
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TOWARDS ACCURATE DEEP LEARNING MODEL SELEC-
TION: A CALIBRATED METRIC APPROACH

Anonymous authors
Paper under double-blind review

ABSTRACT

The adoption of deep learning across various fields has been extensive, yet the
methods for reliably evaluating the performance of deep learning pipelines remain
underdeveloped. Typically, with the increased use of large datasets and complex
models, the training process is run only once and the new modeling result is
compared to previous benchmarks. This practice can lead to imprecise comparisons
due to the variance in deep learning pipelines, which stems from the inherent
randomness in the training process. Traditional solutions often require running the
training process multiple times and are often infeasible in Deep Learning due to
computational constraints. In this paper, we introduce a calibrated metric approach,
designed to address this issue by reducing the variance present in its conventional
counterpart. Consequently, this new metric improves the accuracy in detecting
effective modeling improvements in the model selection stage. The efficacy of the
new approach has been justified both theoretically and empirically.

1 INTRODUCTION

The progress in machine learning is largely influenced by experimental outcomes, particularly in
the era of deep learning. Researchers often evaluate the performance of new methods by comparing
them with previous benchmark results to demonstrate the superiority of new methods. However,
it is well known that the performance of deep learning models can vary greatly, even when using
the same pipeline (Picard, 2021; Pham et al., 2020; Reimers & Gurevych, 2017), where, in this
work, we define the pipeline broadly, which includes but is not limited to the selection of feature
sets, model architectures, optimization algorithms, initialization schemes, and hyperparameters.
Two identical pipelines may produce substantially different validation metrics due to factors such
as random initialization, data shuffle, and optimization noise. This variability makes it difficult to
accurately compare the modeling improvements over previous baselines. Even significant engineering
efforts may only lead to small measured gains within the noise margin.

In fact, it has been shown that by selecting a lucky random initialization seed, one can achieve a
model performance that is significantly better than average (Picard, 2021). This difference can be
substantial enough to be used as a strong argument for publications in selective venues (Picard, 2021).

This issue is exacerbated in industry, where the production model performance is hard to improve,
while there are hundreds of machine learning engineers working on the same model at the same time.
The performance gain of a modeling proposal is usually small and within the metric variance, making
it difficult to judge the effectiveness of the modeling proposal.

To address this issue, a common approach is to run the training pipeline multiple times and report
average, standard deviation, minimum, and maximum performance scores (Picard, 2021). Reimers
& Gurevych (2017) proposed to report the score distributions based on multiple executions instead
of single performance scores. However, with the rise of large training data and large models, these
approaches are not always practical due to limited computational resources (Bouthillier & Varoquaux,
2020).

In this work, we present a new perspective that focuses on metric design. The key insight is that we
can reduce the variance of the evaluation metrics themselves to enable more accurate comparisons
between models. We propose a metric framework called Calibrated Metric that exhibits lower
variance than its counterpart. Our method works by correcting for inherent biases before finalizing

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

the metric calculations on a holdout set. Our method does not require additional validation data and
is easy to compute.

We provide theoretical justifications for our metric in a linear regression setting. We demonstrate
the effectiveness of our method empirically in binary classification tasks and regression tasks.
Experiments on real-world data show that our Calibrated Metric reliably detects superior models
compared to its counterpart. We further validate the benefits under different deep learning training
configurations.

In summary, this paper makes the following contributions:

• We formulate the deep learning pipeline evaluation problem and propose to tackle it by
designing new metrics.

• We propose a new metric framework, Calibrated Metric, which can mitigate the above deep
learning pipeline evaluation issue.

• We conduct extensive experiments to demonstrate the effectiveness of the proposed metric,
using both synthetic datasets and real-world datasets.

• We provide theoretical guarantees in a linear regression setting that the proposed metric has
a smaller variance than its vanilla counterpart.

2 PRELIMINARIES AND PROBLEM SETTING

In this section, we examine the supervised learning setting, where we assume that the training data,
validation data, and test data are randomly drawn from an unknown distribution in an i.i.d. manner,
denoted as D. Our work can naturally be generalized to the concept drift1 setting, which we will
discuss in detail in Section 5.5.

Our goal is to develop a good pipeline that maps from a training distribution to a possibly random
model h ∈ H, which generalizes well during the test time. As we mentioned in the Introduction
1, the pipeline incorporates the whole procedure for training a model, including the selection of
model architectures, optimization algorithms, initialization schemes, and hyperparameters. Model
performance is evaluated by a metric, e, and thus the expected performance of a model h is

Re(h) = ED[e(h(X), Y)|h]. (1)

In practice, Re(h) is estimated by the finite-sample average on the test data set D̂test. That is,

R̂e(h, D̂test) =
1

|D̂test|

∑
(x,y)∈D̂test

e(h(x), y). (2)

It should be noted that the expected risk, Re(h), is a random variable, since h is random and depends
on a specific model that is produced by the underlying deep learning pipeline. The output model is
random due to the randomness of the data from the sample collection and intrinsic randomness during
the training process in the deep learning pipeline, such as the order of the data and the randomness of
the descent of the stochastic gradient. Therefore, a proper evaluation and comparison of different deep
learning pipelines should take into account the distribution of Re(h) (Bouthillier et al., 2021; Reimers
& Gurevych, 2017). It is also important to note that the term "deep learning pipeline" in this context
is general, as we consider different model configurations (e.g. different model hyperparameters) as
different "deep learning pipelines", even though they may belong to the same model class.

To compare the performance of different deep learning pipelines, we should calculate the expected
risk Re(h) for each pipeline. As mentioned above, such expected risk is a random variable w.r.t.
h, then we should compare the distribution of Re(h). Specifically, we use the probability that the
expected risk Re(h) for one pipeline is larger or smaller than that of the other to quantify the pairwise
performance comparison between different pipelines.

1Concept Drift refers to unforeseeable changes in the underlying distribution of streaming data overtime (Lu
et al., 2018).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Definition 2.1. (Better pipeline) For any two pipelines A and B, we say that pipeline A is better than
pipeline B with respect to metric e if and only if the probability that pipeline A produces a better
model (i.e., smaller risk), measured by the metric e, is greater than 0.5. This is represented by the
inequality:

P (Re(hA) < Re(hB)) > 0.5 (3)
where hA and hB are random variables representing the output models produced by pipeline A and
B respectively.

Our objective is to compare the performance of two pipelines, A and B, with respect to the metric e
by running the training pipeline only once. Ideally, the Monte Carlo method could be used to estimate
P (Re(hA) < Re(hB)), but this approach demands substantial computational resources, making it
impractical in Deep Learning. In this work, we aim to come up with an alternative metric e1 with the
following properties:

1. Roughly same mean
E [Re1(h)] ≈ E [Re(h)] ;

2. Strictly small variance
var (Re1(h)) < var (Re(h)) ,

where the randomness is from the pipeline that produces h. As a result, the new metric can compare
the performance of pipelines A and B more accurately using the same computational resources.
Definition 2.2. (Better alternative metric) Assuming that pipeline A is better than B with respect to
the metric e (i.e. pipeline A is more likely to produce a better model than pipeline B in the ground
truth if measured by metric e), we say that a metric e1 is better than e2 with respect to metric e if and
only if the probability that pipeline A produces a better model than pipeline B measured by metric e1
is greater than the probability measured by metric e2. This is represented by the inequality:

P (Re1(hA) < Re1(hB)) > P (Re2(hA) < Re2(hB)) (4)

In other words, using metric e1 is more likely to accurately detect that pipeline A is better than
pipeline B, which aligns with the ground truth. Here, we allow for a general form of the risk
function, which may not admit the expectation form; i.e., Re1(h) may not necessarily have the form
ED[e1(h(X), Y)].
Definition 2.3. (Metric accuracy) We assume without loss of generality that pipeline A is better than
B with respect to the metric e. We define the accuracy of a metric ē with respect to metric e and
pipeline A and B as:

Acc(ē) ≜ P (Rē(hA) < Rē(hB)) (5)

Our goal is to find a metric ē that has a higher accuracy than the original metric e for a wide range of
pipelines A and B. In the next section, we will present a new metric framework, namely Calibrated
Metric. The intuition is that the bias in the function h is always volatile and carries on a great deal
of randomness. Calibrating the bias will usually not change the comparison between two pipelines
but can reduce the randomness. In Section 4, we will present a theoretical analysis that justifies this
intuition by showing that our new metric framework has a smaller variance in the linear regression
setting. Through extensive experiments in Section 5, we will show that Calibrated Metric achieves
higher accuracy than its counterpart for a wide range of tasks and deep learning pipelines.

3 CALIBRATED METRIC FRAMEWORK

Overview of the Framework Our framework is outlined below in Algorithm 1. It has three main
steps:

1. Partition D̂val into D̂val−bias and D̂val−remain.

2. Use model predictions pval−bias
i and labels yval−bias

i to compute bias term c∗.

3. Apply the bias term c∗ to pval−remain
i to obtain bias-adjusted predictions qval−remain

i , and
compute corresponding metric using qval−remain

i and labels yval−remain
i .

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Algorithm 1 Calculate Calibrated Metric

1: Input: model h, labeled validation data D̂val, vanilla metric e, bias correction formula fe.
2: Output: Calibrated Metric: R̂e1(h, D̂val).
3: Partition D̂val into D̂val−bias and D̂val−remain.
4: Compute model predictions on D̂val−bias and D̂val−remain, denoted as pval−bias

i and pval−remain
i ;

Labels are denoted as yval−bias
i and yval−remain

i .
5: Compute bias term c∗ using pval−bias

i and yval−bias
i .

6: Calculate bias-adjusted predictions qval−remain
i using formula qi = fe(pi, c

∗) .
7: Calculate the Calibrated Metric R̂e1(h, D̂val) by applying the Vanilla Metric e to qval−remain

i and
yval−remain
i .

Calibrated Log Loss Metric (Binary Classification) The Calibrated Log Loss Metric is useful when
the Log Loss Metric is commonly used as a core metric to evaluate model performance. A typical
application that utilizes the Log Loss Metric as its primary evaluation criterion is the Click-Through
Rate (CTR) prediction task (He et al., 2014; Wang et al., 2017; McMahan et al., 2013).

In the field of Deep Click-Through Rate Prediction Models, it is common for models to overfit when
trained for more than one epoch (Zhou et al., 2018; Zhang et al., 2022). As a result, models are often
trained only for a single epoch in practice (Zhang et al., 2022), making it uncertain whether the model
has been fully optimized. This leads to volatility of the bias term in the final layer of neural networks,
creating additional randomness.

Let logit(p) := log(p
1−p) and gc(p) := (1 + e−logit(p)+c)−1.

To compute c∗, the following convex optimization program is solved:

c∗ = min
c

−
∑
i∈

D̂val−bias

(yi log(g
c(pi)) + (1− yi) log(1− gc(pi)))

 . (6)

Let qi = fe(pi, c
∗) := gc

∗
(pi). It can be easily shown that the bias-adjusted predictions qi are well

calibrated in D̂val−bias, which means that
∑

i∈D̂val−bias
qi =

∑
i∈D̂val−bias

yi.

The Calibrated Log Loss metric is

R̂e1(h, D̂val) =
1

|D̂val−remain|

∑
i∈

D̂val−remain

e(qi, yi),

and
e(p, y) = y log(p) + (1− y) log(1− p).

Calibrated Quadratic Loss Metric (Regression) The Calibrated Quadratic Loss Metric is useful
when the Mean Squared Error (MSE) Metric is commonly used as a core metric to evaluate model
performance. A typical application that uses MSE as its primary evaluation criterion is the stock
return prediction task (Jiang, 2021; Hu et al., 2021; Zou et al., 2022).

c∗ is easy to compute in the Calibrated Quadratic Loss Metric case:

c∗ =
1

|D̂val−bias|

∑
i∈

D̂val−bias

(yi − pi).

And fe(pi, c
∗) = pi + c∗.

Additional Computational Cost of the Framework The Calibrated Metric introduces minimal over-
head, and the associated computational cost is often negligible. This is because the bias calculation in
step 2 is highly efficient, and computing the bias-adjusted predictions in step 3 requires only a few
floating-point operations.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

4 THEORY ON LINEAR REGRESSION

In this section, we provide theoretical justification that our new metric has a smaller variance than
its vanilla counterpart under Linear Regression setting, where the randomness only comes from the
data randomness. We choose to provide a theoretical guarantee under Linear Regression due to
its simplicity. We empirically verify our method’s performance under Linear Regression, Logistic
Regression, and Neural Networks in the next section. Note that in Linear Regression, the Quadratic
Loss Metric is used.

Theorem 4.1. Suppose that the features X ∈ Rd and the label Y are distributed jointly Gaussian.
We consider linear regression h(x) = β⊤x+ α. Let β̂n be the coefficient learned from the training
data with sample size n. Then, we have(

1 +
1

n

)
E[e1(h(X), Y)|β̂n] = E[e(h(X), Y)|β̂n],

where the expectation is taken over the randomness over both the training and test samples,

e(h(x), y) = (y − h(x))2, and

e1(h(x), y) = (y − h(x)− (ED[Y]− ED[h(X)|h]))2.

Let α̂n be the learned intercept. Note that the original risk and the calibrated risk are

Re(h) = E[e(h(X), Y)|β̂n, α̂n], and

Re1(h) = E[e1(h(X), Y)|β̂n, α̂n] = E[e1(h(X), Y)|β̂n].

Therefore, Theorem 4.1 implies that

(1 +
1

n
)E[Re1(h)] = E[Re(h)].

Furthermore, to make e and e1 comparable, we should scale e1 to (1 + 1
n)e1. We show that after

scaling, (1 + 1
n)Re1(h) has a smaller variance than Re(h) in the next corollary. In practice, since

(1+ 1
n) is a constant as long as the training sample size is fixed, we can directly compare two pipelines

using Re1(h).

Corollary 4.2. Suppose that h1(x) and h2(x) are two different learned linear functions in different
feature sets. Then, we have

E[Re(h1)] = E[Re(h2)] ⇔ E[Re1(h1)] = E[Re1(h2)] (7)

and

var

((
1 +

1

n

)
Re1(h)

)
< var(Re(h))

for any h learned from linear regression.

Corollary 4.2 indicates that Calibrated Quadratic Loss Metric has a smaller variance than vanilla
Quadratic Loss Metric without changing the mean after appropriate scaling. Note that smaller variance
and higher accuracy (inequality 4) are highly correlated under mild conditions, but a smaller variance
alone does not guarantee higher accuracy. In the next section, we will empirically demonstrate that
the new metric has a smaller variance and achieves higher accuracy. All proofs can be found in the
Appendix A.

5 EXPERIMENT RESULTS

5.1 ESTIMATION OF ACCURACY

Recall that accuracy of a metric ē is defined as:

Acc(ē) ≜ P(Rē(hA) < Rē(hB)).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

To obtain an estimate of Acc(ē), we run pipelines A and B for m times, obtaining models hAi
and

hBi
for i ∈ [m]. Acc(ē) can be estimated as:

Âcc(ē) =
1

m2

∑
(i,j)

1(R̂ē(hAi , D̂val) < R̂ē(hBj , D̂val)) (8)

Âcc(ē) is an unbiased estimator of Acc(ē), and in the experiments below, we report Âcc(ē) as our
accuracy metric. In all the tables in this section, without loss of generality, we write the tables as
pipeline A is better than pipeline B in the sense of P(Re(hA) < Re(hB)) > 0.5.

5.2 SYNTHETIC DATA

In Appendix B.2, we consider a linear regression model to provide empirical evidence to support our
theory in Calibrated Quadratic Loss Metric setting. We also consider a logistic regression model to
demonstrate the effectiveness of the Calibrated Log Loss Metric. All details and results can be found
in the Appendix B.2.

5.3 AVAZU CTR PREDICTION DATASET

Dataset The Avazu CTR Prediction dataset 2 is a common benchmark dataset for CTR predictions.
Due to computational constraints in our experiments, we use the first 10 million samples, randomly
shuffle the data set, and split the whole data set into 80% D̂train, 2% D̂val−bias, and 18% D̂val−remain.

Metrics We compare the accuracy of Calibrated Log Loss Metric and Log Loss Metric. To make a
fair comparison, we compute Log Loss metric on D̂val = D̂val−bias + D̂val−remain.

Base Model We use the open source xDeepFM model (Lian et al., 2018) implemented in Shen
(2017) as our base model. We primarily conduct experiments using xDeepFM models, including
hyperparameter-related experiments and feature-related experiments. To demonstrate that our new
metric can also handle comparisons between different model architectures, we also conduct experi-
ments using DCN (Wang et al., 2017), DeepFM (Guo et al., 2017), FNN (Zhang et al., 2016), and
DCNMix (Wang et al., 2021).

Experiment Details We consider neural networks with different architectures, different training
methods, different hyper-parameters, and different levels of regularization as different pipelines.
Such comparisons represent common practices for research and development in both industry and
academia. For each pipeline, we train the model 60 times with different initialization seeds and
data orders to calculate Âcc(ē). Note that we use "Log Loss Metric" as our ground truth metric to
determine the performance rank of different pipelines. Due to computational constraints, we cannot
afford to run the experiments for multiple rounds. Instead, we run the experiments for one round and
report accuracy. Note that in the neural network experiments, we do not re-sample the training data
each time, as there is intrinsic randomness in the neural network training process (Lakshminarayanan
et al., 2016; Lee et al., 2015). This is the main difference from the Linear Regression and Logistic
Regression experiments.

Pipelines with Different Number of Features In this set of experiments, for pipeline A, we use all
the features available. For pipeline B, we remove some informative features. We tested the removal
of 6 dense features and 1 sparse features respectively.

Table 1: Accuracy of Log Loss Metric (LL) and Calibrated Log Loss Metric (CLL) (features)

Pipeline A Pipeline B LL Acc CLL Acc

Baseline remove dense 81.8% 88.8%
Baseline remove sparse 78.6% 85.9%

From the result in Table 1, we can clearly see that Calibrated Log Loss Metric has a higher accuracy,
indicating its effectiveness when comparing the performance of pipelines with different features.

2https://www.kaggle.com/c/avazu-ctr-prediction

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: Mean and Standard Deviation of Log Loss Metric (LL) and Calibrated Log Loss Metric
(CLL) (features)

Pipeline LL Mean CLL Mean LL Std CLL Std

remove dense 0.37408 0.37403 4.7× 10−4 3.8× 10−4

remove sparse 0.37404 0.37398 5.0× 10−4 4.2× 10−4

From the result in Table 2, we can see that Calibrated Log Loss Metric has a smaller standard
deviation (16% - 19% smaller) while the mean of Log Loss Metric and Calibrated Log Loss Metric is
almost on par (within 0.02% difference).

Pipelines with Different Model Architectures In this set of experiments, our objective is to find out
whether the new metric is capable of detecting a modeling improvement from changes in architecture.
We tested a variety of different model architectures, including DCN (Wang et al., 2017), DeepFM
(Guo et al., 2017), FNN (Zhang et al., 2016), and DCNMix (Wang et al., 2021).

Table 3: Accuracy of Log Loss Metric (LL) and Calibrated Log Loss Metric (CLL) (model architec-
tures)

Pipeline A Pipeline B LL Acc CLL Acc

DCN DCNMix 64.4% 71.5%
DeepFM DCN 77.2% 83.9%
DeepFM FNN 76.9% 79.9%
FNN DCNMix 61.5% 72.0%
DeepFM DCNMix 84.8% 93.4%

Table 4: Mean and Standard Deviation of Log Loss Metric (LL) and Calibrated Log Loss Metric
(CLL) (model architectures)

Pipeline LL Mean CLL Mean LL Std CLL Std

DCN 0.38021 0.38011 4.4× 10−4 3.3× 10−4

DeepFM 0.37971 0.3796 5.9× 10−4 3.7× 10−4

FNN 0.38029 0.38006 6.4× 10−4 4.0× 10−4

DCNMix 0.38046 0.38037 4.8× 10−4 3.4× 10−4

From the result in Table 3, we can clearly see that Calibrated Log Loss Metric has higher accuracy,
again indicating its effectiveness when comparing the performance of pipelines with different model
architectures. In Table 4, we report the mean and standard deviation of Log Loss Metric and
Calibrated Log Loss Metric, consistent with previous results.

Pipelines with Different Model Hyperparameters In this set of experiments, we compare pipelines
with different model hyperparameters, including neural network layer size, Batch Normalization
(BN) (Ioffe & Szegedy, 2015), Dropout (Srivastava et al., 2014), and regularization weight.

In the first experiment, we compare a pipeline using the baseline model size with a pipeline using a
smaller model size. In the second experiment, we compare a pipeline that uses batch normalization
with a pipeline that does not use batch normalization. In the third experiment, we compare a pipeline
that does not use Dropout with a pipeline that uses Dropout with dropout probability 0.7. In the
fourth experiment, we compare a pipeline that does not use regularization with a pipeline that uses
L2 regularization with regularization weight 10−6.

Figure 1 illustrates the distribution of Log Loss Metric and Calibration Log Loss Metric observed
in the Batch Normalization Experiments. We can clearly see that by using Calibrated Log Loss
Metric, it becomes easier to separate pipeline with Batch Normalization from pipeline without Batch
Normalization.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 5: Accuracy of Log Loss Metric (LL) and Calibrated Log Loss Metric (CLL) (hyperparameters)

Pipeline A Pipeline B LL Acc CLL Acc

Baseline Size Smaller Size 69.6% 73.6%
BN no BN 80.2% 89.7%
no Dropout p = 0.7 95.0% 99.3%
no regularization weight 10−6 95.2% 98.8%

(a) Log Loss Plot (b) Calibrated Log Loss Plot

Figure 1: Batch Normalization Experiment

From the result in Table 5, we can see that Calibrated Log Loss Metric has a higher accuracy
regardless of the hyperparameters we are tuning, indicating its effectiveness when comparing the
performance of pipelines with different hyperparameters, which is a very common task in Deep
Learning. In Appendix B.3 Table 12, we report the mean and standard deviation of Log Loss Metric
and Calibrated Log Loss Metric, again consistent with previous results.

Pipelines with Different Levels of Regularization In this set of experiments, we take a closer look
at one hyperparameter we conduct in the previous section: regularization weight. For pipeline A, we
use the baseline model. For pipeline B, we use different L2 regularization weights.

Table 6: Accuracy of Log Loss Metric (LL) and Calibrated Log Loss Metric (CLL) (regularization
weight)

Pipeline A Pipeline B LL Acc CLL Acc

no regularization weight 3× 10−7 63.2% 69.3%
no regularization weight 5× 10−7 82.2% 88.2%
no regularization weight 7× 10−7 86.6% 92.4%
no regularization weight 1× 10−6 95.2% 98.8%
no regularization weight 2× 10−6 98.8% 100.0%

From the result in Table 6, we can see that Calibrated Log Loss Metric has a higher accuracy across
all different regularization weights, indicating its robustness to different values of regularization
weight. As we increase the regularization weight in the pipeline B, the accuracies of both metrics
increase. This is because pipelines A and B differ more with larger regularization weight, making
performance comparison easier.

From the result in Appendix B.3 Table 13, we can see that Calibrated Log Loss Metric has a much
smaller standard deviation (15% - 40% smaller) than Log Loss Metric while the mean of Log Loss
Metric and Calibrated Log Loss Metric is almost on par (within 0.05% difference), again consistent
with previous results.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

5.4 CRITEO AD KAGGLE DATASET

The Criteo Ad Kaggle dataset3 is another common benchmark dataset for CTR predictions. We
provide additional experimental results in the Appendix B.4 using the deep learning recommendation
model (DLRM) (Naumov et al., 2019) open-sourced by Meta as our baseline model. These results
demonstrate that our method is generalized to different datasets and different models.

5.5 US STOCK MARKETS DATASET

Dataset For our experiments, we used per minute data from selected US stock equities over the
period from January 2012 to December 2018, covering all available trading days. The raw input
data consist solely of price information, including Open, Close, High, Low, and Volume (OCHLV).
Our objective is to predict 10-minute returns using these data. Feature construction was carried out
following the methodology provided in the Microsoft Qlib library (Yang et al., 2020)4. More details
on the dataset are provided in the Appendix B.5.

Base Model We utilize Long Short-Term Memory (LSTM) networks (Hochreiter, 1997), as imple-
mented in Yang et al. (2020), as our base model. To ensure that it has reasonable predictive power,
we performed hyperparameter tuning. Data from 2012 to 2014 are used for training, while data from
2015 to 2018 serve as the validation set. During the testing phase within the validation data, to handle
concept drift, we apply a ’Rolling Retraining’ strategy, where the model is periodically fine-tuned by
incorporating newly accumulated data every 6 months.

Metrics We compare the accuracy of Calibrated Quadratic Loss Metric and Quadratic Loss Metric.
For each pipeline, we train the model 10 times with different initialization seeds and data shuffle
to compute Âcc(ē). We use the ’Quadratic Loss Metric’ as the ground-truth metric for ranking the
performance of different pipelines. To compute the Calibrated Quadratic Loss Metric, we applied
a rolling strategy during the validation phase: the bias is calculated using the previous month’s
predictions and then is used to calibrate the following month’s predictions.

Pipelines with Different Levels of Regularization

Table 7: Accuracy of Quadratic Loss Metric (QL) and Calibrated Quadratic Loss Metric (CQL)
(regularization weight)

Pipeline A Pipeline B QL Acc CQL Acc

no regularization weight 3× 10−6 58% 76%
no regularization weight 4× 10−6 76% 86%
no regularization weight 5× 10−6 77% 91%
no regularization weight 6× 10−6 87% 94%
no regularization weight 7× 10−6 92% 96%

From the result in Table 7, we can see that Calibrated Quadratic Loss Metric has a higher accuracy
for all different regularization weights, similar to the result in Table 6. This indicates that our method
generalizes to different loss metrics, different models, and different tasks.

Additional Experimental Results Appendix B.5 provides further experimental results, including
tuning for hidden_size, num_layers, batch_size and num_epochs.

6 RELATED WORK

6.1 MODEL SELECTION IN SUPERVISED LEARNING SETTING

Model selection in supervised learning is crucial to ensure robust generalization to unseen data. A
common approach is the hold-out method, which splits the data into three parts: training, validation,

3https://www.kaggle.com/c/criteo-display-ad-challenge
4https://github.com/microsoft/qlib/blob/main/qlib/contrib/data/handler.

py

9

https://github.com/microsoft/qlib/blob/main/qlib/contrib/data/handler.py
https://github.com/microsoft/qlib/blob/main/qlib/contrib/data/handler.py

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

and test sets. The training set is used to learn the model, the validation set is employed for hyperpa-
rameter tuning, and the test set is reserved for final evaluation. Although straightforward, the hold-out
method requires a large dataset to ensure that sufficient data are available for each subset.

In scenarios with limited data, k-fold cross-validation (Kohavi, 1995) is often preferred. This method
splits the data into k folds, trains the model in k − 1 folds, and validates it on the remaining fold,
repeating this process k times, and averaging the results. This ensures that each data point is used for
both training and validation, providing a more comprehensive assessment of model performance. A
special case of this method is leave-one-out cross-validation, where k equals the number of training
examples. However, k-fold cross-validation typically demands multiple model trainings, which can
be impractical in deep learning due to the high computational cost.

More recently, Immer et al. (2021) proposed a scalable marginal-likelihood estimation method to
select both hyperparameters and network architectures based on the training data alone. Their method
is useful when validation data are unavailable. You et al. (2019) proposed Deep Embedded Validation
method in Deep Unsupervised Domain Adaptation setting.

6.2 EVALUATING THE PERFORMANCE OF CTR PREDICTION MODELS

Evaluating the performance of CTR prediction models is crucial, with several metrics commonly
used for this purpose (Yi et al., 2013). The Area Under the ROC Curve (AUC) (Fawcett, 2006; 2004)
and its variants (Zhu et al., 2017), along with Log Loss Metric, are among the most prevalent metrics
in this domain. For example, (He et al., 2014; Wang et al., 2017; McMahan et al., 2013) use Log Loss
Metric as their core metric, while (Zhou et al., 2018; McMahan et al., 2013) use AUC as their core
metric. However, AUC has been criticized for not taking into account the predictive probability (Yi
et al., 2013). Log Loss Metric, in particular, is favored in scenarios that require calibrated predictions
due to its consideration of predictive probabilities, an aspect crucial for applications such as Ads
CTR predictions (He et al., 2014).

6.3 EVALUATING THE PERFORMANCE OF STOCK RETURN PREDICTION MODELS

In Hu et al. (2021), MSE (or equivalently RMSE) is identified as the most commonly used perfor-
mance metric. Besides MSE, metrics such as MAPE, MAE, Accuracy, Sharpe Ratio, and Return
Rate are also frequently used to evaluate model performance.

7 CONCLUSION AND DISCUSSION

Conclusion In this paper, we have presented a new approach to comparing the performance of
different deep learning pipelines. We proposed a new metric framework, Calibrated Metric, which has
higher accuracy and smaller variance than its vanilla counterpart for a wide range of tasks, models,
and training pipelines. Our experiments in section 5 demonstrated the superiority of the Calibrated
Metric, and we believe that this new metric can be used to compare the performance of different
pipelines more effectively and efficiently. Future work includes expanding this idea to evaluate
Natural Language Processing (NLP) and Computer Vision (CV) pipelines and establish theoretical
guarantees in more general settings.

Limitations Our method sacrifices accuracy when comparing some specific pipelines. For example,
if pipeline B can reliably improve the model calibration over pipeline A, Calibrated Metric will not be
able to correctly detect the benefits of pipeline B. However, for most pipeline comparisons conducted
in industry and academia such as feature engineering, tuning parameters, etc., the Calibrated Metric
has a boost in accuracy over its counterpart metric, as we demonstrated in Section 5.

Potential Applications Our method may have applications in the AutoML domain. AutoML
(Automated Machine Learning) systems are designed to automate the process of selecting, designing,
and tuning machine learning models, and a key component of these systems is the selection of the
best-performing pipeline (e.g. hyperparameters, model architectures, etc.). The new metric could
be used as a more accurate way to compare performance and select the best. The new metric is, in
particular, useful when performing hyperparameter tuning.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Xavier Bouthillier and Gaël Varoquaux. Survey of machine-learning experimental methods at
NeurIPS2019 and ICLR2020. PhD thesis, Inria Saclay Ile de France, 2020.

Xavier Bouthillier, Pierre Delaunay, Mirko Bronzi, Assya Trofimov, Brennan Nichyporuk, Justin
Szeto, Nazanin Mohammadi Sepahvand, Edward Raff, Kanika Madan, Vikram Voleti, et al.
Accounting for variance in machine learning benchmarks. Proceedings of Machine Learning and
Systems, 3:747–769, 2021.

Tom Fawcett. Roc graphs: Notes and practical considerations for researchers. Machine learning, 31
(1):1–38, 2004.

Tom Fawcett. An introduction to roc analysis. Pattern recognition letters, 27(8):861–874, 2006.

Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. Deepfm: a factorization-
machine based neural network for ctr prediction. arXiv preprint arXiv:1703.04247, 2017.

Xinran He, Junfeng Pan, Ou Jin, Tianbing Xu, Bo Liu, Tao Xu, Yanxin Shi, Antoine Atallah, Ralf
Herbrich, Stuart Bowers, et al. Practical lessons from predicting clicks on ads at facebook. In
Proceedings of the Eighth International Workshop on Data Mining for Online Advertising, pp. 1–9,
2014.

S Hochreiter. Long short-term memory. Neural Computation MIT-Press, 1997.

Zexin Hu, Yiqi Zhao, and Matloob Khushi. A survey of forex and stock price prediction using deep
learning. Applied System Innovation, 4(1):9, 2021.

Alexander Immer, Matthias Bauer, Vincent Fortuin, Gunnar Rätsch, and Khan Mohammad Emtiyaz.
Scalable marginal likelihood estimation for model selection in deep learning. In International
Conference on Machine Learning, pp. 4563–4573. PMLR, 2021.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pp. 448–456.
pmlr, 2015.

Weiwei Jiang. Applications of deep learning in stock market prediction: recent progress. Expert
Systems with Applications, 184:115537, 2021.

R Kohavi. A study of cross-validation and bootstrap for accuracy estimation and model selection.
Morgan Kaufman Publishing, 1995.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. arXiv preprint arXiv:1612.01474, 2016.

Stefan Lee, Senthil Purushwalkam, Michael Cogswell, David Crandall, and Dhruv Batra. Why
m heads are better than one: Training a diverse ensemble of deep networks. arXiv preprint
arXiv:1511.06314, 2015.

Jianxun Lian, Xiaohuan Zhou, Fuzheng Zhang, Zhongxia Chen, Xing Xie, and Guangzhong Sun.
xdeepfm: Combining explicit and implicit feature interactions for recommender systems. In
Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data
mining, pp. 1754–1763, 2018.

Jie Lu, Anjin Liu, Fan Dong, Feng Gu, Joao Gama, and Guangquan Zhang. Learning under concept
drift: A review. IEEE transactions on knowledge and data engineering, 31(12):2346–2363, 2018.

H Brendan McMahan, Gary Holt, David Sculley, Michael Young, Dietmar Ebner, Julian Grady, Lan
Nie, Todd Phillips, Eugene Davydov, Daniel Golovin, et al. Ad click prediction: a view from
the trenches. In Proceedings of the 19th ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 1222–1230, 2013.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu Huang, Narayanan Sundaraman,
Jongsoo Park, Xiaodong Wang, Udit Gupta, Carole-Jean Wu, Alisson G Azzolini, et al. Deep
learning recommendation model for personalization and recommendation systems. arXiv preprint
arXiv:1906.00091, 2019.

Hung Viet Pham, Shangshu Qian, Jiannan Wang, Thibaud Lutellier, Jonathan Rosenthal, Lin Tan,
Yaoliang Yu, and Nachiappan Nagappan. Problems and opportunities in training deep learning
software systems: An analysis of variance. In Proceedings of the 35th IEEE/ACM international
conference on automated software engineering, pp. 771–783, 2020.

David Picard. Torch.manual_seed(3407) is all you need: On the influence of random seeds in
deep learning architectures for computer vision. CoRR, abs/2109.08203, 2021. URL https:
//arxiv.org/abs/2109.08203.

Nils Reimers and Iryna Gurevych. Reporting score distributions makes a difference: Performance
study of lstm-networks for sequence tagging. arXiv preprint arXiv:1707.09861, 2017.

Weichen Shen. Deepctr: Easy-to-use,modular and extendible package of deep-learning based ctr
models. https://github.com/shenweichen/deepctr, 2017.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

Ruoxi Wang, Bin Fu, Gang Fu, and Mingliang Wang. Deep & cross network for ad click predictions.
In Proceedings of the ADKDD’17, pp. 1–7. 2017.

Ruoxi Wang, Rakesh Shivanna, Derek Cheng, Sagar Jain, Dong Lin, Lichan Hong, and Ed Chi. Dcn
v2: Improved deep & cross network and practical lessons for web-scale learning to rank systems.
In Proceedings of the Web Conference 2021, pp. 1785–1797, 2021.

Xiao Yang, Weiqing Liu, Dong Zhou, Jiang Bian, and Tie-Yan Liu. Qlib: An ai-oriented quantitative
investment platform. arXiv preprint arXiv:2009.11189, 2020.

Jeonghee Yi, Ye Chen, Jie Li, Swaraj Sett, and Tak W Yan. Predictive model performance: Offline
and online evaluations. In Proceedings of the 19th ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 1294–1302, 2013.

Kaichao You, Ximei Wang, Mingsheng Long, and Michael Jordan. Towards accurate model selection
in deep unsupervised domain adaptation. In International Conference on Machine Learning, pp.
7124–7133. PMLR, 2019.

Weinan Zhang, Tianming Du, and Jun Wang. Deep learning over multi-field categorical data. In
European conference on information retrieval, pp. 45–57. Springer, 2016.

Zhao-Yu Zhang, Xiang-Rong Sheng, Yujing Zhang, Biye Jiang, Shuguang Han, Hongbo Deng,
and Bo Zheng. Towards understanding the overfitting phenomenon of deep click-through rate
prediction models. arXiv preprint arXiv:2209.06053, 2022.

Guorui Zhou, Xiaoqiang Zhu, Chenru Song, Ying Fan, Han Zhu, Xiao Ma, Yanghui Yan, Junqi Jin,
Han Li, and Kun Gai. Deep interest network for click-through rate prediction. In Proceedings of
the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp.
1059–1068, 2018.

Han Zhu, Junqi Jin, Chang Tan, Fei Pan, Yifan Zeng, Han Li, and Kun Gai. Optimized cost per click
in taobao display advertising. In Proceedings of the 23rd ACM SIGKDD international conference
on knowledge discovery and data mining, pp. 2191–2200, 2017.

Jinan Zou, Qingying Zhao, Yang Jiao, Haiyao Cao, Yanxi Liu, Qingsen Yan, Ehsan Abbasnejad,
Lingqiao Liu, and Javen Qinfeng Shi. Stock market prediction via deep learning techniques: A
survey. arXiv preprint arXiv:2212.12717, 2022.

12

https://arxiv.org/abs/2109.08203
https://arxiv.org/abs/2109.08203
https://github.com/shenweichen/deepctr

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A PROOFS

A.1 PROOFS OF THEOREM 4.1 AND COROLLARY 4.2

Lemma A.1. Suppose that β̂n is the unique linear regression solution computed using the training
data {Xi, Yi}ni=1 . Then, β̂n is independent to

{
X̄, Ȳ

}
, where

X̄ =
1

n

n∑
i=1

Xi, and Ȳ =
1

n

n∑
i=1

Yi.

Proof. It is well-known that β̂n is the solution of the convex program

min
β,c

n∑
i=1

(
Yi − β⊤Xi − c

)2
,

which is equivalent to the convex program

min
β

n∑
i=1

(
Yi − β⊤Xi −

(
Ȳ − β⊤X̄

))2
(9)

= min
β

n∑
i=1

((
Yi − Ȳ

)
− β⊤ (

Xi − X̄
))2

.

Let Ỹi = Yi − Ȳ and X̃i = Yi − Ȳ . Note that Ỹi is independent to Ȳ and X̃i is independent to X̄ as
cov(Yi − Ȳ , Ȳ) = 0, cov(Xi − X̄, X̄) = 0,

and {X,Y } are jointly normal. Note that the convex program (9) yields that β̂n is a function of{
X̃i, Ỹi

}n

i=1
, which is independent to

{
X̄, Ȳ

}
.

Theorem A.2. Suppose that the features X ∈ Rd and the label Y are distributed jointly Gaussian.
We consider linear regression h(x) = β⊤x+ α. Let β̂n be the coefficient learned from the training
data with sample size n. Then, we have(

1 +
1

n

)
E[e1(h(X), Y)|β̂n] = E[e(h(X), Y)|β̂n],

where the expectation is taken over the randomness over both the training and test samples.

Proof. Note that the learned bias α̂ = Ȳ − β̂⊺
nX̄, where Ȳ and X̄ are the empirical average of the

samples in the training set. Then, the risks are defined as

E
[
e(h(X), Y)|β̂n

]
= E

[((
Y − Ȳ

)
− β̂⊺

n

(
X − X̄

))2

|β̂n

]
,

E
[
e1(h(X), Y)|β̂n

]
= E

[(
(Y − ED[Y])− β̂⊺

n (X − ED[X])
)2

|β̂n

]
.

(10)

Therefore, we have
E
[
e1(h(X), Y)|β̂n

]
= var(Y − β̂⊺

nX|β̂n).

Note that we have {
Y − Ȳ , X − X̄

} d
=

√
1 +

1

n
{Y − ED[Y], X − ED[X]} .

given that {Y,X} is independent to
{
Ȳ , X̄

}
. Recall for A.1 that β̂n is independent to

{
Ȳ , X̄

}
, we

have

E
[
e(h(X), Y)|β̂n

]
= var

((
Y − Ȳ

)
− β̂⊺

n

(
X − X̄

)
|β̂n

)
=

(
1 +

1

n

)
var(Y − β̂⊺

nX|β̂n).

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Corollary A.3. Suppose that h1(x) and h2(x) are two different learned linear functions in different
feature sets. Then, we have

E[Re(h1)] = E[Re(h2)] ⇔ E[Re1(h1)] = E[Re1(h2)] (11)

and var((1 + 1/n)Re1(h)) < var(Re(h)) for any h learned from linear regression.

Proof. From the definition, we see

E[Re(h)] = E
[
E
[
e(h(X), Y)|β̂n

]]
,

E[Re1(h)] = E
[
E
[
e1(h(X), Y)|β̂n

]]
.

Therefore, we conclude the first claim.

For the second claim, note that

Re1(h) = E
[
e1(h(X), Y)|β̂n

]
,

Re(h) = E
[
e1(h(X), Y)|β̂n, X̄, Ȳ

]
.

Then, the variance of Re(h) can be decomposed as

var(Re(h)) = var
(
E
[
e(h(X), Y)|β̂n

])
+ E

[
var

(
E
[
e(h(X), Y)|β̂⊺

n, X̄, Ȳ
]
|β̂n

)]
> var

(
E
[
e(h(X), Y)|β̂n

])
= var

((
1 +

1

n

)
E
[
e1(h(X), Y)|β̂n

])
= var

((
1 +

1

n

)
Re1(h)

)
.

B EXPERIMENTS

B.1 SYNTHETIC DATA: LINEAR REGRESSION

In this section, we consider a linear regression model to give empirical evidence to support our theory.
We assume the response Y follows the following generating process:

Y = β⊤X + ϵ, (12)

where ϵ ∼ N (µe,Σe) and β,X ∈ Rd.

In the experiments, we consider d = 20, β = [1, 1, . . . , 1]⊤, and X ∼ N (µD,ΣD) in both the
training set and the validation set. In the training set, we generate Ntrain = 1000 i.i.d. training
samples to train a linear regression model. In the validation set, we generate Nval = 11000 i.i.d.
samples, with Nval−bias = 1000 and Nval−remain = 10000.

We assume µD = [−0.05,−0.05, . . . ,−0.05]⊤, ΣD = 0.252 × Id×d, µe = 1 and Σe = 2.

Note that there is no randomness in the linear regression training process, as it is a convex optimization
program. The randomness of Linear Regression comes from the training data. In order to run pipelines
A and B multiple times to estimate the metric accuracy, we re-sample training data each time from
the ground truth data distribution.

For pipeline A, we use all available 20 features, and for pipeline B, we use the first 19 features and
leave the last one out. It is clear that the pipeline A should perform better than the pipeline B in the
ground truth.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

For each round of experiments, we run pipelines A and B for 100 times and report accuracy Âcc(ē)
in Table 8. We performed 100 rounds of experiments and report the mean and standard errors of
Âcc(ē) in Table 8. We also calculate the standard deviation and mean of Quadratic Loss (QL) Metric
and Calibrated Quadratic Loss (CQL) Metric from pipeline A in each round of experiments, and
report the average in Table 9.

Table 8: Accuracy of Quadratic Loss Metric (QL) and Calibrated Quadratic Loss (CQL) Metric under
Linear Regression

of feature Accuracy

Pipeline A Pipeline B QL CQL

20 19 93.5% ± 0.19% 94.53% ± 0.17%

Table 9: Mean and Standard Deviation of Quadratic Loss Metric (QL) and Calibrated Quadratic Loss
(CQL) Metric under Linear Regression

QL Mean CQL Mean QL Std CQL Std

4.067 4.069 0.0298 0.0286

From the result in Table 8, we can see that Calibrated Quadratic Loss Metric has a higher accuracy
compared with Quadratic Loss Metric. From the result in Table 9, we can see that Calibrated
Quadratic Loss Metric indeed has a smaller standard deviation than Quadratic Loss Metric while the
mean of Quadratic Loss Metric and Calibrated Quadratic Loss Metric is almost on par.

B.2 SYNTHETIC DATA: LOGISTIC REGRESSION

We consider a logistic regression model. We assume that the response Y follows the Bernoulli
distribution with probability

(
1 + exp(−β⊤X)

)−1
, for β,X ∈ Rd.

In the experiments, we consider d = 20, β = [1, 1, . . . , 1]⊤, and X ∼ N (µD,ΣD) in both the
training and the validation sets. In the training set, we generate Ntrain = 1000 i.i.d. training samples
to train a logistic regression model. In the validation set, we generate Nval = 12000 i.i.d. samples,
with Nval−bias = 2000 and Nval−remain = 10000.

We assume µD = [−0.05,−0.05, . . . ,−0.05]⊤ and ΣD = 0.252 × Id×d.

Note that similar to Linear Regression, there is no randomness in the training process of Logistic
Regression as well, as it is a convex optimization program. The randomness of Logistic Regression
comes from the training data. We employ the same strategy to estimate the metric accuracy, i.e. we
re-sample training data each time from the ground truth data distribution.

For pipeline A, we use all available 20 features, and for pipeline B, we use the first 19 features and
leave the last one out. It is clear that the pipeline A should perform better than the pipeline B in the
ground truth.

For each round of experiments, we run pipelines A and B for 100 times and report accuracy Âcc(ē)
in Table 10. We performed 100 rounds of experiments and report the mean and standard errors of
Âcc(ē) in Table 10. We also calculate the standard deviation and mean of Log Loss (LL) Metric
and Calibrated Log Loss (CLL) Metric from pipeline A in each round of experiments and report the
average in Table 11.

From the result in Table 10, we can clearly see that Calibrated Log Loss Metric has a huge accuracy
boost compared with Log Loss Metric. From the result in Table 11, we can see that Calibrated Log
Loss Metric indeed has a smaller standard deviation than Log Loss Metric while the mean of Log
Loss Metric and Calibrated Log Loss Metric is almost on par.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 10: Accuracy of Log Loss Metric (LL) and Calibrated Log Loss Metric (CLL) under Logistic
Regression

of feature Accuracy

Pipeline A Pipeline B LL CLL

20 19 85.93% ± 0.26% 89.36% ± 0.24%

Table 11: Mean and Standard Deviation of Log Loss Metric (LL) and Calibrated Log Loss Metric
(CLL) under Logistic Regression

LL Mean CLL Mean LL Std CLL Std

0.5249 0.5219 0.00376 0.00357

B.3 AVAZU CTR PREDICTION DATASET

We report the mean and standard deviation of Log Loss Metric and Calibrated Log Loss Metric for
additional experiments in the Avazu CTR Prediction dataset.

Table 12: Mean and Standard Deviation of Log Loss Metric (LL) and Calibrated Log Loss Metric
(CLL) (hyperparameters)

Pipeline LL Mean CLL Mean LL Std CLL Std

Baseline 0.37347 0.37338 5.8× 10−4 3.8× 10−4

smaller size 0.37383 0.37374 4.8× 10−4 3.9× 10−4

BN 0.37286 0.37268 7.8× 10−4 4.4× 10−4

Dropout 0.37454 0.37456 3.9× 10−4 3.6× 10−4

Regularization 0.37475 0.37459 6.1× 10−4 4.2× 10−4

Table 13: Mean and Standard Deviation of Log Loss Metric (LL) and Calibrated Log Loss Metric
(CLL) (regularization weight)

Pipeline LL Mean CLL Mean LL Std CLL Std

0 0.37347 0.37338 5.8× 10−4 3.8× 10−4

3× 10−7 0.37371 0.37369 4.8× 10−4 4.3× 10−4

5× 10−7 0.37419 0.37411 5.9× 10−4 5.0× 10−4

7× 10−7 0.37428 0.37421 5.7× 10−4 4.4× 10−4

1× 10−6 0.37475 0.37459 6.1× 10−4 4.2× 10−4

2× 10−6 0.37562 0.37547 5.9× 10−4 4.2× 10−4

B.4 CRITEO AD KAGGLE DATASET

Dataset The Criteo Ad Kaggle dataset is a common benchmark dataset for CTR predictions. It
consists of a week’s worth of data, approximately 45 million samples in total. Each data point
contains a binary label, which indicates whether the user clicks or not, along with 13 continuous,
26 categorical features. The positive label accounts for 25.3% of all data. The categorical features
consist of 1.3 million categories on average, with 1 feature having more than 10 million categories, 5
features having more than 1 million categories. Due to computational constraints in our experiments,
we use the first 15 million samples, shuffle the dataset randomly, and split the whole dataset into 85%

D̂train, 3% D̂val−bias, 12% D̂val−remain.

Metrics We compare the accuracy of Calibrated Log Loss Metric and Log Loss Metric. To make a
fair comparison, we compute Log Loss metric on D̂val = D̂val−bias + D̂val−remain.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Base Model 1 We use the deep learning recommendation model (DLRM) (Naumov et al., 2019)
open-sourced by Meta as our baseline model. DLRM employs a standard architecture for ads
recommendation tasks, with embeddings to handle categorical features, Multilayer perceptrons
(MLPs) to handle continuous features and the interactions of categorical features and continuous
features. Throughout our experiments, we use the default parameters and a SGD optimizer. For each
pipeline, we train the model 25 times with different initialization seeds and data orders to calculate
Âcc(ē).

Base Model 2 We use the open source xDeepFM model (Lian et al., 2018) implemented in Shen
(2017) as our base model, same as Avazu CTR Prediction dataset. For each pipeline, we train the
model 60 times with different initialization seeds and data orders to calculate Âcc(ē).

Pipelines with Different Embedding Dimension (Base Model = DLRM)

Table 14: Accuracy of Log Loss Metric (LL) and Calibrated Log Loss Metric (CLL) (Embedding
Dimension)

Pipeline A Pipeline B LL Acc CLL Acc

Embedding Dimension = 14 Embedding Dimension = 16 55.4% 60.3%
Embedding Dimension = 14 Embedding Dimension = 18 61.9% 70.4%
Embedding Dimension = 16 Embedding Dimension = 18 61.8% 65.8%

Pipelines with Different Batch Size (Base Model = DLRM)

Table 15: Accuracy of Log Loss Metric (LL) and Calibrated Log Loss Metric (CLL) (Batch Size)

Pipeline A Pipeline B LL Acc CLL Acc

Batch Size = 256 Batch Size = 128 84.5% 88.0%
Batch Size = 512 Batch Size = 128 89.0% 95.5%

Pipelines with Different MLP Width (Base Model = DLRM)

Table 16: Accuracy of Log Loss Metric (LL) and Calibrated Log Loss Metric (CLL) (MLP Width)

Pipeline A Pipeline B LL Acc CLL Acc

MLP = 128-256-1 MLP = 256-256-1 57.4% 60.2%
MLP = 128-256-1 MLP = 512-256-1 60.5% 63.4%
MLP = 128-256-1 MLP = 1024-256-1 58.6% 61.4%

Pipelines with Different Number of Features (Base Model = xDeepFM)

Table 17: Accuracy of Log Loss Metric (LL) and Calibrated Log Loss Metric (CLL) (features)

Pipeline A Pipeline B LL Acc CLL Acc

Baseline remove dense 96.7% 100.0%
Baseline remove sparse 87.6% 95.7%

Pipelines with Different Model Hyperparameters (Model = xDeepFM)

Pipelines with Different Levels of Regularization (Model = xDeepFM)

B.5 US STOCK MARKETS DATASET

Dataset For our experiments, we used per minute data from selected US stock equities over the
period from January 2012 to December 2018, covering all available trading days. The raw input

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 18: Accuracy of Log Loss Metric (LL) and Calibrated Log Loss Metric (CLL) (hyperparame-
ters)

Pipeline A Pipeline B LL Acc CLL Acc

Baseline Size Smaller Size 80.1% 86.4%
no Dropout p = 0.1 78.3% 87.2%

Table 19: Accuracy of Log Loss Metric (LL) and Calibrated Log Loss Metric (CLL) (regularization
weight)

Pipeline A Pipeline B LL Acc CLL Acc

no regularization weight 7× 10−2 78.1% 84.4%
no regularization weight 1× 10−1 82.3% 90.0%
no regularization weight 1.5× 10−1 90.0% 96.4%
no regularization weight 2× 10−1 91.0% 98.1%

data consist solely of price information, including Open, Close, High, Low, and Volume (OCHLV).
Each year, there are approximately 250 active trading days with regular trading hours. The data
were back-adjusted for all dividend payments received and stock splitting that occurred during this
time. On an active day, the regular trading hours start at 09:30 am and close at 16:00 pm. However,
stock exchanges are closed all day during weekends and official holidays, and no trading is permitted.
Some official holidays are New Year’s Day, Good Friday, Independence Day, and Christmas Day.
The stock exchanges close early on a few days of the year, operating only from 09:30 am to 13:00 pm,
e.g., the day before Independence Day, Christmas Eve, for example. The complete list of holidays
and early closings is obtained from algoseek56 to pre-process the data and generate precise time
series. The barchart7 is the source of price data.

Selected US Stock Equities We selected the following 25 stocks for our experiments based on the
data quality, specifically due to fewer missing rows. The selected stocks are: DIS, VZ, JPM, GE,
COP, F, MSFT, XOM, AAPL, CMCSA, WFC, PFE, INTC, GILD, CVX, BAC, GM, SBUX, T, C,
QCOM, JNJ, WMT, KO, CSCO.

Pipelines with Different hidden_size

Table 20: Accuracy of Quadratic Loss Metric (QL) and Calibrated Quadratic Loss Metric (CQL)
(hidden_size)

Pipeline A Pipeline B QL Acc CQL Acc

hidden_size = 32 hidden_size = 64 69% 76%
hidden_size = 64 hidden_size = 96 74% 78%
hidden_size = 64 hidden_size = 112 88% 90%
hidden_size = 64 hidden_size = 128 91% 94%
hidden_size = 64 hidden_size = 144 97% 99%

Pipelines with Different num_layers

Pipelines with Different batch_size

Pipelines with Different num_epochs

5https://us-equity-market-holidays.s3.amazonaws.com/holidays.csv
6https://us-equity-market-holidays.s3.amazonaws.com/earlycloses.csv
7https://www.barchart.com/

18

https://us-equity-market-holidays.s3.amazonaws.com/holidays.csv
https://us-equity-market-holidays.s3.amazonaws.com/earlycloses.csv
https://www.barchart.com/

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 21: Accuracy of Quadratic Loss Metric (QL) and Calibrated Quadratic Loss Metric (CQL)
(num_layers)

Pipeline A Pipeline B QL Acc CQL Acc

num_layers = 3 num_layers = 2 93% 99%
num_layers = 4 num_layers = 2 94% 100%
num_layers = 4 num_layers = 3 74% 88%
num_layers = 5 num_layers = 3 80% 98%
num_layers = 6 num_layers = 3 78% 100%
num_layers = 6 num_layers = 4 64% 76%

Table 22: Accuracy of Quadratic Loss Metric (QL) and Calibrated Quadratic Loss Metric (CQL)
(batch_size)

Pipeline A Pipeline B QL Acc CQL Acc

batch_size = 3000 batch_size = 2000 75% 85%
batch_size = 3000 batch_size = 1000 89% 97%
batch_size = 2000 batch_size = 1000 60% 77%

Table 23: Accuracy of Quadratic Loss Metric (QL) and Calibrated Quadratic Loss Metric (CQL)
(num_epochs)

Pipeline A Pipeline B QL Acc CQL Acc

num_epochs = 4 num_epochs = 5 70% 75%
num_epochs = 4 num_epochs = 6 94% 96%
num_epochs = 4 num_epochs = 7 97% 99%
num_epochs = 5 num_epochs = 6 98% 98%
num_epochs = 5 num_epochs = 7 99% 100%
num_epochs = 6 num_epochs = 7 72% 82%

19

	Introduction
	Preliminaries and Problem Setting
	Calibrated Metric Framework
	Theory on Linear Regression
	Experiment Results
	Estimation of Accuracy
	Synthetic Data
	Avazu CTR Prediction dataset
	Criteo Ad Kaggle dataset
	US Stock Markets Dataset

	Related Work
	Model Selection in Supervised Learning Setting
	Evaluating the performance of CTR Prediction Models
	Evaluating the performance of Stock Return Prediction Models

	Conclusion and Discussion
	Proofs
	Proofs of Theorem 4.1 and Corollary 4.2

	Experiments
	Synthetic Data: Linear Regression
	Synthetic Data: Logistic Regression
	Avazu CTR Prediction dataset
	Criteo Ad Kaggle dataset
	US Stock Markets Dataset

