intrinsic reward approach inspired by prior work
that achieves state-of-the-art performance with domain-specific discretizations (Ecoffet et al.| 2021).

4.2.1 PRELIMINARIES: COUNT-BASED REWARDS

To facilitate exploration, we leverage count-based rewards proportional to state novelty (Kolter & Ng|

2009): n(s) ﬁ, where c¢(s) is the state visitation count. High-dimensional state spaces require
c(s

a binning function B : S — &’ that maps state space S to a (small) discrete space S’ where we can
tractably compute state visitation frequencies and novelty n(s) o ———.

y comp q y n(s) o s
When learning a policy, sparse extrinsic rewards are augmented with a standard intrinsic reward
proportional to n(s) (Tang et al.| [2017):

Riotal (e, ar) = R(se,ar) + Aen(B(s141)) ey

Where s, is the state at time ¢, a, is the action, s, is the next state, and . is a hyperparameter
weighting the intrinsic reward relative to extrinsic reward R (s¢, at).

Effective state binning should encode information if and only if it is relevant to solving the particular
task (Tang et al.|[2017; Ecoffet et al.|[2021).

4.2.2 COUNT-BASED REWARDS FROM PROGRESS

We automatically generate a task-specific binning function B by converting the continuous progress
values P(s) emitted by the progress function to discrete states using a mapping D : R* — S’ that:

1. Estimates relevant value ranges (min;, max;) for each x; from progress data

2. Discretizes within (min;, max;) to produce discrete progress features x;. We discretize
later subtasks with finer granularity in order to encourage more exploration closer to the
goal.

3. Defines B(s) = D(P(s)) =, .

Heuristic discretization avoids the need to learn scalar progress ranges from environment interaction,
an approach used in prior work (Shinn et al., [2024} | Ma et al., [2023)). While we could have leveraged
the LLM directly to emit logic for discretizing progress features, we chose to use these heuristics
instead since LLMs are known to struggle with numerical reasoning (Shen et al.| 2023). Details and
example discretization code are included in Appendix

Having defined mapping B to discretize progress features, we measure state novelty from bin visita-

tion counts via n(s) o ﬁ, augmenting existing sparse extrinsic rewards. As shown in Figure
c S

[[}B, we learn policies using Proximal Policy Optimization (PPO) (Schulman et al.,2017), augmenting

the sparse extrinsic task rewards with intrinsic rewards via count-based intrinsic motivation (See

Eq.[I).
5 EVALUATION

We evaluate ProgressCounts by using it to train policies on Bi-DexHands: a challenging sparse-reward
benchmark consisting of 20 bimanual manipulation tasks. We also include additional results from the
MiniGrid benchmark in the Appendix.
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Figure 2: On the Bi-DexHands benchmark, ProgressCounts produces policies that perform
comparably to those of Eureka in terms of average task success rate, at a much smaller sample
budget. Eureka’s evolutionary algorithm requires 48 policy samples (training runs with different
generated reward functions) to find a policy whose performance matches that of human-designed
dense reward functions. ProgressCounts requires only four policy samples (different progress
functions), generating a policy that outperforms the human-designed baseline and exceeding the peak
performance achieved by Eureka after 80 policy samples (20 the cost of ProgressCounts).

5.1 EXPERIMENTAL SETUP

Bi-DexHands. The Bi-Dexterous Manipulation benchmark (Chen et al., |2022) (Bi-DexHands)
consists of 20 bimanual manipulation tasks with continuous state and action spaces, such as using two
robotic hands to lift a pot or simultaneously pass objects between the hands. These tasks have sparse
rewards and require complex coordinated motion, making them a challenging test for leveraging
language models to guide policy learning. Following conventions from prior work (Ma et al., 2023,
progress functions have acess to the environment state space code, and we evaluate performance on
Bi-DexHands in terms of the policy’s success rate at completing each task, averaged over five trials
(policy training runs with different seeds).

We use Bi-DexHands to evaluate the policy performance and sample efficiency of ProgressCounts
against three baselines. 1) Sparse extrinsic rewards upon task success, 2) Dense: expert-written dense
extrinsic rewards from the original benchmark, 3) rewards generated using the Eureka LLM-based
reward generation algorithm (Ma et al.| 2023)), the current state-of-the-art reward generation method
on Bi-DexHands.

Training configuration. In all experiments we train policies using PPO (Schulman et al.|[2017).
We train policies using the PPO hyperparameters and sample budgets (100M environment samples)
established by Bi-DexHands (Chen et al.| (2022), also used in prior work Eureka|Ma et al.| (2023). We
set the intrinsic reward coefficient A, = le — 3, and discretize progress into 1000 bins. We leverage
GPT-4-Turbo (‘gpt-4-turbo-2024-04-09") as the LLM (Achiam et al.|[2023) used to generate progress
functions. Following the experimental procedure from prior work (Ma et al.l [2023), we use the
LLM to generate multiple options for the progress function, and select the resulting policy that
achieves the highest success from a single training run—we refer to the different trained policies
as policy samples. Unless otherwise specified, ProgressCounts uses four policy samples per task,
and all policies are trained using 100M environment samples (number of environments x number of
simulation steps). All LLM prompts, including task descriptions and environment feature engineering
primitives, are included in Appendix

5.2 COMPARISON TO EXTRINSIC REWARD BASELINES

ProgressCounts trains policies that (on average) outperform those from Eureka on Bi-
DexHands, using only 5% of Eureka’s training budget. Averaged over all Bi-DexHands tasks,
ProgressCounts achieves a success rate of 0.59, 13% higher than human-written dense rewards, and
4% higher than Eureka, the state-of-the-art method on this benchmark (Figure 2). Most importantly,
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Figure 3: ProgressCounts produces policies whose performance (in terms of task success rate)
matches or exceeds that of the prior state-of-the-art method (Eureka) on 13 of 20 tasks in the
Bi-DexHands benchmark. Sparse rewards (Sparse) struggle to learn effective policies for most
Bi-DexHands tasks. See Appendix [A.7]for results in tabular form.
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Figure 4: By allocating many environment samples to a single training run, ProgressCounts trains a
policy that achieved high success on the challenging TwoCatchUnderarm task. All baselines achieved
zero success on this task given a two billion environment sample budget.

Eureka’s evolutionary algorithm requires 80 policy samples (generated reward functions) to find
good reward functions for the task. In contrast, ProgressCounts only requires four policy samples
(generated progress functions). By structuring reward engineering around a constrained progress
function and heuristic discretization, we reduce the unreliability associated with using LLMs for
unconstrained code generation (2023). This approach also allows for more robust state
discretization for count-based intrinsic rewards, using only a limited number of progress function
generation attempts, without requiring costly feedback-driven evolution.

Figure 3] presents policy performance for all 20 tasks in the Bi-DexHands benchmark. Across the
benchmark, ProgressCounts matches or exceeds Eureka in performance on 13 of the 20 tasks, and
ProgressCounts matches or exceeds the performance of the expert-written dense reward (Human) on
17 of the 20 tasks.

Given the same environment sample budget as Eureka, ProgressCounts can produce higher-
performance policies. Since ProgressCounts requires fewer policy samples to find good policies,
users can more confidently allocate significant fractions of a training budget to a small number of
policy samples. We use ProgressCounts to train four policies on the TwoCatchUnderarm task, each
for a total of two billion environment samples (the same number of samples used in aggregate, across
all policy samples, for Eureka training). The best resulting policy achieves a task success rate of
0.55, and continues to improve with further samples (Figure ). On the other hand, all extrinsic
reward baselines, as well as ProgressCounts trained on 400 million environment samples (four policy
samples, with 100 million environment samples each), achieve a success rate of nearly zero on this
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task (Figure[3). To our knowledge, ProgressCounts is the first method to achieve reasonable success
on this challenging task.

5.3 METHOD ABLATIONS

Task name ProgressCounts ProgressAsReward SimHashCounts
Average 0.59 0.45 0.34
Over 0.93 0.90 091
DoorCloselnward 1.00 1.00 1.00
DoorCloseOutward 0.90 1.00 0.76
DoorOpenlnward 0.07 0.00 0.00
DoorOpenOutward 0.99 0.31 0.99
Scissors 1.00 1.00 1.00
SwingCup 0.97 0.99 0.94
Switch 0.00 0.00 0.00
Kettle 0.83 0.00 0.00
LiftUnderarm 0.22 0.08 0.00
Pen 0.49 0.22 0.09
BottleCap 0.94 0.04 0.94
CatchAbreast 0.56 0.49 0.00
CatchOver2UnderArm 0.90 0.94 0.00
CatchUnderarm 0.76 0.88 0.00
ReOrientation 0.03 0.06 0.02
GraspAndPlace 0.99 0.98 0.08
BlockStack 0.05 0.00 0.06
PushBlock 0.03 0.02 0.01
TwoCatchUnderarm 0.03 0.01 0.00

Table 1: An ablation testing whether Progress Functions and Count-Based Rewards are both
necessary for ProgressCounts across the 20 tasks in Bi-DexHands. ProgressCounts is our
algorithm. ProgressAsReward takes the best generated progress functions, and directly uses the
summed progress variables as a dense reward function. SimHashCounts applies SimHash to the
observation space as the binning function instead of progress-based bins (the method from [4]).
Results are averaged across 5 trials for ProgressCounts, and are single-trial numbers for the ablated
methods. ProgressCounts requires both key components of the algorithm for an 0.59 average
task success rate.

The success of ProgressCounts is due to both the use of progress functions to collapse simulator
states into bins and due to the effectiveness of count-based intrinsic exploration applied to these bins.
While progress function might seem a suitable dense reward, progress-based rewards only achieve a
success rate of 0.45 (Table[I)), so best performance is achieved when using count-based exploration
across discretized progress bins. Both LLM-generated progress functions and count-based intrinsic
exploration are necessary to achieve our SOTA performance.

Progress functions generate more effective bins than SimHash: On Bi-DexHands, Table[T| high-
lights that ProgressCounts achieves a success rate of 0.59 with progress-based bins, and only achieves
a success rate of 0.34 with SimHash-based (Sadowski & Levin, 2007) bins across the observation
space (Tang et al [2017). Across the benchmark, progress-based bins achieve performance equal
to or better than SimHash-based bins across 19 of 20 tasks, with the remaining task (BlockStack)
within the margin of error (see Table[8|in the Appendix for standard deviations). This result aligns
with prior work on human-written hash functions for count-based rewards, where the integration of
domain knowledge consistently improves performance (Tang et al., 2017 [Ecoffet et al., 2021).

Count-based rewards are more effective than directly using progress as reward While the
sum of the outputs of a progress function Ry, = Zl x; might seem a viable reward signal for
learning, Table[T]illustrates that progress-based dense rewards only achieve a success rate of 0.45,
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Task Default No feature library No heuristic discretization
SwingCup 0.97 0.90 0.00
CatchUnderarm 0.76 0.00 0.76
DoorCloseOutward 0.90 0.86 0.92

Table 2: Both the environment feature library and heuristic progress discretization help task
success rate. When the feature engineering library is removed from the LLM prompt, we obtain
comparable performance on SwingCup and DoorCloseOutward, but the CatchUnderarm policy
completely fails to learn. When we ask the LLM to directly generate code for discrete bins (removing
heuristic discretization), SwingCup fails to learn an effective policy.

while progress functions paired with count-based intrinsic rewards achieve a success rate of 0.59,
matching or outperforming the dense-reward alternative on 15 of 20 tasks. This result highlights that,
given coarse state representations from progress functions, count-based intrinsic rewards are more
effective than standard dense rewards.

The environment feature engineering library helps generate effective progress features In
Table[2] we ablate the impact of providing a feature engineering library to help ProgressCounts with
generating code to compute progress features. When we remove the feature library, we still obtain
comparable performance on both SwingCup (task success rate of 0.97 vs. 0.90) and DoorCloseOut-
ward (0.90 vs. 0.86), but the CatchUnderarm policy fails to learn completely. Upon inspection of
the generated code in Appendix the LLM chooses to incorporate object linear velocity into the
progress function, a variable that is not directly relevant to task success. This variable is averaged
with more relevant variables to derive an overall progress metric. Having incorrectly modeled task
progress, the policy’s unnecessary exploration is likely responsible for task failure. The library for
Bi-DexHands (included in Appendix [A.5) only contains functions measuring Euclidean and rotational
distance; we hypothesize that knowledge of transformations available in the feature library helps the
LLM ignore features for which the library is not applicable (ex. the irrelevant velocity features).

ProgressCounts benefits from using heuristics to discretize progress features In Table |2} we
also ablate the impact of using heuristics to discretize and combine progress features—instead,
we ask the LLM to directly generate code to output discrete bins corresponding to task progress.
We obtain comparable task success rate on DoorCloseOutward (0.90 vs. 0.92) and CatchUnderarm
(0.76 vs. 0.76), but the trained policies completely fail without heuristic discretization for SwingCup—
as seen in Appendix [A.3] the LLM incorrectly guesses the relevant range of values for multiple
features, and as a result the binning function is ineffective for facilitating task-relevant exploration.
Heuristic discretization helps avert this failure mode when constructing task-specific state binning
functions.

6 DISCUSSION

The state-of-the-art results achieved by ProgressCounts demonstrate two key takeaways:

First, LLM-generated progress functions offer a compelling mechanism to generate coarse task-
specific state representations, and alongside count-based intrinsic rewards offer an empirically-
superior alternative to using LLMs to engineer reward functions. ProgressCounts outperforms Eureka,
which uses LLMs to engineer reward functions, both in terms of performance and sample efficiency.
One reason for this success is the structure (task progress, count-based rewards, etc.) we build into
the ProgressCounts framework, which increases the quality and reliability of LLM responses, and
reduces the need for trial and error across reward weights and scaling. Perhaps more interestingly,
we hypothesize that ProgressCounts also benefits from count-based intrinsic rewards being robust to
non-optimal binning functions, unlike reward functions where even minor errors can easily lead to a
failure to solve tasks successfully.

Second, despite being relatively under-utilized in recent research, count-based intrinsic rewards can
be surprisingly effective at training policies that operate in complex high-dimensional state spaces
when given an adequate binning function. Interestingly, the results achieved by ProgressCounts
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suggest that these binning functions do not need to be hugely complex; ProgressCounts outperforms
state-of-the-art, human-engineered dense reward functions using count-based exploration driven by
binning functions that contain less than 20 lines of code.

Overall, we believe ProgressCounts represents a novel and promising strategy for injecting domain
knowledge from large language models into an RL training loop. We hope that these results will
encourage further research into (and more general usage of) count-based intrinsic methods, as well as
exploration of other novel methods for leveraging LLMs to assist in solving reinforcement learning
tasks.
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A APPENDIX

A.1 ABLATING THE CHOICE OF CONSTANTS FOR PROGRESSCOUNTS

ProgressCounts does not require search over hyperparameters on a per-task basis—we set the hyperpa-
rameters once per benchmark and did not tune them (following the same experimental protocol as
Eureka (Ma et al., 2023))). We evaluate ProgressCounts ’s robustness to different hyperparameters
using two ablations: 1) the intrinsic reward weight \., and 2) the number of discrete bins used, each
tested across three tasks from Bi-DexHands. Table 3| shows similar task performance for A, of 1le — 2,
le — 3, and le — 4, with the exception of slightly lower task performance on CatchUnderarm for
le-4. Table[z_f] shows similar task performance with 500, 1000, and 2000 bins across the three tasks.
There are no clear trends in performance across parameters in either table, and our chosen parameters
(Ac = le — 3, 1000 bins) are actually sub-optimal for most tasks.

Task Ae=0.01 A, =0.001 X.=0.0001
SwingCup 0.95 0.97 0.98
CatchUnderarm 0.8 0.76 0.4
DoorCloseOutward 0.99 0.9 0.85

Table 3: Ablating the impact of intrinsic reward coefficient \. on ProgressCounts performance.
We report success rates for 3 values across 3 Bi-DexHands tasks. Success rates are averaged across 5
trials. Default is A, = 0.001

Task 500 bins 1000 bins 2000 bins
SwingCup 0.97 0.97 0.97
CatchUnderarm 0.78 0.76 0.67
DoorCloseOutward 0.84 0.9 0.99

Table 4: Ablating the impact of the number of bins on ProgressCounts performance. We report
success rates for 3 values across 3 Bi-DexHands tasks. Success rates are averaged across 5 trials.
Default is 1000 bins.

A.2 MINIGRID EXPERIMENTS

Having demonstrated that ProgressCounts yields state-of-the-art performance on the Bi-DexHands
benchmark, we further evaluate how well the progress-based counts from ProgressCounts can serve
as a novelty metric within more sophisticated intrinsic motivation algorithms. Specifically, we test
how well progress-based novelty from Section [f.2] performs as a novelty measure within the NovelD
meta-criterion (Zhang et al., 2021}, which provides reward proportional to the difference in novelty
between consecutive states:

Riotal(st,ar) = R(st, ar) + Ac max(n(B(si11)) — an(B(st)), 0)1ne(si+1) = 1] (2)

Where a € [0, 1] discounts previous novelty, and n.(s;41) measures episodic novelty, measuring the
number of visits to a state within the current episode.

Using the MiniGrid benchmark (Chevalier-Boisvert et al.| [2024), we evaluate on a subset of eight
difficult exploration tasks across two task distributions: four KeyCorridor variants and four Ob-
structedMaze variants. These tasks provide sparse rewards upon task success, and these rewards
are proportional to the efficiency of completing the goal. We compare the efficacy of the NovelD
exploration meta-criterion (Zhang et al., [2021) when measuring novelty with ProgressCounts as
well as RND Burda et al.| (2018)), the method used in the original NovelD paper. Following [Zhang
et al.| (2021), we measure episode rewards averaged over four trials when combining the novelty
metrics with the NovelD algorithm—we measure performance in terms of the samples required to
reach a threshold task reward. We set A\, = 0.1, and we do not require progress discretization on this

12
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Env Type Layout ProgressCounts RND
S3R3 0.2 0.5

. . S4R3 0.5 0.9
KeyCorridor (Medium) S5R3 09 13
S6R3 1.2 1.7

2Dlhb 1.6 4.0

1Q 1.0 2.8

ObstructedMaze (Hard) 2Q 25 47
Full 2.9 7.2

Table 5: ProgressCounts is more sample-efficient than RND when used as a novelty metric
within NovelD. We measure the number of environment samples (x 107) required for NovelD to
pass a threshold reward of 0.75 (except for ObstructedMaze-Full, where computational constraints
limit us to a threshold of 0.5). Across four variants of the KeyCorridor task and four variants of the
ObstructedMaze task, ProgressCounts is up to 64% more sample-efficient than RND.

environment since the progress functions are already discrete. As with the Bi-DexHands experiments,
we run 4 trials of progress function generation.

Table 5|compares the performance of ProgressCounts and RND as a novelty metric within NovelD on
MiniGrid. Across both KeyCorridor and ObstructedMaze families of tasks, ProgressCounts improves
the sample efficiency of NovelD at reaching a threshold reward compared to RND. This trend
holds across progressively more complicated tasks: ProgressCounts improves sample efficiency
by 60% for KeyCorridorS3R3, the simplest task, and also improves sample efficiency by 60% on
ObstructedMaze-Full, the hardest task. Note that ProgressCounts is also more computationally
efficient than RND, which learns an additional network to output intrinsic rewards (Burda et al.|
2018). Full training curves are in Appendix [A.9]

A.3 DETAILS ON LLM INPUTS
A.3.1 SYSTEM PROMPT

1 You are a reinforcement learning engineer trying to write progress
— functions to solve reinforcement learning tasks as effectively
— as possible.

2 Your goal is to identify the variables for the environment that are
— maximally relevant for measuring progress in the task described
— in text.

3 Some tasks may have only a single stage, and some tasks may have two
— separate stages.

4 You will be provided with a definition of the observation space for
— a reinforcement learning environment, and also provided with a
— small set of helper functions that can be used to transform the
— variables in the observation space.

5 Write a function that returns the variable most associated with task
— progress for each stage of the task.

6 This function can take as input any member of self defined in
— compute_observations, and can apply any of the helper functions
— to any variables from self.obs_buf to generate new derived
— features (ex. computing the distance between object and goal).
— If a single stage requires multiple progress variables, average
— the variables.

7 Also return a bool for each variable that is True if progress
— requires the variable to increase, and False if it requires the
— variable to decrease.

9 Function signature:

13
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10 def progress_function(self) -> Tuple[List[torch.Tensor],
<« List[booll]:

11 # Logic here

12 return progress_vars, progress_directions

A.3.2 ENVIRONMENT FEATURE ENGINEERING LIBRARY

Bi-DexHands For the Bi-DexHands benchmark, our library is composed of three simple functions:
1) Euclidean distance, 2) rotational distance between quaternions, 3) Euclidean distance to a ‘goal’

state if it exists.

# Determine distance of an object from a "goal", if it exists
def goal_dist (self, x):
return torch.norm(self.goal_pos - x, p=2, dim=-1)

# Determine distance between two objects
def dist(self, x, y):
return torch.norm(x - y, p=2, dim=-1)

® N L AW~

©

# Rotational distance
10 def rot_dist(self, object_rot, target_rot):

11 quat_diff = quat_mul (object_rot, quat_conjugate (target_rot))
12 rot_dist = 2.0 x torch.asin(torch.clamp (torch.norm(quat_diff[:,

- 0:3], p=2, dim=-1), max=1.0))
13 return rot_dist

MiniGrid For the MiniGrid benchmark, our library is composed of three simple functions: 1)
breadth-first search to find the shortest path between two grid cells, accounting for walls, 2) a function
finding the grid position of a given type of object, 3) a function that finds the grid position of an

object, given that the object is on the path between two given locations.

1 def bfs(grid, start, end):

mmn
2

3 Perform BFS to find the shortest path from start to end in a
— minigrid environment.

4 Args:

5 - grid (np.array): The grid represented as a numpy array of

— shape (n, m, 3).

6 - start (tuple): Starting position (x, y).

7 - end (tuple): Ending position (x, y).

8

9 Returns:

10 - path (list): List of tuples as coordinates for the shortest
— path, including start and end.

11 Returns an empty list if no path is found.

12 o

13 queue = deque ([start])

14 paths = {start: [start]}

15 directions = [(1, 0), (O, 1), (-1, 0), (0, -1)] # Down,
— up, left

16 while queue:

17 current = queue.popleft ()

18 #if grid[current[0], current([l], 0] != 1:

19 # print ("Current", current)#, paths[current])

20 # print ("Content", grid[current[0], current[1]])

21 if current == end:

22 return paths[current]

23 for direction in directions:

24 neighbor = (current[0] + direction[0], current[1l]

<« direction[1])
25 if (0 <= neighbor([0] < grid.shape[0] and

14
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26 0 <= neighbor[l] < grid.shape[l] and

27 neighbor not in paths and

28 is_traversable (grid[neighbor])) :

29 paths[neighbor] = paths[current] + [neighbor]
30 queue . append (neighbor)

31 return [] # Return an empty list if no path is found

32
33 def get_position(grid, object_type, color=None) :
34 mmmn

35 Get the position of the object of the specified type in the
— grid.

36 Args:

37 - grid (np.array): The grid represented as a numpy array of
— shape (n, m, 3).

38 — object_type (int): The type of the object to find.

39

40 Returns:

41 - position (tuple): The position of the object in the grid.

42 e

43 for i in range (grid.shape[0]):

44 for j in range(grid.shape[1l]):

45 if grid[i, j, 0] == object_type:

46 if color is not None and grid[i, j, 1] != color:

47 continue

48 return (i, 3j)

49 return None

50
51 def get_position_on_path(grid, agent_pos, final_pos, object_type,
< color=None, closed=None) :

52 path = bfs(grid, agent_pos, final_pos)

53 for pos in path:

54 if grid[pos[0], pos[l], 0] == object_type:

55 if color is not None and grid[pos[0], pos([l], 1] !=
— color:

56 continue

57 if closed is not None and grid[pos([0], pos[l], 2] !=
— closed:

58 continue

59 return pos

60 return None

A.3.3 TASK DESCRIPTIONS

Bi-DexHands Environments
Task name
Task description
Task success condition

Over

This environment requires an object in one hand to be thrown to the goal location on the other hand.
The task is a simple single-stage task.

1[dist < 0.03]

DoorCloseInward

This environment require a closed door to be opened and the door can only be pushed outward or
initially open inward.

1[door_handle_dist < 0.5]

DoorCloseOutward

This environment requires a closed door to be opened, but because they can’t complete the task by
simply pushing, we need to catch the handle by hand and then open it, so it is relatively difficult.
1[door_handle_dist < 0.5]
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DoorOpenInward
This environment requires the hands to grab the handles of the doors, then pull the two doors apart.
1[door_handle_dist > 0.5]

DoorOpenQOutward
This environment requires the hands to grab the handles of the doors, then pull the two doors apart.
1[door_handle_dist < 0.5]

Scissors
This environment requires the hands to grab the handles of a pair of scissors, then open the scissors.
1[dof-pos > —0.3]

SwingCup

This environment involves two hands and a dual handle cup, we need to use two hands to hold and
swing the cup to a target orientation.

1[rot_dist < 0.785]

Switch

This environment requires both hands to reach their respective switches, then lower the switch handle
positions by applying a strong downward force.

1[1.4 — (left_switch_z + right _switch_z) > 0.05]

Kettle
This environment requires the hands to grab the kettle, then move the kettle spout to the bucket.
1[bucket — kettle_spout| < 0.05]

LiftUnderarm

This environment requires grasping the pot handle with two hands and lifting the pot to the designated
position.

1[dist < 0.05]

Pen
This environment requires the cap to be removed from the pen.
1[5 x |pen_cap — pen_body| > 1.5]

BottleCap

This environment involves two hands and a dual handle cup, we need to move the cap away from the
bottle.

1[dist > 0.03]

CatchAbreast

This environment consists of two shadow hands placed side by side in the same direction and an
object that needs to be passed from one palm to a goal position on the other.

1[dist < 0.03]

CatchOver2Underarm
This environment requires an object in one hand to be thrown to the goal location on the other hand.
1[dist < 0.03]

CatchUnderarm
This environment requires an object in one hand to be thrown to the goal location on the other hand.
1[dist < 0.03]

ReOrientation

This environment involves two hands and two objects. Each hand holds an object and we need to
reorient the object to the target orientation.

1[rot_dist < 0.1]

GraspAndPlace

This environment consists of dual-hands, an object and a bucket that requires us to pick up the object
and put it into the bucket.

1[block — bucket| < 0.2]

BlockStack
This environment involves dual hands and two blocks, and we need to stack the block as a tower.
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1[goal_dist_1 < 0.07 and goal_dist2 < 0.07 and 50 x (0.05 — z_dist_1) > 1]

PushBlock

This environment involves dual hands and two blocks, and we need to push both blocks to goal
positions.

10.1 < left dist < 0.1 and right dist < 0.1]

1[0.5 x |left_dist — 0.1 and right_dist < 0.1]

TwoCatchUnderarm
This environment requires two objects to be thrown into the other hand at the same time.
1[dist < 0.03]

MiniGrid Environments
Task name
Task description
Sparse reward upon episode end

KeyCorridor
This environment is a Gridworld that requires the agent to navigate to a key, then to a blue ball.
A reward of 1 — 0.9 * (step_count/mazx_steps) is given for success, and 0 for failure.

ObstructedMaze

This environment is a Gridworld that requires the agent to navigate to a blue ball, and there is a
locked door on the path, and multiple misleading locked doors in the environment. Do not worry
about the key.

A reward of 1 — 0.9 * (step_count/max_steps) is given for success, and 0 for failure.

17
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A.4 PROGRESS FUNCTION SAMPLES

SwingCup:

1

def progress_function(self) -> Tuple[List[torch.Tensor],

—

List[bool]]:

# Stage 1: Gripping Handles

# Calculate distances of hands to respective handles
dist_left_hand_to_left_handle = self.dist (self.left_hand_pos,
— self.cup_left_handle_pos)

dist_right_hand_to_right_handle = self.dist (self.right_hand_pos,
— self.cup_right_handle_pos)

# Average distance to handles for gripping as one progress

— metric

avg_grip_distance = (dist_left_hand_to_left_handle +

— dist_right_hand_to_right_handle) / 2

# Stage 2: Orienting Cup

# Calculate rotational distance to the goal orientation
orientation_error = self.rot_dist (self.object_rot,

— self.goal_rot)

# Collect progress variables and directions (True for increasing,
— False for decreasing)

progress_vars = [avg_grip_distance, orientation_error]
progress_directions = [False, False] # Both should decrease

return progress_vars, progress_directions

CatchUnderarm

1
2

def progress_function(self) :

# Calculate distance between the object's current position and
— the goal.

object_to_goal_distance = self.goal_dist (self.object_pos) #
— Calculated via the helper function.

# Since the task progress is measured by how close the object

< comes to the goal,

# we want this distance to decrease. Thus, progression in the

— task is achieved

# when ‘object_to_goal distance’™ is minimized.

progress_vars = [object_to_goal_distance]

progress_directions = [False] # False indicates that we require
— the distance to decrease to indicate progress.

return progress_vars, progress_directions

DoorCloseOutward

1
2

def progress_function(self) :

# Calculate distance between the object's current position and
— the goal.

object_to_goal_distance = self.goal_dist (self.object_pos) #
— Calculated via the helper function.

# Since the task progress 1s measured by how close the object
< comes to the goal,

# we want this distance to decrease. Thus, progression in the
— task is achieved

# when ‘object_to_goal distance’™ is minimized.

progress_vars = [object_to_goal_distance]
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progress_directions =

[False] # False indicates that we require

— the distance to decrease to indicate progress.

return progress_vars,

progress_directions
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A.5 ABLATIONS
No feature library Failed CatchUnderarm code:

1 def progress_function(self) :

2 # Calculate Euclidean distance between the current object
— position and the goal position
3 object_to_goal_distance = torch.norm(self.object_pos -

— self.goal_pos, dim=-1)

5 # Calculate the norm of the linear velocity of the object
6 object_velocity_magnitude = torch.norm(self.object_linvel,
— dim=-1)

8 # For stage 1, we want the distance to decrease

9 # For stage 2, we want the velocity's magnitude to decrease
— (indicating soft catching)

10 return [object_to_goal_distance, object_velocity_magnitude],

[ [False, False]

No heuristic discretization Failed SwingCup code:

1 def progress_function_no_discretization(self) —-> torch.Tensor:

2 # Constants for scales or thresholds

3 POSITION_THRESH = 0.05 # acceptable position error in meters
4 ROTATION_THRESH = 0.1 # acceptable rotation error in radians
5
6
7

# Compute distances of hands to their respective cup handles
left_handle_distance = self.dist (self.left_hand_pos,
— self.cup_left_handle_pos)
8 right_handle_distance = self.dist (self.right_hand_pos,
— self.cup_right_handle_pos)

10 # Compute rotational distance to the goal orientation for the
— cup
11 cup_orientation_error = self.rot_dist (self.object_rot,

— self.goal_rot)

13 # Assess position accuracy

14 left_hand_position_accuracy = (left_handle_distance <
< POSITION_THRESH) .float ()

15 right_hand_position_accuracy = (right_handle_distance <

— POSITION_THRESH) .float ()

17 # Assess rotation accuracy
18 rotation_accuracy = (cup_orientation_error <
— ROTATION_THRESH) .float ()

20 # Combine these measures into an overall progress metric (scaled
- to 0-1000)

21 total_accuracy = left_hand_position_accuracy =*
— right_hand_position_accuracy * rotation_accuracy

22 progress_bins = (total_accuracy x 1000).long() # Convert to

— long for discrete bin values
23
24 return progress_bins
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A.6 PROGRESS DISCRETIZATION HEURISTICS

Bi-DexHands

Code logic: for an increasing variable, the min progress value is the value at the start of the episode.
If the variable is greater than zero, the max is tracked as the max of the progress values seen so far. If
the variable is less than zero, the max is set to 0. Then progress is rescaled between the min and max.
For a decreasing variable, the complementary logic holds.

1 def compute_bin_from_progress(self, progress_vars,
— progress_directions) :

mon

2

3 Compute the binning from the progress variables and directions

4 mmwimn

5 # First, set min/max values 1f not already set

6 # Also normalize progress vars in here

7 for i in range(len(progress_directions)) :

8 if progress_directions([i]:

9 if 'min' + str(i) not in self.extras:

10 self.extras['min' + str(i)] =
— torch.min (progress_vars[i])

11 if '"max' + str(i) in self.extras:

12 self.extras['max' + str(i)] =
— torch.max (torch.tensor ([torch.max (progress_vars([i]),
— self.extras|['max' + str(i)]]))

13 else:

14 self.extras['max' + str(i)] =
— torch.max (progress_vars[i])

15 if self.extras|['max' + str(i)] < O:

16 progress_vars[i] = torch.clamp ((progress_vars[i] -
— self.extras['min' + str(i)]) /
— (-self.extras['min' + str(i)]), min=0, max=1)

17 else:

18 progress_vars[i] = torch.clamp ((progress_vars[i] -
— self.extras['min' + str(i)]) /
< (self.extras['max' + str(i)] - self.extras['min'
— + str(i)]), min=0, max=1)

19 else:

20 if 'max' + str(i) not in self.extras:

21 self.extras['max' + str(i)] =
— torch.max (progress_vars|[i])

22 if 'min' + str(i) in self.extras:

23 self.extras['min' + str(i)] =
— torch.min(torch.tensor ([torch.min (progress_vars([i]),
— self.extras['min' + str(i)]ll1))

24 else:

25 self.extras['min' + str(i)] =
— torch.min (progress_vars[i])

26 if self.extras['max' + str(i)] < O:

27 progress_vars|[i] = torch.clamp((self.extras['max' +
< str(i)] - progress_vars[i]), min=0) /
[ (self.extras['max' + str(i)] - self.extras['min'
— + str(i)])

28 else:

29 progress_vars[i] = torch.clamp((self.extras['max' +
« str(i)] - progress_vars([i]), min=0) /
< self.extras['max' + str(i)]

30 print ("Extras", self.extras)

31 # Progress 1s now associated with increasing values for both

— bins...
32 # So we can generate an overall progress bin by just adding them
< together, with the appropriate granularity/scaling
33 binning = torch.zeros (progress_vars[0].shape, dtype=torch.long,

— device=progress_vars|[0] .device)
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34 for i in range(len(progress_vars)) :
35 binning += ((progress_vars[i] * (1000 % (i ==
— (len(progress_vars) — 1)) + 20)).long() % 10000)
36 # Now generate bins from normalized vars
37 return binning
MiniGrid

1 def discretize_progress(self, obs, max_progress) :
2 # Progress 1s decreasing, max_progress 1s set as the progress
— value at the start of the episode

3 # Get progress vars

4 progress_vars, _ = self.progress_function()

5

6 # Replace infs and nans 1in progress_vars

7 progress_vars = [0 if math.isnan(var) or math.isinf (var) else var
— for var in progress_vars]

8

9 # Clip by max progress

10 if max_progress is None:

11 max_progress = [elem for elem in progress_vars]

12 else:

13 progress_vars = [min(var, max_progress[i]) for i, wvar in

— enumerate (progress_vars) ]

14

15 # Combine bins

16 obs['goal distance'] = progress_vars[0] +
— 100xprogress_vars[1l] * (progress_vars[0] == 0)

17

18 return obs, max_progress
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A.7 BI-DEXHANDS RESULTS

The results in this section correspond to Fig. [3| The bar chart numbers are reflected in tabular form.
All numbers are measured as averages across trials. For ProgressCounts, we also include the standard
deviation across 5 trials. For Eureka, we simply report the mean since the standard deviation is not
included in the original Eureka paper.

Task name ProgressCounts Eureka
Over 0.93 + 0.01 0.92
DoorCloselnward 1.00 £ 0.00 1.00
DoorCloseOutward 090 £+ 0.13 0.96
DoorOpenlnward 0.07 £ 0.15 0.00
DoorOpenOutward 0.99 +£0.01 1.00
Scissors 1.00 4 0.00 1.00
Swing cup 0.97 £0.02 0.66
Switch 0.00 = 0.00 0.00
Kettle 0.99 4+ 0.01 0.89
LiftUnderarm 0.22 £ 0.24 0.70
Pen 0.49 + 0.06 0.57
BottleCap 0.94 £+ 0.03 0.32
CatchAbreast 0.56 = 0.04 0.50
CatchOver2UnderArm 0.90 £ 0.03 0.90
CatchUnderarm 0.76 = 0.05 0.67
ReOrientation 0.03 £ 0.00 0.31
GraspAndPlace 0.99 £0.01 0.50
BlockStack 0.05 +0.05 0.14
PushBlock 0.03 +0.03 0.09
TwoCatchUnderarm 0.03 £0.02 0.00

Table 8: A comparison of task performance between ProgressCounts and Eureka across the 20
tasks in Bi-DexHands. Results are averaged across 5 trials for both methods, standard deviation is
reported for ProgressCounts.
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A.8 PROGRESS VS PROGRESS DIFFERENCES AS REWARD

While some prior work on reward shaping uses the equivalent of progress differences as reward, we
find that using progress directly as reward leads to better average task success rate than using progress
differences on Bi-DexHands. Therefore, in the main paper we use progress directly as a reward when
comparing to count-based rewards in Section 5.3.

Task name ProgressAsReward ProgressDifferenceAsReward
Average 0.45 0.32
Over 0.90 0.88
DoorCloselnward 1.00 0.96
DoorCloseOutward 1.00 0.00
DoorOpenlnward 0.00 0.31
DoorOpenOutward 0.31 0.00
Scissors 1.00 1.00
SwingCup 0.99 0.94
Switch 0.00 0.00
Kettle 0.00 0.04
LiftUnderarm 0.08 0.35
Pen 0.22 0.00
BottleCap 0.04 0.00
CatchAbreast 0.49 0.01
CatchOver2UnderArm 0.94 0.00
CatchUnderarm 0.88 0.82
ReOrientation 0.06 0.03
GraspAndPlace 0.98 1.00
BlockStack 0.00 0.00
PushBlock 0.02 0.00
TwoCatchUnderarm 0.01 0.00

Table 9: Using progress directly as reward leads to better average task success rate than using
progress differences on Bi-DexHands.
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Figure 5: Training curves for ProgressCounts on 8 hard-exploration MiniGrid tasks.
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A.10 EXPERIMENTAL DETAILS AND HYPERPARAMETERS

Environments We train our policies on two environments: Bi-DexHands (Chen et al., [2022), and
MiniGrid (Chevalier-Boisvert et al. [2024).

Code For the Bi-DexHands benchmark, we build upon the codebase from Eureka (Ma
et all 2023): |https://github.com/eureka-research/Eureka. The repo uses
the RLGames implementation of PPO for training (Makoviichuk & Makoviychuk, 2021).
For the MiniGrid benchmark, we build upon the codebase from NovelD (Zhang et al.,
2021): https://github.com/tianjunz/NovelD. Our experimental code is is avail-
able at the following anonymous link: https://drive.google.com/drive/folders/
1G88Je0K4BuexWhE8ZLgoMOWM6ovHCBrvt ?usp=sharing.

Hyperparameters For all Bi-DexHands tasks, we scale extrinsic rewards by 0.05, and normalize
intrinsic rewards to a mean of 0.001. Elsewhere, we use the default hyperparameters associated
with Eureka, which are the default parameters from the original Bi-DexHands benchmark. Progress
functions are discretized into 1020 bins for count-based exploration (for tasks with two subtasks,
the first subtask is discretized to 20 bins, and the second subtask to 1000 bins). For all MiniGrid
tasks, we set an intrinsic reward coefficint of 0.5, and leave all other hyperparameters at default
values. Progress functions are discretized into 50 bins for count-based exploration (for tasks with two
subtasks, each subtask is discretized to 25 bins).

Compute All experiments were run on a machine with 8 NVidia Tesla V100 GPUs across 3 weeks.
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