
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

AUTOMATED REWARDS VIA LLM-GENERATED
PROGRESS FUNCTIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have the potential to automate reward engineering
for Reinforcement Learning (RL) by leveraging their broad domain knowledge
across various tasks. However, they often need many iterations of trial-and-error to
generate effective reward functions. This process is costly because evaluating every
sampled reward function requires completing the full policy optimization process
for each function. In this paper, we introduce an LLM-driven reward generation
framework that is able to produce state-of-the-art policies on the challenging Bi-
DexHands benchmark with 20× fewer reward function samples than the prior
state-of-the-art work. Our key insight is that we reduce the problem of generating
task-specific rewards to the problem of coarsely estimating task progress. Our
two-step solution leverages the task domain knowledge and the code synthesis
abilities of LLMs to author progress functions that estimate task progress from a
given state. Then, we use this notion of progress to discretize states, and generate
count-based intrinsic rewards using the low-dimensional state space. We show that
the combination of LLM-generated progress functions and count-based intrinsic
rewards is essential for our performance gains, while alternatives such as generic
hash-based counts or using progress directly as a reward function fall short.

1 INTRODUCTION

Automated reward engineering aims to reduce the human effort required when using Reinforcement
Learning (RL) for sparse-reward tasks. Multiple recent efforts towards automated reward engineering
have focused on leveraging Large Language Models (LLMs) to provide reward signals—either
employing the LLM output directly as the reward (Kwon et al., 2023), or using the LLM to generate
code for a dense reward function (Yu et al., 2023; Ma et al., 2023).

Traditionally, constructing an effective dense reward function is an intricate process of identifying
key task elements and carefully weighing different reward terms (Sutton & Barto, 2018; Booth
et al., 2023). Prior works on reward function generation attempt to use LLMs both for their domain
knowledge and to optimize quantitative aspects of reward engineering (weighting, rescaling) (Yu
et al., 2023; Ma et al., 2023)–they can require many training runs as they search through many reward
functions in order to find a candidate that is effective for training (Ma et al., 2023).

Our core insight is that we can reduce the problem of reward generation to the task of generating
rough measures of task progress. Our framework uses LLMs to generate code for progress functions:
task-specific functions that map environment states to scalar measures of progress. For a given genre
of tasks, we follow the example from prior work on reward code generation (Yu et al., 2023) by
asking practitioners to provide a small helper function library (ex. dist(x,y)) for the particular genre’s
observation spaces. Then, given both the helper function library and a single-sentence description of
a task within the domain (ex. “This environment require a closed door to be opened and the door
can only be pushed outward or initially open inward.”), we leverage LLMs to generate the progress
functions.

We find that progress functions are most empirically effective when used within a count-based
intrinsic reward framework: we treat the outputs of the progress functions as a simplified state
space that groups together similar states from the environment, we discretize the states, and we
compute state visitation counts across the discretized state space. Then, we treat the inverse square
root of the visitation count as a count-based intrinsic reward, as in prior work (Kolter & Ng, 2009;

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Tang et al., 2017), and learn policies using these count-based intrinsic rewards as task rewards. It
may seem straightforward to instead directly sum the outputs of the progress function and use the
sum as a reward – providing larger rewards for reaching states corresponding with greater progress
through the task. However, this approach neglects the typical reward scaling and weighting issues
common to dense reward shaping approaches (Sutton & Barto, 2018; Booth et al., 2023). Our
progress-and-counts algorithm, ProgressCounts, achieves SOTA performance on the challenging
Bi-DexHands benchmark, outperforming Eureka (Ma et al., 2023) by 4%. By limiting the role of
LLMs to generating progress functions and applying count-based intrinsic rewards to simplified
progress-based states, ProgressCounts achieves significantly greater sample efficiency compared to
approaches that use LLMs directly for estimating reward weighting and scaling (Yu et al., 2023; Ma
et al., 2023). Specifically, ProgressCounts requires 20 times fewer training runs than Eureka.

Specifically, we make the following contributions:

1. We re-frame the problem of reward generation in terms of generating coarse measures of
task progress. Given a single-sentence task description and a small domain-specific library
of helper functions, we leverage LLMs to generate progress functions.

2. We generate rewards from progress functions by treating the output of the progress function
as a reduced state representation, discretizing progress in order to measure state visitation
counts, and generating count-based intrinsic rewards.

3. We demonstrate that our algorithm ProgressCounts is effective by obtaining state-of-the-art
performance on the Bi-DexHands benchmark. We outperform the prior state-of-the-art
Eureka (Ma et al., 2023) by 4% while requiring 20× fewer samples.

2 RELATED WORK

Automated reward engineering. Learning directly from sparse rewards can be challenging (Ng
et al., 1999; Hare, 2019; Vecerik et al., 2017). It is common for practitioners to carefully engineer
dense reward functions to shape the learning process (Ng et al., 1999)—a labor-intensive (Sutton &
Barto, 2018) and brittle (Booth et al., 2023) process. Advancements in automation such as Population
Based Training (Jaderberg et al., 2017) have shown promise in refining this process by automating
searches over fixed design spaces.

Foundation models offer the opportunity to automate reward engineering with powerful priors. The
output of foundation models can be used to propose tasks for open-ended learning curricula (Du
et al., 2023; Zhang et al., 2023) and add high-level structure to learning (Mirchandani et al., 2021).
Foundation models can also be used directly as rewards (Fan et al., 2022; Kwon et al., 2023; Sontakke
et al., 2024), and have the potential to generate reward function code, either scaffolded by reward
function templates (Yu et al., 2023) or in more freeform fashion (Ma et al., 2023; Venuto et al., 2024;
Li et al., 2024). We also leverage LLMs to inject task knowledge via code, but rather than attempting
to generate complex reward functions, we simply ask them to identify a few key features associated
with task progress.

Count-based intrinsic rewards. Our algorithm leverages the idea of count-based intrinsic rewards
in order to convert coarse progress-based state representations into rewards for policy learning.
Count-based intrinsic rewards are one of the main approaches to intrinsic motivation: estimating
the “novelty” of a given state via state visitation counts (Tang et al., 2017). Approaches that
hash continuous spaces to discrete representations have shown considerable promise when the
discretization function is domain-specific (Tang et al., 2017; Ecoffet et al., 2021). In particular, the
Go-Explore algorithm (Ecoffet et al., 2021) pairs count-based intrinsic rewards along with simulator
state resets in order to achieve state-of-the-art results on several challenging Atari (Bellemare et al.,
2013) tasks. The main downside to these approaches is that domain-aware discretization typically
requires significant human engineering (Tang et al., 2017; Ecoffet et al., 2021). In our algorithm, by
discretizing task progress, we already have access to automated domain-specific state discretizations.
Absent the need for extensive human-engineered discretization functions, count-based intrinsic
rewards are both practical and effective for learning policies from progress functions.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Environment State Description

Task Description
This environment involves two hands
and a dual handle cup, we need to use
two hands to hold and swing the cup
to a target orientation.

 Extracted from Environment

class Env:
 hand_pos: Tensor[2, 3]
 cup_handles: Tensor[2, 3]
 cup_rotation: Tensor[4]
 target_rotation: Tensor[4]
 ...

LLM Progress
Function Generator
System Prompt:
You are a reinforcement learning
engineer trying to write progress
functions to solve reinforcement
learning tasks as effectively as
possible. Your goal is to identify
the variables for the environment
that are maximally relevant for
measuring progress in the task...

LLM-Generated Progress Function
def progress_fn(env):
 # Stage 1: Are we gripping handles?
 to_left = l2_dist(
 env.hand_pos[0], env.cup_handles[0])
 to_right = l2_dist(
 env.hand_pos[1], env.cup_handles[1])
 avg_dist = (to_left + to_right) / 2

 # Stage 2: Is the cup rotated correctly?
 orientation_error = rot_dist(
 env.cup_rotation, env.target_rotation)

 # Emit progress variables for each stage
 return [avg_dist, orientation_error]

Progress Binning
D(s)

RL Environment

(A) Step 1: Use LLM to Generate Task-Specific Progress Functions

Env State
(s) LLM-Generated

Progress Function

Progress
Variables
[x₁, x₂, …]

(B) Step 2: During Training, Progress Function Guides Count-Based Reward

Count-Based
Reward

RL Training

State Bin
B(s)

Intrinsic
Reward

n(s)
Updated
Policy
(π)

{User
Input

{
B(s) = D(P(s))

Environment Feature
Engineering Library
def l2_dist(x, tgt):
 return torch.norm(x - tgt, p=2)

def rot_dist(cur_rot, tgt_rot):
 # Compute rotational distance
 ...

P(s)

Figure 1: ProgressCounts: an algorithm for reward generation via LLM-generated task
progress functions and count-based rewards. (A) We leverage a LLM to generate code for a
progress function, which distills task-specific features from a high-dimensional state space into a
low-dimensional notion of task progress. The LLM takes as input a high-level task description, a
small library of feature engineering functions, and a description of the environment state space. On a
per-task basis, the user only needs to provide the task description as input. (B) We use heuristics to
discretize the output of the LLM-generated progress function, compute state visitation counts across
the discretized bins, and leverage standard count-based rewards to learn RL policies.

3 PRELIMINARIES

We consider the problem of automated reward generation for a sparse-reward task. The task is defined
as a Markov Decision Process (MDP) M = (S,A,P,R, γ), where S is the state space, A is the
action space, P is the transition probability function, and R is a sparse reward function that provides
little guidance to the agent. The goal is to learn a policy π : S → ∆(A) that maximizes the expected
cumulative reward J(π) = E

[∑∞
t=0 γ

tR(st, at)
∣∣∣s0, π], where st, at are the state and action at time

t.

We assume the availability of three potential inputs for reward engineering:

1. A description of the features available in the environment (Figure 1-A, grey). We provide
a description in the form of code, similar to Ma et al. (2023); Yu et al. (2023); Singh et al.
(2023)

2. A short task description (Figure 1-A, green), similar to Ma et al. (2023); Yu et al. (2023).

3. An environment feature engineering library, offering a palette of additional, higher-level
features that are not task-specific but may be generally useful for solving tasks in a given
domain (Figure 1-A, green). This is identical to the type of feature library in Yu et al. (2023).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Note that for (1), many learning scenarios with real-world deployment goals involve training in
simulators with access to environment code (Lin et al., 2024). For (2) and (3), an experienced
practitioner can quickly create a small feature engineering library, and the cost of making this library
is amortized across many tasks in the same domain.

4 METHODS

In this section, we first introduce our algorithm for leveraging LLM domain knowledge to generate
progress functions, which distill key features from a high-dimensional environment state space to a
coarse low-dimensional notion of progress in the task. Then, we outline how we use the generated
progress functions: we view progress as measure of state, and leverage count-based intrinsic rewards
for learning.

4.1 PROGRESS FUNCTIONS

4.1.1 PROGRESS FUNCTION DEFINITION

Given a new task description, the first step of our process is to generate a progress function P : S →
Rk, which takes environment features s ∈ S as input, and outputs information about the current
progress of the agent on the task. Especially for more complex tasks, it may be difficult to distill a
task to a single feature that tracks overall progress. Therefore, a progress function, given a state, is
asked to emit a positive scalar measure of progress for one or more subtasks. For instance, for the
SwingCup task (Figure 1-A), which involves 1) gripping the handles of the cup, 2) rotating the cup to
the correct orientation, a good progress function would break the task into two sub-tasks and return
scalars measuring progress for both sub-tasks.

Specifically, the progress function outputs [x1, x2, ...xk] where xi ∈ R tracks task progress for
sub-task i. It also outputs additional variables [y1, y2, ...yk] that inform our framework whether the
progress variables xi are increasing or decreasing.

4.1.2 PROGRESS FUNCTION GENERATION

For any given task, domain knowledge is required in order to determine what features from the
environment are useful for assessing progress, and how to compute progress from those features. We
derive that domain knowledge from an LLM, which is used to generate code for the progress function
P . In order to translate domain knowledge into an effective progress function, we provide the LLM
with three inputs:

1. Function inputs: we specify the features available as inputs to the progress function via a
description of the features in the environment state (Figure 1-A, grey). This information is
available via the simulator.

2. Function outputs: we specify the desired output of the progress function via a short task
description (Figure 1-A, green). Humans specify this information on a per-task basis.

3. Function logic: we structure the process of translating feature inputs to progress output by
providing the LLM with access to a environment feature engineering library (Figure 1-A,
green). This library offers a palette of additional, higher-level features to optionally use to
compute progress, and also indirectly suggests that certain types of feature transformations
are beneficial to compute progress (ex. l2dist(x, tgt)). Humans create this library once per
genre or benchmark of tasks.

Note that on a per-task basis, ProgressCounts only requires a user to provide the short task description.
Please see Appendix A.3.2 for the libraries used for our Section 5 benchmarks.

Given the high-level task description, the small feature engineering library, and code describing the
environment state space, we follow standard LLM prompting strategies to generate the progress
function code (Figure 1-A), blue). Please see Appendix A.4 for several examples of generated
progress functions.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

4.2 FROM PROGRESS TO REWARD

Given a perfect estimate of task progress, it may seem natural to directly use progress as a dense
reward: for a given state s, compute the sum of the progress outputs Rsum =

∑
i xi, and use progress

sum Rsum as the reward for reaching s. However, learning from dense rewards can be brittle–small
mistakes in reward design can often lead to a failure to learn effective policies (Booth et al., 2023).
Progress functions offer highly simplified state representations—and given the coarse nature of these
representations, we look for a more forgiving mechanism to generate rewards from these simplified
representations. Therefore, we use a count-based intrinsic reward approach inspired by prior work
that achieves state-of-the-art performance with domain-specific discretizations (Ecoffet et al., 2021).

4.2.1 PRELIMINARIES: COUNT-BASED REWARDS

To facilitate exploration, we leverage count-based rewards proportional to state novelty (Kolter & Ng,
2009): n(s) ∝ 1√

c(s)
, where c(s) is the state visitation count. High-dimensional state spaces require

a binning function B : S → S ′ that maps state space S to a (small) discrete space S ′ where we can
tractably compute state visitation frequencies and novelty n(s) ∝ 1√

c(B(s))
.

When learning a policy, sparse extrinsic rewards are augmented with a standard intrinsic reward
proportional to n(s) (Tang et al., 2017):

Rtotal(st, at) = R(st, at) + λcn(B(st+1)) (1)

Where st is the state at time t, at is the action, st+1 is the next state, and λc is a hyperparameter
weighting the intrinsic reward relative to extrinsic reward R(st, at).

Effective state binning should encode information if and only if it is relevant to solving the particular
task (Tang et al., 2017; Ecoffet et al., 2021).

4.2.2 COUNT-BASED REWARDS FROM PROGRESS

We automatically generate a task-specific binning function B by converting the continuous progress
values P (s) emitted by the progress function to discrete states using a mapping D : Rk → S′ that:

1. Estimates relevant value ranges (mini,maxi) for each xi from progress data

2. Discretizes within (mini,maxi) to produce discrete progress features x′
i. We discretize

later subtasks with finer granularity in order to encourage more exploration closer to the
goal.

3. Defines B(s) = D(P (s)) =
∑

i x
′
i.

Heuristic discretization avoids the need to learn scalar progress ranges from environment interaction,
an approach used in prior work (Shinn et al., 2024; Ma et al., 2023). While we could have leveraged
the LLM directly to emit logic for discretizing progress features, we chose to use these heuristics
instead since LLMs are known to struggle with numerical reasoning (Shen et al., 2023). Details and
example discretization code are included in Appendix A.6.

Having defined mapping B to discretize progress features, we measure state novelty from bin visita-
tion counts via n(s) ∝ 1√

c(B(s))
, augmenting existing sparse extrinsic rewards. As shown in Figure

1-B, we learn policies using Proximal Policy Optimization (PPO) (Schulman et al., 2017), augmenting
the sparse extrinsic task rewards with intrinsic rewards via count-based intrinsic motivation (See
Eq. 1).

5 EVALUATION

We evaluate ProgressCounts by using it to train policies on Bi-DexHands: a challenging sparse-reward
benchmark consisting of 20 bimanual manipulation tasks. We also include additional results from the
MiniGrid benchmark in the Appendix.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

0 16 32 48 64 80
Policy Samples

0.0

0.3

0.6

Av
er

ag
e

Su
cc

es
s R

at
e

Bi-DexHands

Eureka
LLMCount
Human Dense Reward

Figure 2: On the Bi-DexHands benchmark, ProgressCounts produces policies that perform
comparably to those of Eureka in terms of average task success rate, at a much smaller sample
budget. Eureka’s evolutionary algorithm requires 48 policy samples (training runs with different
generated reward functions) to find a policy whose performance matches that of human-designed
dense reward functions. ProgressCounts requires only four policy samples (different progress
functions), generating a policy that outperforms the human-designed baseline and exceeding the peak
performance achieved by Eureka after 80 policy samples (20× the cost of ProgressCounts).

5.1 EXPERIMENTAL SETUP

Bi-DexHands. The Bi-Dexterous Manipulation benchmark (Chen et al., 2022) (Bi-DexHands)
consists of 20 bimanual manipulation tasks with continuous state and action spaces, such as using two
robotic hands to lift a pot or simultaneously pass objects between the hands. These tasks have sparse
rewards and require complex coordinated motion, making them a challenging test for leveraging
language models to guide policy learning. Following conventions from prior work (Ma et al., 2023),
progress functions have acess to the environment state space code, and we evaluate performance on
Bi-DexHands in terms of the policy’s success rate at completing each task, averaged over five trials
(policy training runs with different seeds).

We use Bi-DexHands to evaluate the policy performance and sample efficiency of ProgressCounts
against three baselines. 1) Sparse extrinsic rewards upon task success, 2) Dense: expert-written dense
extrinsic rewards from the original benchmark, 3) rewards generated using the Eureka LLM-based
reward generation algorithm (Ma et al., 2023), the current state-of-the-art reward generation method
on Bi-DexHands.

Training configuration. In all experiments we train policies using PPO (Schulman et al., 2017).
We train policies using the PPO hyperparameters and sample budgets (100M environment samples)
established by Bi-DexHands Chen et al. (2022), also used in prior work Eureka Ma et al. (2023). We
set the intrinsic reward coefficient λc = 1e− 3, and discretize progress into 1000 bins. We leverage
GPT-4-Turbo (‘gpt-4-turbo-2024-04-09’) as the LLM (Achiam et al., 2023) used to generate progress
functions. Following the experimental procedure from prior work (Ma et al., 2023), we use the
LLM to generate multiple options for the progress function, and select the resulting policy that
achieves the highest success from a single training run–we refer to the different trained policies
as policy samples. Unless otherwise specified, ProgressCounts uses four policy samples per task,
and all policies are trained using 100M environment samples (number of environments × number of
simulation steps). All LLM prompts, including task descriptions and environment feature engineering
primitives, are included in Appendix A.3.

5.2 COMPARISON TO EXTRINSIC REWARD BASELINES

ProgressCounts trains policies that (on average) outperform those from Eureka on Bi-
DexHands, using only 5% of Eureka’s training budget. Averaged over all Bi-DexHands tasks,
ProgressCounts achieves a success rate of 0.59, 13% higher than human-written dense rewards, and
4% higher than Eureka, the state-of-the-art method on this benchmark (Figure 2). Most importantly,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

DoorCloseInward0.0

0.5

1.0

Scissors DoorOpenOutward Kettle GraspAndPlace Swing Cup BottleCap Over DoorCloseOutward CatchOver2UnderArm

CatchUnderarm0.0

0.5

1.0

CatchAbreast Pen LiftUnderarm DoorOpenInward BlockStack ReOrientation PushBlock TwoCatchUnderarm Switch

Su
cc

es
s R

at
e

LLMCount Eureka Human Sparse

Figure 3: ProgressCounts produces policies whose performance (in terms of task success rate)
matches or exceeds that of the prior state-of-the-art method (Eureka) on 13 of 20 tasks in the
Bi-DexHands benchmark. Sparse rewards (Sparse) struggle to learn effective policies for most
Bi-DexHands tasks. See Appendix A.7 for results in tabular form.

0 1B 2B 3B
Environment Samples

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s R

at
e

TwoCatchUnderarm Success Rate (LLMCount: Single Policy Sample)

Figure 4: By allocating many environment samples to a single training run, ProgressCounts trains a
policy that achieved high success on the challenging TwoCatchUnderarm task. All baselines achieved
zero success on this task given a two billion environment sample budget.

Eureka’s evolutionary algorithm requires 80 policy samples (generated reward functions) to find
good reward functions for the task. In contrast, ProgressCounts only requires four policy samples
(generated progress functions). By structuring reward engineering around a constrained progress
function and heuristic discretization, we reduce the unreliability associated with using LLMs for
unconstrained code generation Yu et al. (2023). This approach also allows for more robust state
discretization for count-based intrinsic rewards, using only a limited number of progress function
generation attempts, without requiring costly feedback-driven evolution.

Figure 3 presents policy performance for all 20 tasks in the Bi-DexHands benchmark. Across the
benchmark, ProgressCounts matches or exceeds Eureka in performance on 13 of the 20 tasks, and
ProgressCounts matches or exceeds the performance of the expert-written dense reward (Human) on
17 of the 20 tasks.

Given the same environment sample budget as Eureka, ProgressCounts can produce higher-
performance policies. Since ProgressCounts requires fewer policy samples to find good policies,
users can more confidently allocate significant fractions of a training budget to a small number of
policy samples. We use ProgressCounts to train four policies on the TwoCatchUnderarm task, each
for a total of two billion environment samples (the same number of samples used in aggregate, across
all policy samples, for Eureka training). The best resulting policy achieves a task success rate of
0.55, and continues to improve with further samples (Figure 4). On the other hand, all extrinsic
reward baselines, as well as ProgressCounts trained on 400 million environment samples (four policy
samples, with 100 million environment samples each), achieve a success rate of nearly zero on this

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

task (Figure 3). To our knowledge, ProgressCounts is the first method to achieve reasonable success
on this challenging task.

5.3 METHOD ABLATIONS

Task name ProgressCounts ProgressAsReward SimHashCounts
Average 0.59 0.45 0.34

Over 0.93 0.90 0.91
DoorCloseInward 1.00 1.00 1.00
DoorCloseOutward 0.90 1.00 0.76
DoorOpenInward 0.07 0.00 0.00
DoorOpenOutward 0.99 0.31 0.99
Scissors 1.00 1.00 1.00
SwingCup 0.97 0.99 0.94
Switch 0.00 0.00 0.00
Kettle 0.83 0.00 0.00
LiftUnderarm 0.22 0.08 0.00
Pen 0.49 0.22 0.09
BottleCap 0.94 0.04 0.94
CatchAbreast 0.56 0.49 0.00
CatchOver2UnderArm 0.90 0.94 0.00
CatchUnderarm 0.76 0.88 0.00
ReOrientation 0.03 0.06 0.02
GraspAndPlace 0.99 0.98 0.08
BlockStack 0.05 0.00 0.06
PushBlock 0.03 0.02 0.01
TwoCatchUnderarm 0.03 0.01 0.00

Table 1: An ablation testing whether Progress Functions and Count-Based Rewards are both
necessary for ProgressCounts across the 20 tasks in Bi-DexHands. ProgressCounts is our
algorithm. ProgressAsReward takes the best generated progress functions, and directly uses the
summed progress variables as a dense reward function. SimHashCounts applies SimHash to the
observation space as the binning function instead of progress-based bins (the method from [4]).
Results are averaged across 5 trials for ProgressCounts, and are single-trial numbers for the ablated
methods. ProgressCounts requires both key components of the algorithm for an 0.59 average
task success rate.

The success of ProgressCounts is due to both the use of progress functions to collapse simulator
states into bins and due to the effectiveness of count-based intrinsic exploration applied to these bins.
While progress function might seem a suitable dense reward, progress-based rewards only achieve a
success rate of 0.45 (Table 1), so best performance is achieved when using count-based exploration
across discretized progress bins. Both LLM-generated progress functions and count-based intrinsic
exploration are necessary to achieve our SOTA performance.

Progress functions generate more effective bins than SimHash: On Bi-DexHands, Table 1 high-
lights that ProgressCounts achieves a success rate of 0.59 with progress-based bins, and only achieves
a success rate of 0.34 with SimHash-based (Sadowski & Levin, 2007) bins across the observation
space (Tang et al., 2017). Across the benchmark, progress-based bins achieve performance equal
to or better than SimHash-based bins across 19 of 20 tasks, with the remaining task (BlockStack)
within the margin of error (see Table 8 in the Appendix for standard deviations). This result aligns
with prior work on human-written hash functions for count-based rewards, where the integration of
domain knowledge consistently improves performance (Tang et al., 2017; Ecoffet et al., 2021).

Count-based rewards are more effective than directly using progress as reward While the
sum of the outputs of a progress function Rsum =

∑
i xi might seem a viable reward signal for

learning, Table 1 illustrates that progress-based dense rewards only achieve a success rate of 0.45,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Task Default No feature library No heuristic discretization
SwingCup 0.97 0.90 0.00
CatchUnderarm 0.76 0.00 0.76
DoorCloseOutward 0.90 0.86 0.92

Table 2: Both the environment feature library and heuristic progress discretization help task
success rate. When the feature engineering library is removed from the LLM prompt, we obtain
comparable performance on SwingCup and DoorCloseOutward, but the CatchUnderarm policy
completely fails to learn. When we ask the LLM to directly generate code for discrete bins (removing
heuristic discretization), SwingCup fails to learn an effective policy.

while progress functions paired with count-based intrinsic rewards achieve a success rate of 0.59,
matching or outperforming the dense-reward alternative on 15 of 20 tasks. This result highlights that,
given coarse state representations from progress functions, count-based intrinsic rewards are more
effective than standard dense rewards.

The environment feature engineering library helps generate effective progress features In
Table 2, we ablate the impact of providing a feature engineering library to help ProgressCounts with
generating code to compute progress features. When we remove the feature library, we still obtain
comparable performance on both SwingCup (task success rate of 0.97 vs. 0.90) and DoorCloseOut-
ward (0.90 vs. 0.86), but the CatchUnderarm policy fails to learn completely. Upon inspection of
the generated code in Appendix A.5, the LLM chooses to incorporate object linear velocity into the
progress function, a variable that is not directly relevant to task success. This variable is averaged
with more relevant variables to derive an overall progress metric. Having incorrectly modeled task
progress, the policy’s unnecessary exploration is likely responsible for task failure. The library for
Bi-DexHands (included in Appendix A.5) only contains functions measuring Euclidean and rotational
distance; we hypothesize that knowledge of transformations available in the feature library helps the
LLM ignore features for which the library is not applicable (ex. the irrelevant velocity features).

ProgressCounts benefits from using heuristics to discretize progress features In Table 2, we
also ablate the impact of using heuristics to discretize and combine progress features–instead,
we ask the LLM to directly generate code to output discrete bins corresponding to task progress.
We obtain comparable task success rate on DoorCloseOutward (0.90 vs. 0.92) and CatchUnderarm
(0.76 vs. 0.76), but the trained policies completely fail without heuristic discretization for SwingCup—
as seen in Appendix A.5, the LLM incorrectly guesses the relevant range of values for multiple
features, and as a result the binning function is ineffective for facilitating task-relevant exploration.
Heuristic discretization helps avert this failure mode when constructing task-specific state binning
functions.

6 DISCUSSION

The state-of-the-art results achieved by ProgressCounts demonstrate two key takeaways:

First, LLM-generated progress functions offer a compelling mechanism to generate coarse task-
specific state representations, and alongside count-based intrinsic rewards offer an empirically-
superior alternative to using LLMs to engineer reward functions. ProgressCounts outperforms Eureka,
which uses LLMs to engineer reward functions, both in terms of performance and sample efficiency.
One reason for this success is the structure (task progress, count-based rewards, etc.) we build into
the ProgressCounts framework, which increases the quality and reliability of LLM responses, and
reduces the need for trial and error across reward weights and scaling. Perhaps more interestingly,
we hypothesize that ProgressCounts also benefits from count-based intrinsic rewards being robust to
non-optimal binning functions, unlike reward functions where even minor errors can easily lead to a
failure to solve tasks successfully.

Second, despite being relatively under-utilized in recent research, count-based intrinsic rewards can
be surprisingly effective at training policies that operate in complex high-dimensional state spaces
when given an adequate binning function. Interestingly, the results achieved by ProgressCounts

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

suggest that these binning functions do not need to be hugely complex; ProgressCounts outperforms
state-of-the-art, human-engineered dense reward functions using count-based exploration driven by
binning functions that contain less than 20 lines of code.

Overall, we believe ProgressCounts represents a novel and promising strategy for injecting domain
knowledge from large language models into an RL training loop. We hope that these results will
encourage further research into (and more general usage of) count-based intrinsic methods, as well as
exploration of other novel methods for leveraging LLMs to assist in solving reinforcement learning
tasks.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:
253–279, 2013.

Serena Booth, W Bradley Knox, Julie Shah, Scott Niekum, Peter Stone, and Alessandro Allievi. The
perils of trial-and-error reward design: misdesign through overfitting and invalid task specifications.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pp. 5920–5929, 2023.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. arXiv preprint arXiv:1810.12894, 2018.

Yuanpei Chen, Tianhao Wu, Shengjie Wang, Xidong Feng, Jiechuan Jiang, Zongqing Lu, Stephen
McAleer, Hao Dong, Song-Chun Zhu, and Yaodong Yang. Towards human-level bimanual
dexterous manipulation with reinforcement learning. Advances in Neural Information Processing
Systems, 35:5150–5163, 2022.

Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo Perez-Vicente, Lucas Willems, Salem
Lahlou, Suman Pal, Pablo Samuel Castro, and Jordan Terry. Minigrid & miniworld: Modular &
customizable reinforcement learning environments for goal-oriented tasks. Advances in Neural
Information Processing Systems, 36, 2024.

Yuqing Du, Olivia Watkins, Zihan Wang, Cédric Colas, Trevor Darrell, Pieter Abbeel, Abhishek
Gupta, and Jacob Andreas. Guiding pretraining in reinforcement learning with large language
models. In International Conference on Machine Learning, pp. 8657–8677. PMLR, 2023.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune. First return, then
explore. Nature, 590(7847):580–586, 2021.

Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar, Yuncong Yang, Haoyi Zhu, Andrew Tang,
De-An Huang, Yuke Zhu, and Anima Anandkumar. Minedojo: Building open-ended embodied
agents with internet-scale knowledge. Advances in Neural Information Processing Systems, 35:
18343–18362, 2022.

Joshua Hare. Dealing with sparse rewards in reinforcement learning. arXiv preprint arXiv:1910.09281,
2019.

Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M Czarnecki, Jeff Donahue, Ali
Razavi, Oriol Vinyals, Tim Green, Iain Dunning, Karen Simonyan, et al. Population based training
of neural networks. arXiv preprint arXiv:1711.09846, 2017.

J Zico Kolter and Andrew Y Ng. Near-bayesian exploration in polynomial time. In Proceedings of
the 26th annual international conference on machine learning, pp. 513–520, 2009.

Minae Kwon, Sang Michael Xie, Kalesha Bullard, and Dorsa Sadigh. Reward design with language
models. arXiv preprint arXiv:2303.00001, 2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Hao Li, Xue Yang, Zhaokai Wang, Xizhou Zhu, Jie Zhou, Yu Qiao, Xiaogang Wang, Hongsheng Li,
Lewei Lu, and Jifeng Dai. Auto mc-reward: Automated dense reward design with large language
models for minecraft. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 16426–16435, 2024.

Toru Lin, Zhao-Heng Yin, Haozhi Qi, Pieter Abbeel, and Jitendra Malik. Twisting lids off with two
hands. arXiv preprint arXiv:2403.02338, 2024.

Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayaraman,
Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward design via coding
large language models. arXiv preprint arXiv:2310.12931, 2023.

Denys Makoviichuk and Viktor Makoviychuk. rl-games: A high-performance framework for rein-
forcement learning. https://github.com/Denys88/rl_games, May 2021.

Suvir Mirchandani, Siddharth Karamcheti, and Dorsa Sadigh. Ella: Exploration through learned
language abstraction. Advances in neural information processing systems, 34:29529–29540, 2021.

Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transformations:
Theory and application to reward shaping. In Icml, volume 99, pp. 278–287, 1999.

Caitlin Sadowski and Greg Levin. Simhash: Hash-based similarity detection, 2007.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Ruoqi Shen, Sébastien Bubeck, Ronen Eldan, Yin Tat Lee, Yuanzhi Li, and Yi Zhang. Positional
description matters for transformers arithmetic. arXiv preprint arXiv:2311.14737, 2023.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36, 2024.

Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei Xu, Jonathan Tremblay, Dieter
Fox, Jesse Thomason, and Animesh Garg. Progprompt: Generating situated robot task plans using
large language models. In 2023 IEEE International Conference on Robotics and Automation
(ICRA), pp. 11523–11530. IEEE, 2023.

Sumedh Sontakke, Jesse Zhang, Séb Arnold, Karl Pertsch, Erdem Bıyık, Dorsa Sadigh, Chelsea Finn,
and Laurent Itti. Roboclip: One demonstration is enough to learn robot policies. Advances in
Neural Information Processing Systems, 36, 2024.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, OpenAI Xi Chen, Yan Duan, John
Schulman, Filip DeTurck, and Pieter Abbeel. # exploration: A study of count-based exploration
for deep reinforcement learning. Advances in neural information processing systems, 30, 2017.

Mel Vecerik, Todd Hester, Jonathan Scholz, Fumin Wang, Olivier Pietquin, Bilal Piot, Nicolas Heess,
Thomas Rothörl, Thomas Lampe, and Martin Riedmiller. Leveraging demonstrations for deep
reinforcement learning on robotics problems with sparse rewards. arXiv preprint arXiv:1707.08817,
2017.

David Venuto, Sami Nur Islam, Martin Klissarov, Doina Precup, Sherry Yang, and Ankit Anand.
Code as reward: Empowering reinforcement learning with vlms. arXiv preprint arXiv:2402.04764,
2024.

Wenhao Yu, Nimrod Gileadi, Chuyuan Fu, Sean Kirmani, Kuang-Huei Lee, Montse Gonzalez Arenas,
Hao-Tien Lewis Chiang, Tom Erez, Leonard Hasenclever, Jan Humplik, et al. Language to rewards
for robotic skill synthesis. arXiv preprint arXiv:2306.08647, 2023.

Jenny Zhang, Joel Lehman, Kenneth Stanley, and Jeff Clune. Omni: Open-endedness via models of
human notions of interestingness. arXiv preprint arXiv:2306.01711, 2023.

Tianjun Zhang, Huazhe Xu, Xiaolong Wang, Yi Wu, Kurt Keutzer, Joseph E Gonzalez, and Yuandong
Tian. Noveld: A simple yet effective exploration criterion. Advances in Neural Information
Processing Systems, 34:25217–25230, 2021.

11

https://github.com/Denys88/rl_games

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 ABLATING THE CHOICE OF CONSTANTS FOR PROGRESSCOUNTS

ProgressCounts does not require search over hyperparameters on a per-task basis–we set the hyperpa-
rameters once per benchmark and did not tune them (following the same experimental protocol as
Eureka (Ma et al., 2023)). We evaluate ProgressCounts ’s robustness to different hyperparameters
using two ablations: 1) the intrinsic reward weight λc, and 2) the number of discrete bins used, each
tested across three tasks from Bi-DexHands. Table 3 shows similar task performance for λc of 1e− 2,
1e − 3, and 1e − 4, with the exception of slightly lower task performance on CatchUnderarm for
1e-4. Table 4 shows similar task performance with 500, 1000, and 2000 bins across the three tasks.
There are no clear trends in performance across parameters in either table, and our chosen parameters
(λc = 1e− 3, 1000 bins) are actually sub-optimal for most tasks.

Task λc = 0.01 λc = 0.001 λc = 0.0001

SwingCup 0.95 0.97 0.98
CatchUnderarm 0.8 0.76 0.4
DoorCloseOutward 0.99 0.9 0.85

Table 3: Ablating the impact of intrinsic reward coefficient λc on ProgressCounts performance.
We report success rates for 3 values across 3 Bi-DexHands tasks. Success rates are averaged across 5
trials. Default is λc = 0.001

Task 500 bins 1000 bins 2000 bins
SwingCup 0.97 0.97 0.97
CatchUnderarm 0.78 0.76 0.67
DoorCloseOutward 0.84 0.9 0.99

Table 4: Ablating the impact of the number of bins on ProgressCounts performance. We report
success rates for 3 values across 3 Bi-DexHands tasks. Success rates are averaged across 5 trials.
Default is 1000 bins.

A.2 MINIGRID EXPERIMENTS

Having demonstrated that ProgressCounts yields state-of-the-art performance on the Bi-DexHands
benchmark, we further evaluate how well the progress-based counts from ProgressCounts can serve
as a novelty metric within more sophisticated intrinsic motivation algorithms. Specifically, we test
how well progress-based novelty from Section 4.2 performs as a novelty measure within the NovelD
meta-criterion (Zhang et al., 2021), which provides reward proportional to the difference in novelty
between consecutive states:

Rtotal(st, at) = R(st, at) + λc max(n(B(st+1))− αn(B(st)), 0)1[ne(st+1) = 1] (2)

Where α ∈ [0, 1] discounts previous novelty, and ne(st+1) measures episodic novelty, measuring the
number of visits to a state within the current episode.

Using the MiniGrid benchmark (Chevalier-Boisvert et al., 2024), we evaluate on a subset of eight
difficult exploration tasks across two task distributions: four KeyCorridor variants and four Ob-
structedMaze variants. These tasks provide sparse rewards upon task success, and these rewards
are proportional to the efficiency of completing the goal. We compare the efficacy of the NovelD
exploration meta-criterion (Zhang et al., 2021) when measuring novelty with ProgressCounts as
well as RND Burda et al. (2018), the method used in the original NovelD paper. Following Zhang
et al. (2021), we measure episode rewards averaged over four trials when combining the novelty
metrics with the NovelD algorithm–we measure performance in terms of the samples required to
reach a threshold task reward. We set λc = 0.1, and we do not require progress discretization on this

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Env Type Layout ProgressCounts RND

KeyCorridor (Medium)

S3R3 0.2 0.5
S4R3 0.5 0.9
S5R3 0.9 1.3
S6R3 1.2 1.7

ObstructedMaze (Hard)

2Dlhb 1.6 4.0
1Q 1.0 2.8
2Q 2.5 4.7

Full 2.9 7.2

Table 5: ProgressCounts is more sample-efficient than RND when used as a novelty metric
within NovelD. We measure the number of environment samples (×107) required for NovelD to
pass a threshold reward of 0.75 (except for ObstructedMaze-Full, where computational constraints
limit us to a threshold of 0.5). Across four variants of the KeyCorridor task and four variants of the
ObstructedMaze task, ProgressCounts is up to 64% more sample-efficient than RND.

environment since the progress functions are already discrete. As with the Bi-DexHands experiments,
we run 4 trials of progress function generation.

Table 5 compares the performance of ProgressCounts and RND as a novelty metric within NovelD on
MiniGrid. Across both KeyCorridor and ObstructedMaze families of tasks, ProgressCounts improves
the sample efficiency of NovelD at reaching a threshold reward compared to RND. This trend
holds across progressively more complicated tasks: ProgressCounts improves sample efficiency
by 60% for KeyCorridorS3R3, the simplest task, and also improves sample efficiency by 60% on
ObstructedMaze-Full, the hardest task. Note that ProgressCounts is also more computationally
efficient than RND, which learns an additional network to output intrinsic rewards (Burda et al.,
2018). Full training curves are in Appendix A.9.

A.3 DETAILS ON LLM INPUTS

A.3.1 SYSTEM PROMPT

1 You are a reinforcement learning engineer trying to write progress
functions to solve reinforcement learning tasks as effectively
as possible.

↪→
↪→

2 Your goal is to identify the variables for the environment that are
maximally relevant for measuring progress in the task described
in text.

↪→
↪→

3 Some tasks may have only a single stage, and some tasks may have two
separate stages.↪→

4 You will be provided with a definition of the observation space for
a reinforcement learning environment, and also provided with a
small set of helper functions that can be used to transform the
variables in the observation space.

↪→
↪→
↪→

5 Write a function that returns the variable most associated with task
progress for each stage of the task.↪→

6 This function can take as input any member of self defined in
compute_observations, and can apply any of the helper functions
to any variables from self.obs_buf to generate new derived
features (ex. computing the distance between object and goal).
If a single stage requires multiple progress variables, average
the variables.

↪→
↪→
↪→
↪→
↪→

7 Also return a bool for each variable that is True if progress
requires the variable to increase, and False if it requires the
variable to decrease.

↪→
↪→

8

9 Function signature:

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

10 def progress_function(self) -> Tuple[List[torch.Tensor],
List[bool]]:↪→

11 # Logic here
12 return progress_vars, progress_directions

A.3.2 ENVIRONMENT FEATURE ENGINEERING LIBRARY

Bi-DexHands For the Bi-DexHands benchmark, our library is composed of three simple functions:
1) Euclidean distance, 2) rotational distance between quaternions, 3) Euclidean distance to a ‘goal’
state if it exists.

1 # Determine distance of an object from a "goal", if it exists
2 def goal_dist(self, x):
3 return torch.norm(self.goal_pos - x, p=2, dim=-1)
4

5 # Determine distance between two objects
6 def dist(self, x, y):
7 return torch.norm(x - y, p=2, dim=-1)
8

9 # Rotational distance
10 def rot_dist(self, object_rot, target_rot):
11 quat_diff = quat_mul(object_rot, quat_conjugate(target_rot))
12 rot_dist = 2.0 * torch.asin(torch.clamp(torch.norm(quat_diff[:,

0:3], p=2, dim=-1), max=1.0))↪→
13 return rot_dist

MiniGrid For the MiniGrid benchmark, our library is composed of three simple functions: 1)
breadth-first search to find the shortest path between two grid cells, accounting for walls, 2) a function
finding the grid position of a given type of object, 3) a function that finds the grid position of an
object, given that the object is on the path between two given locations.

1 def bfs(grid, start, end):
2 """
3 Perform BFS to find the shortest path from start to end in a

minigrid environment.↪→
4 Args:
5 - grid (np.array): The grid represented as a numpy array of

shape (n, m, 3).↪→
6 - start (tuple): Starting position (x, y).
7 - end (tuple): Ending position (x, y).
8

9 Returns:
10 - path (list): List of tuples as coordinates for the shortest

path, including start and end.↪→
11 Returns an empty list if no path is found.
12 """
13 queue = deque([start])
14 paths = {start: [start]}
15 directions = [(1, 0), (0, 1), (-1, 0), (0, -1)] # Down, right,

up, left↪→
16 while queue:
17 current = queue.popleft()
18 #if grid[current[0], current[1], 0] != 1:
19 # print("Current", current)#, paths[current])
20 # print("Content", grid[current[0], current[1]])
21 if current == end:
22 return paths[current]
23 for direction in directions:
24 neighbor = (current[0] + direction[0], current[1] +

direction[1])↪→
25 if (0 <= neighbor[0] < grid.shape[0] and

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

26 0 <= neighbor[1] < grid.shape[1] and
27 neighbor not in paths and
28 is_traversable(grid[neighbor])):
29 paths[neighbor] = paths[current] + [neighbor]
30 queue.append(neighbor)
31 return [] # Return an empty list if no path is found
32

33 def get_position(grid, object_type, color=None):
34 """
35 Get the position of the object of the specified type in the

grid.↪→
36 Args:
37 - grid (np.array): The grid represented as a numpy array of

shape (n, m, 3).↪→
38 - object_type (int): The type of the object to find.
39

40 Returns:
41 - position (tuple): The position of the object in the grid.
42 """
43 for i in range(grid.shape[0]):
44 for j in range(grid.shape[1]):
45 if grid[i, j, 0] == object_type:
46 if color is not None and grid[i, j, 1] != color:
47 continue
48 return (i, j)
49 return None
50

51 def get_position_on_path(grid, agent_pos, final_pos, object_type,
color=None, closed=None):↪→

52 path = bfs(grid, agent_pos, final_pos)
53 for pos in path:
54 if grid[pos[0], pos[1], 0] == object_type:
55 if color is not None and grid[pos[0], pos[1], 1] !=

color:↪→
56 continue
57 if closed is not None and grid[pos[0], pos[1], 2] !=

closed:↪→
58 continue
59 return pos
60 return None

A.3.3 TASK DESCRIPTIONS

Bi-DexHands Environments
Task name

Task description
Task success condition

Over
This environment requires an object in one hand to be thrown to the goal location on the other hand.
The task is a simple single-stage task.
1[dist < 0.03]

DoorCloseInward
This environment require a closed door to be opened and the door can only be pushed outward or
initially open inward.
1[door handle dist < 0.5]

DoorCloseOutward
This environment requires a closed door to be opened, but because they can’t complete the task by
simply pushing, we need to catch the handle by hand and then open it, so it is relatively difficult.
1[door handle dist < 0.5]

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

DoorOpenInward
This environment requires the hands to grab the handles of the doors, then pull the two doors apart.
1[door handle dist > 0.5]

DoorOpenOutward
This environment requires the hands to grab the handles of the doors, then pull the two doors apart.
1[door handle dist < 0.5]

Scissors
This environment requires the hands to grab the handles of a pair of scissors, then open the scissors.
1[dof pos > −0.3]

SwingCup
This environment involves two hands and a dual handle cup, we need to use two hands to hold and
swing the cup to a target orientation.
1[rot dist < 0.785]

Switch
This environment requires both hands to reach their respective switches, then lower the switch handle
positions by applying a strong downward force.
1[1.4− (left switch z + right switch z) > 0.05]

Kettle
This environment requires the hands to grab the kettle, then move the kettle spout to the bucket.
1[bucket − kettle spout| < 0.05]

LiftUnderarm
This environment requires grasping the pot handle with two hands and lifting the pot to the designated
position.
1[dist < 0.05]

Pen
This environment requires the cap to be removed from the pen.
1[5× |pen cap − pen body| > 1.5]

BottleCap
This environment involves two hands and a dual handle cup, we need to move the cap away from the
bottle.
1[dist > 0.03]

CatchAbreast
This environment consists of two shadow hands placed side by side in the same direction and an
object that needs to be passed from one palm to a goal position on the other.
1[dist < 0.03]

CatchOver2Underarm
This environment requires an object in one hand to be thrown to the goal location on the other hand.
1[dist < 0.03]

CatchUnderarm
This environment requires an object in one hand to be thrown to the goal location on the other hand.
1[dist < 0.03]

ReOrientation
This environment involves two hands and two objects. Each hand holds an object and we need to
reorient the object to the target orientation.
1[rot dist < 0.1]

GraspAndPlace
This environment consists of dual-hands, an object and a bucket that requires us to pick up the object
and put it into the bucket.
1[block − bucket| < 0.2]

BlockStack
This environment involves dual hands and two blocks, and we need to stack the block as a tower.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

1[goal dist 1 < 0.07 and goal dist 2 < 0.07 and 50× (0.05− z dist 1) > 1]

PushBlock
This environment involves dual hands and two blocks, and we need to push both blocks to goal
positions.
1[0.1 ≤ left dist ≤ 0.1 and right dist ≤ 0.1]
1[0.5× |left dist − 0.1 and right dist ≤ 0.1]

TwoCatchUnderarm
This environment requires two objects to be thrown into the other hand at the same time.
1[dist < 0.03]

MiniGrid Environments
Task name

Task description
Sparse reward upon episode end

KeyCorridor
This environment is a Gridworld that requires the agent to navigate to a key, then to a blue ball.
A reward of 1− 0.9 ∗ (step count/max steps) is given for success, and 0 for failure.

ObstructedMaze
This environment is a Gridworld that requires the agent to navigate to a blue ball, and there is a
locked door on the path, and multiple misleading locked doors in the environment. Do not worry
about the key.
A reward of 1− 0.9 ∗ (step count/max steps) is given for success, and 0 for failure.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A.4 PROGRESS FUNCTION SAMPLES

SwingCup:

1 def progress_function(self) -> Tuple[List[torch.Tensor],
List[bool]]:↪→

2 # Stage 1: Gripping Handles
3 # Calculate distances of hands to respective handles
4 dist_left_hand_to_left_handle = self.dist(self.left_hand_pos,

self.cup_left_handle_pos)↪→
5 dist_right_hand_to_right_handle = self.dist(self.right_hand_pos,

self.cup_right_handle_pos)↪→
6 # Average distance to handles for gripping as one progress

metric↪→
7 avg_grip_distance = (dist_left_hand_to_left_handle +

dist_right_hand_to_right_handle) / 2↪→
8

9 # Stage 2: Orienting Cup
10 # Calculate rotational distance to the goal orientation
11 orientation_error = self.rot_dist(self.object_rot,

self.goal_rot)↪→
12

13 # Collect progress variables and directions (True for increasing,
False for decreasing)↪→

14 progress_vars = [avg_grip_distance, orientation_error]
15 progress_directions = [False, False] # Both should decrease
16

17 return progress_vars, progress_directions

CatchUnderarm

1 def progress_function(self):
2 # Calculate distance between the object's current position and

the goal.↪→
3 object_to_goal_distance = self.goal_dist(self.object_pos) #

Calculated via the helper function.↪→
4

5 # Since the task progress is measured by how close the object
comes to the goal,↪→

6 # we want this distance to decrease. Thus, progression in the
task is achieved↪→

7 # when `object_to_goal_distance` is minimized.
8 progress_vars = [object_to_goal_distance]
9 progress_directions = [False] # False indicates that we require

the distance to decrease to indicate progress.↪→
10

11 return progress_vars, progress_directions

DoorCloseOutward

1 def progress_function(self):
2 # Calculate distance between the object's current position and

the goal.↪→
3 object_to_goal_distance = self.goal_dist(self.object_pos) #

Calculated via the helper function.↪→
4

5 # Since the task progress is measured by how close the object
comes to the goal,↪→

6 # we want this distance to decrease. Thus, progression in the
task is achieved↪→

7 # when `object_to_goal_distance` is minimized.
8 progress_vars = [object_to_goal_distance]

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

9 progress_directions = [False] # False indicates that we require
the distance to decrease to indicate progress.↪→

10

11 return progress_vars, progress_directions

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

A.5 ABLATIONS

No feature library Failed CatchUnderarm code:

1 def progress_function(self):
2 # Calculate Euclidean distance between the current object

position and the goal position↪→
3 object_to_goal_distance = torch.norm(self.object_pos -

self.goal_pos, dim=-1)↪→
4

5 # Calculate the norm of the linear velocity of the object
6 object_velocity_magnitude = torch.norm(self.object_linvel,

dim=-1)↪→
7

8 # For stage 1, we want the distance to decrease
9 # For stage 2, we want the velocity's magnitude to decrease

(indicating soft catching)↪→
10 return [object_to_goal_distance, object_velocity_magnitude],

[False, False]↪→

No heuristic discretization Failed SwingCup code:

1 def progress_function_no_discretization(self) -> torch.Tensor:
2 # Constants for scales or thresholds
3 POSITION_THRESH = 0.05 # acceptable position error in meters
4 ROTATION_THRESH = 0.1 # acceptable rotation error in radians
5

6 # Compute distances of hands to their respective cup handles
7 left_handle_distance = self.dist(self.left_hand_pos,

self.cup_left_handle_pos)↪→
8 right_handle_distance = self.dist(self.right_hand_pos,

self.cup_right_handle_pos)↪→
9

10 # Compute rotational distance to the goal orientation for the
cup↪→

11 cup_orientation_error = self.rot_dist(self.object_rot,
self.goal_rot)↪→

12

13 # Assess position accuracy
14 left_hand_position_accuracy = (left_handle_distance <

POSITION_THRESH).float()↪→
15 right_hand_position_accuracy = (right_handle_distance <

POSITION_THRESH).float()↪→
16

17 # Assess rotation accuracy
18 rotation_accuracy = (cup_orientation_error <

ROTATION_THRESH).float()↪→
19

20 # Combine these measures into an overall progress metric (scaled
to 0-1000)↪→

21 total_accuracy = left_hand_position_accuracy *
right_hand_position_accuracy * rotation_accuracy↪→

22 progress_bins = (total_accuracy * 1000).long() # Convert to
long for discrete bin values↪→

23

24 return progress_bins

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

A.6 PROGRESS DISCRETIZATION HEURISTICS

Bi-DexHands

Code logic: for an increasing variable, the min progress value is the value at the start of the episode.
If the variable is greater than zero, the max is tracked as the max of the progress values seen so far. If
the variable is less than zero, the max is set to 0. Then progress is rescaled between the min and max.
For a decreasing variable, the complementary logic holds.

1 def compute_bin_from_progress(self, progress_vars,
progress_directions):↪→

2 """
3 Compute the binning from the progress variables and directions
4 """
5 # First, set min/max values if not already set
6 # Also normalize progress vars in here
7 for i in range(len(progress_directions)):
8 if progress_directions[i]:
9 if 'min' + str(i) not in self.extras:

10 self.extras['min' + str(i)] =
torch.min(progress_vars[i])↪→

11 if 'max' + str(i) in self.extras:
12 self.extras['max' + str(i)] =

torch.max(torch.tensor([torch.max(progress_vars[i]),
self.extras['max' + str(i)]]))

↪→
↪→

13 else:
14 self.extras['max' + str(i)] =

torch.max(progress_vars[i])↪→
15 if self.extras['max' + str(i)] < 0:
16 progress_vars[i] = torch.clamp((progress_vars[i] -

self.extras['min' + str(i)]) /
(-self.extras['min' + str(i)]), min=0, max=1)

↪→
↪→

17 else:
18 progress_vars[i] = torch.clamp((progress_vars[i] -

self.extras['min' + str(i)]) /
(self.extras['max' + str(i)] - self.extras['min'
+ str(i)]), min=0, max=1)

↪→
↪→
↪→

19 else:
20 if 'max' + str(i) not in self.extras:
21 self.extras['max' + str(i)] =

torch.max(progress_vars[i])↪→
22 if 'min' + str(i) in self.extras:
23 self.extras['min' + str(i)] =

torch.min(torch.tensor([torch.min(progress_vars[i]),
self.extras['min' + str(i)]]))

↪→
↪→

24 else:
25 self.extras['min' + str(i)] =

torch.min(progress_vars[i])↪→
26 if self.extras['max' + str(i)] < 0:
27 progress_vars[i] = torch.clamp((self.extras['max' +

str(i)] - progress_vars[i]), min=0) /
(self.extras['max' + str(i)] - self.extras['min'
+ str(i)])

↪→
↪→
↪→

28 else:
29 progress_vars[i] = torch.clamp((self.extras['max' +

str(i)] - progress_vars[i]), min=0) /
self.extras['max' + str(i)]

↪→
↪→

30 print("Extras", self.extras)
31 # Progress is now associated with increasing values for both

bins...↪→
32 # So we can generate an overall progress bin by just adding them

together, with the appropriate granularity/scaling↪→
33 binning = torch.zeros(progress_vars[0].shape, dtype=torch.long,

device=progress_vars[0].device)↪→

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

34 for i in range(len(progress_vars)):
35 binning += ((progress_vars[i] * (1000 * (i ==

(len(progress_vars) - 1)) + 20)).long() % 10000)↪→
36 # Now generate bins from normalized vars
37 return binning

MiniGrid

1 def discretize_progress(self, obs, max_progress):
2 # Progress is decreasing, max_progress is set as the progress

value at the start of the episode↪→
3 # Get progress vars
4 progress_vars, _ = self.progress_function()
5

6 # Replace infs and nans in progress_vars
7 progress_vars = [0 if math.isnan(var) or math.isinf(var) else var

for var in progress_vars]↪→
8

9 # Clip by max progress
10 if max_progress is None:
11 max_progress = [elem for elem in progress_vars]
12 else:
13 progress_vars = [min(var, max_progress[i]) for i, var in

enumerate(progress_vars)]↪→
14

15 # Combine bins
16 obs['goal_distance'] = progress_vars[0] +

100*progress_vars[1]*(progress_vars[0] == 0)↪→
17

18 return obs, max_progress

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

A.7 BI-DEXHANDS RESULTS

The results in this section correspond to Fig. 3. The bar chart numbers are reflected in tabular form.
All numbers are measured as averages across trials. For ProgressCounts, we also include the standard
deviation across 5 trials. For Eureka, we simply report the mean since the standard deviation is not
included in the original Eureka paper.

Task name ProgressCounts Eureka
Over 0.93 ± 0.01 0.92
DoorCloseInward 1.00 ± 0.00 1.00
DoorCloseOutward 0.90 ± 0.13 0.96
DoorOpenInward 0.07 ± 0.15 0.00
DoorOpenOutward 0.99 ± 0.01 1.00
Scissors 1.00 ± 0.00 1.00
Swing cup 0.97 ± 0.02 0.66
Switch 0.00 ± 0.00 0.00
Kettle 0.99 ± 0.01 0.89
LiftUnderarm 0.22 ± 0.24 0.70
Pen 0.49 ± 0.06 0.57
BottleCap 0.94 ± 0.03 0.32
CatchAbreast 0.56 ± 0.04 0.50
CatchOver2UnderArm 0.90 ± 0.03 0.90
CatchUnderarm 0.76 ± 0.05 0.67
ReOrientation 0.03 ± 0.00 0.31
GraspAndPlace 0.99 ± 0.01 0.50
BlockStack 0.05 ± 0.05 0.14
PushBlock 0.03 ± 0.03 0.09
TwoCatchUnderarm 0.03 ± 0.02 0.00

Table 8: A comparison of task performance between ProgressCounts and Eureka across the 20
tasks in Bi-DexHands. Results are averaged across 5 trials for both methods, standard deviation is
reported for ProgressCounts.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

A.8 PROGRESS VS PROGRESS DIFFERENCES AS REWARD

While some prior work on reward shaping uses the equivalent of progress differences as reward, we
find that using progress directly as reward leads to better average task success rate than using progress
differences on Bi-DexHands. Therefore, in the main paper we use progress directly as a reward when
comparing to count-based rewards in Section 5.3.

Task name ProgressAsReward ProgressDifferenceAsReward
Average 0.45 0.32

Over 0.90 0.88
DoorCloseInward 1.00 0.96
DoorCloseOutward 1.00 0.00
DoorOpenInward 0.00 0.31
DoorOpenOutward 0.31 0.00
Scissors 1.00 1.00
SwingCup 0.99 0.94
Switch 0.00 0.00
Kettle 0.00 0.04
LiftUnderarm 0.08 0.35
Pen 0.22 0.00
BottleCap 0.04 0.00
CatchAbreast 0.49 0.01
CatchOver2UnderArm 0.94 0.00
CatchUnderarm 0.88 0.82
ReOrientation 0.06 0.03
GraspAndPlace 0.98 1.00
BlockStack 0.00 0.00
PushBlock 0.02 0.00
TwoCatchUnderarm 0.01 0.00

Table 9: Using progress directly as reward leads to better average task success rate than using
progress differences on Bi-DexHands.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

A.9 MINIGRID TRAINING CURVES

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1e7

0.0

0.2

0.4

0.6

0.8
Av

er
ag

e
Re

tu
rn

Medium: KeyCorridorS3R3

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1e7

0.0

0.2

0.4

0.6

0.8

Av
er

ag
e

Re
tu

rn

Medium: KeyCorridorS4R3

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1e7

0.0

0.2

0.4

0.6

0.8

Av
er

ag
e

Re
tu

rn

Medium: KeyCorridorS5R3

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment Steps 1e7

0.0

0.2

0.4

0.6

0.8

Av
er

ag
e

Re
tu

rn

Medium: KeyCorridorS6R3

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment Steps 1e7

0.0

0.2

0.4

0.6

0.8

Av
er

ag
e

Re
tu

rn

Medium: ObstructedMaze-2Dlhb

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment Steps 1e7

0.0

0.2

0.4

0.6

0.8

Av
er

ag
e

Re
tu

rn
Medium: ObstructedMaze-1Q

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Environment Steps 1e7

0.0

0.2

0.4

0.6

0.8

Av
er

ag
e

Re
tu

rn

Medium: ObstructedMaze-2Q

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Environment Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
tu

rn

Medium: ObstructedMaze-Full

Figure 5: Training curves for ProgressCounts on 8 hard-exploration MiniGrid tasks.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

A.10 EXPERIMENTAL DETAILS AND HYPERPARAMETERS

Environments We train our policies on two environments: Bi-DexHands (Chen et al., 2022), and
MiniGrid (Chevalier-Boisvert et al., 2024).

Code For the Bi-DexHands benchmark, we build upon the codebase from Eureka (Ma
et al., 2023): https://github.com/eureka-research/Eureka. The repo uses
the RLGames implementation of PPO for training (Makoviichuk & Makoviychuk, 2021).
For the MiniGrid benchmark, we build upon the codebase from NovelD (Zhang et al.,
2021): https://github.com/tianjunz/NovelD. Our experimental code is is avail-
able at the following anonymous link: https://drive.google.com/drive/folders/
1G88Je0K4BuexWhE8ZLgoM0WM6vHcBrvt?usp=sharing.

Hyperparameters For all Bi-DexHands tasks, we scale extrinsic rewards by 0.05, and normalize
intrinsic rewards to a mean of 0.001. Elsewhere, we use the default hyperparameters associated
with Eureka, which are the default parameters from the original Bi-DexHands benchmark. Progress
functions are discretized into 1020 bins for count-based exploration (for tasks with two subtasks,
the first subtask is discretized to 20 bins, and the second subtask to 1000 bins). For all MiniGrid
tasks, we set an intrinsic reward coefficint of 0.5, and leave all other hyperparameters at default
values. Progress functions are discretized into 50 bins for count-based exploration (for tasks with two
subtasks, each subtask is discretized to 25 bins).

Compute All experiments were run on a machine with 8 NVidia Tesla V100 GPUs across 3 weeks.

26

https://github.com/eureka-research/Eureka
https://github.com/tianjunz/NovelD
https://drive.google.com/drive/folders/1G88Je0K4BuexWhE8ZLgoM0WM6vHcBrvt?usp=sharing
https://drive.google.com/drive/folders/1G88Je0K4BuexWhE8ZLgoM0WM6vHcBrvt?usp=sharing

	Introduction
	Related work
	Preliminaries
	Methods
	Progress Functions
	Progress Function Definition
	Progress Function Generation

	From Progress to Reward
	Preliminaries: Count-Based Rewards
	Count-Based Rewards from Progress

	Evaluation
	Experimental Setup
	Comparison to Extrinsic Reward Baselines
	Method Ablations

	Discussion
	Appendix
	Ablating the choice of constants for ProgressCounts
	Minigrid experiments
	Details on LLM inputs
	System prompt
	Environment feature engineering library
	Task descriptions

	Progress function samples
	Ablations
	Progress discretization heuristics
	Bi-DexHands results
	Progress vs Progress Differences as Reward
	MiniGrid training curves
	Experimental details and hyperparameters

