
UltraTWD: Optimizing Ultrametric Trees for Tree-Wasserstein Distance

Fangchen Yu 1 2 Yanzhen Chen 1 Jiaxing Wei 1 Jianfeng Mao 1 3 Wenye Li 1 4 * Qiang Sun 2 5 *

Abstract
The Wasserstein distance is a widely used metric
for measuring differences between distributions,
but its super-cubic time complexity introduces
substantial computational burdens. To mitigate
this, the tree-Wasserstein distance (TWD) offers
a linear-time approximation by leveraging a tree
structure; however, existing TWD methods of-
ten compromise accuracy due to suboptimal tree
structures and edge weights. To address it, we in-
troduce UltraTWD, a novel unsupervised frame-
work that simultaneously optimizes both ultra-
metric tree structures and edge weights to more
faithfully approximate the cost matrix. Specifi-
cally, we develop algorithms based on minimum
spanning trees, iterative projection, and gradient
descent to efficiently learn high-quality ultramet-
ric trees. Empirical results across document re-
trieval, ranking, and classification tasks demon-
strate that UltraTWD achieves superior approx-
imation accuracy and competitive downstream
performance. Code is available at: https:
//github.com/NeXAIS/UltraTWD.

1. Introduction
The Wasserstein distance (Villani, 2008) is a powerful met-
ric for measuring dissimilarities between probability distri-
butions, with various applications (Takezawa et al., 2021;
Khrulkov et al., 2023) A well-known example, the Word
Mover’s Distance (Kusner et al., 2015), computes distances
between documents modeled as bag-of-words distributions
over n word embeddings. Despite its effectiveness, the
Wasserstein distance suffers from a high computational com-
plexity of O(n3 log n), limiting its practical applicability.

1The Chinese University of Hong Kong, Shenzhen 2Mohamed
bin Zayed University of Artificial Intelligence 3Shenzhen Research
Institute of Big Data 4The Hong Kong University of Science and
Technology (Guangzhou) 5University of Toronto. Correspondence
to: Wenye Li <wenyeli@hkust-gz.edu.cn>, Qiang Sun <qsun-
stats@gmail.com>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

Figure 1. The tree-Wasserstein distance embeds data points into a
tree and replaces the cost d(xi,xj) with tree distance dT (xi,xj).

Several approximation methods have been proposed to mit-
igate the computational challenges of the Wasserstein dis-
tance. The Sinkhorn distance (Cuturi, 2013) reduces the
complexity to O(n2) by introducing an entropic regulariza-
tion term. The sliced-Wasserstein distance (SWD) (Rabin
et al., 2012) achieves O(n log n) complexity by projecting
high-dimensional data onto one-dimensional spaces and
computing distances over these 1D projections. The tree-
Wasserstein distance (TWD) (Le et al., 2019) further im-
proves efficiency by learning a rooted tree, enabling O(n)
complexity, as illustrated in Fig. 1. This work focuses on
advancing the TWD methodology.

Existing TWD methods can be categorized into four cate-
gories, each with notable limitations. (1) Tree-construction
methods: QuadTree (Indyk & Thaper, 2003) and Clus-
terTree (Le et al., 2019) construct trees by partitioning hyper-
cubes through recursive division or farthest-point clustering
(Gonzalez, 1985). However, their edge weights, determined
by the depth of nodes, are often suboptimal. (2) Weight-
optimized methods: qTWD and cTWD (Yamada et al.,
2022) refine the edge weights of QuadTree or ClusterTree
using Lasso regression but fail to optimize the tree structures
themselves, resulting in performance heavily dependent on
the randomness of the initial tree. (3) Tree-sliced meth-
ods: Sliced-qTWD and cTWD (Yamada et al., 2022; Otao
& Yamada, 2023) improve stability by averaging multiple
random trees, yet they cannot optimize tree structures. (4)
Supervised method: UltraTree (Chen et al., 2024) learns an
ultrametric tree by regressing TWD against the true Wasser-
stein distance. However, this approach requires extensive
training data with precomputed Wasserstein distances as
labels, which makes it computationally expensive.

1

https://github.com/NeXAIS/UltraTWD
https://github.com/NeXAIS/UltraTWD

UltraTWD: Optimizing Ultrametric Trees for Tree-Wasserstein Distance

Given these challenges, unsupervised methods fail to opti-
mize tree structures and are susceptible to random initializa-
tion, while the supervised method depends on expensive la-
beled training data. These limitations motivate us to develop
a new framework that optimizes both tree structure and edge
weights without requiring training data. To achieve this, we
propose UltraTWD, a novel unsupervised framework that
simultaneously learns the ultrametric tree structure and edge
weights, delivering enhanced accuracy. To ensure the tree
distance dT closely approximates the cost d, our method
constructs an ultrametric tree equipped with an ultrametric
DT = [dT (xi,xj)] ∈ Rn×n that aligns with the cost ma-
trix D = [d(xi,xj)] ∈ Rn×n. Specifically, this is achieved
by solving ultrametric nearness problems, such as

min
DT

∥DT −D∥∞ or min
DT

∥DT −D∥2F .

Throughout the optimization, both the tree structure and
edge weights are iteratively refined, resulting in a more
accurate and robust tree-Wasserstein distance.

Our contributions are summarized as follows:

• We introduce UltraTWD, a new framework for tree-
Wasserstein distance that leverages the ultrametric property.
To our knowledge, this is the first unsupervised framework
to simultaneously optimize tree structure and edge weights,
overcoming the reliance of prior work on fixed tree struc-
tures, multiple trees, or extensive training data.

•We formulate ultrametric nearness problems to construct
ultrametric trees that closely approximate a given cost ma-
trix. To solve these problems efficiently, we propose three
algorithms: (1) a fast minimum spanning tree-based ap-
proach, (2) an iterative projection method, and (3) a gradient
descent-based method, all yielding high-quality solutions.

• Our UltraTWD achieves the lowest estimation errors
among unsupervised methods and even surpasses the super-
vised method across four benchmark datasets. Furthermore,
our framework demonstrates strong empirical performance
in document retrieval, ranking, and classification tasks, high-
lighting its practicality for Wasserstein-based applications.

2. Preliminaries
2.1. 1-Wasserstein Distance

The Wasserstein distance quantifies the difference between
distributions. In text analysis, each word is represented by
an embedding vector xi ∈ Rd, with the vocabulary X =
[x1, . . . ,xn] ∈ Rd×n containing n words. A document
µ is modeled as a normalized bag-of-words distribution,
expressed as

∑n
i=1 aiδxi

, where δxi
is the Dirac delta at

xi, mass ai represents the frequency of the i-th word in µ,
and

∑n
i=1 ai = 1. In this paper, the Wasserstein distance

refers to the 1-Wasserstein distance, defined as follows:

Definition 1 (1-Wasserstein Distance). Given two dis-
tributions µ =

∑n
i=1 aiδxi

and ν =
∑n

j=1 bjδxj
, the 1-

Wasserstein distance between µ and ν is defined as:

W1(µ, ν) := min
γ∈Γ(µ,ν)

n∑
i,j=1

γijd(xi,xj), (1)

where the cost d(xi,xj) represents the distance between
xi and xj , and γ is the transport plan in Γ(µ, ν) defined as

Γ(µ, ν) = {γ ∈ Rn×n
+ |

∑
j

γij = ai,
∑
i

γij = bj}, (2)

where a⊤ = [a1, . . . , an] and b⊤ = [b1, . . . , bn] are mass
vectors satisfying the total mass

∑n
i=1 ai =

∑n
j=1 bj = 1.

Eq. (1) minimizes the total cost of transforming distribution
µ into ν, solvable using a linear programming algorithm
with a computational complexity of O(n3 log n) (Villani,
2008). With Euclidean distance as the cost, W1 corresponds
to the Word Mover’s Distance (Kusner et al., 2015).

2.2. Tree-Wasserstein Distance

The tree-Wasserstein distance (TWD) efficiently approx-
imates the 1-Wasserstein distance using a tree structure.
Given the vocabulary X = [x1,x2, . . . ,xn] ∈ Rd×n, each
word vector xi is embedded into a corresponding leaf node
li in the tree (Fig. 2). This tree structure enables TWD to
provide a closed-form solution and achieve efficient com-
putation with a linear complexity of O(n), where n is both
the vocabulary size and number of leaves.

Figure 2. Illustration of the tree-Wasserstein distance.

Definition 2 (Tree-Wasserstein Distance). Given a tree T
with tree distance dT , the tree-Wasserstein distance between
distributions µ and ν is defined as (Yamada et al., 2022):

WT (µ, ν) := min
γ∈Γ(µ,ν)

n∑
i,j=1

γijdT (xi,xj), (3)

where dT (xi,xj) represents the shortest path distance be-
tween leaves li and lj , and γ is the transport plan as defined
in Eq. (2). The TWD has the following analytical form:

WT (µ, ν) =
∑
e∈T

we · |µ(Te)− ν(Te)|, (4)

where we denotes the weight of edge e ∈ T , and µ(Te),
ν(Te) are the total masses within the subtree Te rooted at
the deeper node of edge e, as illustrated in Fig. 2.

2

UltraTWD: Optimizing Ultrametric Trees for Tree-Wasserstein Distance

Figure 3. A diagram of the proposed UltraTWD framework for tree-Wasserstein distance computation. UltraTWD-MST applies minimum
spanning trees (MST) to minimize ∥DT −D∥∞ with an optimal guarantee. To minimize ∥DT −D∥2F , UltraTWD-IP employs iterative
projection (IP) on the distance matrix, while UltraTWD-GD uses gradient descent (GD) for efficient tree structure optimization.

3. Unsupervised Tree-Wasserstein Distance
Based on Ultrametric Trees

In this section, we first analyze the approximation gap be-
tween WT and W1, motivating our formulation of two ultra-
metric nearness problems. We then present the UltraTWD
framework with three unsupervised approaches for ultramet-
ric optimization, concluding with the algorithm analysis.

3.1. Bridging the Gap between WT and W1

The discrepancy between the tree-Wasserstein distance WT

and the 1-Wasserstein distance W1 primarily stems from
the difference between the tree distance dT and the cost d.
As defined in Eqs. (1) and (3), if dT (xi,xj) = d(xi,xj)
for all pairs (xi,xj), then WT (µ, ν) ≡ W1(µ, ν) for any
distributions µ and ν (Yamada et al., 2022). However, this
ideal scenario is rarely achievable because the tree distance
matrix DT = [dT (xi,xj)] ∈ Rn×n must be a tree metric,
whereas the cost matrix D = [d(xi,xj)] ∈ Rn×n generally
does NOT conform to a tree metric.
Definition 3 (Distance and Tree Metric (Semple & Steel,
2003)). Consider a symmetric, non-negative matrix D ∈
Rn×n with zero diagonal values. For all 1 ≤ i, j, k, l ≤ n:
•D is a distance metric if it satisfies the triangle inequality:

dij ≤ dik + djk; (5)

• D is a tree metric if it satisfies the four-point condition:

dij + dkl ≤ max{dik + djl, dil + djk}. (6)

From Definition 3, a tree metric must be a distance metric,
as setting l = k in Eq. (6) implies Eq. (5). However, a
distance metric is not necessarily a tree metric. For example,

the Euclidean distance matrix D =

0 3 5 4
3 0 4 5
5 4 0 3
4 5 3 0

 satisfies

all triangle inequalities but fails the four-point condition,
due to d13 + d24 = 10 > 8 = max{d12 + d34, d14 + d23}.

The fundamental mismatch between DT and D creates a
gap between WT and W1. Bridging this gap requires finding
a tree metric DT that closely approximates the given cost
matrix D, which serves as the motivation for our framework.

3.2. Formulating Ultrametric Nearness Problems

To closely approximate D, we first formulate the tree-
metric nearness problem, which aims to find the nearest
tree metric DT to the given cost matrix D ∈ Rn×n:

min
DT∈Rn×n

∥DT −D∥,

s.t. dTij + dTkl ≤ max{dTik + dTjl, d
T
il + dTjk},

dTii = 0, dTij = dTji ≥ 0,∀ 1 ≤ i, j, k, l ≤ n,

(7)

where dTij represents dT (xi,xj). However, solving this
problem is intractable due to itsO(n4) constraints involving
four points and the non-convex nature of the optimization.

To simplify the problem, we focus on ultrametrics, a special
subset of tree metrics. In a rooted tree T , the tree distance
dT (xi,xj) between two leaves li and lj is defined as the
height of their least common ancestor (LCA):

dT (xi,xj) := h(LCA(li, lj)). (8)

This definition induces an ultrametric DT = [dT (xi,xj)] ∈
Rn×n, and T is referred to as an ultrametric tree.

Definition 4 (Ultrametric (Semple & Steel, 2003)). A tree
metric DT ∈ Rn×n is an ultrametric if and only if it satis-
fies the strong triangle inequality:

dTij ≤ max{dTik, dTjk}, ∀ 1 ≤ i, j, k ≤ n. (9)

For an ultrametric tree, the edge weight is defined as we =
1
2

(
h(ue)− h(ve)

)
, where ue (ve) is the parent (child) node;

see Fig. 2. Then, dT (xi,xj) in Eq. (8) equals the shortest
path distance between li and lj , consistent with Definition 2.
See Appendix A.3 for ultrametric background.

3

UltraTWD: Optimizing Ultrametric Trees for Tree-Wasserstein Distance

Focusing on ultrametrics simplifies Problem (7) into the
following ultrametric nearness problems, which aim to
find the nearest ultrametric DT to a given cost matrix D.
Specifically, we consider two optimization objectives:

min
DT∈Rn×n

∥DT −D∥∞, (10)
or,

min
DT∈Rn×n

∥DT −D∥2F , (11)

subject to the constraints:

dTij ≤ max{dTik, dTjk}, dTii = 0, dTij = dTji ≥ 0,∀i, j, k ∈ [n].

• The infinity norm is defined as ∥X∥∞ := maxi,j |Xij |
and minimizes the largest entrywise deviation between DT

and D. By controlling the maximum error, this objective
ensures that DT avoids significant outliers.

• The Frobenius norm is defined as ∥X∥2F :=
∑

i,j X
2
ij

and minimizes the overall squared error between DT and
D. This objective distributes the error more evenly across
all entries, resulting in a good average approximation.

As illustrated in Fig. 3, we propose the UltraTWD frame-
work to minimize these two objectives, introducing three
approaches for optimizing ultrametrics, detailed as follows.

3.3. Optimizing Ultrametrics with Infinity Norm

To compute the l∞-nearest ultrametric of a cost matrix D,
we first construct its minimum spanning tree (MST) using
Prim’s algorithm (Prim, 1957), which yields an ultrametric
tree T and the corresponding ultrametric DT (Chen et al.,
2024). For simplicity, we collectively denote both T and DT

as MST(D). We then refine DT to obtain the l∞-nearest
ultrametric D∗

T using Theorem 5.
Theorem 5 (l∞-Nearest Ultrametric (Chepoi & Fichet,
2000)). For a distance metric D ∈ Rn×n, an optimal ultra-
metric D∗

T that minimizes ∥DT −D∥∞ is given by:

D∗
T = MST(D) +

1

2
∥MST(D)−D∥∞1, (12)

where 1ij = 1 if i ̸= j, and 0 otherwise, for all i, j ∈ [n].

The algorithm is summarized below. Since D∗
T is an ultra-

metric, the corresponding ultrametric tree T ∗ can be directly
constructed using the MST. While prior works (Chen et al.,
2024; Lin et al., 2025) have used or compared against the
MST (Prim, 1957), to the best of our knowledge, we are the
first to leverage the l∞-nearest ultrametric for computing
the tree-Wasserstein distance.

Algorithm 1 UltraTWD-MST (Minimum Spanning Tree)
Input: D ∈ Rn×n: cost matrix.
Output: T ∗: optimal ultrametric tree under infinity norm.

1: Compute the l∞-nearest ultrametric via Eq. (12):

D∗
T = MST(D) +

1

2
∥MST(D)−D∥∞1.

2: Construct the ultrametric tree: T ∗ = MST(D∗
T).

3.4. Optimizing Ultrametrics with Frobenius Norm:
Iterative Projection Method

Unlike the l∞-nearest ultrametric, which has a closed-form
solution, the Frobenius-norm-based ultrametric nearness
problem (Eq. (11)) is NP-hard (Křivánek, 1988). Prior meth-
ods either relax the strong triangle inequalities into uncon-
strained objectives with cluster-based regularization (Chier-
chia & Perret, 2019; Cohen-Addad et al., 2018; Chatziafratis
et al., 2018), limiting their use to hierarchical clustering,
or focus on alternative triplet relations like LCA relations
(Wang & Wang, 2020; Lin et al., 2025), which do not guar-
antee the ultrametric property. In contrast, we directly en-
force the triplet constraint dTij ≤ max{dTik, dTjk} and solve
Eq. (11) through a matrix optimization method.

Although exact minimization is extremely challenging, we
propose an approximate solution using iterative projections
(IP). The key idea is to iteratively enforce the ultrametric
constraints for each triplet (i, j, k).

First, we solve the sub-problem min
DT∈Ωijk

∥DT−D∥2F , where

the subset Ωijk imposes constraints for a single triplet:

Ωijk := {DT ∈ Sn | dTij ≤ max{dTik, dTjk}},

with Sn representing the set of n×n non-negative symmetric
matrices with zero diagonal entries. Although Ωijk is non-
convex, this sub-problem admits a closed-form solution:

Case 1: If dij ≤ max{dik, djk}, the constraint is already
satisfied, and D is feasible. Thus, DT = D ∈ Ωijk.

Case 2: If dij > max{dik, djk}, suppose dik ≥ djk. To
satisfy the constraint dTij ≤ dTik, dij must be decreased to
dTij , and dik must be increased to dTik. Then the objective is

∥DT −D∥2F = 2 ·
(
(dTij − dij)

2 + (dTik − dik)
2
)
.

To minimize it, we set dTij = dTik. Let ∆ = dij − dTij ≥ 0,
then the objective becomes:

2 · (∆2 + (dij − dik −∆)2).

Minimizing this quadratic function gives ∆ = 1
2 (dij − dik).

djk dik

dijdTij

dTik

∆

∆

As shown above, we obtain the matrix DT as follows:

dTij = dTji = dij −∆, dTik = dTki = dik +∆,

while all other elements of DT remain unchanged from D.

The resulting matrix DT is denoted as PΩijk
(D), i.e.,

PΩijk
(D) := argmin

DT∈Ωijk

∥DT − D∥2F , representing the pro-

jection of D onto the subset Ωijk.

4

UltraTWD: Optimizing Ultrametric Trees for Tree-Wasserstein Distance

Next, we solve min
DT∈Ω

∥DT −D∥2F , where Ω is defined as:

Ω := {DT ∈ Sn | dTij ≤ max{dTik, dTjk}, ∀ i, j, k ∈ [n]}.

The feasible region Ω represents the ultrametric space and
can be expressed as the intersection of all subsets: Ω =
∩ijkΩijk. The optimal solution is PΩ(D), the projection of
D onto Ω, but finding this projection directly is challenging.

To find an approximate solution, we employ an itera-
tive projection method called the Halpern-Lions-Wittmann-
Bauschke (HLWB) projection (Censor, 2006; Li et al.,
2023). Starting with D0 = D, we iteratively refine Dt

by moving it toward D and successively projecting it onto
each subset Ωijk. Empirically, each projection can enforce
one strong triangle inequality, and we observe that iterative
projections progressively satisfy more inequalities, poten-
tially leading to an ultrametric. The iterative update rules
are detailed below.
Theorem 6 (HLWB Projection (Censor, 2006; Censor
et al., 2022)). Given subsets Ω1, · · · ,Ωm in Euclidean
space with a non-empty intersection Ω = Ω1 ∩ · · · ∩ Ωm,
and a distance matrix D ∈ Rn×n, initialize D0 = D. The
iterative scheme for iteration t = 1, 2, · · · is as follows:

1. Movement: Compute Y t = σtD + (1− σt)D
t−1;

2. Projection: Update Dt = PΩ1
PΩ2
· · · PΩm

(Y t),

where PΩi
(Y) denotes the projection of Y onto subset Ωi.

If {Ωi}mi=1 are closed convex subsets and {σt}+∞
t=1 is a steer-

ing parameters sequence (i.e., σt ∈ (0, 1) and σt → 0), Dt

linearly converges to PΩ(D) as t→∞.

The HLWB projection ensures convergence in convex prob-
lems, but such guarantees may not hold in this non-convex
case. Nevertheless, a high-quality approximate solution Dt

can be achieved in just one iteration (t = 1). This method
updates matrix entries directly and implicitly alters the tree
structure after each projection, as a different DT induces a
different tree T . The explicit tree topology is constructed
only once in the final step of Algorithm 2, using the MST
algorithm on the projected matrix Dt. The algorithm is
presented below, with σt =

1
t+1 following Li et al. (2023).

Algorithm 2 UltraTWD-IP (Iterative Projection)
Input: D ∈ Rn×n: cost matrix, m: maximum number of

iterations (default m = 1).
Output: T ∗: the ultrametric tree under the Frobenius norm.

1: Initialize D0 = D.
2: for t = 1 to m do
3: Update Dt ← 1

t+1D + t
t+1D

t−1 (Movement step)
4: for each triplet (i, j, k) do
5: Dt ← PΩijk

(Dt) (Projection step)
6: end for
7: end for
8: Construct the ultrametric tree: T ∗ = MST(Dt).

3.5. Optimizing Ultrametrics with Frobenius Norm:
Gradient Descent Method

The UltraTWD-IP updates n(n−1)
2 entries in DT ∈ Rn×n

by projecting onto O(n3) subsets {Ωijk}, which can be
inefficient for large n. To improve efficiency and scalability,
we adopt a gradient descent (GD) approach to directly
optimize the tree structure, inspired by Chen et al. (2024).

When the tree structure is fixed, the ultrametric DT is fully
determined by the node heights in T , as defined in Eq. (8):

DT = [dT (xi,xj)] = [h(LCA(li, lj))],

which defines a mapping f : HT 7→ DT , where HT ∈
R2n−1 denotes the heights of all 2n − 1 nodes in T . By
parameterizing DT with HT , the objective becomes:

F (HT) := ∥f(HT)−D∥2F ,

reducing the number of parameters from n(n−1)
2 to 2n− 1.

The optimization process consists of the following steps.
Initialize T 0 = MST(D) with H0

T . Then, for iteration t,

1. Update HT : Fix the tree structure (i.e., the LCA rela-
tionships) and update Ht−1

T via gradient descent:
Ht

T ← Ht−1
T − α∇F (Ht−1

T),

where α is the learning rate. The gradient is efficiently
computed using PyTorch’s automatic differentiation.

2. Update DT : Compute Dt = f(Ht
T). Note that Dt may

have non-zero diagonal entries because dtii corresponds to
the height of leaf node li, which can be non-zero in Ht

T . To
ensure Dt is a valid distance matrix, we adjust it as follows:

dtij ←
1

2
(2dtij − dtii − dtjj),

which ensures zero diagonal values.

3. Update T : Apply the MST algorithm to Dt to update the
tree structure T t and obtain new heights Ht

T . Then repeat
the update of Ht

T in Step 1.

While based on UltraTree (Chen et al., 2024), our method
uses an unsupervised objective ∥DT − D∥2F instead of a
supervised loss, resulting in a more efficient Algorithm 3.

Algorithm 3 UltraTWD-GD (Gradient Descent)
Input: D ∈ Rn×n: cost matrix, m: maximum iterations

(default m = 8), α: learning rate (default α = 0.02).
Output: T ∗: the ultrametric tree under the Frobenius norm

1: Initialize T 0 = MST(D) with node heights H0
T .

2: for t = 1 to m do
3: Update heights: Ht

T ← Ht−1
T − α∇F (Ht−1

T).
4: Compute the ultrametric: Dt = f(Ht

T).
5: Adjust entries of Dt: dtij ← 1

2 (2d
t
ij − dtii − dtjj).

6: Update tree: T t = MST(Dt) with heights Ht
T .

7: end for
8: Return the optimized ultrametric tree: T ∗ = T t.

5

UltraTWD: Optimizing Ultrametric Trees for Tree-Wasserstein Distance

3.6. Algorithm Analysis

Convergence Analysis. Due to the non-convex and NP-hard
nature of the problem (Eq. (11)), theoretical convergence
is extremely hard to guarantee. Similar gradient descent
methods in prior work (Chierchia & Perret, 2019; Chen
et al., 2024) also lack convergence guarantees. Neverthe-
less, both UltraTWD-IP and GD methods exhibit empirical
convergence, as demonstrated in Fig. 4.

Time Complexity of Tree Learning. Given a fixed support
size n, both UltraTWD and UltraTree learn a single tree. (1)
UltraTWD-MST: Total complexity isO(n2), as computing
the MST for D ∈ Rn×n takes O(n2) time. (2) UltraTWD-
IP: It involves O(n3) projections with O(1) cost each. We
use only one iteration in practice, resulting in O(n3) total
complexity, which is practical for moderately large n. (3)
UltraTWD-GD: Each iteration takesO(n2) due to gradient
descent and MST, giving O(mn2) overall. We set m = 8
in practice, making it more scalable than UltraTWD-IP for
large n. (4) UltraTree (Chen et al., 2024): Precomputing
W1 for M training pairs requiresO(Mn3 log n). Tree learn-
ing hasO(mn2+mMn) complexity due to computing WT

in each iteration for loss evaluation. Overall, UltraTWD-GD
is significantly more efficient than UltraTree.

Table 1. Time Complexity Comparison. For N distributions over a
support of size n, “W Computation” is the cost of computing the
pairwise distance matrix WT or W1 ∈ RN×N .

Time Complexity Tree Learning W Computation
UltraTWD-MST O(n2) O(N2 · n)
UltraTWD-IP O(n3) O(N2 · n)
UltraTWD-GD O(mn2) O(N2 · n)
UltraTree O(mn2 +mMn) O(N2 · n)
W1 – O(N2 · n3 logn)

Time Complexity of W Computation. For N distribu-
tions over a support of size n, computing the 1-Wasserstein
distance matrix W1 ∈ RN×N requires O(N2 · n3 log n)
time, while computing the WT matrix on an ultrametric tree
requires onlyO(N2 ·n) time. For a fair comparison, includ-
ing UltraTWD’s tree learning cost (O(n3) orO(mn2)), our
methods remain significantly faster than exact W1 compu-
tation, especially for large datasets. Results in Section 4.4
further demonstrate the computational efficiency of TWD.

4. Experiments
4.1. Experimental Setting

Dataset. We evaluate our methods using four benchmark
text datasets: BBCSport, Reuters, Ohsumed, and Recipe
(Huang et al., 2016), following previous studies (Takezawa
et al., 2021; Chen et al., 2024). These datasets are publicly
available1, with detailed statistics provided in Table 2.

1https://github.com/mkusner/wmd

Table 2. Statistical Information of Text Datasets.
Dataset Avg. Words (n) # Test Data (N) # Classes
BBCSport 6,051 220 5
Reuters 6,416 1,000 8
Ohsumed 9,467 1,000 10
Recipe 4,084 1,311 15

Implementation. Each dataset contains 5 test sets. For each
test set, we construct the vocabulary X = [x1, . . . ,xn] ∈
Rd×n, where d = 300 is the word embedding dimension
and n is the number of unique words (average values shown
in Table 2). Each test document µi is represented as a
normalized bag-of-words distribution. We compute the cost
matrix D ∈ Rn×n using Euclidean distances: dij = ∥xi −
xj∥2. The vocabulary X and cost D are then used to learn
the tree T , and each WT (µi, µj) is computed based on T .

Evaluation. The effectiveness of the tree-Wasserstein dis-
tance is assessed based on the following objectives:
(1) Approximation Accuracy: Measuring the error between
tree-Wasserstein distance and 1-Wasserstein distance.
(2) Application Performance: Evaluating the utility of tree-
Wasserstein distance in text-based tasks, including docu-
ment retrieval, ranking, and classification.
(3) Performance Analysis: Analyzing the impact of hyper-
parameters and the algorithm efficiency trade-off.

Baseline Methods. We compare the UltraTWD methods
with 10 approximation methods across various categories.
Detailed descriptions are provided in Appendix A.4.
(1) Entropy-based method: Sinkhorn distance (Cuturi,
2013) is implemented using the POT library (Flamary et al.,
2021), with a regularization parameter λ = 1 and a maxi-
mum of 100 iterations.2

(2) Tree-construction methods: QuadTree (Indyk & Thaper,
2003) and ClusterTree (Le et al., 2019), implemented by
modifying the code from Yamada et al. (2022).
(3) Weight-optimized methods: Weight-optimized QuadTree
(qTWD) and ClusterTree (cTWD) with a regularization
parameter λ = 0.001 (Yamada et al., 2022).3

(4) Tree-sliced methods: Sliced-QuadTree, Sliced-
ClusterTree, Sliced-qTWD, and Sliced-cTWD, average
TWD over 3 randomly sampled trees (Yamada et al., 2022).
(5) Supervised method: UltraTree (Chen et al., 2024) is
trained on 1,000 randomly generated distributions with 1%
sparsity and precomputed 1-Wasserstein distances.4

All experiments were conducted using Python 3.8 on a
Linux server with an AMD EPYC 7742 64-Core Processor,
256 logical CPUs, and 512 GB RAM. The average perfor-
mance and standard deviation are reported across the 5 test
sets. Additional details can be found in Appendix B.

2Following Chen et al. (2024) to balance runtime and accuracy.
3https://github.com/oist/treeOT
4https://github.com/chens5/tree_learning

6

https://github.com/mkusner/wmd
https://github.com/oist/treeOT
https://github.com/chens5/tree_learning

UltraTWD: Optimizing Ultrametric Trees for Tree-Wasserstein Distance

Table 3. Comprehensive comparison of tree-Wasserstein distance methods across four text datasets. Bold indicates the best result,
underline marks the second-best, and

::::
wavy

:::::::
underline denotes the third-best. Our UltraTWD-IP and GD methods outperform the baseline

methods in most cases across (a) approximation error, (b) document retrieval, (c) document ranking, and (d) document classification.
Metric (a) RE-W ↓: Approximation Error of WT (b) Precision ↑: Document Retrieval
Dataset BBCSport Reuters Ohsumed Recipe BBCSport Reuters Ohsumed Recipe
Sinkhorn 0.258±0.003 0.167±0.003 0.166±0.002 0.244±0.001 0.534±0.009 0.412±0.011 0.354±0.012 0.207±0.011
QuadTree 0.643±0.080 0.630±0.036 0.649±0.089 0.745±0.039 0.722±0.026 0.732±0.015 0.552±0.042 0.694±0.028
ClusterTree 0.774±0.003 0.733±0.012 0.768±0.007 0.736±0.009 0.548±0.017 0.543±0.011 0.315±0.014 0.395±0.016
qTWD 0.162±0.004 0.102±0.001 0.126±0.003 0.139±0.001 0.810±0.004 0.819±0.007 0.691±0.010 0.795±0.010
cTWD 0.116±0.002 0.079±0.002 0.097±0.004 0.106±0.004 0.852±0.004 0.840±0.002 0.723±0.004 0.820±0.002
Sliced-QuadTree 0.689±0.042 0.651±0.016 0.681±0.034 0.758±0.021 0.795±0.007 0.801±0.004 0.655±0.009 0.769±0.005
Sliced-ClusterTree 0.771±0.001 0.734±0.009 0.770±0.004 0.747±0.007 0.637±0.015 0.652±0.008 0.445±0.018 0.522±0.013
Sliced-qTWD 0.164±0.002 0.103±0.001 0.127±0.002 0.140±0.001 0.821±0.005 0.824±0.002 0.708±0.006 0.807±0.004
Sliced-cTWD 0.116±0.002 0.079±0.001 0.095±0.001 0.102±0.003 ::::

0.863±0.002 0.849±0.002 0.742±0.005 0.831±0.002

UltraTree 0.022±0.001 ::::
0.041±0.003 ::::

0.038±0.001 0.027±0.005 0.842±0.006 0.834±0.002 0.749±0.003 0.830±0.004

UltraTWD-MST 0.109±0.001 0.050±0.004 0.077±0.004 0.098±0.007 0.860±0.005 ::::
0.854±0.003 ::::

0.765±0.003 ::::
0.840±0.003

UltraTWD-IP 0.014±0.000 0.033±0.001 0.036±0.001 0.026±0.000 0.885±0.002 0.876±0.003 0.788±0.005 0.866±0.001
UltraTWD-GD

::::
0.028±0.001 0.030±0.001 0.017±0.000 ::::

0.035±0.001 0.867±0.005 0.860±0.002 0.776±0.003 0.848±0.002

Metric (c) MRR ↑: Document Ranking (d) Accuracy ↑: Document Classification
Dataset BBCSport Reuters Ohsumed Recipe BBCSport Reuters Ohsumed Recipe
Sinkhorn 0.533±0.017 0.389±0.005 0.395±0.010 0.226±0.011 0.359±0.000 0.773±0.008 0.292±0.011 0.381±0.005
QuadTree 0.789±0.021 0.790±0.016 0.662±0.036 0.761±0.026 0.805±0.010 0.889±0.014 0.398±0.021 0.488±0.008
ClusterTree 0.588±0.025 0.603±0.014 0.377±0.021 0.452±0.024 0.771±0.041 0.891±0.014 0.406±0.027 0.461±0.007
qTWD 0.865±0.009 0.865±0.006 0.783±0.014 0.852±0.011 0.819±0.020 0.892±0.011 0.394±0.027 0.493±0.009
cTWD 0.884±0.015 0.882±0.007 0.810±0.009 0.873±0.011 0.809±0.022 0.896±0.014 0.411±0.026 0.493±0.007
Sliced-QuadTree 0.846±0.013 0.848±0.009 0.754±0.013 0.827±0.007 0.823±0.016 0.892±0.015 0.404±0.025 0.492±0.007
Sliced-ClusterTree 0.676±0.023 0.715±0.008 0.515±0.015 0.585±0.018 0.798±0.027 0.902±0.009 ::::

0.423±0.027 0.476±0.008

Sliced-qTWD 0.872±0.011 0.869±0.006 0.796±0.010 0.862±0.011 0.819±0.019 0.893±0.013 0.396±0.028 0.494±0.007
Sliced-cTWD 0.890±0.015 0.887±0.005 0.819±0.010 0.880±0.009 0.817±0.022 0.897±0.013 0.412±0.026 0.494±0.006
UltraTree 0.890±0.009 0.877±0.008 0.831±0.010 0.877±0.012 0.826±0.017 0.894±0.014 0.416±0.023 0.495±0.007
UltraTWD-MST

::::
0.909±0.008 ::::

0.893±0.005 ::::
0.845±0.008 ::::

0.886±0.010 ::::
0.835±0.016 ::::

0.899±0.013 0.421±0.024 0.495±0.007

UltraTWD-IP 0.924±0.011 0.913±0.005 0.863±0.005 0.908±0.004 0.839±0.017 0.905±0.010 0.428±0.020 0.495±0.006
UltraTWD-GD 0.922±0.009 0.899±0.006 0.855±0.010 0.895±0.007 0.836±0.015 ::::

0.899±0.013 0.427±0.024 0.495±0.007

4.2. Approximation Error of Tree-Wasserstein Distance

Each test set contains N documents {µ1, . . . , µN} repre-
sented as normalized bag-of-words distributions. We com-
pute the pairwise 1-Wasserstein distance matrix W1 =
[W1(µi, µj)] ∈ RN×N as the ground truth and the tree-
Wasserstein distance matrix WT = [WT (µi, µj)] ∈ RN×N

as its approximation (including the Sinkhorn method). We
evaluate the Relative Error of WT (RE-W), defined as:

RE-W =
∥WT −W1∥F
∥W1∥F

.

Table 3(a) shows that our UltraTWD-IP approach achieves
the smallest RE-W compared to all baseline methods.

• Comparison with Unsupervised Methods:
(1) Entropy-based Method: Sinkhorn distance exhibits
higher errors due to entropy regularization, which improves
speed at the cost of accuracy. A smaller regularization pa-
rameter λ and more iterations can improve accuracy but
significantly slow down the computation. For example, on
the Recipe dataset, setting λ = 0.01 with 300 iterations re-
duces RE-W from 0.244 to 0.002, but runtime rises from 0.1
to 2.2 hours, while UltraTWD-IP completes in 1.2 hours.

(2) Tree-construction Method: QuadTree and ClusterTree
exhibit large approximation errors (e.g., 0.643 and 0.774
on the BBCSport dataset) because their edge weights are
fixed based solely on tree depth, resulting in suboptimal tree
representations and poor accuracy.
(3) Weight-optimized Method: The qTWD and cTWD
methods enhance QuadTree and ClusterTree by optimizing
edge weights, significantly reducing the relative error on the
BBCSport dataset from 0.643 (QuadTree) and 0.774 (Clus-
terTree) to 0.162 (qTWD) and 0.116 (cTWD), respectively.
(4) Tree-sliced Method: Sliced methods average TWDs
over multiple random trees, yielding comparable or slightly
higher errors due to the variance from multiple trees.

Overall, unsupervised baselines cannot optimize tree struc-
tures and instead rely on randomly constructed trees from
QuadTree or ClusterTree, resulting in suboptimal accuracy.
In contrast, our methods optimize both the tree structure
and edge weights by refining the ultrametric DT . Up to iso-
morphism, each DT corresponds to a unique tree structure
with specific edge weights. By aligning DT closely with the
cost matrix D, all three UltraTWD methods dynamically
adjust the tree structure, achieving lower errors across all
four datasets compared to unsupervised baseline methods.

7

UltraTWD: Optimizing Ultrametric Trees for Tree-Wasserstein Distance

Table 4. Approximation error of UltraTree and UltraTWD methods.
RE-W = ∥WT−W1∥F

∥W1∥F
and RE-D = ∥DT−D∥F

∥D∥F
. Bold is the best

result and underline is the second-best.

Dataset Reuters Ohsumed
Metric RE-W RE-D RE-W RE-D
UltraTree-1% 0.041±0.003 0.113±0.001 0.038±0.001 0.123±0.001
UltraTree-2% 0.061±0.002 0.130±0.000 0.069±0.001 0.147±0.000
UltraTree-10% 0.127±0.003 0.187±0.001 0.119±0.001 0.189±0.000
UltraTWD-IP 0.033±0.001 0.102±0.001 0.036±0.001 0.115±0.001
UltraTWD-GD 0.030±0.001 0.100±0.001 0.017±0.000 0.101±0.000

• Comparison with Supervised Methods: UltraTree, a
state-of-the-art baseline, learns the ultrametric DT by mini-
mizing the loss ∥W train

T −W train
1 ∥2F on training data. How-

ever, its performance is highly sensitive to the sparsity of
training distributions, which limits its robustness. As shown
in Table 4, the approximation error is low at 1% sparsity,
as it matches the average sparsity in the test data. When
sparsity increases to 2% or 10%, the RE-W on the Reuters
dataset rises from 0.041 to 0.061 and 0.127, respectively,
along with higher RE-D. This indicates that UltraTree strug-
gles to generalize when the sparsity levels between training
and test distributions differ.

In comparison, our UltraTWD-IP and GD methods are in-
herently robust to sparsity, as they do not require training
data. Instead of minimizing ∥W train

T −W train
1 ∥2F , we mini-

mize the fundamental difference ∥DT −D∥2F , resulting in
lower RE-D and RE-W compared to UltraTree.

4.3. Applications of Tree-Wasserstein Distance

We further evaluate the quality of tree-Wasserstein distance
matrices in document retrieval, ranking, and classification,
showing the utility of our methods in text applications.

Document Retrieval. We evaluate performance on a nearest
neighbor retrieval task. For each test document, the top-10
nearest neighbors among the remaining N − 1 documents
are retrieved using both WT and W1, resulting in two sets:
IT and I1, respectively. We use Precision as the evaluation

metric, defined as Precision =
|IT∩I1|

10 . Table 3(b) shows
that our methods achieve the highest precision, following
the order: UltraTWD-IP > UltraTWD-GD > UltraTWD-
MST > most baselines. This demonstrates that UltraTWD
effectively preserves neighborhood structures, ensuring that
similar documents under W1 remain close under WT . Visu-
alizations are provided in Appendix C.1.

Document Ranking. We assess ranking performance using
the Mean Reciprocal Rank (MRR), calculated as MRR =
1
N

∑N
i=1

1
ranki

. For a given query document µi, ranki is
the position of the first relevant item in WT based on the
ranking induced by W1. MRR reflects the average ranking
quality across N queries, ranging from 0 (worst) to 1 (best).
Table 3(c) shows that our methods achieve the highest MRR,
with relevant items consistently ranked near the top.

Document Classification. For text classification, we
compute the kernel K = exp(−WT /σ), where σ =
median(WT), and apply a kernel SVM with 10-fold cross-
validation. As shown in Table 3(d), UltraTWD-IP achieves
the highest classification accuracy across all four datasets,
showing its practical advantage for downstream tasks.

4.4. Performance Analysis

Hyperparameter and Convergence Analysis. Fig. 4
shows the impact of iterations and learning rates on RE-D
convergence. Both UltraTWD-IP and GD methods demon-
strate empirical convergence, though not necessarily to a
global minimum. (1) UltraTWD-IP: It converges in fewer
iterations and achieves higher retrieval precision. In prac-
tice, one iteration is often sufficient. (2) UltraTWD-GD: A
learning rate of 0.05 accelerates RE-D reduction but may
overshoot local minima, leading to unstable precision. A
learning rate of 0.02 provides stable convergence and high
precision, and is used in all experiments. Additional results
are provided in Appendix C.2.

MST IP GD (=0.01) GD (=0.02) GD (=0.05)

0 5 10 15 20
Iteration t

0.0

0.1

0.2

0.3

RE
-D

0 5 10 15 20
Iteration t

0.85
0.86
0.87
0.88
0.89

Pr
ec

isi
on

Figure 4. Hyperparameter analysis of UltraTWD methods on the
Reuters dataset, illustrating empirical convergence.

Efficiency Analysis of Learning Time. Table 5 reports the
average time for tree learning. UltraTWD-MST is the fastest
(as fast as ClusterTree), completing in just 2–7 seconds,
while achieving much lower errors than all unsupervised
baselines. UltraTWD-GD offers a great balance between ef-
ficiency and accuracy, with learning times of 15-72 seconds,
comparable to Sliced-qTWD/cTWD, but achieving much
smaller errors and higher retrieval precision. Compared to
UltraTree, UltraTWD-GD is up to 43× faster and also more
accurate, making it well-suited for real-world applications.

Efficiency Analysis of W Computation. We generate
100 random distributions over the BBCSport vocabulary
(average 6,051 words), each containing nvalid words (non-
zero entries). We compare the total time required to compute
the matrix W1 or WT ∈ R100×100, including tree learning
time. As shown in Table 6, when nvalid = 5, 000, computing
the W1 matrix takes 5.0 hours, with each W1(µ, ν) requiring
3.6 seconds. In contrast, UltraTWD variants complete the
WT matrix within 1 hour, with each WT (µ, ν) computed in
just 0.5 seconds, achieving a significant speedup. UltraTree
is slower than UltraTWD due to its costly training process,
including the precomputation of W1 for training pairs.

8

UltraTWD: Optimizing Ultrametric Trees for Tree-Wasserstein Distance

Table 5. Tree learning time (in seconds) of TWD methods.
Dataset BBCSport Reuters Ohsumed Recipe
Average Words (n) 6,051 6,416 9,467 4,084
QuadTree 8±0 9±0 13±0 6±0
ClusterTree 3±0 3±0 5±0 2±0
qTWD 14±1 14±2 20±2 10±2
cTWD 13±1 13±2 15±1 11±1
Sliced-QuadTree 27±1 27±1 41±2 16±0
Sliced-ClusterTree 10±1 10±0 16±1 6±0
Sliced-qTWD 40±2 39±3 55±3 28±3
Sliced-cTWD 37±1 37±3 42±2 31±3
UltraTree 1217±464 938±39 1494±171 361±83
UltraTWD-MST 3±0 3±0 7±0 2±0
UltraTWD-IP 1207±77 1437±65 4583±88 373±4
UltraTWD-GD 28±7 34±11 72±21 15±3

Table 6. Total time (in hours) of computing W1 or WT ∈
R100×100 on the BBCSport dataset, including tree learning time.
nvalid represents the number of valid words in each distribution.

Valid Words (nvalid) 1,000 2,000 3,000 4,000 5,000
W1 0.2 0.9 2.3 3.6 5.0
UltraTree 0.7 0.8 1.0 1.1 1.1
UltraTWD-MST 0.2 0.4 0.5 0.6 0.7
UltraTWD-IP 0.6 0.7 0.9 1.0 1.0
UltraTWD-GD 0.2 0.4 0.5 0.6 0.7

4.5. Qualitative Comparison of Tree Structures

To qualitatively assess the semantic interpretability of the
learned trees, we select 7 representative words from the
Recipe dataset, grouped into 4 semantic categories: Cook-
ing (Bake, Fry), Fruit (Apple, Watermelon), Meat (Chicken,
Beef), and Vegetable (Lettuce). The word embedding matrix
X ∈ R7×300 and the Euclidean distance matrix D ∈ R7×7

are used as input. Fig. 5 presents the resulting tree structures.
(a) QuadTree & qTWD produce flat and shallow trees with-
out a semantic structure. (b) ClusterTree & cTWD partially
group related words but often mix categories. In contrast, (c)
UltraTWD clearly separates all four semantic groups and
produces a well-structured hierarchy. In this simple case, all
three UltraTWD variants yield the same tree, demonstrating
UltraTWD’s strength in capturing semantically meaningful
structures that reflect underlying word relationships.

5. Conclusion
We introduce UltraTWD, a novel unsupervised framework
for tree-Wasserstein distances that jointly optimizes the tree
structure and edge weights, addressing the limitations of
existing methods. By solving ultrametric nearness problems,
we develop new algorithms leveraging minimum spanning
trees, iterative projection, and gradient descent. These meth-
ods demonstrate superior accuracy in 1-Wasserstein distance
estimation and significantly improve performance in tasks
such as document retrieval, ranking, and classification, mak-
ing them valuable for Wasserstein-based applications.

QuadTree & qTWD ClusterTree & cTWD UltraTWD

 B
ak

e

 F

ry

 A
pp

le
W

at
er

m
el

on

C
hi

ck
en

B
ee

f
Le

ttu
ce

(a)

 A
pp

le
W

at
er

m
el

on
C

hi
ck

en
B

ee
f

 B
ak

e

 F
ry

Le
ttu

ce

(b)

 B
ak

e

 F
ry

C
hi

ck
en

B
ee

f
 A

pp
le

W
at

er
m

el
on Le
ttu

ce

(c)

Bake, Fry Apple, Watermelon Chicken, Beef Lettuce

Figure 5. Tree structures produced by UltraTWD and baseline
methods for 7 semantically grouped words from the Recipe dataset.

Acknowledgments
The work of Fangchen Yu, Jianfeng Mao and Wenye Li was
supported in part by Shenzhen Science and Technology Pro-
gram (No. ZDSYS20230626091302006), in part by the Na-
tional Natural Science Foundation of China (No. 72394362
and U1733102), in part by the Guangdong Provincial Key
Laboratory of Big Data Computing, The Chinese University
of Hong Kong, Shenzhen (No. 2024SC0003), in part by the
Shenzhen Science and Technology Innovation Committee
under the Shenzhen Stability Science Program grant (No.
2024SC0010), in part by the Shenzhen Research Institute
of Big Data (No. J00120250001), and in part by CUHK-
Shenzhen (No. PF.01.000404). The work of Fangchen Yu
and Qiang Sun was supported in part by the Natural Sci-
ences and Engineering Research Council of Canada (Grant
RGPIN-2018-06484), computing resources provided by the
Digital Research Alliance of Canada, and MBZUAI.

Impact Statement
This paper presents UltraTWD, a novel framework for tree-
Wasserstein distance that aims to advance the field of ma-
chine learning by improving the efficiency and accuracy
of 1-Wasserstein distance approximations. The proposed
methods have the potential to benefit a wide range of appli-
cations, including text retrieval, ranking, and classification
tasks, by offering accurate and reliable solutions.

Overall, we believe UltraTWD contributes positively to
the field of machine learning and offers practical benefits
across various domains, with no immediate ethical concerns
requiring specific attention.

9

UltraTWD: Optimizing Ultrametric Trees for Tree-Wasserstein Distance

References
Agarwal, P., Raghvendra, S., Shirzadian, P., and Sowle,

R. A higher precision algorithm for computing the 1-
wasserstein distance. In International Conference on
Learning Representation, 2023.

Agarwal, P. K., Raghvendra, S., Shirzadian, P., and Yao, K.
Fast and accurate approximations of the optimal transport
in semi-discrete and discrete settings. In Proceedings
of the 2024 Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 4514–4529. SIAM, 2024.

Ailon, N. and Charikar, M. Fitting tree metrics: Hierarchical
clustering and phylogeny. SIAM Journal on Computing,
40(5):1275–1291, 2011.

Backurs, A., Dong, Y., Indyk, P., Razenshteyn, I., and Wag-
ner, T. Scalable nearest neighbor search for optimal trans-
port. In International Conference on Machine Learning,
pp. 497–506. PMLR, 2020.

Censor, Y. Computational acceleration of projection algo-
rithms for the linear best approximation problem. Linear
Algebra and Its Applications, 416(1):111–123, 2006.

Censor, Y., Moursi, W. M., Weames, T., and Wolkow-
icz, H. Regularized nonsmooth newton algorithms for
best approximation with applications. arXiv preprint
arXiv:2212.13182, 2022.

Chatziafratis, V., Niazadeh, R., and Charikar, M. Hierarchi-
cal clustering with structural constraints. In International
Conference on Machine Learning, pp. 774–783. PMLR,
2018.

Chen, S., Tabaghi, P., and Wang, Y. Learning ultrametric
trees for optimal transport regression. In Proceedings
of the AAAI Conference on Artificial Intelligence, vol-
ume 38, pp. 20657–20665, 2024.

Chen, X., Jayaram, R., Levi, A., and Waingarten, E. New
streaming algorithms for high dimensional emd and mst.
In Proceedings of the 54th Annual ACM SIGACT Sympo-
sium on Theory of Computing, pp. 222–233, 2022.

Chepoi, V. and Fichet, B. l∞-approximation via subdomi-
nants. Journal of Mathematical Psychology, 44(4):600–
616, 2000.

Chierchia, G. and Perret, B. Ultrametric fitting by gradient
descent. Advances in Neural Information Processing
Systems, 32, 2019.

Cohen-Addad, V., Kanada, V., Mallmann-Trenn, F., and
Mathieu, C. Hierarchical clustering: objective functions
and algorithms. In Proceedings of the Twenty-Ninth An-
nual ACM-SIAM Symposium on Discrete Algorithms, pp.
378–397, 2018.

Cuturi, M. Sinkhorn distances: Lightspeed computation
of optimal transport. Advances in Neural Information
Processing Systems, 26, 2013.

Flamary, R., Courty, N., Gramfort, A., Alaya, M. Z., Bois-
bunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras,
K., Fournier, N., Gautheron, L., Gayraud, N. T., Janati,
H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz,
A., Seguy, V., Sutherland, D. J., Tavenard, R., Tong, A.,
and Vayer, T. Pot: Python optimal transport. Journal of
Machine Learning Research, 22(78):1–8, 2021.

Fox, E. and Lu, J. A deterministic near-linear time approx-
imation scheme for geometric transportation. In IEEE
64th Annual Symposium on Foundations of Computer
Science, pp. 1301–1315. IEEE, 2023.

Gavryushkin, A. and Drummond, A. J. The space of ultra-
metric phylogenetic trees. Journal of Theoretical Biology,
403:197–208, 2016.

Gonzalez, T. F. Clustering to minimize the maximum in-
tercluster distance. Theoretical Computer Science, 38:
293–306, 1985.

Huang, G., Guo, C., Kusner, M. J., Sun, Y., Sha, F., and
Weinberger, K. Q. Supervised word mover’s distance.
Advances in Neural Information Processing Systems, 29,
2016.

Indyk, P. A near linear time constant factor approximation
for euclidean bichromatic matching (cost). In Proceed-
ings of the Eighteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, volume 7, pp. 39–42, 2007.

Indyk, P. and Thaper, N. Fast image retrieval via embed-
dings. In Workshop on Statistical and Computational
Theories of Vision at ICCV, 2003.

Khesin, A. B., Nikolov, A., and Paramonov, D. Precondi-
tioning for the geometric transportation problem. Journal
of Computational Geometry, 11(2):234–259, 2021.

Khrulkov, V., Ryzhakov, G., Chertkov, A., and Oseledets,
I. Understanding ddpm latent codes through optimal
transport. In The Eleventh International Conference on
Learning Representations, 2023.

Křivánek, M. The complexity of ultrametric partitions on
graphs. Information Processing Letters, 27(5):265–270,
1988.

Kusner, M., Sun, Y., Kolkin, N., and Weinberger, K. From
word embeddings to document distances. In International
Conference on Machine Learning, pp. 957–966. PMLR,
2015.

10

UltraTWD: Optimizing Ultrametric Trees for Tree-Wasserstein Distance

Le, T., Yamada, M., Fukumizu, K., and Cuturi, M. Tree-
sliced variants of wasserstein distances. Advances in
Neural Information Processing Systems, 32, 2019.

Li, W., Yu, F., and Ma, Z. Metric nearness made practi-
cal. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 37, pp. 8648–8656, 2023.

Lin, Y.-W. E., Coifman, R. R., Mishne, G., and Talmon, R.
Tree-wasserstein distance for high dimensional data with
a latent feature hierarchy. In The Thirteenth International
Conference on Learning Representations, 2025.

Otao, S. and Yamada, M. A linear time approximation
of wasserstein distance with word embedding selection.
In Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, pp. 15121–
15134, 2023.

Pele, O. and Werman, M. Fast and robust earth mover’s
distances. In 2009 IEEE 12th International Conference
on Computer Vision, pp. 460–467. IEEE, 2009.

Prim, R. C. Shortest connection networks and some gen-
eralizations. The Bell System Technical Journal, 36(6):
1389–1401, 1957.

Rabin, J., Peyré, G., Delon, J., and Bernot, M. Wasserstein
barycenter and its application to texture mixing. In Scale
Space and Variational Methods in Computer Vision, pp.
435–446. Springer, 2012.

Semple, C. and Steel, M. Phylogenetics, volume 24. Oxford
University Press on Demand, 2003.

Takezawa, Y., Sato, R., and Yamada, M. Supervised tree-
wasserstein distance. In International Conference on
Machine Learning, pp. 10086–10095. PMLR, 2021.

Tran, H. V., Nguyen, K. N., Pham, T., Chu, T. T., Le, T., and
Nguyen, T. M. Distance-based tree-sliced wasserstein
distance. In The Thirteenth International Conference on
Learning Representations, 2025.

Tran, V.-H., Pham, T., Tran, T., Le, T., and Nguyen, T. M.
Tree-sliced wasserstein distance on a system of lines.
arXiv preprint arXiv:2406.13725, 2024.

Villani, C. Optimal Transport: Old and New, volume 338.
Springer, 2008.

Wang, D. and Wang, Y. An improved cost function for
hierarchical cluster trees. Journal of Computational Ge-
ometry, 11(1):283–331, 2020.

Yamada, M., Takezawa, Y., Sato, R., Bao, H., Kozareva,
Z., and Ravi, S. Approximating 1-wasserstein distance
with trees. Transactions on Machine Learning Research,
2022.

Yu, F., Bao, R., Mao, J., and Li, W. Highly-efficient
robinson-foulds distance estimation with matrix correc-
tion. In 26th European Conference on Artificial Intelli-
gence, pp. 2914–2921. IOS Press, 2023.

11

UltraTWD: Optimizing Ultrametric Trees for Tree-Wasserstein Distance

A. Background and Related Work
A.1. Background of Wasserstein Distance

The Wasserstein distance (Villani, 2008) measures the
distance between probability distributions. Consider two
discrete measures µ =

∑n
i=1 aiδxi

and ν =
∑n

j=1 bjδxj
,

represented as 1-dimensional histograms shown below:

µ

ai

xi ν

bj

xj

Wp(µ, ν)

The p-Wasserstein distance is defined as

Wp(µ, ν) :=

 min
γ∈Γ(µ,ν)

n∑
i,j=1

γijd(xi,xj)
p

1/p

,

where γ is the transport plan in the set Γ(µ, ν) defined as

Γ(µ, ν) = {γ ∈ Rn×n
+ |

∑
j

γij = ai,
∑
i

γij = bj , ∀ i, j}.

In this paper, we focus on the commonly used 1-Wasserstein
distance, defined as

W1(µ, ν) := min
γ∈Γ(µ,ν)

n∑
i,j=1

γijd(xi,xj),

which is also known as the optimal transport distance or
Earth Mover’s Distance (Pele & Werman, 2009).

At a high level, the cost d(xi,xj) represents the cost of
transporting a unit mass from xi to xj . Thus, the 1-
Wasserstein distance computes the minimum cost required
to transport all mass from {ai} to {bj}, where γij specifies
the amount of mass moved from xi to xj .

In text analysis, xi denotes the embedding vector of the
i-th word in the vocabulary, and the vocabulary of n
words is represented by a word embedding matrix X =
[x1,x2, . . . ,xn] ∈ Rd×n. A document µ is modeled as
a normalized bag-of-words distribution over the vocabu-
lary X , expressed as µ =

∑n
i=1 aiδxi

, where ai is the fre-
quency of the i-th word in the document. The normalization
(
∑n

i=1 ai = 1) ensures µ is a valid probability distribution.

When the Euclidean distance between word vectors is used
as the cost, i.e., d(xi,xj) = ∥xi−xj∥2, the 1-Wasserstein
distance corresponds to the Word Mover’s Distance (WMD)
(Kusner et al., 2015). Intuitively, WMD measures the mini-
mum cost needed to transport the words from one document
to another.

Despite its effectiveness, the 1-Wasserstein distance has a
computational complexity of O(n3 log n), making it com-
putationally expensive in practice (Villani, 2008).

A.2. Background of Tree-Wasserstein Distance

Motivation of Tree-Wasserstein Distance. The 1-
Wasserstein distance requires solving a linear programming
problem to obtain the optimal transport plan γ, which can be
computationally expensive. To improve the efficiency, the
tree-Wasserstein distance encodes the cost d(xi,xj) into
the shortest path distance dT (xi,xj) defined on the tree T .
Then the tree-Wasserstein distance defined on the tree has a
closed-form solution:

WT (µ, ν) =
∑
e∈T

we · |µ(Te)− ν(Te)|, (13)

where we is the weight of each edge e in the tree. The
derivation of this formula can be found in Proposition 1 of
Le et al. (2019).

Linear Time Complexity. The closed-form solution given
in Eq. (13) requires summing over all edges in the tree. In
a rooted tree, the number of edges is equal to the number
of nodes, denoted by nnode. Therefore, the computation
of the tree-Wasserstein distance has a time complexity of
O(nnode). Since the number of nodes is bounded by O(n),
where n represents the number of leaf nodes, the overall
complexity is also O(n) (Chen et al., 2024). Consequently,
the tree-Wasserstein distance can be computed in linear time
with respect to the number of leaf nodes.

A.3. Background of Ultrametric

Definition of Ultrametric. An ultrametric D ∈ Rn×n is
a special type of tree metric that satisfies the strong trian-
gle inequality: dij ≤ max{dik, djk} for all i, j, k. This
implies that any triplet (i, j, k) forms an isosceles triangle.
Ultrametrics naturally correspond to rooted trees with n leaf
nodes, where all leaves are equidistant from the root. In
such trees, the distance between two leaves is defined by
the height of their lowest common ancestor. The resulting
pairwise distance matrix among the leaves is an ultrametric
matrix D. Note that ultrametric trees are rooted but not
necessarily binary. In practice, we follow Chen et al. (2024)
and use the hierarchical minimum spanning tree procedure
(Prim, 1957) to construct binary ultrametric trees.

Benefits of Ultrametrics. Ultrametrics are preferred over
general tree metrics in our setting for several reasons. First,
constructing a tree from a general tree metric is nontrivial,
while ultrametric trees can be efficiently generated using
algorithms such as the minimum spanning tree. Second,
ultrametrics satisfy the strong triangle inequality, which is
easier to enforce and analyze compared to the more com-
plex four-point condition required for general tree metrics.
Finally, ultrametrics are widely used in practice, including
hierarchical clustering (Ailon & Charikar, 2011) and phylo-
genetic tree construction in bioinformatics (Gavryushkin &
Drummond, 2016; Yu et al., 2023).

12

UltraTWD: Optimizing Ultrametric Trees for Tree-Wasserstein Distance

Table 7. Comparison of UltraTWD with existing tree-Wasserstein distance methods. The table evaluates four key aspects: (1) the ability
to optimize the tree structure, (2) the ability to optimize edge weights, (3) the dependency on multiple trees, (4) the need for embedded
data points, and (5) the need for training data. Unlike traditional methods, UltraTWD achieves both tree and edge weight optimization
while avoiding the dependency on multiple trees, embedded data points and training data, making it more accurate and robust.

Method Tree Structure Edge Weight No Multiple No Embedded No Training
Optimization Optimization Trees Needed Data Points Needed Data Needed

QuadTree ✗ ✗ ✓ ✗ ✓
ClusterTree ✗ ✗ ✓ ✗ ✓
qTWD ✗ ✓ ✓ ✗ ✓
cTWD ✗ ✓ ✓ ✗ ✓
Sliced-QuadTree ✗ ✗ ✗ ✗ ✓
Sliced-ClusterTree ✗ ✗ ✗ ✗ ✓
Sliced-qTWD ✗ ✓ ✗ ✗ ✓
Sliced-cTWD ✗ ✓ ✗ ✗ ✓
UltraTree ✓ ✓ ✓ ✓ ✗
UltraTWD-MST ✓ ✓ ✓ ✓ ✓
UltraTWD-IP ✓ ✓ ✓ ✓ ✓
UltraTWD-GD ✓ ✓ ✓ ✓ ✓

A.4. Comparison Methods and Limitations

Our approach is evaluated against a range of representative
methods designed to approximate 1-Wasserstein distance:

I. Entropy-Based Method: The Sinkhorn distance (Cu-
turi, 2013) introduces an entropic regularization term to the
objective function to improve the efficiency:

Wλ(µ, ν) = min
γ∈Γ(µ,ν)

n∑
i,j=1

γijd(xi,xj)− λH(γ), (14)

where λ > 0 is the regularization parameter and H(γ) is
the entropy of the transport plan defined as:

H(γ) = −
n∑

i,j=1

γij log γij .

The Sinkhorn distance can be efficiently computed using
the Sinkhorn-Knopp algorithm with the computational com-
plexity of O(n2) (Cuturi, 2013).

II. Tree-Construction Methods: They build a hierarchical
tree using either QuadTree or ClusterTree structures.

• QuadTree (Indyk & Thaper, 2003; Backurs et al.,
2020) constructs a hierarchical tree by recursively par-
titioning the data space, represented as a hypercube in
Rd, into smaller sub-hypercubes. The process begins
with an initial hypercube, which is iteratively divided
into 2d sub-hypercubes. If a sub-hypercube contains
exactly one data point, its center is used as a node in the
tree. If it contains multiple data points, the partitioning
continues until either a predefined depth is reached or
no further subdivision is required. Finally, this method
constructs a tree by splitting a space into hypercubes.

• ClusterTree (Le et al., 2019) adaptively partitions the
data space using farthest-point clustering. Unlike fixed

partitioning methods, this algorithm iteratively divides
the data into a predefined number of clusters by apply-
ing the farthest-point clustering strategy. The centroid
of each cluster is designated as a node in the tree, and
the partitioning process is recursively repeated for each
cluster until the desired depth is reached.

Once the QuadTree or ClusterTree is constructed, the weight
we of each edge e in the tree is determined by its depth l(e),
which represents the number of edges in the unique path
from the root to the edge e. The edge depth reflects the
hierarchical level of the edge, with larger values indicating
deeper levels in the hierarchy. Based on this depth, the
edge weight is defined as we = 2−l(e), leading to the tree-
Wasserstein distance formula:

WT (µ, ν) =
∑
e∈T

2−l(e) · |µ(Te)− ν(Te)|.

III. Weight-Optimized Methods: The qTWD and cTWD
methods (Yamada et al., 2022) optimize the edge weights
of a fixed QuadTree or ClusterTree structure by solving a
Lasso-based regression problem:

min
w∈Rnnode

+

n∑
i,j=1

(
d(xi,xj)−w⊤zi,j

)2
+ λ∥w∥1, (15)

where w ∈ Rnnode
+ represents the vector of edge weights,

and zi,j ∈ Rnnode
+ is a vector determined by the tree struc-

ture. In this formulation, the tree distance is expressed as
dT (xi,xj) = w⊤zi,j . The optimization problem aims to
adjust the tree distance dT to align with the cost d. The
ℓ1-regularization term encourages sparsity by driving some
edge weights to zero, allowing the corresponding nodes to
be merged, thereby reducing the overall tree size.

13

UltraTWD: Optimizing Ultrametric Trees for Tree-Wasserstein Distance

IV. Tree-Sliced Methods: Inspired by the sliced-
Wasserstein distance (Rabin et al., 2012), Le et al. (2019)
introduced the tree-sliced Wasserstein distance, which in-
cludes the Sliced-QuadTree and Sliced-ClusterTree meth-
ods. These methods compute the average tree-Wasserstein
distance (TWD) over multiple randomly constructed trees.
Similarly, Yamada et al. (2022) proposed sliced versions
of qTWD and cTWD, referred to as Sliced-qTWD and
Sliced-cTWD, respectively. The sliced TWD is defined as:

WT (µ, ν) :=
1

K

K∑
i=1

WTi
(µ, ν), (16)

where WTi
(µ, ν) represents the TWD computed on the i-th

tree, and K is the total number of constructed trees.

V. Supervised Method: UltraTree (Chen et al., 2024) in-
troduced a supervised approach based on ultrametric trees,
where the ultrametric matrix DT = [dT (xi,xj)] ∈ Rn×n

is optimized by solving a regression problem:

min
DT∈Rn×n

∑
(i,j)∈S

(
W train

1 (µi, µj)−W train
T (µi, µj)

)2
, (17)

where S denotes the training set, DT represents the
learned ultrametric, W train

1 is the 1-Wasserstein distance
pre-computed on the training data, and W train

T denotes the
tree-Wasserstein distance defined on the ultrametric tree T .
As a supervised approach, it requires extensive training data
and the pre-computation of the 1-Wasserstein distance to
serve as labels, which can be computationally expensive.

Limitations of Existing Methods. The existing Wasser-
stein approximation methods have several notable lim-
itations, as summarized in Table 7: (1) The entropy-
based method (Sinkhorn distance) deviates from the true
1-Wasserstein distance due to the entropic regularization
term and has a time complexity of O(n2). (2) Tree-
construction methods cannot optimize the tree structure
and edge weights and require the embedded data points
X = [x1, . . . ,xn] to partition the data space. (3) Weight-
optimized methods also cannot optimize the tree structure
and depend on randomly constructed QuadTree or Clus-
terTree. (4) Tree-sliced methods require multiple trees but
still lack the capability to optimize tree structures. Addition-
ally, these unsupervised TWD methods, based on QuadTree
or ClusterTree, rely on embedded data points. (5) The su-
pervised method can optimize tree structures and utilize the
distance matrix D as input, eliminating the need for embed-
ded data points. However, they require extensive training
data and precomputed 1-Wasserstein distances for training.

In contrast, the proposed UltraTWD methods inherit the
advantages of UltraTree and can optimize both the tree
structure and edge weights. Moreover, they surpass Ultra-
Tree by eliminating the need for training data while offering
greater accuracy and efficiency.

A.5. Other Related Work

Beyond the comparison methods, trees and hierarchical
partitions have been widely explored for approximating
the 1-Wasserstein distance. These include an importance
sampling method (Indyk, 2007), greedy tree approaches
(Khesin et al., 2021; Agarwal et al., 2023; Fox & Lu, 2023;
Agarwal et al., 2024), and a streaming algorithm (Chen et al.,
2022). However, these works primarily rely on quadtrees,
whereas our method focuses on ultrametric trees.

In addition, there are several tree-Wasserstein distances that
are not included in our comparison due to different goals
and formulations: (1) Lin et al. (2025) learns a meaningful
tree-Wasserstein distance that captures latent feature hierar-
chies by using hyperbolic diffusion LCA relations. (2) STW
(Takezawa et al., 2021) is a supervised method that uses con-
trastive loss to learn task-specific distances. Since it does
not aim to approximate W1, it yields higher errors; for exam-
ple, on the BBCSport dataset, STW produces a large RE-W
of 0.643 and a retrieval precision of 0.335. (3) Tran et al.
(2024) and Tran et al. (2025) extend the sliced-Wasserstein
distance (Rabin et al., 2012) by using structured systems
of lines that can be metrized by tree distances. While inter-
pretable as tree-based sliced-Wasserstein variants, they are
not typical TWD methods for approximating W1.

In contrast, UltraTWD is specifically designed to accurately
approximate the 1-Wasserstein distance by learning both
tree structure and edge weights within a unified ultrametric
framework.

B. Experimental Setup
B.1. Datasets

We evaluate the performance using four benchmark text
datasets (Huang et al., 2016): BBCSport, Reuters, Ohsumed,
and Recipe. In these datasets, each word is represented as
a 300-dimensional word2vec vector, while each document
is represented by a normalized bag-of-words distribution
based on word frequencies. The details are provided below.

• BBCSport: This dataset consists of 737 BBC sports
articles labeled by 5 classes. It contains five test sets with
220 articles each, averaging 6,051 words per test set.

• Reuters: This dataset contains 7,674 news articles across
8 classes. We randomly generate five test sets with 1,000
articles each, averaging 6,416 words per test set.

• Ohsumed: This dataset contains 9,152 medical abstracts
within 10 classes. We randomly create five test sets with
1,000 abstracts each, averaging 9,467 words per test set.

• Recipe: This dataset consists of 4,370 recipe procedures
with 15 classes. It contains five test sets with 1,311 tweets
each, averaging 4,084 words per test set.

14

UltraTWD: Optimizing Ultrametric Trees for Tree-Wasserstein Distance

Sin
kh

orn

Qua
dTr

ee

Slic
ed

-Qua
dTr

ee
qT

WD

Slic
ed

-qT
WD

Clus
ter

Tre
e

Slic
ed

-Clus
ter

Tre
e
cTW

D

Slic
ed

-cT
WD

Ultra
Tre

e-1
%

Ultra
Tre

e-2
%

Ultra
Tre

e-1
0%

Ultra
TW

D-M
ST

Ultra
TW

D-GD

Ultra
TW

D-IP
0.5
0.6
0.7
0.8
0.9

Pr
ec

isi
on

QuadTree
Best=0.821

ClusterTree
Best=0.863

UltraTree
Best=0.847

UltraTWD
Best=0.885

(a) BBCSport

Sin
kh

orn

Qua
dTr

ee

Slic
ed

-Qua
dTr

ee
qT

WD

Slic
ed

-qT
WD

Clus
ter

Tre
e

Slic
ed

-Clus
ter

Tre
e
cTW

D

Slic
ed

-cT
WD

Ultra
Tre

e-1
%

Ultra
Tre

e-2
%

Ultra
Tre

e-1
0%

Ultra
TW

D-M
ST

Ultra
TW

D-GD

Ultra
TW

D-IP
0.4
0.5
0.6
0.7
0.8
0.9

Pr
ec

isi
on

QuadTree
Best=0.824

ClusterTree
Best=0.849

UltraTree
Best=0.839

UltraTWD
Best=0.876

(b) Reuters

Sin
kh

orn

Qua
dTr

ee

Slic
ed

-Qua
dTr

ee
qT

WD

Slic
ed

-qT
WD

Clus
ter

Tre
e

Slic
ed

-Clus
ter

Tre
e
cTW

D

Slic
ed

-cT
WD

Ultra
Tre

e-1
%

Ultra
Tre

e-2
%

Ultra
Tre

e-1
0%

Ultra
TW

D-M
ST

Ultra
TW

D-GD

Ultra
TW

D-IP
0.3
0.4
0.5
0.6
0.7
0.8

Pr
ec

isi
on

QuadTree
Best=0.708

ClusterTree
Best=0.742

UltraTree
Best=0.752

UltraTWD
Best=0.788

(c) Ohsumed

Sin
kh

orn

Qua
dTr

ee

Slic
ed

-Qua
dTr

ee
qT

WD

Slic
ed

-qT
WD

Clus
ter

Tre
e

Slic
ed

-Clus
ter

Tre
e
cTW

D

Slic
ed

-cT
WD

Ultra
Tre

e-1
%

Ultra
Tre

e-2
%

Ultra
Tre

e-1
0%

Ultra
TW

D-M
ST

Ultra
TW

D-GD

Ultra
TW

D-IP
0.1
0.3
0.5
0.7
0.9

Pr
ec

isi
on

QuadTree
Best=0.807

ClusterTree
Best=0.831

UltraTree
Best=0.833

UltraTWD
Best=0.866

(d) Recipe

Figure 6. Document retrieval precision of tree-Wasserstein distance methods. Blue represents QuadTree-based methods, green represents
ClusterTree-based methods, yellow represents UltraTree methods, and red represents UltraTWD methods. Our UltraTWD-IP and GD
approaches consistently outperform all baseline methods across four datasets.

B.2. Implementation and Hyperparameters

The hyperparameters of baseline methods are listed below:

• Sinkhorn method: The Sinkhorn distance is computed us-
ing the ot.sinkhorn2 function from the Python Optimal
Transport library (Flamary et al., 2021), with a regulariza-
tion parameter of λ = 1 in Eq. (14) and a maximum number
of iterations numItermax = 100.

• Unsupervised TWD methods: We implement QuadTree,
ClusterTree, qTWD, cTWD, and their sliced versions using
the official code5 provided by Yamada et al. (2022). For
qTWD and cTWD, the regularization parameter in Eq. (15)
is set to λ = 0.001, following the configuration in Yamada
et al. (2022). For the tree-sliced methods, the number of
multiple trees is set to K = 3 in Eq. (16), consistent with
Yamada et al. (2022).

• Supervised TWD method: For UltraTree, five
training sets are randomly generated for each
dataset, each containing 1,000 document distribu-
tions. Each document distribution is created using
numpy.random.randint(1,11,size=(1,n word)),
with 1% of the entries randomly selected to form a sparse
vector, which is then normalized to a probability distribution.
The official code6 is used with default settings: a batch size

5https://github.com/oist/treeOT
6https://github.com/chens5/tree_learning

of 32, the Adam optimizer with a learning rate of 0.01, and
a maximum of 5 iterations (typically converging within 2).

C. Comprehensive Results and Analysis
This section presents a detailed analysis of our comprehen-
sive results, including
• document retrieval performance (Section C.1),
• hyperparameter and convergence analysis (Section C.2).

C.1. Document Retrieval Performance

We evaluate the average precision for the top-10 retrieved
candidates and present the numerical results in Table 3(b).
To provide deeper insights, the corresponding visualizations
are shown in Fig. 6.

The key observations are as follows:

• Effect of Optimized Edge Weights: The qTWD and
cTWD methods optimize edge weights based on the
QuadTree and ClusterTree structures and thus significantly
enhance retrieval performance compared to their non-
optimized counterparts (QuadTree & ClusterTree).

• Impact of Sliced Distances: The sliced methods improve
precision by averaging tree-Wasserstein distances across
multiple randomly constructed trees. However, without
slicing, the retrieval performance of QuadTree is highly
sensitive to tree randomness, leading to greater variance.

15

https://github.com/oist/treeOT
https://github.com/chens5/tree_learning

UltraTWD: Optimizing Ultrametric Trees for Tree-Wasserstein Distance

• Stability of UltraTree: While the sparsity of training
data influences the approximation error of WT , UltraTree
consistently maintains stable retrieval performance across
varying sparsity levels (e.g., 1%, 2%, 10%).

• UltraTWD Superiority: Among UltraTWD methods,
UltraTWD-IP and GD consistently outperform UltraTWD-
MST and all baseline methods. Compared to the best-
performing baseline, UltraTWD-IP achieves significant pre-
cision gains of 0.022, 0.027, 0.036, and 0.033 on the BBC-
Sport, Reuters, Ohsumed, and Recipe datasets, respectively.

The improved precision validates that our UltraTWD meth-
ods effectively preserve neighbor relationships, ensuring
that documents similar in W1 remain similar in WT .

C.2. Hyperparameter and Convergence Analysis

Hyperparameter Analysis. We analyze the impact of hy-
perparameters on convergence and retrieval performance.
(1) UltraTWD-MST: It directly computes the optimal solu-
tion using Theorem 5 and requires no hyperparameters.
(2) UltraTWD-IP: The iterative projection method in Algo-
rithm 2 has only one hyperparameter: the maximum number
of iterations m. As shown in Fig. 7, retrieval precision
slightly improves with more iterations on BBCSport, re-
mains stable on Reuters, and decreases slightly on Ohsumed
and Recipe datasets. Qualitatively, a decline in performance
with additional iterations may indicate overfitting of the
DT solution, weakening WT ’s ability to preserve neighbor
relationships. Despite these fluctuations, UltraTWD-IP con-
sistently achieves the highest retrieval precision, outperform-
ing UltraTWD-GD and all baseline methods. Considering
the time cost of iterative projection, we set m = 1 and use
results from a single iteration in practical applications, as
it already delivers excellent performance.
(3) UltraTWD-GD: The gradient descent method in Algo-
rithm 3 has two hyperparameters: the learning rate α and
the maximum number of iterations m. As shown in Fig. 7,
α = 0.02 achieves faster convergence than α = 0.01 and
smoother convergence than α = 0.05, leading to higher
precision than α = 0.01 and more stable performance than
α = 0.05. A large learning rate (α = 0.05) may cause
overshooting or oscillations around local minima, leading to
suboptimal solutions. Empirically, the choice of α depends
on the specific dataset, and we use α = 0.02 in this paper.
For the maximum number of iterations, we set m = 8 in
practice, balancing low RE-D and high precision.

Convergence Analysis. To illustrate the optimization pro-
cess, we evaluate the relative error of the learned ultrametric
DT from different iterations, defined as

RE-D =
∥DT −D∥F
∥D∥F

,

which is proportional to the objective function ∥DT −D∥2F .

As shown in Fig. 7, both UltraTWD-IP and GD methods
exhibit empirical convergence across all four datasets. Re-
gardless of whether iterative projection or gradient descent
is employed, the objective function ∥DT −D∥F is consis-
tently minimized to comparable values. Although global
optimality is challenging to guarantee, the DT obtained us-
ing these methods yields high-quality WT , resulting in high
retrieval precision. The precision follows the order of IP >
GD (α = 0.02) > MST > most baselines, validating the
effectiveness of our methods.

MST IP GD (=0.01) GD (=0.02) GD (=0.05)

0 5 10 15 20
Iteration t

0.0

0.1

0.2

0.3

RE
-D

BBCSport

0 5 10 15 20
Iteration t

0.85
0.86
0.87
0.88
0.89

Pr
ec

isi
on

BBCSport

0 5 10 15 20
Iteration t

0.0

0.1

0.2

0.3
RE

-D

Reuters

0 5 10 15 20
Iteration t

0.85
0.86
0.87
0.88
0.89

Pr
ec

isi
on

Reuters

0 5 10 15 20
Iteration t

0.0

0.1

0.2

0.3

RE
-D

Ohsumed

0 5 10 15 20
Iteration t

0.76
0.77
0.78
0.79
0.80

Pr
ec

isi
on

Ohsumed

0 5 10 15 20
Iteration t

0.0

0.1

0.2

0.3

RE
-D

Recipe

0 5 10 15 20
Iteration t

0.83
0.84
0.85
0.86
0.87

Pr
ec

isi
on

Recipe

Figure 7. Hyperparameter analysis of UltraTWD methods across
four datasets, illustrating empirical convergence.

16

