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Abstract
Similar to surprising performance in the standard
deep learning, deep nets trained by adversarial
training also generalize well for unseen clean data
(natural data). However, despite adversarial train-
ing can achieve low robust training error, there
exists a significant robust generalization gap. We
call this phenomenon the Clean Generalization
and Robust Overfitting (CGRO). In this work, we
study the CGRO phenomenon in adversarial train-
ing from two views: representation complexity
and training dynamics. Specifically, we consider
a binary classification setting with N separated
training data points. First, we prove that, based on
the assumption that we assume there is poly(D)-
size clean classifier (where D is the data dimen-
sion), ReLU net with only Õ(ND) extra param-
eters is able to leverages robust memorization to
achieve the CGRO, while robust classifier still
requires exponential representation complexity in
worst case. Next, we focus on a structured-data
case to analyze training dynamics, where we train
a two-layer convolutional network with Õ(ND)
width against adversarial perturbation. We then
show that a three-stage phase transition occurs
during learning process and the network provably
converges to robust memorization regime, which
thereby results in the CGRO. Besides, we also
empirically verify our theoretical analysis by ex-
periments in real-image recognition datasets.

1. Introduction
Nowadays, deep neural networks have achieved excellent
performance in a variety of disciplines, especially including
in computer vision (Krizhevsky et al., 2012; Dosovitskiy
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et al., 2020; Kirillov et al., 2023) and natural language pro-
cess (Devlin et al., 2018; Brown et al., 2020; Ouyang et al.,
2022). However, it is well-known that small but adversarial
perturbations to the natural data can make well-trained clas-
sifiers confused (Biggio et al., 2013; Szegedy et al., 2013;
Goodfellow et al., 2014), which potentially gives rise to reli-
ability and security problems in real-world applications and
promotes designing adversarial robust learning algorithms.

In practice, adversarial training methods (Goodfellow et al.,
2014; Madry et al., 2017; Shafahi et al., 2019; Zhang et al.,
2019; Pang et al., 2022) are widely used to improve the
robustness of models by regarding perturbed data as training
data. However, while these robust learning algorithms are
able to achieve high robust training accuracy (Gao et al.,
2019), it still leads to a non-negligible robust generalization
gap (Raghunathan et al., 2019), which is also called robust
overfitting (Rice et al., 2020; Yu et al., 2022).

To explain this puzzling phenomenon, a series of works
have attempted to provide theoretical understandings from
different perspectives. Despite these aforementioned works
seem to provide a series of convincing evidence from the-
oretical views in different settings, there still exists a gap
between theory and practice for at least two reasons.

First, although previous works have shown that adversarial
robust generalization requires more data and larger models
(Schmidt et al., 2018; Gowal et al., 2021; Li et al., 2022;
Bubeck & Sellke, 2023), it is unclear that what mechanism,
during adversarial training process, directly causes robust
overfitting. A line of work about uniform algorithmic stabil-
ity (Xing et al., 2021; Xiao et al., 2022), under Lipschitzian
smoothness assumptions, also suggest that robust generaliza-
tion gap increases when training iteration is large. In other
words, we know there is no robust generalization gap for a
trivial model that only guesses labels totally randomly (e.g.
deep neural networks at random initialization), which im-
plies that we should take learning process into consideration
to analyze robust generalization.

Second and most importantly, while some works (Tsipras
et al., 2018; Zhang et al., 2019; Hassani & Javanmard, 2022)
point out that achieving robustness may hurt clean test accu-
racy, in most of the cases, it is observed that drop of robust
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Figure 1. The learning curves of adversarial training on CIFAR10
with ℓ∞-perturbation radius δ = 8/255 (Rice et al., 2020).

test accuracy is much higher than drop of clean test accuracy
in adversarial training (Madry et al., 2017; Schmidt et al.,
2018; Raghunathan et al., 2019) (see in Figure 1, where
clean test accuracy is more than 80% but robust test accu-
racy only attains nearly 50%). Namely, a weak version of
benign overfitting (Zhang et al., 2017), which means that
overparameterized deep neural networks can both fit random
data powerfully and generalize well for unseen clean data,
remains after adversarial training. Therefore, it is natural to
ask the following question:

What is the underlying mechanism that results in both
Clean Generalization and Robust Overfitting (CGRO)

during adversarial training?

In this paper, we provide a theoretical understanding of this
question. Precisely, we make the following contributions:

• In Section 3, we first present some useful notations
used in our work, and then provide the formal definition
of the CGRO classifier (Definition 3.4).

• In Section 4, we study the CGRO classifiers via the
view of representation complexity. Based on some
data assumptions observed in practice, we prove that
achieving CGRO classifier only needs extra linear pa-
rameters by leveraging robust memorization (Theorem
4.4), but robust classifier requires even exponential
model capacity in worst case (Theorem 4.7).

• In Section 5, under our theoretical framework of ad-
versarial training, we apply a two-layer convolutional
network to learn the structured data. We propose a
three-stage analysis technique to decouple the compli-
cated training dynamics of adversarial training, which
shows that the network learner provably converges to
the CGRO regime (Theorem 5.9).

• In Section 6, we empirically demonstrate our theoreti-
cal results in Section 4 and Section 5 by experiments
in real-world data and synthetic data, respectively.

2. Additional Related Work
Empirical Works on Robust Overfitting. One surpris-
ing behavior of deep learning is that over-parameterized
neural networks can generalize well, which is also called
benign overfitting that deep models have not only the pow-
erful memorization but a good performance for unseen data
(Zhang et al., 2017; Belkin et al., 2019). However, in con-
trast to the standard (non-robust) generalization, for the
robust setting, Rice et al. (2020) empirically investigates
robust performance of models based on adversarial training
methods, which are used to improve adversarial robustness
(Szegedy et al., 2013; Madry et al., 2017), and the work Rice
et al. (2020) shows that robust overfitting can be observed
on multiple datasets, including CIFAR10 and ImageNet.

Theoretical Works on Robust Overfitting. A list of works
(Schmidt et al., 2018; Balaji et al., 2019; Dan et al., 2020)
study the sample complexity for adversarial robustness, and
their works manifest that adversarial robust generalization
requires more data than the standard setting, which gives
an explanation of the robust generalization gap from the
perspective of statistical learning theory. And another line
of works (Tsipras et al., 2018; Zhang et al., 2019) propose a
principle called the robustness-accuracy trade-off and have
theoretically proven the principle in different setting, which
mainly explains the widely observed drop of robust test accu-
racy due to the trade-off between adversarial robustness and
clean accuracy. Recently, Li et al. (2022) investigates the
robust expressive ability of neural networks and shows that
robust generalization requires exponentially large models.

Feature Learning Theory of Deep Learning. The fea-
ture learning theory of neural networks (Allen-Zhu & Li,
2020a;b; 2022; Shen et al., 2022; Jelassi & Li, 2022; Jelassi
et al., 2022; Chen et al., 2022; Chidambaram et al., 2023) is
proposed to study how features are learned in deep learning
tasks, which provide a theoretical analysis paradigm beyond
the neural tangent kernel (NTK) theory (Jacot et al., 2018;
Du et al., 2018; 2019; Allen-Zhu et al., 2019; Arora et al.,
2019). In this work, we make a first step to understand clean
generalization and robust overfitting (CGRO) phenomenon
in adversarial training by analyzing feature learning process
under our theoretical framework about structured data.

Memorization in Adversarial Training. Dong et al.
(2021); Xu et al. (2021) empirically and theoretically ex-
plore the memorization effect in adversarial training for
promoting a deeper understanding of model capacity, con-
vergence, generalization, and especially robust overfitting
of the adversarially trained models. However, different from
their works, the concept clean generalization and robust
overfitting (CGRO) proposed in our paper focuses on both
robust overfitting and high clean test accuracy, which means
that there is surprisingly no clean memorization or clean
overfitting.
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3. Preliminaries
In this section, we first introduce some useful notations that
are used in this paper, and then present our problem setup.

3.1. Notations

Throughout this work, we use letters for scalars and bold
letters for vectors. We will use [k] to indicate the index
set {1, 2, · · · , k}. The indicator of an event is defined as
I{·} = 1 if the event · holds and I{·} = 0 otherwise. We
use sgn(·) to denote the sign function of the real number ·,
and we use span(v1,v2, · · · ,vn) to denote the linear span
of the vectors v1,v2, · · · ,vn ∈ RD.

For any given two sequences {An}∞n=0 and {Bn}∞n=0, we
denote An = O (Bn) if there exist some absolute constant
C1 > 0 and N1 > 0 such that |An| ≤ C1 |Bn| for all
n ≥ N1. Similarly, we denote An = Ω(Bn) if there exist
C2 > 0 and N2 > 0 such that |An| ≥ C2 |Bn| for all
n > N2. We say An = Θ(Bn) if An = O (Bn) and
An = Ω(Bn) both holds. We use Õ(·), Ω̃(·), and Θ̃(·)
to hide logarithmic factors in these notations respectively.
Moreover, we denote An = poly (Bn) if An = O

(
BK

n

)
for some positive constant K, and An = polylog (Bn) if
Bn = poly (log (Bn)). We also say An = o(Bn) if for
arbitrary positive constant C3 > 0, there exists N3 > 0
such that |An| < C3|Bn| for all n > N3. An event is said
that it happens with high probability (or w.h.p. for short) if
it happens with probability at least 1− o(1).

We use the notation ∥·∥p , p ∈ [1,+∞] to denote the
ℓp norm in the vector space RD. For two sets A,B ⊂
RD, we can define the ℓp-distance between A and B as
distp(A,B) := inf {∥X − Y ∥p : X ∈ A,Y ∈ B}. For

r > 0, Bp(X, r) :=
{
Z ∈ RD : ∥Z −X∥p ≤ r

}
is de-

fined as the ℓp-ball with radius r centered at X .

A multi-layer neural network is a function from input in RD

to output in Rm, which is defined as follows:

FW ,B (X) := WLσ (WL−1σ (· · ·W1σ (W0X

+B0) +B1 · · · ) +BL−1) +BL

and

W0 ∈ Rm0×D, Wi ∈ Rmi×mi−1 , 1 ≤ i ≤ L− 1,

WL ∈ Rm×mL−1 , Bi ∈ Rmi , 0 ≤ i ≤ L− 1,

BL ∈ Rm, X ∈ RD, FW ,B (X) ∈ Rm,

where the weight W = [W0,W1, · · · ,WL] and the bias
B = [B0,B1, · · · ,BL] are learnable parameters, and
max{D,m0,m1, · · · ,mL−1,m} and L+ 1 are the width
and depth of the neural network, respectively. We use σ(·) to
denote the (non-linear) entry-wise activation function, and
ReLU activation function is defined as σ(·) := max(·, 0).

3.2. Problem Setup

We consider a binary classification setting, where we use
X ∈ X ⊂ RD to denote the data input and the binary
label y is in Y = {−1, 1}. Given a data distribution D
that is a joint distribution over the supporting set X × Y ,
and a function f : X → R as the classifier, we can define
the following measurements to describe the clean (robust)
classification performance of the classifier f on data D.

Definition 3.1. (Clean Test Error) The clean test error of
the classifier f w.r.t. the data distribution D is defined as
LD(f) := P(X,y)∼D [sgn(f(X)) ̸= y] .

Definition 3.2. (Robust Test Error) Given a ℓp-robust radius
δ ≥ 0, the robust test error of the classifier f w.r.t. the data
distribution D and δ under ℓp norm is defined as Lp,δ

D (f) :=
E(X,y)∼D

[
max∥X′−X∥p≤δ I{sgn(f(X′)) ̸= y}

]
.

In our work, we mainly focus on the cases when p = 2 and
p = ∞, which can be extended to the general p case as well.

In adversarial training, with access to the training dataset
S = {(X1, y1), (X2, y2), . . . , (XN , yN )} randomly sam-
pled from the data distribution D, we aim to minimize the
following robust training error to derive the robust classifier.

Definition 3.3. (Robust Training Error) Given a ℓp-robust
radius δ ≥ 0, the robust training error of the classifier f
w.r.t. training dataset S and δ under ℓp norm is defined
as Lp,δ

S (f) := 1
N

∑N
i=1 max∥X′

i−Xi∥p≤δ I{sgn(f(X ′
i)) ̸=

y} .

Now, we present the concept CGRO classifier that we
mainly study in this paper as the following definition.

Definition 3.4. (CGRO Classifier) Given a ℓp-robust radius
δ ≥ 0, we say a classifier f is CGRO classifier w.r.t. the
data distribution D and training dataset S if it satisfies that
LD(f) = o(1), Lp,δ

S (f) = o(1) but Lp,δ
D (f) = Ω(1).

Remark 3.5. In the above definition of CGRO classifier,
the asymptotic notations o(1) and Ω(1) are both defined
with respective to the data dimension D, which means that
CGRO classifier has a good clean test performance but a
poor robust generalization at the same time.

4. Analyzing the CGRO Phenomenon from the
View of Representation Complexity

In this section, we provide a theoretical understanding of
the CGRO phenomenon from the view of representation
complexity. First, We present the data assumption as follow.

For the data distribution D and ℓp-robust radius δ > 0, the
supporting set of the data input X can be divided into two
sets X+ and X− that correspond to the positive and negative
classes respectively, i.e. X+ := {X ∈ X : (X, y) ∈
D, y = 1} and X− := {X ∈ X : (X, y) ∈ D, y = −1}.
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Assumption 4.1. (Bounded) There exists a absolute con-
stant R > 0 such that, with high probability over the data
distribution D, it holds that the data input X ∈ [−R,R]D.

Recall the definition of CGRO classifier (Definition 3.4).
W.l.o.g., we can only focus on the case X ⊂ [−R,R]D.

Assumption 4.2. (Well-Separated) we assume that the sep-
aration between the positive and negative classes is large
than twice the robust radius, i.e. distp(X+,X−) > 2δ.

This assumption is necessary to ensure the existence of a
robust classifier, and which is indeed empirically observed
in real-world image classification data (Yang et al., 2020).

Assumption 4.3. (Polynomial-Size Clean Classifier Exists)
we assume that there exists a clean classifier fclean : X → R
represented as a ReLU network with poly(D) parameters
such that LD(fclean) = o(1) but Lp,δ

D (fclean) = Ω(1).

In Assumption 4.3, the asymptotic notations o(1) and Ω(1)
are defined w.r.t. the data dimension D. It means that the
clean classifier with moderate size can perfectly classify the
natural data but fails to classify the adversarially perturbed
data, which is consistent with the common practice that
well-trained neural networks are vulnerable to adversarial
examples (Szegedy et al., 2013; Raghunathan et al., 2019).

Now, we present our main result about the upper bound of
representation complexity for CGRO classifier as follow.

Theorem 4.4. (Polynomial Upper Bound for CGRO) Under
Assumption 4.1, 4.2 and 4.3, withN -sample training dataset
S = {(X1, y1), (X2, y2), . . . , (XN , yN )} drawn from the
data distribution D, there exists a CGRO classifier fCGRO :
X → R that can be represented as a ReLU network with at
most poly(D) + Õ(ND) parameters.

Proof Sketch. First, we show the existence of the CGRO
classifier w.r.t the data distribution D and training dataset S .

Lemma 4.5. For given the data distribution D satisfying
Assumption 4.1, 4.2 and 4.3, and the randomly sampled
training dataset S = {(X1, y1), (X2, y2), . . . , (XN , yN )},
we consider the following function fS : X → R defined as

fS(X) = fclean(X)
(
1− I{X ∈ ∪N

i=1Bp(Xi, δ)}
)︸ ︷︷ ︸

clean classification on unseen test data

+

N∑
i=1

yiI{X ∈ Bp(Xi, δ)}︸ ︷︷ ︸
robust memorization on training data

.

And it holds that the function fS is a CGRO classifier.

Due to Assumption 4.2, it is clear that we have Bp(Xi, δ)∩
Bp(Xj , δ) = ∅ for any distinct i, j ∈ [N ]. Thus, fS per-
fectly clean classifies unseen test data by the first summand

(Assumption 4.3) and robustly memorizes training data by
the second summand, which belongs to CGRO classifiers.

Back to the proof of Theorem 4.4, the key idea is to approx-
imate the classifier fS proposed in Lemma 4.5 by ReLU
network. Indeed, the function fS can be rewritten as

fS(X) =

N∑
i=1

(yi − fclean(X))I{∥X −Xi∥p ≤ δ}︸ ︷︷ ︸
weighted sum of robust local indicators

+ fclean(X)︸ ︷︷ ︸
poly(D)

.

Therefore, we use ReLU nets to approximate the distance
function di(X) := ∥X − Xi∥p in [−R,R]D efficiently,
and we also noticed that the indicator I{·} can be approx-
imated by a soft indicator represented by two ReLU neu-
rons. Combined with the above results, there exists a ReLU
net fCGRO with poly(D) + Õ(ND) parameters such that
∥fCGRO − fS∥∞ = o(1), which implies Theorem 4.4. □

Remark 4.6. Theorem 4.4 manifests that ReLU net with
only Õ(ND) extra parameters is able to leverages robust
memorization (Lemma 4.5) to achieve the CGRO regime.

However, to achieve robust generalization, higher complex-
ity seems necessary. We generalize the result in Li et al.
(2022) from linear-separable setting to Assumption 4.3.

Theorem 4.7. (Exponential Lower Bound for Robust Clas-
sifer) Let FM be the family of function represented by ReLU
networks with at mostM parameters. There exists a number
MD = Ω(exp(D)) and a distribution D satisfying Assump-
tion 4.1, 4.2 and 4.3 such that, for any classifier in the family
FMD

, the robust test error w.r.t. D is at least Ω(1).

Proof Sketch. The main proof idea of Theorem 4.7 is the
linear region decomposition of ReLU nets (Montufar et al.,
2014), and then we apply the technique bounding the VC
dimension for local region similar to Li et al. (2022). □

According to Assumption 4.3, Theorem 4.4 and Theorem
4.7, we obtain the following inequalities about representa-
tion complexity of classifiers in different regimes.

Clean Classifier︸ ︷︷ ︸
poly(D)

≲ CGRO Classifier︸ ︷︷ ︸
poly(D)+Õ(ND)

≪ Robust Classifier︸ ︷︷ ︸
Ω(exp(D))

.

Remark 4.8. These inequalities states that while CGRO
classifiers have mildly higher representation complexity
than clean classifiers, adversarial robustness requires ex-
cessively higher complexity, which may lead the classifier
trained by adversarial training to the CGRO regime. We
also empirically verify this by the experiments of adversarial
training regarding different model sizes in Section 6.
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5. Analyzing Dynamics of Adversarial
Training on Structured Data

In the previous section, we show the efficiency of CGRO
classifier via representation complexity. However, it is un-
clear how the classifier trained by adversarial training con-
verges to the CGRO regime. In this section, we will focus
on a structured-data setting to study the learning process of
adversarial training. First, we introduce our structured-data
setting as follow, and then provide a fine-grained analysis
of adversarial training under our theoretical framework.

5.1. Structured Data Setting

In this section, we consider the case that data input X ∈ RD

has a patch structure as follow, which is similar to a list of
theoretical works about feature learning (Allen-Zhu & Li,
2020b; Chen et al., 2021; Jelassi & Li, 2022; Jelassi et al.,
2022; Kou et al., 2023; Chidambaram et al., 2023).

Definition 5.1. (Patch Data Distribution) We define a data
distribution D, in which each instance consists in an input
X ∈ X = RD and a label y ∈ Y = {−1, 1} generated by

1. The label y is uniformly drawn from {−1, 1}.

2. The input X = (X[1], . . . ,X[P ]), where each patch
X[j] ∈ Rd and P = D/d is the number of patches (we
assume that D/d is an integer and P = polylog(d)).

3. Meaningful Signal patch: for each instance, there ex-
ists one and only one meaningful patch signal(X) ∈
[P ] satisfies X[signal(X)] = αyw∗, where w∗ ∈
Rd(∥w∗∥2 = 1) is the unit meaningful signal vector
and α > 0 is the norm of signal.

4. Noisy patches: X[j] ∼ N
(
0,
(
Id −w∗w∗⊤)σ2

p

)
,

for j ∈ [P ]\{signal(X)}, where σ2
p > 0 denotes the

variance of noise .

Remark 5.2. The patch structure that we leverage can be
viewed as a simplification of real-world vision-recognition
datasets. Indeed, images are divided into signal patches that
are meaningful for the classification such as the whisker
of a cat or the nose of a dog, and noisy patches like the
uninformative background of a photo. And our patch data
assumption can also be generalized to the case that there
exist a set of patches that are meaningful, while analyzing
the learning process will be too complicated to un-clarify
our main idea that we want to present. Therefore, we focus
on the single meaningful patch case in our work.

To learn our structured data, we use two-layer convolutional
neural network (CNN) (LeCun et al., 1998; Krizhevsky et al.,
2012) with non-linear activation as the learner network.

Definition 5.3. (Two-layer Convolutional Network) For
a given input data X ∈ RPd, our network learner fW :

RPd → R is defined as

fW (X) =

m∑
r=1

P∑
j=1

a+r σ
(〈
w+

r ,X[j]
〉)

−
m∑
r=1

P∑
j=1

a−r σ
(〈
w−

r ,X[j]
〉)
.

where W = [{a+r }mr=1, {a−r }mr=1, {w+
r }mr=1, {w−

r }mr=1]
are learnable parameters, and σ(·) is the ReLUq activation
function defined as σ(·) = (max(·, 0))q (q ≥ 2).

ReLUq activation functions are useful to address the non-
smoothness of ReLU function at zero, which are widely
applied in literatures of deep learning theory (Kileel et al.,
2019; Allen-Zhu & Li, 2020a;b; Chen et al., 2021; Jelassi
& Li, 2022; Jelassi et al., 2022). To simplify our analysis,
we fix the second layer weights as a+r = a−r = 1

2 . We also
assume that q is odd and it holds that wr := w+

r = −w−
r

during optimization process. At initialization, we sample
wr i.i.d from N (0, σ2

0Id). Our results can be extended to
the case when q is even and w+

r ,−w−
r are differently.

The Role of Non-linearity. Indeed, a series of recent theo-
retical works (Li et al., 2019; Chen et al., 2021; Javanmard
& Soltanolkotabi, 2022) show that linear model can achieve
robust generalization for adversarial training under certain
settings, which but fails to explain the CGRO phenomenon
observed in practice. To mitigate this gap, we improve the
expressive power of model by using non-linear activation
that can characterize the data structure and learning process
more precisely.

In adversarial training, we aim to minimize the following ad-
versarial training loss, which is a trade-off between natural
risk and robust regularization defined as follow.
Definition 5.4. (Adversarial Training Loss) For a hyperpa-
rameter λ > 0 and the ℓp-robust radius δ > 0, the adversar-
ial training loss of the network fW w.r.t. the training dataset
S = {(X1, y1), (X2, y2), . . . , (XN , yN )} is defined as

L̂adv(W ) :=
1

N

N∑
i=1

L (W ;Xi, yi)︸ ︷︷ ︸
natural risk

+ λ · max
X̂i∈Ap(Xi,δ)

[
L
(
W ; X̂i, yi

)
− L (W ;Xi, yi)

]
︸ ︷︷ ︸

robust regularization

.

where we use L(W ;X, y) to denote the single-point loss
with respect to fW on (X, y) and Ap (X, δ) denotes the
perturbed range of the data point X with ℓp-radius δ.
Remark 5.5. Adversarial training loss in Definition 5.4
gives a general form of adversarial training methods (Good-
fellow et al., 2014; Madry et al., 2017; Zhang et al., 2019)
for different values of hyperparameter λ and different types
of loss function L(W ;X, y) and perturbed range Ap (·, δ).
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Here, we use the logistic loss defined as L(W ;X, y) :=
log (1 + exp{−yfW (X)}). And we apply the perturbed
range defined as Ap (X, δ) := Bp (X, δ) ∩ X + ∆ (X),
where ∆ (X) ⊂ RPd satisfies that

∆ (X) [j] =

{
span(w∗) , if j = signal(X),

0 , otherwise.

This perturbed range ensures that adversarial perturbations
used to generate adversarial examples are always aligned
with the meaningful signal vector w∗ during adversarial
training, which exactly simplifies the optimization analysis.
Definition 5.6. (Adversarial Training Algorithm) We run
the standard gradient descent method to update the network
parameters {W (t)}Tt=0 for T iterations w.r.t. the adver-
sarial training loss that can be rewritten as L̂(t)

adv(W ) =
1
N

∑N
i=1(1 − λ)L (W ;Xi, yi) + λL

(
W ;X

adv,(t)
i , yi

)
,

where X
adv,(t)
i denotes the adversarial example generated

by i-th training data Xi at t-th iteration. Concretely, the ad-
versarial examples Xadv,(t)

i and network parameters W (t)

are updated alternatively as X
adv,(t)
i = argmax

X̂i∈Ap(Xi,δ)

L
(
W (t); X̂i, yi

)
, i ∈ [N ],

W (t+1) = W (t) − η∇W L̂(t)
adv

(
W (t)

)
,

where η > 0 is the learning rate.

Next, we make the following assumptions about hyperpa-
rameters we introduced in our structured-data setting.
Assumption 5.7. (Choice of Hyperparameters) We assume
that:
α = Θ(dcα), σp = Θ(d−cp), m = Θ(N) = poly(d),

σ0 =
polylog(d)√

d
, δ = α

(
1− 1√

dpolylog(d)

)
,

λ ∈
[

1

poly(d)
, 1

)
, η =

(
0,

1

poly(d)

]
,

where cα, cp ∈ (0, 1) are constants satisfying cα + cp >
1
2 .

Discussion of Hyperparameter Choices. Actually, the
choices of these hyperparameters are not unique. We make
concrete choices above for the sake of calculations in our
proofs, but only the relationships between them are impor-
tant. Namely, since the norm of signal patch is α and the
norm of noise patch w.h.p. is Θ(σp

√
d), our choices ensure

that meaningful signal is stronger than noise. Without this
assumption, in other word, if the signal-to-noise ratio is very
low, there even exists no clean generalization, which has
been theoretically shown under the similar patch-structured
data setting (Cao et al., 2021; Chen et al., 2021; Frei et al.,
2022). The width of network learner is Õ(ND) to achieve
mildly over-parameterization we mentioned in Theorem 4.4.
The separation in Assumption 4.2 also holds due to δ < α.

5.2. Main Results

First, we introduce the concept called feature learning to
characterize what the model learns from training dynamics.
Definition 5.8. (Feature Learning) Specifically, given a
certain training data-point (X, y) ∼ D and the network
learner fW , we focus on the following two types of feature
learning.

• True Feature Learning. We project the weight W on
the meaningful signal vector to measure the correlation
between the model and the true feature as

U :=

m∑
r=1

⟨wr,w
∗⟩q .

• Spurious Feature Learning. We project the weight
W on the random noise to measure the correlation
between the model and the spurious feature as

V :=

m∑
r=1

∑
j∈[P ]\signal(X)

⟨wr, yX[j]⟩q .

Thus, it holds that the model correctly classify the clean data
in two cases. One is that the model learns the true feature
and ignores the spurious features, i.e. U = Ω(1) ≫ |V|.
Another is that the model doesn’t learn the true feature but
memorizes the spurious features, i.e. U = o(1) and V =
Ω(1) ≫ 0. We can analyze the perturbed data similarly.

Now, we give our main result about feature learning process.
Theorem 5.9. Under Assumption 5.7, we run the adversar-
ial training algorithm in Definition 5.6 to update the weight
of the network learner for T = Ω(poly(d)) iterations. Then,
with high probability, it holds that the network leanrer

1. partially learns the true feature, i.e. U (T ) = Θ(α−q);

2. exactly memorizes the spurious feature, i.e. for each
i ∈ [N ],V(T )

i = Θ(1),

where U (t) and V(t)
i is defined for i−th instance (Xi, yi)

and t−th iteration as the same in Definition 5.8. Conse-
quently, the clean test error and robust training error are
both smaller than o(1), but the robust test error is at least
1
2 − o(1), which means that fW (T ) is a CGRO classifier.
Remark 5.10. Theorem 5.9 states that, during adversarial
training, the neural network partially learns the true feature
of objective classes and exactly memorizes the spurious fea-
tures depending on specific training data, which causes that
the network learner is able to correctly classify clean data
by partial meaningful signal (clean generalization), but fails
to classify the unseen perturbed data since it leverages only
data-wise random noise to memorize training adversarial
examples (robust overfitting). We also conduct numerical
simulation experiments to confirm our results in Section 6.
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(a) (b) (c)

Figure 2. (a)(b): The effect of network capacity on the performance of the network. We trained the networks of varying capacity on
MNIST (a) and CIFAR10 (b); (c): Feature learning process of the two-layer convolutional network on the structured data.

5.3. Analysis of Learning Process

Next, we provide a proof sketch of Theorem 5.9. To obtain
a detailed analysis of learning process, we consider the
following objects that can be viewed as weight-wise version
of U (t) and V(t)

i . We define u(t) and v(t)i,j as
u(t) := max

r∈[m]

〈
w

(t)
r ,w∗

〉
(Signal Component),

v
(t)
i,j := max

r∈[m]

〈
w

(t)
r , yiXi[j]

〉
(Noise Component),

for each r ∈ [m], i ∈ [N ] and j ∈ [P ] \ signal(Xi).

We then propose a three-stage analysis technique to decou-
ple the complicated feature learning process as follows.

Phase I: At the beginning, the signal component of lottery
tickets winner u(t) increases quadratically (Lemma 5.11).

Lemma 5.11. (Lower Bound of Signal Component Growth)
For each r ∈ [m] and any t ≥ 0, the signal component
grows as

u(t+1) ≥ u(t) +Θ(ηαq)
(
u(t)
)q−1

ψ
(
αqU (t)

)
,

where we use ψ(·) to denote the negative sigmoid function
ψ(z) = 1

1+ez as well as Lemma 5.12,5.13.

Lemma 5.11 manifests that the signal component increases
quadratically at initialization. Therefore, we know that, after
T0 = Θ

(
η−1α−qσ−1

0

)
iterations, the signal component

u(T0) attains the order Ω̃(α−1), which implies the model
learns partial true feature at this point.

Phase II: Once the signal component u(t) attains the order
Ω̃(α−1), the growth of signal component nearly stop up-
dating since that the increment of signal component is now
mostly dominated by the noise component (Lemma 5.12).

Lemma 5.12. (Upper Bound of Signal Component Growth)
For T0 = Θ

(
η−1α−qσ−1

0

)
and any t ∈ [T0, T ], the signal

component is upper bounded as

u(t) ≤Õ
(
η(α− δ)q

N

) t−1∑
s=T0

N∑
i=1

ψ
(
(α− δ)qU (s) + V(s)

i

)
+ Õ(α−1).

Lemma 5.12 shows that, after partial true feature learning,
the increment of signal component is mostly dominated by
the noise component V(t)

i , which implies that the growth of
signal component will converge when V(t)

i = Ω(1).

Phase III: After that, by the quadratic increment of noise
component (Lemma 5.13), the total noise V(t)

i eventually
attains the order Ω(1), which implies the model memorizes
the spurious feature (data-wise noise) in final.

Lemma 5.13. (Lower Bound of Noise Component Growth)
For each i ∈ [N ], r ∈ [m] and j ∈ [P ] \ signal(Xi) and
any t ≥ 1, the noise component grows as

v
(t)
i,j ≥v(0)i,j +Θ

(
ησ2

pd

N

)
t−1∑
s=0

ψ(V(s)
i )

(
v
(s)
i,j

)q−1

− Õ(Pσ2
pα

−1
√
d).

The practical implication of Lemma 5.13 is two-fold. First,
by the quadratic increment of noise component, we derive
that, after T1 = Θ

(
Nη−1σ−1

0 σ−3
p d−

3
2

)
iterations, the to-

tal noise memorization V(T )
i attains the order Ω(1), which

suggests that the model is able to robustly classify adversar-
ial examples by memorizing the data-wise noise. Second,
combined with Lemma 5.12, the signal component u(t) will
maintain the order Θ(α−1), which immediately implies the
main conclusion of Theorem 5.9. And the full detailed proof
of Theorem 5.9 can be see in Appendix E.
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Table 1. Performance of Models with Different Sizes
Dataset MNIST CIFAR10

Model Size Factor 1 2 8 12 16 1 2 5 10

Clean Test Acc 11.35 11.35 11.35 95.06 94.85 82.56 84.92 85.83 86.05
Robust Test Acc 11.35 11.35 11.35 77.96 83.43 43.39 43.74 46.25 50.08

Robust Train Acc 11.70 11.70 11.70 99.3 99.5 64.19 79.82 97.37 99.57

6. Experiments
In this section, we empirically verify our theoretical results
in Section 4 and Section 5 by experiments in real-world
image-recognition datasets and synthetic structured data.

6.1. Effect of Different Model Sizes

Experiment Settings. For the MNIST dataset, we consider
a simple convolutional network, LeNet-5 (LeCun et al.,
1998), and study how its performance changes as we in-
creases the size of network (i.e. we expand the number of
convolutional filters and the size of the fully connected layer
to the size number multiple of the initial, where the size num-
bers are 1, 4, 8, 12, 16). The original convolutional network
has a convolutional layer with 1 filters, followed by another
convolutional layer with 2 filters, and a fully connected hid-
den layer with 32 units. Convolutional layers are followed
by 2 × 2 max-pooling layers. For the CIFAR10 dataset,
we apply WideResNet-34 (Zagoruyko & Komodakis, 2016)
with different widen factors 1, 2, 5, 10. We use the standared
projected gradient descent (PGD) (Madry et al., 2017) to
train the network by adversarial training. We choose the
classical ℓ∞-perturbation with radius 0.3 for MNIST and
8/255 for CIFAR10. All models are trained for 100 epoches
on MNIST and 200 epoches on CIFAR10.

Experiment Results. We report our results about the perfor-
mance (including the clean test accuracy, robust test accu-
racy and robust training accuracy) of models with different
sizes in Table 1 and Figure 2 (a)(b). It shows that when
the model size becomes larger, first the robust training loss
decreases but the robust generalization gap remains large,
and then when the model gets even larger, the robust gener-
alization gap gradually decreases, and we also find that, in
the small size case (see LeNet with the size number 1, 4, 8),
adversarial training converges to a trivia solution that always
predicts a fixed class, while it can learn an accurate clean
classifier through the standard training, which corresponds
to the theoretical results in Theorem 4.4 and Theorem 4.7.

6.2. Synthetic Structured Data

Experiment Settings. Here we generate synthetic data ex-
actly following Definition 5.1 and apply the two-layer con-
volutional network in Definition 5.3. We train the network

by the adversarial training algorithm we mentioned in Defi-
nition 5.6. We choose the hyperparameters that we need as:
d = 100, P = 2, α = 10, σp = 1, σ0 = 0.01, q = 3, N =
20,m = 10, p = 2, δ = 10, λ = 0.9, η = 0.1, T = 100,
which is a feasible one under Assumption 5.7. We char-
acterize the true feature learning and noise memorization
via calculating U (t) and the smallest/largest/average of
{V(t)

i }i∈[N ]. We calculate the robust train and test accu-
racy of the model by using the standard PGD attack.

Table 2. Performance on Synthetic Data
Train test

Clean Acc 100.0 98.5
Robust Acc 100.0 17.5

Experiment Results. We plot the dynamics of true feature
learning and noise memorization in Figure 2 (c). It is clear
that a three-stage phase transitions happen during adversar-
ial training , which is consistent with our theoretical analysis
of learning process (Lemma 5.11, Lemma 5.12 and Lemma
5.13), and finally the model partially learns true feature but
exactly memorizes all training data (Theorem 5.9). The per-
formance of the model is presented in Table 2, which shows
that the network converges to a CGRO classifier eventually.

7. Conclusion
In this paper, we study the CGRO phenomenon in adver-
sarial training and present theoretical explanations: from
the perspective of representation complexity, we prove that
the CGRO classifier is efficient to achieve by leveraging ro-
bust memorization regarding the training data, while robust
generalization requires excessively large model capacity
in worst case, which may lead adversarial training to the
CGRO regime; from the perspective of training dynamics,
we propose a three-stage analysis technique to analyze the
feature learning process of adversarial training under our
structured-data framework, and it shows that two-layer neu-
ral network trained by adversarial training provably learns
the partial true feature but memorizes the random noise from
training data, which thereby causes the CGRO regime. On
the empirical side, we confirm our theoretical findings above
by real-world vision datasets and synthetic data simulation.
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(a) MNIST: Grad (b) MNIST: Change (c) CIFAR10: Grad (d) CIFAR10: Change

(e) MNIST: Train (f) MNIST: Test (g) CIFAR10: Train (h) CIFAR10: Test

Figure 3. Experiment Results (ℓ∞ Perturbation Radius ϵ0 = 0.1 on MNIST, = 8/255 on CIFAR10).

A. Additional Experiments Regarding Robust Memorization
In this section, we demonstrate that adversarial training converges to similarities of the construction fS of Lemma 4.5 on real
image datasets, which results in CGRO. In fact, we need to verify models trained by adversarial training tend to memorize
data by approximating local robust indicators on training data.

Concretely, for given loss L(·, ·), instance (X, y) and model f , we use two measurements, maximum gradient norm within
the neighborhood of training data,

max
∥ξ∥∞≤δ

∥∇XL(f(X + ξ), y)∥1,

and maximum loss function value change

max
∥ξ∥∞≤δ

[L(f(X + ξ), y)− L(f(X), y)]

.

The former measures the δ−local flatness on (X, y), and the latter measures δ−local adversarial robustness on (X, y),
which both describe the key information of loss landscape over input.

Experiment Settings. In numerical experiments, we mainly focus on two common real-image datasets, MNIST and
CIFAR10. During adversarial training, we use cyclical learning rates and mixed precision technique (Wong et al., 2020).
For the MNIST dataset, we use a LeNet architecture and train total 20 epochs. For the CIFAR10 dataset, we use a Resnet
architecture and train total 15 epochs.

Numerical Results. First, we apply the adversarial training method to train models by a fixed perturbation radius ϵ0, and
then we compute empirical average of maximum gradient norm and maximum loss change on training data within different
perturbation radius ϵ. We can see numerical results in Figure 3 (a∼d), and it shows that loss landscape has flatness within
the training radius, but is very sharp outside, which practically demonstrates our conjecture on real image datasets.

Learning Process. We also focus on the dynamics of loss landscape over input during the adversarial learning process.
Thus, we compute empirical average of maximum gradient norm within different perturbation radius ϵ and in different
training epochs. The numerical results are plotted in Figure 3 (e∼h). Both on MNIST and CIFAR10, with epochs increasing,
it is observed that the training curve descents within training perturbation radius, which implies models learn the local robust
indicators to robustly memorize training data. However, the test curve of CIFAR10 ascents within training radius instead,
which is consistent with our theoretical analysis in Section 5.

Robust Generalization Bound. Moreover, we prove a robust generalization bound based on global flatness of loss landscape
(see in Appendix B). We show that, while adversarial training achieves local flatness by robust memorization, the model
lacks global flatness, which causes robust overfitting.
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(a) (b)

Figure 4. Left: Local and Global Flatness During Adversarial Training on CIFAR10; Right: The Relation Between Robust Generalization
Gap and Global Flatness on CIFAR10.

B. Robust Generalization Bound Based on Global Flatness
In this section, we prove a novel robust generalization bound that mainly depends on global flatness of loss landscape.
We consider ℓp−adversarial robustness with perturbation radius δ and we use Lclean, Ladv(f) and L̂adv(f) to denote the
clean test risk, the adversarial test risk and the adversarial empirical risk w.r.t. the model f , respectively. We also assume
1
p + 1

q = 1 for the next results.

Theorem B.1. (Robust Generalization Bound) Let D be the underlying distribution with a smooth density function, and
N−sample training dataset S = {(X1, y1), (X2, y2), . . . , (XN , yN )} is i.i.d. drawn from D. Then, with high probability,
it holds that,

Ladv(f) ≤ L̂adv(f) +N− 1
D+2O

E(X,y)∼D

[
max

∥ξ∥p≤δ
∥∇XL(f(X + ξ), y)∥q

]
︸ ︷︷ ︸

global flatness

 .

This generalization bound shows that robust generalization gap can be dominated by global flatness of loss landscape. And
we also have the lower bound of robust generalization gap stated as follow.

Proposition B.2. Let D be the underlying distribution with a smooth density function, then we have

Ladv(f)− Lclean(f) = Ω
(
δE(X,y)∼D [∥∇XL(f(X), y)∥q]

)
.

Theorem B.1 and Proposition B.2 manifest that robust generalization gap is very related to global flatness. However,
although adversarial training achieves good local flatness by robust memorization on training data, the model lacks global
flatness, which leads to robust overfitting.

This point is also verified by numerical experiment on CIFAR10 (see results in Figure 4). First, global flatness grows much
faster than local flatness in practice. Second, with global flatness increasing during training process, it causes an increase of
robust generalization gap.

13
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C. Preliminary Lemmas
First, we present a technique called Tensor Power Method proposed by Allen-Zhu & Li (2020a;b).

Lemma C.1. Let
{
z(t)
}T
t=0

be a positive sequence defined by the following recursions{
z(t+1) ≥ z(t) +m

(
z(t)
)2

z(t+1) ≤ z(t) +M
(
z(t)
)2 ,

where z(0) > 0 is the initialization and m,M > 0. Let v > 0 such that z(0) ≤ v. Then, the time t0 such that zt ≥ v for all
t ≥ t0 is:

t0 =
3

mz(0)
+

8M

m

⌈
log (v/z0)

log(2)

⌉
.

Lemma C.2. Let
{
z(t)
}T
t=0

be a positive sequence defined by the following recursion{
z(t) ≥ z(0) +A

∑t−1
s=0

(
z(s)
)2 − C

z(t) ≤ z(0) +A
∑t−1

s=0

(
z(s)
)2

+ C

where A,C > 0 and z(0) > 0 is the initialization. Assume that C ≤ z(0)/2. Let v > 0 such that z(0) ≤ v. Then, the time t
such that z(t) ≥ v is upper bounded as:

t0 = 8

⌈
log (v/z0)

log(2)

⌉
+

21(
z(0)

)
A
.

Lemma C.3. Let T ≥ 0. Let (zt)t>T be a non-negative sequence that satisfies the recursion: z(t+1) ≤ z(t) −A
(
z(t)
)2

,
for A > 0. Then, it is bounded at a time t > T as

z(t) ≤ 1

A(t− T )
.

Then, we provide a probability inequality proved by Jelassi & Li (2022).

Lemma C.4. Let {vr}mr=1 be vectors in Rd such that there exist a unit norm vector x that satisfies
∣∣∣∑m

r=1 ⟨vr,x⟩3
∣∣∣ ≥ 1.

Then, for ξ1, . . . , ξk ∼ N
(
0, σ2Id

)
i.i.d., we have:

P

∣∣∣∣∣∣
P∑

j=1

m∑
r=1

⟨vr, ξj⟩3
∣∣∣∣∣∣ ≥ Ω̃

(
σ3
) ≥ 1− O(d)

21/d
.

Next, we introduce some concepts about learning theory.
Definition C.5 (growth function). Let F be a class of functions from X ⊂ Rd to {−1,+1}. For any integer m ≥ 0, we
define the growth function of F to be

ΠF (m) = max
xi∈X ,1≤i≤m

|{(f(x1), f(x2), · · · , f(xm)) : f ∈ F}| .

In particular, if |{(f(x1), f(x2), · · · , f(xm)) : f ∈ F}| = 2m, then (x1, x2, · · · , xm) is said to be shattered by F .
Definition C.6 (Vapnik-Chervonenkis dimension). Let F be a class of functions from X ⊂ RD to {−1,+1}. The VC-
dimension of F , denoted by VC-dim(F), is defined as the largest integer m ≥ 0 such that ΠF (m) = 2m. For real-value
function class H, we define VC-dim(H) := VC-dim(sgn(H)).

The following result gives a nearly-tight upper bound on the VC-dimension of neural networks.
Lemma C.7. (Bartlett et al., 2019) Consider a ReLU network with L layers and W total parameters. Let F be the set of
(real-valued) functions computed by this network. Then we have VC-dim(F ) = O(WL log(W )).

The growth function is connected to the VC-dimension via the following lemma; see e.g. Anthony et al. (1999).

Lemma C.8. Suppose that VC-dim(F) = k, then Πm(F) ≤
∑k

i=0

(
m
i

)
. In particular, we have Πm(F) ≤ (em/k)

k for all
m > k + 1.
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D. Feature Learning
In this section, we provide a full introduction to feature learning, which is widely applied in theoretical works (Allen-Zhu &
Li, 2020a;b; 2022; Shen et al., 2022; Jelassi & Li, 2022; Jelassi et al., 2022; Chen et al., 2022) explore what and how neural
networks learn in different tasks. In this work, we first leverage feature learning theory to explain CGRO phenomenon in
adversarial training. Specifically, for an arbitrary clean training data-point (X, y) ∼ D and a given model fW , we focus on

• True Feature Learning. We project the weight W on the meaningful signal vector to measure the correlation between
the model and the true feature as

U :=

m∑
r=1

⟨wr,w
∗⟩q .

• Spurious Feature Learning. We project the weight W on the random noise to measure the correlation between the
model and the spurious feature as

V := y

m∑
r=1

∑
j∈[P ]\signal(X)

⟨wr,X[j]⟩q .

We then calculate the model’s classification correctness on certain clean data point as

yfW (X) = y

m∑
r=1

⟨wr,X[signal(X)]⟩q + y

m∑
r=1

∑
j∈[P ]\signal(X)

⟨wr,X[j]⟩q

= y

m∑
r=1

⟨wr, αyw
∗⟩q︸ ︷︷ ︸

αqU

+ y

m∑
r=1

∑
j∈[P ]\signal(X)

⟨wr,X[j]⟩q

︸ ︷︷ ︸
V

.

Thus, the model correctly classify the data if and only if αqU + V ≥ 0, which holds in at least two cases. Indeed, one is
that the model learns the true feature and ignores the spurious features, where U = Ω(1) ≫ |V|. Another is that the model
doesn’t learn the true feature but memorizes the spurious features, where |U| = o(1) and |V| = Ω(1) ≫ 0.

Therefore, this analysis tells us that the model will generalize well for unseen data if the model learns true feature learning.
But the model will overfit training data if the model only memorizes spurious features since the data-specific random noises
are independent for distinct instances, which means that, with high probability, it holds that V = o(1) for unseen data
(X, y).

We also calculate the model’s classification correctness on perturbed data point, where we use attack proposed in definition
5.6 to generate adversarial example as

Xadv[j] =

{
α(1− γ)yw∗, j = signal(X)
X[j], j ∈ [p] \ signal(X)

We then derive the correctness as

yfW (Xadv) = y

m∑
r=1

〈
wr,X

adv[signal(X)]
〉q

+ y

m∑
r=1

∑
j∈[P ]\signal(X)

〈
wr,X

adv[j]
〉q

= y

m∑
r=1

⟨wr, α(1− γ)yw∗⟩q︸ ︷︷ ︸
αq(1−γ)qU

+ y

m∑
r=1

∑
j∈[P ]\signal(X)

⟨wr,X[j]⟩q

︸ ︷︷ ︸
V

.

Thus, the model correctly classify the perturbed data if and only if αq(1−γ)qU +V ≥ 0, which implies that We can analyze
the perturbed data similarly.
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E. Proof for Section 5
In this section, we present the full proof for Section 5. To simplify our proof, we only focus on the case when q = 3, and it
can be easily extended to the general case when q ≥ 2. And we need the re-defined notation as the following.

For r ∈ [m], i ∈ [N ] and j ∈ [P ] \ signal(Xi), we define u(t)r and v(t)i,j,r as

Signal Component. u(t)r :=
〈
w

(t)
r ,w∗

〉
, thus U (t) =

∑
r∈[m]

(
u
(t)
r

)3
.

Noise Component. v(t)i,j,r := yi

〈
w

(t)
r ,Xi[j]

〉
, thus V(t)

i =
∑

r∈[m]

∑
j∈[P ]\signal(Xi)

(
v
(t)
i,j,r

)3
.

First, we give detailed proofs of Lemma 5.11, Lemma 5.12 and Lemma 5.13. Then, we prove Theorem 5.9 base on the
above lemmas.

We prove our main results using an induction. More specifically, we make the following assumptions for each iteration
t < T .

Hypothesis E.1. Throughout the learning process using the adversarial training update for t < T , we maintain that:

• (Uniform Bound for Signal Component) For each r ∈ [m], we assume u(t)r ≤ Õ(α−1).

• (Uniform Bound for Noise Component) For each r ∈ [m], i ∈ [N ] and j ∈ [P ]\signal(Xi), we assume |v(t)i,j,r| ≤ Õ(1).

In what follows, we assume these induction hypotheses for t < T to prove our main results. We then prove these hypotheses
for iteration t = T in Lemma E.11.

Now, we first give proof details about Lemma 5.11.

Theorem E.2. (Restatement of Lemma 5.11) For each r ∈ [m] and any t ≥ 0, the signal component grows as

u(t+1)
r ≥ u(t)r +Θ(ηα3)

(
u(t)r

)2
ψ

α3
∑
k∈[m]

(
u
(t)
k

)3 ,

where we use ψ(·) to denote the negative sigmoid function ψ(z) = 1
1+ez as well as Lemma 5.12,5.13.

Proof. First, we calculate the gradient of adversarial loss with respect to wr(r ∈ [m]) as

∇wr
L̂adv(W

(t)) = − 3

N

N∑
i=1

P∑
j=1

 (1− λ)yi

〈
w

(t)
r ,Xi[j]

〉2
1 + exp (yifW (t) (Xi))

Xi[j] +
λyi

〈
w

(t)
r ,Xadv

i [j]
〉2

1 + exp
(
yifW (t)

(
Xadv

i

))Xadv
i [j]


= − 3

N

((
u(t)r

)2( N∑
i=1

(1− λ)α3ψ(yifW (t)(Xi)) + λα3(1− γ)3ψ(yifW (t)(Xadv
i ))

)
w∗

+

N∑
i=1

∑
j ̸=signal(Xi)

(
v
(t)
i,j,r

)2 (
(1− λ)ψ(yifW (t)(Xi)) + λψ(yifW (t)(Xadv

i ))
)
Xi[j]

 .

Then, we project the gradient descent algorithm equation W (t+1) = W (t) − η∇W L̂adv
(
W (t)

)
on the signal vector w∗.
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We derive the following result due to Xi[j] ⊥ w∗ for j ∈ [P ] \ signal(Xi).

u(t+1)
r = u(t)r +

3η

N

(
u(t)r

)2 N∑
i=1

(
(1− λ)α3ψ(yifW (t)(Xi)) + λα3(1− γ)3ψ(yifW (t)(Xadv

i ))
)

≥ u(t)r +
3ηα3(1− λ)

N

(
u(t)r

)2 N∑
i=1

ψ(yifW (t)(Xi))

≥ u(t)r +Θ(ηα3)
(
u(t)r

)2
ψ

α3
∑
k∈[m]

(
u
(t)
k

)3 ,

where we derive last inequality by using ψ(yifW (t)(Xi)) = Θ(1)ψ

(
α3
∑

k∈[m]

(
u
(t)
k

)3)
, which is obtained due to

Hypothesis E.1.

Consequently, we have the following result that shows the order of maximum signal component.

Lemma E.3. During adversarial training, with high probability, it holds that, after T0 = Θ̃
(

1
ηα3σ0

)
iterations, for all

t ∈ [T0, T ], we have maxr∈[m] u
(t)
r ≥ Ω̃(α−1).

Proof. From the proof of Theorem E.2, we know that

u(t+1)
r − u(t)r =

3η

N

(
u(t)r

)2 N∑
i=1

(
(1− λ)α3ψ(yifW (t)(Xi)) + λα3(1− γ)3ψ(yifW (t)(Xadv

i ))
)
.

By applying Hypothesis E.1, we can simplify the above equation to the following inequalities. u
(t+1)
r ≤ u

(t)
r +A

(
u
(t)
r

)2
u
(t+1)
r ≥ u

(t)
r +B

(
u
(t)
r

)2
where A and B are respectively defined as:

A := Θ̃(η)
(
(1− λ)α3 + λα3(1− γ)3

)
B := Θ̃(η)(1− λ)α3.

At initialization, since we choose the weights w(0)
r ∼ N

(
0, σ2

0Id
)
, we know the initial signal components u(0)r are i.i.d.

zero-mean Gaussian random variables, which implies that the probability that at least one of the u(0)r is non-negative is
1−

(
1
2

)m
= 1− o(1).

Thus, with high probability, there exists an initial signal component u(0)r′ ≥ 0. By using Tensor Power Method (Lemma C.1)
and setting v = Θ̃(α−1), we have the threshold iteration T0 as

T0 =
Θ̃(1)

ηα3σ0
+

Θ̃(1)
(
(1− λ)α3 + λβ3

)
(1− λ)α3


− log

(
Θ̃ (σ0α)

)
log(2)

 .

Next, we prove Lemma 5.12 to give an upper bound of signal components’ growth.
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Theorem E.4. (Restatement of Lemma 5.12) For T0 = Θ
(

1
ηα3σ0

)
and any t ∈ [T0, T ], the signal component is upper

bounded as

max
r∈[m]

u(t)r ≤ Õ(α−1) + Õ

(
ηα3(1− γ)3

N

) t−1∑
s=T0

N∑
i=1

ψ

α3(1− γ)3
∑
k∈[m]

(
u
(s)
k

)3
+ V(s)

i

 .

Proof. First, we analyze the upper bound of derivative generated by clean data. By following the proof of Theorem E.2, we
know that, for each r ∈ [m],

max
r∈[m]

u(t+1)
r ≥ max

r∈[m]
u(t)r +

3ηα3(1− λ)

N

(
max
r∈[m]

u(t)r

)2 N∑
i=1

ψ(yifW (t)(Xi))

≥ max
r∈[m]

u(t)r + Ω̃(ηα)
1− λ

N

N∑
i=1

ψ(yifW (t)(Xi)),

where we obtain the first inequality by the definition of maxr∈[m] u
(t)
r ,maxr∈[m] u

(t+1)
r , and we use maxr∈[m] u

(t)
r ≥

Ω̃(α−1) derived by Lemma E.3 in the last inequality. Thus, we then have

1− λ

N

N∑
i=1

ψ(yifW (t)(Xi)) ≤ Õ(η−1α−1)

(
max
r∈[m]

u(t+1)
r − max

r∈[m]
u(t)r

)
.

Now, we focus on maxr∈[m] u
(t+1)
r −maxr∈[m] u

(t)
r . By the non-decreasing property of u(t)r , we have

max
r∈[m]

u(t+1)
r − max

r∈[m]
u(t)r ≤

∑
r∈[m]

(
u(t+1)
r − u(t)r

)

≤ (1− λ)Θ(ηα)ψ

α3
∑
r∈[m]

(
u(t)r

)3 ∑
r∈[m]

(
αu(t)r

)2
+ λΘ

(
ηα3(1− γ)3

N

) N∑
i=1

ψ(yifW (t)(Xadv
i ))

≤ (1− λ)Õ(ηα2)ϕ

α3
∑
r∈[m]

(
u(t)r

)3+ λΘ

(
ηα3(1− γ)3

N

) N∑
i=1

ψ(yifW (t)(Xadv
i )),

where we use ϕ(·) to denote the logistics function defined as ϕ(z) = log(1 + exp(−z)) and we derive the last inequality by
Hypothesis E.1. Then, we know

1− λ

N

N∑
i=1

ψ(yifW (t)(Xi)) ≤ (1− λ)Õ(α)ϕ

α3
∑
r∈[m]

(
u(t)r

)3
+ λΘ

(
α2(1− γ)3

N

) N∑
i=1

ψ(yifW (t)(Xadv
i )).
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Then, we derive the following result by Hypothesis E.1 and the above inequality.

max
r∈[m]

u(t+1)
r ≤ max

r∈[m]
u(t)r +

3η

N

(
max
r∈[m]

u(t)r

)2 N∑
i=1

(
(1− λ)α3ψ(yifW (t)(Xi))

+ λα3(1− γ)3ψ(yifW (t)(Xadv
i ))

)
≤ max

r∈[m]
u(t)r + Θ̃(ηα)

1− λ

N

N∑
i=1

ψ(yifW (t)(Xi)) + Θ̃

(
ηα(1− γ)3

N

) N∑
i=1

ψ(yifW (t)(Xadv
i ))

≤ max
r∈[m]

u(t)r + (1− λ)Õ(ηα2)ϕ

α3
∑
r∈[m]

(
u(t)r

)3+ Θ̃

(
ηα3(1− γ)3

N

) N∑
i=1

ψ(yifW (t)(Xadv
i ))

≤ max
r∈[m]

u(t)r +
(1− λ)Õ(ηα2)

1 + exp

(
α3
∑

r∈[m]

(
u
(t)
r

)3) + Θ̃

(
ηα3(1− γ)3

N

) N∑
i=1

ψ(yifW (t)(Xadv
i ))

≤ max
r∈[m]

u(t)r +
(1− λ)Õ(ηα2)

1 + exp
(
Ω̃(1)

) + Θ̃

(
ηα3(1− γ)3

N

) N∑
i=1

ψ(yifW (t)(Xadv
i )).

By summing up iteration s = T0, . . . , t− 1, we have the following result as

max
r∈[m]

u(t)r ≤ max
r∈[m]

u(T0)
r +

t−1∑
s=T0

(1− λ)Õ(ηα2)

1 + exp
(
Ω̃(1)

) +

(
ηα3(1− γ)3

N

) t−1∑
s=T0

N∑
i=1

ψ(yifW (s)(Xadv
i ))

≤ Õ(α−1) + Õ

(
ηα3(1− γ)3

N

) t−1∑
s=T0

N∑
i=1

ψ

α3(1− γ)3
∑
k∈[m]

(
u
(s)
k

)3
+ V(s)

i

 .

Therefore, we derive the conclusion of Theorem E.4.

Next, we prove the following theorem about the update of noise components.

Lemma E.5. For each r ∈ [m], i ∈ [N ] and j ∈ [P ] \ signal(Xi), any iterationt0, t such that t0 < t ≤ T , with high
probability, it holds that∣∣∣∣∣v(t)i,j,r − v

(t0)
i,j,r −Θ

(
ησ2d

N

) t−1∑
s=t0

ψ̃
(s)
i

(
v
(s)
i,j,r

)2∣∣∣∣∣ ≤ Õ

(
ληα3(1− γ)3

N

) t−1∑
s=t0

N∑
i=1

ψ(yifW (s)(Xadv
i ))

+ Õ(Pσ2α−1
√
d),

where we use the notation ψ̃(s)
i to denote (1− λ)ψ(yifW (s)(Xi)) + λψ(yifW (s)(Xadv

i )).

Proof. To obtain Lemma E.5, we prove the following stronger result by induction w.r.t. iteration t.

∣∣∣∣v(t)i,j,r − v
(t0)
i,j,r −Θ

(
ησ2d

N

) t−1∑
s=t0

ψ̃
(s)
i

(
v
(s)
i,j,r

)2∣∣∣∣∣ ≤ Õ(Pσ2α−1
√
d)
(
1 + λαη +

α

σ2d

) t−t0−1∑
q=0

(P−1
√
d)−q

+ Õ

(
ληα3(1− γ)3

N

) t−t0−1∑
q=0

t−q∑
s=t0

N∑
i=1

(P−1
√
d)−qψ(yifW (s)(Xadv

i ))

(1)
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First, we project the training update on noise patch Xi[j] to verify the above inequality when t = t0 + 1 as∣∣∣∣v(t0+1)
i,j,r − v

(t0)
i,j,r −Θ

(
ησ2d

N

)
ψ̃
(t0)
i

(
v
(s)
i,j,r

)2∣∣∣∣ ≤ Θ

(
ησ2d

N

) N∑
a=1

∑
b̸=signal(Xa)

ψ̃(t0)
a

(
v
(t0)
a,b,r

)2
≤ Θ(ηPσ2

√
d)

1− λ

N

N∑
i=1

ψ(yifW (t0)(Xi))

+ Θ(ηPσ2
√
d)
λ

N

N∑
i=1

ψ(yifW (t0)(Xadv
i ))

≤ Õ(Pσ2α−1
√
d)
(
1 + λαη +

α

σ2d

)
,

where we apply 1−λ
N

∑N
i=1 ψ(yifW (t0)(Xi)) ≤ Õ(η−1α−1)

(
maxr∈[m] u

(t0+1)
r −maxr∈[m] u

(t0)
r

)
≤ Õ(η−1α−2) and∑N

i=1 ψ(yifW (t0)(Xadv
i )) ≤ Õ(1) to derive the last inequality.

Next, we assume that the stronger result holds for iteration t, and then we prove the result for iteration t+ 1 as follow.∣∣∣v(t+1)
i,j,r − v

(t0)
i,j,r −Θ

(
ησ2d

N

) t−1∑
s=t0

ψ̃
(s)
i

(
v
(s)
i,j,r

)2∣∣∣∣∣ ≤ Θ

(
ησ2d

N

) t−1∑
s=t0

N∑
a=1

∑
b̸=signal(Xa)

ψ̃(s)
a

(
v
(s)
a,b,r

)2
+Θ(ηPσ2

√
d)

1− λ

N

N∑
i=1

ψ(yifW (t)(Xi)) + Θ(ηPσ2
√
d)
λ

N

N∑
i=1

ψ(yifW (t)(Xadv
i )).

Then, we bound the first term in the right of the above inequality by our induction hypothesis for t, and we can derive∣∣∣v(t+1)
i,j,r − v

(t0)
i,j,r −Θ

(
ησ2d

N

) t−1∑
s=t0

ψ̃
(s)
i

(
v
(s)
i,j,r

)2∣∣∣∣∣ ≤ Õ(Pσ2α−1
√
d)
(
1 + λαη +

α

σ2d

) t−t0−1∑
q=0

(P−1
√
d)−q

+ Õ

(
ληα3(1− γ)3

N

) t−t0−1∑
q=0

t−q∑
s=t0

N∑
i=1

(P−1
√
d)−qψ(yifW (s)(Xadv

i ))

+ Õ(Pσ2α−1
√
d)
(
1 + λαη +

α

σ2d

)
+Θ(ηPσ2

√
d)
λ

N

N∑
i=1

ψ(yifW (t)(Xadv
i )).

By summing up the terms, we proved the stronger result for t+ 1.

Finally, we simplify the form of stronger result by using
∑∞

q=0(P
−1

√
d)−q = (1− P/

√
d)−1 = Θ(1), which implies the

conclusion of Lemma E.5.

Now, we prove Lemma 5.13 based on Lemma E.5 as follow.
Theorem E.6. (Restatement of Lemma 5.13) For each i ∈ [N ], r ∈ [m] and j ∈ [P ] \ signal(Xi) and any t ≥ 1, the signal
component grows as

v
(t)
i,j,r ≥ v

(0)
i,j,r +Θ

(
ησ2d

N

) t−1∑
s=0

ψ(V(s)
i )

(
v
(s)
i,j,r

)2
− Õ(Pσ2α−1

√
d).

Proof. By applying the one-side inequality of Lemma E.5, we have

v
(t)
i,j,r − v

(t0)
i,j,r −Θ

(
ησ2d

N

) t−1∑
s=t0

ψ̃
(s)
i

(
v
(s)
i,j,r

)2
≥ −Õ

(
ληα3(1− γ)3

N

) t−1∑
s=t0

N∑
i=1

ψ(yifW (s)(Xadv
i ))

− Õ(Pσ2α−1
√
d).

Thus, we obtain Theorem E.6 by using Õ
(

ληα3(1−γ)3

N

)∑t−1
s=t0

∑N
i=1 ψ(yifW (s)(Xadv

i )) ≤ Õ(ληTα3(1 − γ)3) ≤

Õ(Pσ2α−1
√
d) and ψ̃(s)

i = Θ(1)ψ(V(s)
i ) derived by Hypothesis E.1.
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Consequently, we derive the upper bound of total noise components as follow.

Lemma E.7. During adversarial training, with high probability, it holds that, after T1 = Θ

(
N

ησ0σ3d
3
2

)
iterations, for all

t ∈ [T1, T ] and each i ∈ [N ], we have V(t)
i ≥ Õ(1).

Proof. By applying Lemma E.5 as the same in the proof of Theorem E.6, we know that∣∣∣∣∣v(t)i,j,r − v
(t0)
i,j,r −Θ

(
ησ2d

N

) t−1∑
s=t0

ψ̃
(s)
i

(
v
(s)
i,j,r

)2∣∣∣∣∣ ≤ Õ(Pσ2α−1
√
d),

which implies that, for any iteration t ≤ T , we have v
(t)
i,j,r ≥ v

(0)
i,j,r +A

∑t−1
s=0

(
v
(s)
i,j,r

)2
− C

v
(t)
i,j,r ≤ v

(0)
i,j,r +A

∑t−1
s=0

(
v
(s)
i,j,r

)2
+ C

,

where A,C > 0 are constants defined as

A =
Θ̃
(
ησ2d

)
N

, C = Õ(Pσ2α−1
√
d).

At initialization, since we choose the weights w(0)
r ∼ N

(
0, σ2

0Id
)

and Xi[j] ∼ N
(
0, σ2Id

)
, we know the initial noise

components v(0)i,j,r are i.i.d. zero-mean Gaussian random variables, which implies that, with high probability, there exists at

least one index r′ such that v(0)i,j,r ≥ Ω̃(Pσ2α−1
√
d). By using Tensor Power Method (Lemma C.2) and setting v = Θ̃(1),

we have the threshold iteration T1 as

T1 =
21N

Θ̃ (ησ2d) v
(0)
i,j,r

+
8N

Θ̃ (ησ2d)
(
v
(0)
i,j,r

)

log

(
Õ(1)

v
(0)
i,j,r

)
log(2)

 .

Therefore, we get T1 = Θ

(
N

ησ0σ3d
3
2

)
, and we use V(t)

i =
∑

r∈[m]

∑
j∈∈[P ]\signal(Xi)

(
v
(t)
i,j,r

)3
to derive V(t)

i ≥ Ω̃(1).

Indeed, our aimed loss function L̂adv (W ) is non-convex due to the non-linearity of our CNN model fW . To analyze the
convergence of gradient algorithm, we need to prove the following condition that is used to show non-convexly global
convergence (Karimi et al., 2016; Li et al., 2019).

Lemma E.8. (Lojasiewicz Inequality for Non-convex Optimization) During adversarial training, with high probability, it

holds that, after T1 = Θ

(
N

ησ0σ3d
3
2

)
iterations, for all t ∈ [T1, T ], we have

∥∥∥∇W L̂adv

(
W (t)

)∥∥∥
2
≥ Ω̃(1)L̂adv

(
W (t)

)
.

Proof. To prove Lojasiewicz Inequality, we first recall the gradient w.r.t. wr as

∇wr
L̂adv(W

(t)) = − 3

N

((
u(t)r

)2( N∑
i=1

(1− λ)α3ψ(yifW (t)(Xi)) + λα3(1− γ)3ψ(yifW (t)(Xadv
i ))

)
w∗

+

N∑
i=1

∑
j ̸=signal(Xi)

(
v
(t)
i,j,r

)2 (
(1− λ)ψ(yifW (t)(Xi)) + λψ(yifW (t)(Xadv

i ))
)
Xi[j]

 .
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Then, we project the gradient on the signal direction and total noise, respectively.

For the signal component, we have∥∥∥∇wr
L̂adv(W

(t))
∥∥∥2
2
≥
〈
∇wr

L̂adv(W
(t)),w∗

〉2
≥ Ω̃(1)

(1− λ)α3
(
u(t)r

)2
ψ

α3
∑
k∈[m]

(
u
(t)
k

)32

.

For the total noise component, we have

∥∥∥∇wr L̂adv(W
(t))
∥∥∥2
2
≥

〈
∇wr L̂adv(W

(t)),

∑N
i=1

∑
j ̸=signal(Xi)

Xi[j]∥∥∥∑N
i=1

∑
j ̸=signal(Xi)

Xi[j]
∥∥∥
2

〉2

=

〈
− 3

N

N∑
i=1

∑
j ̸=signal(Xi)

(
v
(t)
i,j,r

)2
((1− λ)ψ(yifW (t)(Xi)) + λψ(yifW (t)(Xadv

i ))
)
Xi[j],

∑N
a=1

∑
b ̸=signal(Xa)

Xa[b]∥∥∥∑N
a=1

∑
b̸=signal(Xa)

Xa[b]
∥∥∥
2

〉2

=

〈− 3

N

N∑
i=1

∑
j ̸=signal(Xi)

(
v
(t)
i,j,r

)2
(1− λ)ψ(yifW (t)(Xi))Xi[j] ,

∑N
a=1

∑
b ̸=signal(Xa)

Xa[b]∥∥∥∑N
a=1

∑
b̸=signal(Xa)

Xa[b]
∥∥∥
2

〉

+

〈
− 3

N

N∑
i=1

∑
j ̸=signal(Xi)

(
v
(t)
i,j,r

)2
λψ(yifW (t)(Xadv

i ))Xi[j],

∑N
a=1

∑
b ̸=signal(Xa)

Xa[b]∥∥∥∑N
a=1

∑
b̸=signal(Xa)

Xa[b]
∥∥∥
2

〉2

.

For the first term, with high probability, it holds that〈
− 3

N

N∑
i=1

∑
j ̸=signal(Xi)

(
v
(t)
i,j,r

)2
(1− λ)ψ(yifW (t)(Xi))Xi[j],

∑N
a=1

∑
b ̸=signal(Xa)

Xa[b]∥∥∥∑N
a=1

∑
b ̸=signal(Xa)

Xa[b]
∥∥∥
2

〉

≥ − Õ(σ)(1− λ)

N

N∑
i=1

∑
j ̸=signal(Xi)

(
v
(t)
i,j,r

)2
(1− λ)ψ(yifW (t)(Xi)),

where we use that
〈
Xi[j],

∑N
a=1

∑
b ̸=signal(Xa) Xa[b]

∥∑N
a=1

∑
b ̸=signal(Xa) Xa[b]∥

2

〉
is a sub-Gaussian random variable of parameter σ, which implies

w.h.p.
∣∣∣∣〈Xi[j],

∑N
a=1

∑
b ̸=signal(Xa) Xa[b]

∥∑N
a=1

∑
b ̸=signal(Xa) Xa[b]∥

2

〉∣∣∣∣ ≤ Õ(σ).

For the second term, with high probability, it holds that〈
3

N

N∑
i=1

∑
j ̸=signal(Xi)

(
v
(t)
i,j,r

)2
λψ(yifW (t)(Xadv

i ))Xi[j],

∑N
a=1

∑
b̸=signal(Xa)

Xa[b]∥∥∥∑N
a=1

∑
b̸=signal(Xa)

Xa[b]
∥∥∥
2

〉

=
Θ(1)

N

N∑
i=1

∑
j ̸=signal(Xi)

(
v
(t)
i,j,r

)2
λψ(yifW (t)(Xadv

i ))
∥Xi[j]∥22∥∥∥∑N

a=1

∑
b ̸=signal(Xa)

Xa[b]
∥∥∥
2

=
Θ(σ

√
d)

N

N∑
i=1

∑
j ̸=signal(Xi)

(
v
(t)
i,j,r

)2
λψ(yifW (t)(Xadv

i )),
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where we use w.h.p. ⟨Xi[j],Xi′ [j
′]⟩

∥∑N
a=1

∑
b ̸=signal(Xa) Xa[b]∥

2

≤
Θ
(

1√
d

)
∥Xi[j]∥2

2

∥∑N
a=1

∑
b ̸=signal(Xa) Xa[b]∥

2

for (i, j) ̸= (i′, j′).

Now, combine the above bounds, we derive

m∑
r=1

∥∥∥∇wr
L̂adv(W

(t))
∥∥∥2
2
≥

m∑
r=1

〈
∇wr

L̂adv(W
(t)),w∗

〉2
+

m∑
r=1

〈
∇wr

L̂adv(W
(t)),

∑N
i=1

∑
j ̸=signal(Xi)

Xi[j]∥∥∥∑N
i=1

∑
j ̸=signal(Xi)

Xi[j]
∥∥∥
2

〉2

≥ Ω

(
1

m

)(1− λ)α3
m∑
r=1

(
u(t)r

)2
ψ

α3
∑
k∈[m]

(
u
(t)
k

)3
+

Θ(σ
√
d)

N

m∑
r=1

N∑
i=1

∑
j ̸=signal(Xi)

(
v
(t)
i,j,r

)2
λψ(yifW (t)(Xadv

i ))

− Õ(σ)(1− λ)

N

m∑
r=1

N∑
i=1

∑
j ̸=signal(Xi)

(
v
(t)
i,j,r

)2
(1− λ)ψ(yifW (t)(Xi))

2

≥ Ω̃(1)

(1− λ)ϕ

α3
∑
r∈[m]

(
u(t)r

)3+
λ

N

N∑
i=1

ϕ
(
V(t)
i

)2

≥ Ω̃(1)
(
L̂adv

(
W (t)

))2
.

Consequently, we derive the following sub-linear convergence result by applying Lojasiewicz Inequality.

Lemma E.9. (Sub-linear Convergence for Adversarial Training) During adversarial training, with high probability, it holds

that, after T1 = Θ

(
N

ησ0σ3d
3
2

)
iterations, the adversarial training loss sub-linearly converges to zero as

L̂adv

(
W (t)

)
≤ Õ(1)

η(t− T1 + 1)
.

Proof. Due to the smoothness of loss function L̂adv (W ) and learning rate η = Õ(1), we have

L̂adv

(
W (t+1)

)
≤ L̂adv

(
W (t)

)
− η

2

∥∥∥∇W L̂adv

(
W (t)

)∥∥∥
2

≤ L̂adv

(
W (t)

)
− Ω̃(η)

(
L̂adv

(
W (t)

))2
,

where we use Lojasiewicz Inequality in the last inequality. Then, by applying Tensor Power Method (Lemma C.3), we
obtain the sub-linear convergence rate.

Now, we present the following result to bound the derivative generated by training-adversarial examples.

Lemma E.10. During adversarial training, with high probability, it holds that, after T1 = Θ

(
N

ησ0σ3d
3
2

)
iterations, we

have λ
N

∑t
s=0

∑N
i=1 ψ(yifW (s)(Xadv

i )) ≤ Õ(η−1σ−1
0 ).

Proof. First, we bound the total derivative during iteration s = T1, . . . , t. By applying the conclusion of Lemma E.5, we
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have
λ

N

t∑
s=T1

N∑
i=1

ψ(yifW (s)(Xadv
i )) ≤ Õ(1)

N

t−1∑
s=T1

N∑
i=1

ψ̃
(s)
i

(
v
(s)
i,j,r

)2
+ Õ

(
λα3(1− γ)3

Nσ2d

) t−1∑
s=T1

N∑
i=1

ψ(yifW (s)(Xadv
i )) + Õ

(
P

ηα
√
d

)
.

Due to Õ
(

α3(1−γ)3

σ2d

)
≪ 1, we know

λ

N

t∑
s=T1

N∑
i=1

ψ(yifW (s)(Xadv
i )) ≤ Õ(1)

N

t−1∑
s=T1

N∑
i=1

ψ̃
(s)
i

(
v
(s)
i,j,r

)2
+ Õ

(
P

ηα
√
d

)

≤ Õ(1)

N

t−1∑
s=T1

N∑
i=1

ϕ
(
V(s)
i

)
+ Õ

(
P

ηα
√
d

)

≤ Õ(1)

t−1∑
s=T1

L̂adv

(
W (t)

)
+ Õ

(
P

ηα
√
d

)

≤ Õ(1)

t−1∑
s=T1

Õ(1)

η(t− T1 + 1)
+ Õ

(
P

ηα
√
d

)
≤ Õ(η−1).

Thus, we obtain λ
N

∑t
s=0

∑N
i=1 ψ(yifW (s)(Xadv

i )) ≤ Õ(σ−1
0 ) + Õ(η−1) ≤ Õ(η−1σ−1

0 ).

Consequently, we have the following lemma that verifies Hypothesis E.1 for t = T .

Lemma E.11. During adversarial training, with high probability, it holds that, for any t ≤ T , we have maxr∈[m] u
(t)
r ≤

Õ(α−1) and |v(t)i,j,r| ≤ Õ(1) for each r ∈ [m], i ∈ [N ], j ∈ [P ] \ signal(Xi).

Proof. Combined with Theorem E.4 and Lemma E.10, we can derive maxr∈[m] u
(T )
r ≤ Õ(α−1).

By applying Lemma E.5, we have

|v(T )
i,j,r| ≤ |v(0)i,j,r|+Θ

(
ησ2d

N

) t−1∑
s=t0

ψ̃
(s)
i

(
v
(s)
i,j,r

)2
+ Õ

(
ληα3(1− γ)3

N

) t−1∑
s=t0

N∑
i=1

ψ(yifW (s)(Xadv
i )) + Õ(Pσ2α−1

√
d)

≤ Õ(1) + Õ(σ2d) + Õ(α3(1− γ)3σ−1
0 ) + Õ(Pσ2α−1

√
d) ≤ Õ(1).

Therefore, our Hypothesis E.1 holds for iteration t = T .

Finally, we prove our main result as follow.

Theorem E.12. (Restatement of Theorem 5.9) Under Assumption 5.7, we run the adversarial training algorithm to update
the weight of the simplified CNN model for T = Ω(poly(d)) iterations. Then, with high probability, it holds that the CNN
model

1. partially learns the true feature, i.e. U (T ) = Θ(α−3);

2. exactly memorizes the spurious feature, i.e. for each i ∈ [N ],V(T )
i = Θ(1),

where U (t) and V(t)
i is defined for i−th instance (Xi, yi) and t−th iteration as the same in (1)(1). Consequently, the clean

test error and robust training error are both smaller than o(1), but the robust test error is at least 1
2 − o(1).
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Proof. First, by applying Lemma E.3, Lemma E.7 and Lemma E.11, we know for any i ∈ [N ]

U (T ) =
∑
r∈[m]

(
u(T )
r

)3
= Θ(α−3)

V(T )
i =

∑
r∈[m]

∑
j ̸=signal(Xi)

(
v
(T )
i,j,r

)3
= Θ(1).

Then, since adversarial loss sub-linearly converges to zero i.e. L̂adv
(
W (T )

)
≤ Õ(1)

η(T−T1+1) ≤ Õ
(

1
poly(d)

)
= o(1), the

robust training error is also at most o(1).

To analyze test errors, we decompose w
(T )
r into w

(T )
r = µ

(T )
r w∗ + β

(T )
r for each r ∈ [m], where β

(T )
r ∈ (span(w∗))

⊥.
Due to V(T )

i = Θ(1), we know ∥β(T )
r ∥2 = Θ(1).

For the clean test error, we have

P(X,y)∼D [yfW (T )(X) < 0] = P(X,y)∼D

α3
m∑
r=1

(
u(T )
r

)3
+ y

m∑
r=1

∑
j∈[P ]\signal(X)

〈
w(T )

r ,X[j]
〉3

< 0


≤ P(X,y)∼D

 m∑
r=1

∑
j∈[P ]\signal(X)

〈
β(T )
r ,X[j]

〉3
≥ Ω̃(1)


≤ exp

(
− Ω̃(1)

σ6
∑m

r=1 ∥β
(T )
r ∥62

)
≤ O

(
1

poly(d)

)
= o(1),

where we use the fact that
∑m

r=1

∑
j∈[P ]\signal(X)

〈
β
(T )
r ,X[j]

〉3
is a sub-Gaussian random variable with parameter

σ3

√
(P − 1)

∑m
r=1 ∥β

(T )
r ∥62.

For the robust test error, we use A(·) to denote attack in Definition 5.6, and then we derive

P(X,y)∼D

[
min

∥ξ∥2≤δ
yfW (T )(X + ξ) < 0

]
≥ P(X,y)∼D [yfW (T )(A(X)) < 0]

= P(X,y)∼D

α3
m∑
r=1

(
u(T )
r

)3
(1− γ)3 + y

m∑
r=1

∑
j∈[P ]\signal(X)

〈
w(T )

r ,X[j]
〉3

< 0


≥ 1

2
P(X,y)∼D

∣∣∣∣∣∣
m∑
r=1

∑
j∈[P ]\signal(X)

〈
β(T )
r ,X[j]

〉3∣∣∣∣∣∣ ≥ Ω̃
(
(1− γ)3

) ≥ 1

2

(
1− Õ(d)

2d

)
=

1

2
− o(1),

where we use Lemma C.4 in the last inequality.
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F. Proof for Section 4
We prove Theorem 4.4 by using ReLU network to approximate fS proposed in Section 1.

Theorem F.1. (Restatement of Theorem 4.4) Under Assumption 4.1, 4.2 and 4.3, with N−sample training dataset
S = {(X1, y1), (X2, y2), . . . , (XN , yN )} drawn from the data distribution D, there exists a CGRO classifier that can be
represented as a ReLU network with poly(D) + Õ(ND) parameters, which means that, under the distribution D and
dataset S, the network achieves zero clean test and robust training errors but its robust test error is at least Ω(1).

Proof. First, we give the following useful results about function approximation by ReLU nets.

Lemma F.2. (Yarotsky, 2017) The function f(x) = x2 on the segment [0, 1] can be approximated with any error ϵ > 0 by a
ReLU network having the depth and the number of weights and computation units O(log(1/ϵ)).

Lemma F.3. (Yarotsky, 2017) Let ϵ > 0, 0 < a < b and B ≥ 1 be given. There exists a function ×̃ : [0, B]2 → [0, B2]
computed by a ReLU network with O

(
log2

(
ϵ−1B

))
parameters such that

sup
x,y∈[0,B]

∣∣×̃(x, y)− xy
∣∣ ≤ ϵ,

and ×̃(x, y) = 0 if xy = 0.

Since for ∀X0 ∈ [0, 1]D, the ℓ2−distance function ∥X − X0∥2 =
∑D

i=1 |X(i) − X
(i)
0 |2, by using Lemma

F.2, there exists a function ϕ1 computed by a ReLU network with O
(
D log

(
ε−1
1 D

))
parameters such that

supX∈[0,1]D

∣∣ϕ1(X)− ∥X −X0∥2
∣∣ ≤ ε1.

Return to our main proof back, indeed, functions computed by ReLU networks are piecewise linear but the indicator
functions are not continuous, so we need to relax the indicator such that Îsoft(x) = 1 for x ≤ δ + ϵ0, Îsoft(x) = 0 for
x ≥ R − δϵ0 and Îsoft is linear in (δ + ϵ0, R − δϵ0) by using only two ReLU neurons, where ϵ0 is sufficient small for
approximation.

Now, we notice that the constructed function fS can be re-written as

fS(X) = fclean(X)
(
1− I{X ∈ ∪N

i=1B2(Xi, δ)}
)
+

N∑
i=1

yiI{X ∈ B2(Xi, δ)}

= fclean(X) +

N∑
i=1

(yi − fclean(X))I{∥X −Xi∥22 ≤ δ2}.

Combined with Lemma F.2, Lemma F.3 and the relaxed indicator, we know that there exists a ReLU net h with at most
poly(D) + Õ(ND) parameters such that |h− fS | = o(1) for all input X ∈ [0, 1]D. Thus, it is easy to check that h belongs
to CGRO classifiers.

Next, we prove Theorem 4.7 by using the VC-dimension theory.

Theorem F.4. (Restatement of Theorem 4.7) Let FM be the family of function represented by ReLU networks with at most
M parameters. There exists a number MD = Ω(exp(D)) and a distribution D satisfying Assumption 4.1, 4.2 and 4.3 such
that, for any classifier in the family FMD

, under the distribution D, the robust test error is at least Ω(1).

Proof. Now, we notice that ReLU networks are piece-wise linear functions. Montufar et al. (2014) study the number of
local linear regions, which provides the following result.

Proposition F.5. The maximal number of linear regions of the functions computed by any ReLU network with a total of n
hidden units is bounded from above by 2n.

Thus, for a given clean classifier fclean represented by a ReLU net with poly(D) parameters, we know there exists at least
a local region V such that decision boundary of fclean is linear hyperplane in V . And we assume that the hyperplane is
X(D) = 1

2 .
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Then, let V ′ be the projection of V on the decision boundary of fclean, and P be an 2δ-packing of V ′. Since the packing
number P(V ′, ∥ · ∥, 2δ) ≥ C(V ′, ∥ · ∥2, 2δ) = exp(Ω(D)), where C(Θ, ∥ · ∥, δ) is the δ-covering number of a set Θ. For
any ϵ0 ∈ (0, 1), we can consider the construction

Sϕ =

{(
x,

1

2
+ ϵ0 · ϕ(x)

)
: x ∈ P

}
,

where ϕ : P → {−1,+1} is an arbitrary mapping. It’s easy to see that all points in Sϕ with firstD−1 components satisfying
∥x∥2 ≤

√
1− ϵ20 are in V ′, so that by choosing ϵ0 sufficiently small, we can guarantee that |Sϕ ∩ V | = exp(Ω(D)). For

convenience we just replace Sϕ with Sϕ ∩ V from now on.

LetAϕ = Sϕ∩
{
X ∈ V : x(D) > 1

2

}
,Bϕ = Sϕ−Aϕ. It’s easy to see that for arbitrary ϕ, the construction is linear-separable

and satisfies 2δ-separability.

Assume that for any choices of ϕ, the induced sets Aϕ and Bϕ can always be robustly classified with (O(δ), 1−µ)-accuracy
by a ReLU network with at most M parameters. Then, we can construct an enveloping network Fθ with M − 1 hidden
layers, M neurons per layer and at most M3 parameters such that any network with size ≤M can be embedded into this
envelope network. As a result, Fθ is capable of (O(δ), 1−µ)-robustly classify any sets Aϕ, Bϕ induced by arbitrary choices
of ϕ. We use Rϕ to denote the subset of Sϕ = Aϕ ∪Bϕ satisfying |Rϕ| = (1− µ) |Sϕ| = exp(Ω(D)) such that Rϕ can be
O(δ)-robustly classified.

Next, we estimate the lower and upper bounds for the cardinal number of the vector set

R := {(f(x))x∈P |f ∈ FMD
}.

Let n denote |P|, then we have
R = {(f(x1), f(x2), ...f(xn))|f ∈ FMD

},

where P = {x1,x2, ...,xn}.

On one hand, we know that for any u ∈ {−1, 1}n, there exists a v ∈ R such that dH(u, v) ≤ αn, where dH(·, ·) denotes
the Hamming distance, then we have

|R| ≥ N ({−1, 1}n, dH , µn) ≥
2n∑µn

i=0

(
n
i

) .
On the other hand, by applying Lemma C.8, we have

2n∑µn
i=1

(
n
i

) ≤ |R| ≤ ΠFMD
(n) ≤

l∑
j=0

(
n

j

)
.

where l is the VC-dimension of FMD
. In fact, we can derive l = Ω(n) when µ is a small constant. Assume that l < n− 1 ,

then we have
∑l

j=0

(
n
j

)
≤ (en/l)l and

∑µn
i=1

(
n
i

)
≤ (e/µ)µn, so

2n

(e/µ)
µn ≤ |R| ≤ (en/l)l.

We define a function h(x) as h(x) = (e/x)x, then we derive

2 ≤
(
e

µ

)µ(
e

l/n

)l/n

= h(µ)h(l/n).

When µ is sufficient small, l/n ≥ C(µ) that is a constant only depending on µ, which implies l = Ω(n). Finally, by using
Lemma C.7 and n = |P| = exp(Ω(D)), we know MD = exp(Ω(D)).
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G. Proof for Section B
Theorem G.1. (Restatement of Theorem B.1) Let D be the underlying distribution with a smooth density function, and
N−sample training dataset S = {(X1, y1), (X2, y2), . . . , (XN , yN )} is i.i.d. drawn from D. Then, with high probability,
it holds that,

Ladv(f) ≤ L̂adv(f) +N− 1
D+2O

E(X,y)∼D

[
max

∥ξ∥p≤δ
∥∇XL(f(X + ξ), y)∥q

]
︸ ︷︷ ︸

global flatness

 .

Proof. Indeed, we notice the following loss decomposition,

Ladv(f)− L̂adv(f) =
(
Lclean(f)− L̂adv(f)

)
+ (Ladv(f)− Lclean(f)) .

To bound the first term, by applying λi to denote kernel density estimation (KDE) proposed in Petzka et al. (2020), then we
derive

Lclean(f)− L̂adv(f) = E(X,y)∼D[L(f(X), y)]− 1

N

N∑
i=1

max
∥ξ∥p≤δ

L(f(Xi + ξ, yi))

≤ E(X,y)∼D[L(f(X), y)]− 1

N

N∑
i=1

Eξ∼λi
[L(f(Xi + ξ), yi)]

=

∫
X

pD(X)L(f(X), y)dX −
∫
X

pS(X)L(f(X), y)dX

≤
∣∣∣∣∫

X

(pD(X)− ES [pS(X)])L(f(X), y(X))dX

∣∣∣∣︸ ︷︷ ︸
(I)

+

∣∣∣∣∫
X

(ES [pS(X)]− pS(X))L(f(X), y(X))dX

∣∣∣∣︸ ︷︷ ︸
(II)

,

where pD(X) is the density function of the distribution D, and pS(X) is the KDE of point X .

With the smoothness of density function of D and Silverman (2018), we know that (I) = O(δ2).

For (II), by using Chebychef inequality and Silverman (2018), with probability 1−∆, we have

(II) = O(∆− 1
2N− 1

2 δ−
D
2 +N−2).

On the other hand, by Taylor expansion, we know

Ladv(f)− Lclean(f) ≤ O(δ)E(X,y)∼D

[
max

∥ξ∥p≤δ
∥∇XL(f(X + ξ), y)∥q

]
.

Combined with the bounds for (I) and (II), we can derive Theorem B.1.
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