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ABSTRACT

We propose a step-by-step video-to-audio (V2A) generation method for finer
controllability over the generation process and more realistic audio synthesis.
Inspired by traditional Foley workflows, our approach aims to comprehensively
capture all sound events induced by a video through the incremental generation of
missing sound events. To avoid the need for costly multi-reference video–audio
datasets, each generation step is formulated as a negatively guided V2A process
that discourages duplication of existing sounds. The guidance model is trained by
finetuning a pre-trained V2A model on audio pairs from adjacent segments of the
same video, allowing training with standard single-reference audiovisual datasets
that are easily accessible. Objective and subjective evaluations demonstrate that our
method enhances the separability of generated sounds at each step and improves
the overall quality of the final composite audio, outperforming existing baselines.

1 INTRODUCTION

We are interested in generating realistic audio signals that align seamlessly with given visual contents
— a process referred to as Foley (Ament, 2021) in film or game production. In traditional workflows,
Foley artists begin with field-recorded or library sounds and incrementally layer in missing elements
(e.g., footsteps or fabric movements) to enhance the realism of the audio. While essential for
high-quality audiovisual content, this workflow is labor-intensive and time-consuming because even
short clips often contain numerous audible events.

Recent video-to-audio (V2A) models (Viertola et al., 2025; Luo et al., 2023; Wang et al., 2024b;a;
Liu et al., 2024; Cheng et al., 2025; Polyak et al., 2024) show promise in automating this workflow.
These models produce high-quality audio that semantically and temporally aligns with input videos.
However, most models generate an entire track in a single pass and do not offer a mechanism for
incremental refinement (i.e., supplementing sounds missing in the generated results). This non-
interactive design poses a significant challenge; if the output is missing specific events, creators are
compelled to regenerate the entire track. Such inefficiencies limit the practical application of these
models, particularly in collaborative workflows with human creators.

We argue that a step-by-step generation mechanism is crucial for practical V2A synthesis (Fig. 1). A
model should generate not only a complete track aligned with the video, but also complementary
audio that fills missing events without duplicating sounds already existing.1 This offers greater
control and efficiency in the sound creation process, as in the traditional Foley workflow.

A critical challenge to achieve this step-by-step generation is the scarcity of datasets. A straight-
forward approach (i.e., training a conditional generation model that produces multiple plausible
audio tracks per video) requires multi-reference video-audio pairs, which are difficult to obtain at
scale. In this paper, we propose a guided generation method, Negative Audio Guidance (NAG),
for the step-by-step video-to-audio synthesis without requiring specialized training datasets. We
train a model that generates audio semantically similar to the reference audio, using pairs of audio
segments sampled from adjacent segments of the same video. At inference, we utilize the trained

1One might consider text-conditional V2A already provides sufficient control for the target audio event to be
generated. However, existing text-conditional V2A models struggle to suppress the already generated sound,
especially for the prominent event in the video (e.g., in Fig. 4, the moose’s footstep sounds are produced in all
tracks regardless of the input text prompts).
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Figure 1: Step-by-step video-to-audio generation for compositional sound effect creation. Video often
contains numerous audible events, and Foley artists synthesize composite audio by adding missing
audio components step-by-step. Supporting this step-by-step mechanism with a video-to-audio
generation model offers greater control and efficiency in the sound creation process.

model negatively to ensure the generated audio is dissimilar to existing audio, steering generation
toward complementary content. By iterating this guided generation process, a model progressively
builds a composite audio that covers all relevant sound events in the video. Extensive experiments
demonstrate that our method enables step-by-step completion of missing sounds and enhances final
audio quality while ensuring the separability of the generated audio at each step.

2 RELATED WORK

2.1 VIDEO-TO-AUDIO SYNTHESIS

The goal of video-to-audio synthesis is to generate an audio signal that aligns semantically and
temporally with an input video. Early approaches used regression models (Chen et al., 2020b) and
GANs (Iashin and Rahtu, 2021), while more recent ones have adopted autoregressive models (Viertola
et al., 2025) and diffusion models (Luo et al., 2023; Wang et al., 2024b;a; Liu et al., 2024; Cheng
et al., 2025; Polyak et al., 2024) due to their high capability in generation tasks. However, these
models typically accept only videos (and optionally text prompts) as input conditions, making it
impossible to specify sounds that users may want to combine with the generated audio.

Few studies have explored audio conditioning in video-to-audio synthesis to address their respective
problem setting. MultiFoley (Chen et al., 2024b) uses conditional audio as a reference for the
generated audio. Sketch2Sound (García et al., 2025) takes a similar approach, but only uses a
particular set of signal features extracted from the original conditional audio to accept sonic or vocal
imitations as conditions. Action2Sound (Chen et al., 2024a) focuses on disentangling foreground and
ambient sound, using conditional audio to specify the appearance of ambient sound in the generated
audio. Unlike these studies, we utilize audio conditioning to specify what kind of audio should not
appear in the generated audio, enabling step-by-step generation in video-to-audio synthesis.

2.2 GENERATIVE "ADD" OPERATION

Generative "add" operations in the audio domain are executed to generate audio that can be mixed
with an input audio signal, often guided by a text prompt. These operations have been explored in
text-to-audio (Wang et al., 2023; Jia et al., 2025) and text-to-music (Han et al., 2024; Parker et al.,
2024; Mariani et al., 2024; Postolache et al., 2024; Karchkhadze et al., 2025) synthesis and can be
divided into two approaches: training-based and training-free.

In the training-based approach, the model is explicitly trained to perform the "add" operation given
the input audio. This training requires a triplet comprising an input audio, a text prompt, and an audio
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to be added as training data (Wang et al., 2023; Han et al., 2024; Parker et al., 2024). Unfortunately,
existing methods are difficult to apply in our setting because such data is hard to obtain. Even within
a single scene, a mixture of many sounds can be observed, and separating them into individual ones
is challenging (Owens and Efros, 2018; Zhu and Rahtu, 2020; Song and Zhang, 2023).

On the other hand, the training-free approach is more flexible as it leverages a pre-trained text-to-
audio/music model without any specific training process. The "add" operation is conducted as a
partial generation of multi-track audio (Mariani et al., 2024; Postolache et al., 2024; Karchkhadze
et al., 2025) or a re-generation with a target prompt from structured noise obtained through inverting
the input audio (Jia et al., 2025). Instead of specific training data, these methods require particular
properties in the pre-trained model: multi-track joint generation (Mariani et al., 2024; Karchkhadze
et al., 2025), data-space diffusion models (Postolache et al., 2024), and specific types of model
architectures (Jia et al., 2025), which limit their applicability to our video-to-audio setting.

Similar "add" operations have been explored as object insertion in computer vision, where models
generate an object image to be added to an input background image. They are also categorized
into training-based (Singh et al., 2024; Canberk et al., 2024) and training-free approaches (Tewel
et al., 2025), but in either case, they rely on segmentation models to create training data or guide the
generation process. It means that a particular subset of pixels in the image is assumed to be wholly
replaced with the generated one through the "add" operation. As "add" in the audio domain involves
mixing rather than replacing, these approaches cannot be directly applied to our setting.

We adopted a training-based approach for this study, utilizing the "add" operation in the audio domain,
and designed our framework to eliminate the need for specialized training data. This approach makes
it more practical and adaptable for video-to-audio synthesis tasks.

3 METHOD

3.1 PRELIMINARIES

Generative modeling with flow-matching. Let p1(x) be a data distribution where x ∈ Rd. Flow
matching (Lipman et al., 2023) considers the probability flow ODE d

dtϕt(x) = ut(ϕt(x)), where
t ∈ [0, 1] is a timestep, ut is the velocity field, and ϕt(x) = ϕ(x, t) : Rd × R → Rd is the flow
that maps x to the intermediate data xt. ϕt can be an arbitrary function that satisfies the terminal
condition ϕ1(x1) = x1 and ϕ0(x1) ∼ p0, where p0 is a tractable distribution such as a standard
normal distribution N (0, I). Following the most popular setting, we define ϕt(x1) = tx1+(1− t)x0,
where x0 ∼ N(0, I), resulting in u(ϕt(x)) = x1 − x0.

Solving ODE from t = 0 to 1 with an initial sample x0 ∼ p0(x) enables sampling from the target
data distribution x1 ∼ p1(x). To achieve this, a neural network is trained to predict ut(ϕt(x)), which
corresponds to x1 − x0 in our case, by minimizing the squared error over both data and timesteps. In
text-conditioned video-to-audio synthesis, the model takes additional conditional inputs, which are
input video V and text prompt C, to model a conditional flow ut(ϕt(x)|V,C).

Guidance for flow-matching models with multiple conditions. Classifier-free guidance (Ho and
Salimans, 2021) is widely used to improve generation quality and fidelity to conditions. This guidance
is typically conducted with a single condition, and it is not trivial to extend it to two conditions,
as in text-conditioned video-to-audio synthesis. To derive a proper guidance process, p(x|V,C) is
decomposed as the following equation:

p(x|V,C) = p(x)

(
p(x|V )

p(x)

)(
p(x|V,C)
p(x|V )

)
. (1)

On the basis of this decomposition, Kushwaha and Tian (2025) proposed the following guided flow:

ũθ(xt) = uθ(xt, t,∅,∅) + w1(uθ(xt, t, V,∅)− uθ(xt, t,∅,∅))

+ w2(uθ(xt, t, V, C)− uθ(xt, t, V,∅)), (2)

where θ is a set of the model parameters, and ∅ denotes a null condition. The three terms of the
right-hand side of Eq. (2) respectively correspond to the three factors on the right-hand side of Eq. (1).
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Figure 2: Overview of the proposed method. Each audio track should represent a distinct audio event.
Using previously generated audio tracks as a condition for the negation concept, we explicitly push
the current generation process away from the audio tracks already generated.

They empirically show that setting w1 = w2 achieves better results, and in this case, uθ(xt, t, V,∅)
cancels out, which gives us the following simplified formulation:

ũθ(xt) = uθ(xt, t,∅,∅) + w1(uθ(xt, t, V, C)− uθ(xt, t,∅,∅)). (3)

3.2 PROBLEM SETTING: STEP-BY-STEP GENERATION IN VIDEO-TO-AUDIO SYNTHESIS

We are interested in iteratively generating missing audio that complements previously generated
audio. Let x(1) be the audio generated at the previous step, x(2) be the target audio to be generated
at this step, C2 be the text prompt that specifies the sound event for x(2) missed by x(1), and V be
the input video. Our goal is to sample x(2) from p

(
x(2)

∣∣V,C2, x
(1)
)

so that x(2) corresponds to the
concept described by C2, semantically and temporally aligns with V , and does not contain duplicated
audio present in x(1).

From a straightforward standpoint, learning to generate samples from this distribution would require
tuples of (x(2), V, C2, x

(1)) as training data. Unfortunately, constructing such data from a video
is a challenging task called visually-guided audio source separation (Owens and Efros, 2018; Zhu
and Rahtu, 2020; Song and Zhang, 2023), and thus, we cannot expect high-quality training datasets.
Instead, we propose an alternative training framework that eliminates the need for such specialized
data.

Note that this processing can be applied to the following generation step without loss of generality.
In the k-th generation step, we can set the mix of the previously generated (k − 1) audio as x(1), and
use it to sample x(2). Please refer to Section 5.1 for more details of this procedure.

3.3 FORMULATION OF TARGET DISTRIBUTION WITH CONCEPT NEGATION

Recall that we want to generate x(2) to only cover a missing sound event in x(1). In this sense,
conditioning by x(1) corresponds to a concept negation (Du et al., 2020; Liu et al., 2022; Valle et al.,
2025) in generating x(2); the generated x(2) should not contain any concepts related to x(1). We
denote this type of audio condition as Ē(·) = ¬E(·) to explicitly differentiate it from a standard type
of audio condition denoted by E(·). Based on the above-mentioned relationship between x(1) and
x(2), we approximate the target distribution of x(2) using the concept negation as follows:

p
(
x(2)

∣∣∣V,C2, x
(1)
)
≈ p
(
x(2)

∣∣∣V,C2, Ē
(
x(1)

))
. (4)

Following the study by Du et al. (2020), we assume that the concept negation holds this property:
p(x, cp,¬cn) ∝ p(x)p(cp|x)p(cn|x)−1, (5)
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where cp and cn denote conditional concepts to generate x.

To derive our guidance, we decompose the target distribution using Eq. (5) and Bayes’ theorem as:

p
(
x(2)

∣∣∣V,C2, Ē
(
x(1)

))
∝ p
(
x(2), V, C2, Ē

(
x(1)

))
∝ p
(
x(2), V

)
p
(
C2

∣∣∣x(2), V )p(E(x(1))∣∣∣x(2), V )−1

∝ p
(
x(2)

)(p(x(2)|V )
p
(
x(2)

) )(p(x(2)∣∣V,C2

)
p
(
x(2)

∣∣V )
)(

p
(
x(2)

∣∣V )
p
(
x(2)

∣∣V, E(x(1)))
)
. (6)

Similar to the derivation of Eq. (2), we can derive the guidance process based on this decomposition,
as shown in the next section. It indicates we can sample x(2) using this new guidance with flow
matching models. Iterating this process enables step-by-step generation in video-to-audio synthesis.

4 IMPLEMENTATION

4.1 GUIDED FLOW FOR STEP-BY-STEP GENERATION

The decomposition shown in Eq. (6) yields a new guidance formulation comprising four terms: one
unconditional flow term and three guidance terms. However, adjusting the coefficients of the three
guidance terms is cumbersome in practice. Given the empirical results (Kushwaha and Tian, 2025),
where simplifying the guidance by removing uθ(xt, t, V,∅) in Eq. (2) performs well, we also set
the guidance coefficients so that uθ(xt, t, V,∅) cancels out for simplification. Specifically, we put
the sum of the coefficients of the first and third guidance terms to equal the coefficient of the second
guidance term (see Section B for more details). This leads to the following guided flow:

ũθ,ψ(xt) = uθ(xt, t,∅,∅) + α(uθ(xt, t, V, C2)− uθ(xt, t,∅,∅))

+ β
(
uθ(xt, t, V, C2)− uθ,ψ

(
xt, t, V,∅, x(1)

))
, (7)

where α and β are the coefficients of the guidance terms. As we require an audio-conditioned flow in
the last term, we introduce an additional set of trainable parameters ψ to adapt the text-conditioned
video-to-audio model for this prediction, as detailed in the next subsection.

The second term on the right-hand side of Eq. (7) corresponds to a standard guidance term in
text-conditioned video-to-audio models, which appeared in Eq. (3). It strengthens the fidelity of the
generated audio to the conditional video and text prompt. The third term is a new guidance term
appearing in our proposed method, which pushes the generated audio away from the conditional
audio x(1). This prevents the already generated audio events from being re-generated in the current
generation step, enabling step-by-step generation without overlapping audio events. Since x(1) is used
similarly for a negative prompt, we refer to this new guidance as Negative Audio Guidance (NAG).

4.2 TRAINING FLOW ESTIMATOR FOR NEGATIVE AUDIO GUIDANCE

All the flows appearing on the right-hand side of Eq. (7), except for the last one, can be estimated
using standard text-conditional video-to-audio models. The remaining term is a conditional flow
corresponding to the distribution p(x(2)|V, E

(
x(1)

)
). As E(·) is a standard type of audio conditioning,

this flow estimator can be seen as an extended version of the video-to-audio model, enhanced by
incorporating conditional audio as an additional input. Therefore, we train the flow estimator using
ControlNet (Zhang et al., 2023) parameterized by ψ. As a base video-to-audio model, we used
MMAudio, parameterized by θ, for its high capability in video-to-audio synthesis.

Model architecture. Figure 3 shows an overview of the ControlNet architecture of the flow estima-
tor. Since MMAudio uses a sophisticated architecture extended from MM-DiT (Esser et al., 2024),
we adapt the architecture of ControlNet accordingly. Inspired by Stable Diffusion 3.5 (Stability-AI,
2024), we stack several single-modal transformer blocks to extract features from the conditional audio,
and the features extracted at each block are added to the intermediate features of the corresponding
blocks in MMAudio. During training, we freeze the pre-trained parameters of MMAudio and only
update the parameters of the additional modules. See Section D for more details of the training.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Video Text Audio (target) Audio (cond.)

Multimodal transformer block

Multimodal transformer block

Zero conv.

⊕

⊕ Zero conv.

Single-modal transformer block

Multimodal transformer block

Zero conv.

…

Single-modal transformer block

⊕

Single-modal transformer block

…

Single-modal transformer block

…
…

… …

Single-modal transformer block

Zero conv.

Output block

⊕

Flow

Global
conditioning

𝑁1 blocks

𝑁2 blocks

𝑀 ≤ 𝑁1 +𝑁2
blocks

Trainable parameters

Frozen parameters

⊕ Summation

Figure 3: Overview of network architecture for the audio-conditional flow estimator. We adopt
ControlNet for the multi-modal diffusion transformer (MM-DiT) to incorporate audio condition into
the pre-trained MMAudio.

Training dataset. We follow the training strategy of MMAudio, jointly using both text-video-audio
and text-audio paired datasets for training. Specifically, we used VGGSound (Chen et al., 2020a) as
a text-video-audio dataset, while Clotho (Drossos et al., 2020), AudioCaps (Kim et al., 2019), and
WavCaps (Mei et al., 2024) were used as text-audio datasets. From each audio clip, we sampled a
four-second audio segment as xtgt and another one as xcond so that the two segments do not overlap.
We also extracted a video segment corresponding to xtgt as a conditional video V when the data
came from VGGSound; otherwise, we set the pretrained empty token of MMAudio as V . Then,
the sampled clips were used to compute the flow uθ,ψ

(
xtgtt , t, V,∅, xcond

)
, and ψ is optimized by

minimizing the flow-matching loss.

5 EXPERIMENTS

5.1 EVALUATION SETUP

Multi-Caps VGGSound: multi-captioned audio-video dataset for evaluation. We constructed a
new audiovisual dataset called Multi-Caps VGGSound to evaluate the step-by-step video-to-audio
generation. We generated five captions using Qwen2.5-VL (Bai et al., 2025) for each video in the
test split of the VGGSound dataset, comprising 15,221 video clips in total. We instructed the model
to generate captions, each describing a different sound event that could appear in the input video’s
audio tracks, including both foreground and background audio. Since Qwen2.5-VL does not accept
audio as input, these captions were created solely based on the visual input without considering the
original audio of the input video. Please refer to Section C in the appendix for more details.

Task setup: Step-by-step audio generation. We generated five audio tracks{
x(k)|k ∈ {1, 2, . . . 5}

}
corresponding to audio captions {Ck|k ∈ {1, 2, . . . 5}} for each video V

in the Multi-Caps VGGSound dataset. The generation order is determined based on the semantic
similarity between the video and the caption, so that the model generates core events first (See
Section F in the appendix for more details). We took the first eight-second segment from the video
and generated sounds for this segment using different captions. Given the multiple generated audio
tracks, we synthesized a composite audio x̃ by x̃ = normalize(Σkx

(k)). We employed loudness
normalization (Steinmetz and Reiss, 2021) as a simple mixing strategy for the composition, ensuring
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that the total loudness remained consistent with that of natural audio. The target loudness was set to
-20 LUFS, which corresponds to the mean loudness of the VGGSound test set.

Step-by-step audio generation with NAG. To generate the audio tracks step-by-step using NAG,
we used the composite audio of all audio tracks generated in the previous generation steps as a
condition for NAG. Specifically, at the generation step for x(k), we synthesized a composite audio
x̃:k = normalize

(
Σk−1
l x(l)

)
for the condition. We generated the first audio only using the standard

classifier-free guidance in Eq. (3), as no audio track had been generated at the first generation step.
For the guidance coefficients, we empirically set α = 4.5 and β = 1.5 in Eq. (7) (see Section E for
more details).

Baseline models. We compared our proposed method with several open-sourced text-and-video
conditional audio (TV2A) generation models. We chose each State-of-the-Art TV2A model among
various training approaches: Seeing-and-Hearing (Xing et al., 2024) as a TV2A model adapted from
the T2A model in a zero-shot manner, FoleyCrafter (Zhang et al., 2024) as a TV2A model adapted
from the T2A model through fine-tuning, and MMAudio (Cheng et al., 2025) as a TV2A model
trained from scratch. Note that our model is built upon MMAudio with additional audio conditions
introduced by the proposed ControlNet architecture. We compared the proposed NAG to the original
MMAudio-S-16k model with the classifier-free guidance (CFG) or negative prompting.

We tested two generation processes to generate multiple audio tracks and obtain a composite audio
using the baseline models: independent generation and step-by-step generation based on negative
prompts. In the independent generation, we generated five sounds for each video using different
text conditions. In this case, each generation process does not access the other audio tracks or their
corresponding captions. In the step-by-step generation based on negative prompts, we generated each
audio track with negative prompting (Woolf, 2022) to ensure it was distinct from all the captions used
in the previous generation steps. Specifically, for the video V with the k-th audio caption Ck, we
computed the guided flow by ũθ(xt) = uθ(xt, t,∅,∅)+w1(uθ(xt, t, V, Ck)− uθ(xt, t,∅, Ck,neg))
at each timestep, where Ck,neg is the concatenation of the other captions {Cl|l < k}.

Evaluation metrics. We assessed the quality of both the composite audio and the individual audio
tracks to evaluate the step-by-step audio generation.

Following the prior work (Cheng et al., 2025), we evaluated the composite audio in terms of
audio quality, semantic alignment, and temporal alignment. We assessed the audio quality of the
generated audio using Fréchet Distance (FD), Kullback–Leibler (KL) distance, and Inception Score
(IS) (Salimans et al., 2016). We used PANNs (Kong et al., 2020) (FDPANNs) and VGGish (Gemmeke
et al., 2017) (FDVGG) for computing FD, and PANNs (KLPANNs) and PaSST (KLPaSST) for computing
KL, and PANNs for computing IS, respectively. We assessed the semantic alignment between the
input video and the composite audio by the cosine similarity between their embeddings extracted by
ImageBind (Girdhar et al., 2023) (IB-score). We assessed the temporal alignment between the input
video and the generated audio with Synchformer (Iashin et al., 2024) (DeSync), where we took two
4.8-second segments at the beginning and end and averaged their scores.

For the evaluation of each audio track, we assessed its quality from four aspects: audio separability
between the audio tracks generated for the same video, audio quality, audio-text alignment, and
audio-video alignment of each audio track. Since distinct audio components should be represented in
separate audio tracks, each generated audio track should differ from the other tracks. To evaluate
audio separability, we computed the similarity between the CLAP (Wu et al., 2023) audio embeddings
for each pair of audio tracks (10 pairs per video). For Audio-Text alignment, we computed the
similarity between CLAP text embeddings from the input prompts (used to generate each audio track)
and the corresponding CLAP audio embeddings. For audio quality and audio-video alignment, we
adopted IS and IB-score, respectively, as in the composite audio evaluation protocol.

5.2 MAIN RESULTS

Objective evaluation on the composite audio. Table 1 shows the quantitative evaluation of the
composite audio. Our proposed method achieves the best results for all metrics except IS among all
the methods. We also evaluated the baseline models’ one-step generation with the caption created by
fusing the five captions for each video. Though this generation process does not provide each audio

7
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Method Audio Quality Semantic Align.Temporal Align.

FDPANNs↓ FDVGG↓ KLPANNs↓ KLPaSST↓ IS↑ IB-score↑ DeSync↓
One-Step Generation with Fused Caption (Reference as no separated audio track is available)
Seeing-and-Hearing 25.42 5.68 2.81 2.76 6.45 36.88 1.22
FoleyCrafter 16.93 2.29 2.60 2.52 11.93 27.78 1.23
MMAudio-S-16k 6.75 1.03 2.09 2.04 13.66 29.45 0.46

Independent Generation
Seeing-and-Hearing 31.81 7.68 3.10 2.65 4.12 20.16 1.19
FoleyCrafter 20.04 3.23 2.70 2.36 9.21 25.26 1.18
MMAudio-S-16k 7.76 1.35 2.02 1.84 10.42 28.13 0.42

Step-by-Step Generation with Negative Prompting
FoleyCrafter 22.34 4.64 2.94 2.47 6.02 18.83 1.19
MMAudio-S-16k 9.21 1.77 2.15 1.89 9.08 25.89 0.45

Step-by-Step Generation with Negative Audio Guidance
Ours 6.47 0.98 2.01 1.76 10.58 28.65 0.42

Table 1: Quantitative evaluation of the composite audio synthesized from the generated multiple
audio tracks. The results of one-step generation using a fused caption are shown as a reference.

Method Audio Separability Audio Quality A-T Align. A-V Align.

CLAP A-A↓ IS↑ CLAP T-A↑ IB-score↑
MMAudio-S-16k 79.75 12.47 28.36 27.76
MMAudio-S-16K + Neg. Prompting 75.57 11.19 27.14 24.53
MMAudio-S-16K + NAG (Ours) 71.38 12.01 28.91 26.67

Table 2: Quantitative evaluation of individual audio tracks. Our proposed method successfully
improves audio separability among multiple tracks while maintaining other scores.

track and differs from our goal of step-by-step generation, these values indicate the best possible
scores of each baseline model.

Objective evaluation on each audio track. Table 2 shows the quantitative evaluation of the
individual audio tracks. The vanilla MMAudio-S-16k with CFG struggles to generate well-separated
sounds for each audio track, which is reflected in a lower audio separability score, although it achieves
high audio quality and A-V Alignment. Using negative prompting improves the audio separability but
drastically degrades all the other scores. Using NAG also successfully improves the audio separability
while maintaining high audio quality and A-V alignment. The A-T alignment score marginally
improves from that of the vanilla MMAudio. We hypothesize that less contamination of other audio
concepts results in a better A-T alignment score.

Visual comparison with baselines. Figure 4 visually compares these three methods. The first audio
track is the same in all methods, since it is generated by using only CFG. The vanilla MMAudio-S-16k
tends to generate similar audio for multiple audio tracks. All generated audio tracks by the vanilla
MMAudio-S-16k contain the sound of water as the moose walks (visually shown as vertical segments
that appear at regular intervals). Since the moose and its movement are prominent in the input video,
MMAudio tends to include the sound related to them regardless of the input text prompt. This is
also reflected in the higher IB-score, indicating that all audio tracks are semantically aligned with
the input video, regardless of whether the input prompt represents background audio (as in the case
of the second audio track). Using negative prompting suppressed this contamination of the audio
content, but it tends to suffer from worse text alignment. In contrast, the proposed NAG successfully
suppressed the audio components already generated in the early generation steps while achieving
better text alignment. It generates a missing sound specified by the text prompt by explicitly making
the generation process away from the already generated sounds. Please refer to Section H in the
appendix for more generated samples.
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Input video

(a)MMAudio

(b) Neg.  
       Prompt

(C) NAG   
       (Ours)

“Moose splashes in the water”

“Birds chirp in the distance”
“Hooves thud softly

 against wet ground”

1st audio track

2nd audio track 3rd audio track

CLAP A-A: 87.1, T-A: 19.8

CLAP A-A: 72.2, T-A: 31.7

CLAP A-A: 66.4, T-A: 35.5

CLAP A-A: 87.2, T-A: 29.4

CLAP A-A: 81.3, T-A: 13.7

CLAP A-A: 71.3, T-A: 23.0

Figure 4: Spectrogram visualizations of step-by-step audio generation using (a) vanilla MMAudio,
(b) MMAudio with negative prompting, and (c) MMAudio with Negative Audio Guidance (NAG).
The best and worst CLAP A-A and T-A scores are highlighted in red and blue, respectively. The
first audio track is generated using (a) in all settings, resulting in identical outputs. Our proposed
method effectively suppresses previously generated sounds in subsequent steps (second and third
tracks) while maintaining high alignment with the target text prompts.

Figure 5: Results of user preference comparison between baseline (MMAudio-S-16k) and our method
(MMAudio-S-16k with NAG) for composite audio. "Wins" indicates the percentage of users who
choose the composite audio generated by our method.

Subjective evaluation. We also conducted a user study for subjective evaluation. Figure 5 shows
the results of the user study for the final composite audio, demonstrating that our method is preferred
in terms of audio quality, semantic alignment, and temporal alignment compared to the baseline.
Please refer to Section A in the appendix for the results of each generated audio track and the details
of this user study setup.

6 CONCLUSION

We introduced a novel video-to-audio generation method, guided by text, video, and audio conditions,
to enable step-by-step synthesis. By applying negative audio guidance alongside a text prompt,
our approach generates multiple well-separated audio tracks for the same video input, facilitating
high-quality composite audio synthesis. Importantly, our method does not require specialized
training datasets. We built it on a pre-trained video-to-audio model by adapting ControlNet for audio
conditioning, which can be trained on accessible datasets. Quantitative and subjective evaluation
shows that our method improves separability and text fidelity of generated audio at each step, and
improves the quality of the final composite audio.
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ETHICS STATEMENT

This work uses only publicly available audiovisual datasets for training. It does not contain sensitive
or personally identifiable information, and no additional human subjects were involved. Our approach
avoids reliance on costly multi-reference datasets, promoting accessibility and reproducibility.

While the method is intended for academic and creative research, we acknowledge potential misuse
of generative audio technologies. To reduce such risks, careful dataset selection and robust filtering
or moderation should be applied in downstream use.

REPRODUCIBILITY STATEMENT

The proofs of the theoretical formulations of our proposed method (Equations (6) and (7)) are
shown in Section B in the appendix. Section 4 describes the implementation details of guided
flow computation, including the inference and training processes, model architecture (visualized
in Figure 3), and the training dataset. The dataset construction pipeline and the training setup
(including hyperparameters and computational resources) are further elaborated in Sections C and D,
respectively. Evaluation setup and metrics are detailed in Section 5.1. We will open-source our code
and dataset upon acceptance.

THE USE OF LARGE LANGUAGE MODELS (LLMS)

We utilized (V)LLMs for dataset construction to add multiple plausible captions for videos (please
refer to the Section C in the appendix for details). We also used LLMs for academic proofreading.
However, all research ideas were developed solely by the authors.
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A USER STUDY

We conducted a user study to perform a subjective assessment on the Multi-Caps VGGSound dataset.
We used independent generation with MMAudio-S-16k as the baseline, corresponding to the case
without negative audio guidance (β = 0 in Eq. (9)), to assess the effectiveness of our proposed
method. We randomly sampled five video-caption sets from the dataset (each video has five captions)
and generated five audio tracks for each video using the baseline and the proposed method. As
described in Section 5, we then synthesized composite audio for each video by mixing generated
tracks, followed by loudness normalization. In total, we showed 60 videos to each evaluator (50
videos with individual audio tracks and 10 videos with composite audio). Human evaluators were
asked to assess the quality of both individual audio tracks and the composite audio.

For the evaluation of individual audio tracks, evaluators rated each track on a scale from 1 to 5 (1-5;
Poor, Subpar, Fair, Good, Excellent) across the following three aspects:

1. Separability: High if the audio does not contain content already present in previous audio
tracks.

2. Audio quality: High if the audio is free from noise, distortion, or artifacts.
3. Text fidelity: High if the audio accurately reflects the caption.

For the evaluation of composite audio, we performed A/B testing on pairs of composite audios, one
generated by the baseline and the other by our method. Specifically, five pairs of composite audios
(each corresponding to the same video) were presented to evaluators, who were asked the following
three questions for each pair:

1. Audio quality: Which audio is of higher quality?
2. Semantic alignment: Which audio has better semantic alignment with the video?
3. Temporal alignment: Which audio has better temporal alignment with the video?

For each question, evaluators could choose from three response options: "Audio A is better", "Audio
B is better", and "Neutral".

We collected 400 responses for the individual audio tracks (we omitted an evaluation for the first
track since the first track is identical between the two methods) and 50 responses for the composite
audio from 10 evaluators. Table A1 shows the results for the individual audio tracks. Our method
received significantly higher ratings for separability, and marginally higher ratings for both audio
quality and text fidelity. Figure 5 shows the results for the composite audio. Overall, the proposed
method was preferred equally or more across all evaluation criteria.

Method Separability↑ Audio quality↑ Text fidelity ↑
MMAudio-S-16k 2.24±1.05 2.89±1.03 2.42±1.27
MMAudio-S-16k + NAG (Ours) 3.35±1.05 3.30±1.03 3.12±1.30

Table A1: Average ratings for individual audio tracks generated by the baseline and our method. Each
aspect is reported as mean ± standard deviation.

B DETAILS OF THE FORMULATION

PROOF OF THE EQUATION (6)

Recall that the target distribution of each generation step can be written as:

p
(
x(2)

∣∣∣V,C2, Ē
(
x(1)

))
∝ p
(
x(2), V, C2, Ē

(
x(1)

))
∝ p
(
x(2), V

)
p
(
C2

∣∣∣x(2), V )p(E(x(1))∣∣∣x(2), V )−1

= p
(
x(2)

)
p
(
V
∣∣∣x(2))p(C2

∣∣∣x(2), V )p(E(x(1))∣∣∣x(2), V )−1

. (A1)
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Using Bayes’s theorem, we can decompose the last three terms in Eq. (A1) as follows:

p
(
V
∣∣∣x(2)) =

p
(
x(2)

∣∣V )p(V )

p
(
x(2)

)
∝
p
(
x(2)

∣∣V )
p
(
x(2)

) , (A2)

p
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∣∣∣x(2), V ) =
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∣∣V,C2

)
p(C2|V )

p
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∝
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(
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)
p
(
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∣∣V ) , (A3)

p
(
E
(
x(1)

)∣∣∣x(2), V ) =
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∣∣E(x(1)), V )p(E(x(1))∣∣V )
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(
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∣∣V )
∝
p
(
x(2)

∣∣V, E(x(1)))
p
(
x(2)

∣∣V ) . (A4)

Note that we omit terms unrelated to x(2), since x(2) is the generation target. Substituting Eqs. (A2),
(A3), and (A4) into Eq. (A1), we get:

p
(
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∣∣∣V,C2, Ē
(
x(1)

))
∝ p
(
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∣∣V )
)(

p
(
x(2)

∣∣V )
p
(
x(2)

∣∣V, E(x(1)))
)
. (A5)

Therefore, Eq. (6) holds.

DERIVATION OF THE NEGATIVE AUDIO GUIDANCE IN EQUATION (7)

Similar to the guided flow proposed by Kushwaha and Tian (2025), we can derive the guided flow
corresponding to Eq. (6) (or identically Eq. (A5)) as follows:

ũθ,ψ(xt) = uθ(xt, t,∅,∅)+ w′
1(uθ(xt, t, V,∅)− uθ(xt, t,∅,∅))

+ w′
2(uθ(xt, t, V, C2)− uθ(xt, t, V,∅))

+ w′
3

(
uθ(xt, t, V,∅)− uθ,ψ

(
xt, t, V,∅, x(1)

))
, (A6)

where w′
1, w′

2, and w′
3 are the coefficients of the guidance terms. The four terms on the right-hand

side of Eq. (A6) respectively correspond to the four factors on the right-hand side of Eq. (A5).
Following the empirical results provided by Kushwaha and Tian (2025), we consider canceling out
uθ(xt, t, V,∅) for simplification. Specifically, we set w′

1 = α, w′
3 = β, and w′

2 = α+ β as follows:

ũθ,ψ(xt)= uθ(xt, t,∅,∅) + α
(
(((((((
uθ(xt, t, V,∅)− uθ(xt, t,∅,∅)

)
+ (α+ β)

(
uθ(xt, t, V, C2)−(((((((

uθ(xt, t, V,∅)
)

+ β
(
(((((((
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(
xt, t, V,∅, x(1)

))
, (A7)

which yields Eq. (7).
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C DETAILS OF THE MULTI-CAPS VGGSOUND DATASET

As described in Section 5.1, we generated five captions for each video in the test split of the
VGGSound dataset using Qwen2.5-VL (Bai et al., 2025), resulting in 76,105 video-caption pairs
(15,221 videos × 5 captions). Figure A1 shows an overview of the dataset construction workflow.
We adopted a two-step approach to ensure that the captions follow a unified format across all videos
(i.e., short, simple sentences, each describing a distinct audio event). Specifically, given an input
video, we first generated multiple possible audio captions in a free-form text, describing the audio
events likely present in the video. Next, we reformatted the output into a structured JSON format
using the generation of structured outputs (we referred to the implementation of vLLM (Kwon et al.,
2023)). The full prompt we used in the first step is shown in Fig. A2. While Qwen2.5-VL generates
multiple captions in response to this prompt, the output may vary between inferences. To standardize
this, the second step converts the results into a unified JSON format that lists only the captions. This
structured format is well-suited for use as text conditions in text-conditional video-to-audio models.
Figure A3 provides examples of video and multiple caption pairs.

Based on the visual content of the video, here are five possible audio 
descriptions:

1. **Sail flaps rhythmically.**
   - The sail is visibly moving back and forth due to the wind, creating 
a rhythmic flapping sound.

2. **Wind whistles sharply.**
   - The strong wind passing through the rigging and sails would 
produce a sharp, high-pitched whistle.

3. **Ocean waves crash loudly.**
   - The waves seen in the background would create a loud, crashing 
sound as they hit the boat and each other.

…

These descriptions cover both foreground and ambient background 
sounds that could be expected in such a nautical setting.

VLM
(Qwen2.5-VL)

“…Generate multiple possible audio descriptions based on the visual content of 
the given video…
Instructions:
1. … Each caption should be simple sentence of a few words.
2. Each caption must focus on a single, distinct audio event.
… ”

Prompt for captioningInput video

① Generating multiple audio 
descriptions in free-form text.

①

①

② Formatting into JSON using
structured outputs.

②

②

{ 
  "prompts": [
    { "prompt": "Sail flaps rhythmically.“ },
  { "prompt": "Wind whistles sharply.“ },
   { "prompt": "Ocean waves crash loudly.“ },
  … 
    ]
}

Raw text outputMultiple audio captions

Figure A1: Overview of the dataset construction pipeline. Multiple audio captions were generated for
each video using Qwen2.5-VL via a two-step process: free-form captioning followed by structured
JSON formatting. The input prompt on the top is simplified; see Fig. A2 for the full version.

D DETAILS OF MODEL ARCHITECTURE, TRAINING, AND INFERENCE

We added one transformer block in the ControlNet for every two blocks in the main network (i.e.,
N1 + N2 = 12 and M = 6 in Fig. 3). We set the channel dimensions and number of heads for
multi-head attention to match the settings of MMAudio-S-16k. Our ControlNet has a total of 107M
parameters, and the generation at each step, computed by this ControlNet using NAG, takes 2.07
seconds on an H100.

We followed the training setup of MMAudio (Cheng et al., 2025) for training the ControlNet. We
used the AdamW optimizer with a learning rate of 10−4, β1 = 0.9, β2 = 0.95, and a weight decay of
10−6. The network is trained for 200K iterations with a batch size of 512. Compared to MMAudio’s
default of 300K iterations, we reduced the number of training steps to 200K, as we observed earlier
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“ Task:
You are a professional sound effects creator. Generate multiple possible audio descriptions based on the visual content of 
the given video. Each description should focus on a single, distinct audio event, and each could be either a foreground 
sound or an ambient background sound. Foreground sounds are the sounds that are directly depicted in the video (e.g., a 
dog barking, footsteps). Ambient background sounds are the sounds that could be inferred or imagined from the video's 
context but not explicitly shown (e.g., distant wind, soft city hum).

Examples:
#1 The dog barks loudly.
#2 The river flows gently.

Instructions:
1. Use the format: 'Noun + Verb + Adverbs' (adverbs are optional). Each caption should be simple sentence of a few words.
2. Each caption must focus on a single, distinct audio event.
3. Begin each caption with '#N', where N is the index of the description.
4. AVOID DUPLICATES, and provide up to 5 descriptions per video.”

Figure A2: Full prompt for generating multiple possible audio captions.

0: “Ocean waves crash loudly.”
1: “Sail flaps rhythmically.”
2: “Wind whistles sharply.”
3: “Ropes creak softly. “
4: “Metal clanks intermittently.”

Generated captionsVideo

0: “Pheasant cackles softly.”  
1: “Grass rustles gently underfoot.” 
2: “Wings flutter faintly.“
3: “Birds chirp in the distance.“
4: “Wind whispers through the grass.”

0: “Engine roars powerfully.” 
1: “Wheels grind heavily on pavement.” 
2: “Horn blasts loudly.“
3: “People chatter excitedly.” 
4: “Bicycles click softly as they move.”

Figure A3: Examples of the Multi-Caps VGGSound dataset. We added multiple captions to the test
split of the VGGSound dataset using Qwen2.5-VL shown in Figure A1.

convergence in our experiments. We only updated the parameters of the ControlNet while fixing the
pre-trained parameters of MMAudio, enabling more efficient training. For learning rate scheduling,
we applied a linear warm-up over the first 1K steps up to 10−4, followed by two reductions, each by
a factor of 10, after 80% and 90% of the total training steps. We used mixed-precision training with
bf16 for the training efficiency and trained on 8 H100 GPUs. The entire training process, including
evaluation on the validation and test sets every 20K iterations, took approximately 10 hours. After
training, we applied post-hoc EMA (Karras et al., 2024) with a relative width σrel = 0.05 to obtain
the final parameters of the ControlNet.
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E SENSITIVITY ANALYSIS OF THE NEGATIVE AUDIO GUIDANCE
COEFFICIENTS

We conducted a sensitivity study on the guidance coefficients of NAG (α, β in Eq. 7). Specifically, we
varied α ∈ {3.5, 4.5} and β ∈ {0.0, 1.0, 1.5, 2.0} and generated audio tracks for all combinations of
these parameter pairs in random generation order. The individual audio tracks and their corresponding
composite audio were evaluated using the same setup and metrics described in Section 5.1. We used
CLAP A-A for audio separability, IS and FDPANNs for audio quality, CLAP T-A for text fidelity,
IB-score for semantic alignment with video, and DeSync for temporal alignment with video.

The results are summarized in Table A2. Both CLAP A-A and CLAP T-A for the individual audio
tracks consistently improved with increasing β. This indicates that NAG effectively generates well-
separated audio tracks with enhanced text alignment, likely due to reduced contamination from
other audio concepts. The best FDPANNs and IB-score are achieved at β = 1.0, indicating that a
moderate strength of NAG also enhances audio fidelity and semantic alignment with video. Using a
small α slightly deteriorates performance across all metrics, potentially due to the degradation of the
performance of the base MMAudio (the default CFG strength recommended by Cheng et al. (2025)
is 4.5). Considering trade-offs among these metrics, we selected α = 4.5 and β = 1.5 as our default
setting.

Method Individual Audio Tracks Composite Audio

CLAP A-A↓ IS↑ CLAP T-A↑ FDPANNs↓ IS↑ IB-score↑ DeSync↓
α = 3.5, β = 0.0 79.46 12.27 28.34 7.83 10.37 27.80 0.45
α = 3.5, β = 1.0 75.22 12.06 28.75 7.52 10.17 27.94 0.45
α = 3.5, β = 1.5 73.45 11.84 28.89 7.62 9.90 27.62 0.45
α = 3.5, β = 2.0 71.97 11.62 29.01 7.84 9.69 27.28 0.45

α = 4.5, β = 0.0∗ 79.75 12.47 28.36 7.76 10.42 28.13 0.43
α = 4.5, β = 1.0 76.21 12.22 28.69 7.30 10.38 28.38 0.43
α = 4.5, β = 1.5† 74.74 12.00 28.79 7.32 10.21 28.15 0.43
α = 4.5, β = 2.0 73.44 11.80 28.88 7.52 9.92 27.88 0.43

Table A2: Sensitivity study on the guidance coefficients of NAG (α, β in Eq. (9)). The first three
metrics are computed on the individual audio tracks, and the last four are computed on the composite
audio. ∗: identical to the independent generation of MMAudio-S-16k with the default CFG strength
of 4.5. †: our default setting.

F COMPARISON OF GENERATION ORDER

To study the effect of generation order, we ranked captions based on text-video similarity using the
ImageBind score. We tested three variants: random order, descending order (where the core event
is first), and ascending order (where the subtle event is first). The results are shown in Table A3.
Descending order provides the best results for all metrics, indicating that generating the prominent
event in the video first is vital to improve the generation quality in step-by-step generation.

G LIMITATION

Slight degradation of the audio quality of each audio track. In terms of individual audio track
quality, our method marginally improves text fidelity but slightly degrades audio quality. While
NAG effectively eliminates contamination from other audio tracks, the outputs sometimes exhibit
poor alignment with the text captions or suffer from low quality, such as silence or muffled sound.
This may stem from limitations in the base MMAudio model, particularly with handling subtle or
rare sounds (e.g., “Carpet rustles gently”, “Wings flap gently”, “Snowflakes fall silently”, “Crowd
murmurs quietly”). Even when conditioned only on such text prompts (text-to-audio generation),
MMAudio often produces hums, noise, or unnaturally loud sounds, likely due to the scarcity of
such audio events in its training data. These mismatches suggest a domain gap between Multi-
Caps VGGSound and MMAudio’s training distribution. Since NAG only guides generation away
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Generation order Audio Quality Semantic Align.Temporal Align.

FDPANNs↓ FDVGG↓ KLPANNs↓ KLPaSST↓ IS↑ IB-score↑ DeSync↓
MMAudio-S-16k 7.76 1.35 2.02 1.84 10.42 28.13 0.42

Random 7.32 1.24 2.02 1.78 10.21 28.15 0.42
Ascending 7.36 1.26 2.02 1.78 10.02 28.10 0.43
Descending 6.47 0.98 2.01 1.76 10.58 28.65 0.42

Table A3: Comparison of generation order. We rank the captions based on the text-video ImageBind
score and sort them in ascending and descending order.

from previous outputs, overall quality and text alignment rely heavily on the base TV2A model’s
capabilities. The effectiveness of our proposed method would likely be more pronounced if the
base model supported a broader range of text prompts (i.e., ideally broad enough to match the range
supported by LLMs) and could generate more diverse audio outputs, even for the same video input.

Suboptimal audio mixing process. In this work, we synthesized composite audio using a simple
mixing strategy, summing multiple audio tracks without weighting them, followed by loudness
normalization. While effective, it does not account for the natural loudness of each audio track and
might be suboptimal. As the optimal mixing can differ by video and audio content, incorporating a
generative model to support this process could further enhance the quality of the composite audio.
We leave this direction for future work.

H ADDITIONAL VISUALIZATIONS

Figure A4 shows additional spectrogram visualizations comparing MMAudio, MMAudio + negative
prompting, and MMAudio + NAG. See "demo/index.html" in the supplementary material for more
generated samples.
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Input video

“Ocean waves crash 
loudly”

1st audio track

(a)MMAudio

(b) Neg.  
       Prompt

(C) NAG   
       (Ours)

“Sail flaps rhythmically” “Wind whistles sharply”

2nd audio track 3rd audio track

CLAP A-A: 91.5, T-A: 33.2

CLAP A-A: 67.5, T-A: 38.8

CLAP A-A: 67.5, T-A: 51.7

CLAP A-A: 92.9, T-A: 17.6

CLAP A-A: 66.2, T-A: 13.5

CLAP A-A: 76.8, T-A: 19.0

Input video

“Birds flap wings rhythmically”
1st audio track

(a)MMAudio

(b) Neg.  
       Prompt

(C) NAG   
       (Ours)

“Birds chirp intermittently” “Clouds rustle faintly”

2nd audio track 3rd audio track

CLAP A-A: 93.3, T-A: 28.5

CLAP A-A: 66.6, T-A: 20.1

CLAP A-A: 65.2, T-A: 30.1

CLAP A-A: 94.7, T-A: 12.6

CLAP A-A: 72.1, T-A: 12.3

CLAP A-A: 68.3, T-A: 11.9

Input video

“Wind whispers softly”
1st audio track

(a)MMAudio

(b) Neg.  
       Prompt

(C) NAG   
       (Ours)

“Birds chirp melodiously” “Goat bleats softly”

2nd audio track 3rd audio track

CLAP A-A: 92.8, T-A: 29.1

CLAP A-A: 90.2, T-A: 30.5

CLAP A-A: 56.8, T-A: 41.5

CLAP A-A: 94.4, T-A: 49.6

CLAP A-A: 88.1, T-A: 59.8

CLAP A-A: 79.7, T-A: 61.1

Figure A4: Additional spectrogram visualization. Our proposed method effectively suppresses
previously generated sounds in subsequent steps while maintaining high alignment with the text
prompts. The best and worst CLAP A-A and T-A scores are highlighted in red and blue, respectively.
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