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ABSTRACT

We propose a simple, general and effective technique, Reward Randomization for
discovering diverse strategic policies in complex multi-agent games. Combining
reward randomization and policy gradient, we derive a new algorithm, Reward-
Randomized Policy Gradient (RPG). RPG is able to discover multiple distinctive
human-interpretable strategies in challenging temporal trust dilemmas, including
grid-world games and a real-world game Agar.io, where multiple equilibria exist
but standard multi-agent policy gradient algorithms always converge to a fixed one
with a sub-optimal payoff for every player even using state-of-the-art exploration
techniques. Furthermore, with the set of diverse strategies from RPG, we can (1)
achieve higher payoffs by fine-tuning the best policy from the set; and (2) obtain an
adaptive agent by using this set of strategies as its training opponents. The source
code and example videos can be found in our website: https://sites.google.
com/view/staghuntrpg.

1 INTRODUCTION

Games have been a long-standing benchmark for artificial intelligence, which prompts persistent
technical advances towards our ultimate goal of building intelligent agents like humans, from
Shannon’s initial interest in Chess (Shannon, 1950) and IBM DeepBlue (Campbell et al., 2002), to the
most recent deep reinforcement learning breakthroughs in Go (Silver et al., 2017), Dota II (OpenAI
et al., 2019) and Starcraft (Vinyals et al., 2019). Hence, analyzing and understanding the challenges in
various games also become critical for developing new learning algorithms for even harder challenges.

Most recent successes in games are based on decentralized multi-agent learning (Brown, 1951; Singh
et al., 2000; Lowe et al., 2017; Silver et al., 2018), where agents compete against each other and
optimize their own rewards to gradually improve their strategies. In this framework, Nash Equilibrium
(NE) (Nash, 1951), where no player could benefit from altering its strategy unilaterally, provides
a general solution concept and serves as a goal for policy learning and has attracted increasingly
significant interests from AI researchers (Heinrich & Silver, 2016; Lanctot et al., 2017; Foerster et al.,
2018; Kamra et al., 2019; Han & Hu, 2019; Bai & Jin, 2020; Perolat et al., 2020): many existing
works studied how to design practical multi-agent reinforcement learning (MARL) algorithms that
can provably converge to an NE in Markov games, particularly in the zero-sum setting.

Despite the empirical success of these algorithms, a fundamental question remains largely unstudied
in the field: even if an MARL algorithm converges to an NE, which equilibrium will it converge to?
The existence of multiple NEs is extremely common in many multi-agent games. Discovering as
many NE strategies as possible is particularly important in practice not only because different NEs
can produce drastically different payoffs but also because when facing unknown players who are
trained to play an NE strategy, we can gain advantage by identifying which NE strategy the opponent
is playing and choosing the most appropriate response. Unfortunately, in many games where multiple
distinct NEs exist, the popular decentralized policy gradient algorithm (PG), which has led to great
successes in numerous games including Dota II and Stacraft, always converge to a particular NE with
non-optimal payoffs and fail to explore more diverse modes in the strategy space.

Consider an extremely simple example, a 2-by-2 matrix game Stag-Hunt (Rousseau, 1984; Skyrms,
2004), where two pure strategy NEs exist: a “risky” cooperative equilibrium with the highest payoff
∗Equal contribution. † Work done as an intern at Institute for Interdisciplinary Information Sciences (IIIS),

Tsinghua University.
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for both agents and a “safe” non-cooperative equilibrium with strictly lower payoffs. We show, from
both theoretical and practical perspectives, that even in this simple matrix-form game, PG fails to
discover the high-payoff “risky” NE with high probability. The intuition is that the neighborhood
that makes policies converge to the “risky” NE can be substantially small comparing to the entire
policy space. Therefore, an exponentially large number of exploration steps are needed to ensure
PG discovers the desired mode. We propose a simple technique, Reward Randomization (RR),
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Figure 1: Intuition of Reward Randomization

which can help PG discover the “risky” cooperation
strategy in the stag-hunt game with theoretical guar-
antees. The core idea of RR is to directly perturb
the reward structure of the multi-agent game of inter-
est, which is typically low-dimensional. RR directly
alters the landscape of different strategy modes in
the policy space and therefore makes it possible to
easily discover novel behavior in the perturbed game
(Fig. 1). We call this new PG variant Reward-Randomized Policy Gradient (RPG).

To further illustrate the effectiveness of RPG, we introduce three Markov games – two gridworld
games and a real-world online game Agar.io. All these games have multiple NEs including both
“risky” cooperation strategies and “safe” non-cooperative strategies. We empirically show that even
with state-of-the-art exploration techniques, PG fails to discover the “risky” cooperation strategies.
In contrast, RPG discovers a surprisingly diverse set of human-interpretable strategies in all these
games, including some non-trivial emergent behavior. Importantly, among this set are policies
achieving much higher payoffs for each player compared to those found by PG. This “diversity-
seeking” property of RPG also makes it feasible to build adaptive policies: by re-training an RL agent
against the diverse opponents discovered by RPG, the agent is able to dynamically alter its strategy
between different modes, e.g., either cooperate or compete, w.r.t. its test-time opponent’s behavior.

We summarize our contributions as follow

• We studied a collection of challenging multi-agent games, where the popular multi-agent
PG algorithm always converges to a sub-optimal equilibrium strategy with low payoffs.

• A novel reward-space exploration technique, reward randomization (RR), for discovering
hard-to-find equilibrium with high payoffs. Both theoretical and empirical results show that
reward randomization substantially outperforms classical policy/action-space exploration
techniques in challenging trust dilemmas.

• We empirically show that RR discovers surprisingly diverse strategic behaviors in complex
Markov games, which further provides a practical solution for building an adaptive agent.

• A new multi-agent environment Agar.io, which allows complex multi-agent strategic behavior.
We released the environment to the community as a novel testbed for MARL research.

2 A MOTIVATING EXAMPLE: STAG HUNT

Stag Hare
Stag a, a c, b
Hare b, c d, d

Table 1: The stag-hunt
game, a > b ≥ d > c.

We start by analyzing a simple problem: finding the NE with the optimal
payoffs in the Stag Hunt game. This game was originally introduced in
Rousseau’s work, “A discourse on inequality” (Rousseau, 1984): a group
of hunters are tracking a big stag silently; now a hare shows up, each
hunter should decide whether to keep tracking the stag or kill the hare
immediately. This leads to the 2-by-2 matrix-form stag-hunt game in Tab. 1
with two actions for each agent, Stag (S) and Hare (H). There are two pure strategy NEs: the Stag
NE, where both agents choose S and receive a high payoff a (e.g., a = 4), and the Hare NE, where
both agents choose H and receive a lower payoff d (e.g., d = 1). The Stag NE is “risky” because if
one agent defects, they still receives a decent reward b (e.g., b = 3) for eating the hare alone while
the other agent with an S action may suffer from a big loss c for being hungry (e.g., c = −10).

Formally, let A = {S,H} denote the action space, πi(θi) denote the policy for agent i (i ∈ {1, 2})
parameterized by θi, i.e., P [πi(θi) = S] = θi and P [πi(θi) = H] = 1− θi, and R(a1, a2; i) denote
the payoff for agent i when agent 1 takes action a1 and agent 2 takes action a2. Each agent i
optimizes its expected utility Ui(π1, π2) = Ea1∼π1,a2∼π2

[R(a1, a2; i)]. Using the standard policy
gradient algorithm, a typical learning procedure is to repeatedly take the following two steps until
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convergence1: (1) estimate gradient ∇i = ∇Ui(π1, π2) via self-play; (2) update the policies by
θi ← θi + α∇i with learning rate α. Although PG is widely used in practice, the following theorem
shows in certain scenarios, unfortunately, the probability that PG converges to the Stag NE is low.

Theorem 1. Suppose a− b = ε(d− c) for some 0 < ε < 1 and initialize θ1, θ2 ∼ Unif [0, 1]. Then
the probability that PG discovers the high-payoff NE is upper bounded by 2ε+ε2

1+2ε+ε2 .

Theorem 1 shows when the risk is high (i.e., c is low), then the probability of finding the Stag NE via
PG is very low. Note this theorem applies to random initialization, which is standard in RL.

Remark: One needs at least N = Ω
(
1
ε

)
restarts to ensure a constant success probability.
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Figure 2: PPO in stag
hunt, with a=4, b=3, d=1
and various c (10 seeds).

Fig. 2 shows empirical studies: we select 4 value assignments, i.e., c ∈
{−5,−20,−50,−100} and a=4, b=3, d=1, and run a state-of-the-art PG
method, proximal policy optimization (PPO) (Schulman et al., 2017), on
these games. The Stag NE is rarely reached, and, as c becomes smaller, the
probability of finding the Stag NE significantly decreases. Peysakhovich
& Lerer (2018b) provided a theorem of similar flavor without analyzing
the dynamics of the learning algorithm whereas we explicitly characterize
the behavior of PG. They studied a prosocial reward-sharing scheme,
which transforms the reward of both agents toR(a1, a2; 1)+R(a1, a2; 2).
Reward sharing can be viewed as a special case of our method and, as
shown in Sec. 5, it is insufficient for solving complex temporal games.

2.1 REWARD RANDOMIZATION IN THE MATRIX-FORM STAG-HUNT GAME

9 Thm. 1 suggests that the utility function R highly influences what strategy PG might learn. Taking
one step further, even if a strategy is difficult to learn with a particular R, it might be easier in some
other function R′. Hence, if we can define an appropriate spaceR over different utility functions and
draw samples from R, we may possibly discover desired novel strategies by running PG on some
sampled utility function R′ and evaluating the obtained policy profile on the original game with R.
We call this procedure Reward Randomization (RR).

Concretely, in the stag-hunt game, R is parameterized by 4 variables (aR, bR, cR, dR). We can define
a distribution over R4, draw a tuple R′ = (aR′ , bR′ , cR′ , dR′) from this distribution, and run PG
on R′. Denote the original stag-hunt game where the Stag NE is hard to discover as R0. Reward
randomization draws N perturbed tuples R1, . . . , RN , runs PG on each Ri, and evaluates each of the
obtained strategies on R0. The theorem below shows it is highly likely that the population of the N
policy profiles obtained from the perturbed games contains the Stag NE strategy.

Theorem 2. For any Stag-Hunt game, suppose in the i-th run of RR we randomly generate
aRi

, bRi
, cRi

, dRi
∼ Unif [−1, 1] and initialize θ1, θ2 ∼ Unif [0, 1], then with probability at least

1− 0.6N = 1− exp (−Ω (N)), the aforementioned RR procedure discovers the high-payoff NE.

Here we use the uniform distribution as an example. Other distributions may also help in practice.
Comparing Thm. 2 and Thm. 1, RR significantly improves standard PG w.r.t. success probability.

Remark 1: For the scenario studied in Thm. 1, to achieve a (1− δ) success probability for some
0 < δ < 1, PG requires at least N = Ω

(
1
ε log

(
1
δ

))
random restarts. For the same scenario, RR

only requires to repeat at most N = O (log (1/δ)) which is independent of ε. When ε is small, this is
a huge improvement.

Remark 2: Thm. 2 suggests that comparing with policy randomization, perturbing the payoff matrix
makes it substantially easier to discover a strategy that can be hardly reached in the original game.

Note that although in Stag Hunt, we particularly focus on the Stag NE that has the highest payoff for
both agents, in general RR can also be applied to NE selection in other matrix-form games using a
payoff evaluation functionE(π1, π2). For example, we can setE(π1, π2) = U1(π1, π2)+U2(π1, π2)
for a prosocial NE, or look for Pareto-optimal NEs by setting E(π1, π2) = βU1(π1, π2) + (1 −
β)U2(π1, π2) with 0 ≤ β ≤ 1.

1In general matrix games beyond stag hunt, the procedure can be cyclic as well (Singh et al., 2000).
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Algorithm 1: RPG: Reward-Randomized Policy Gradient
Input: original game M , search spaceR, evaluation function E, population size N ;
draw samples {R(1), . . . , R(N)} fromR;
{π(i)

1 , π
(i)
2 } ← PG on induced games {M(R(i))}i in parallel ; // RR phase

select the best candidate π(k)
1 , π(k)

2 by k = arg maxiE(π
(i)
1 , π

(i)
2 ) ; // evaluation phase

π?1 , π
?
2 ← fine-tune π(k)

1 , π(k)
2 on M via PG (if necessary) ; // fine-tuning phase

return π?1 , π?2 ;

3 RPG: REWARD-RANDOMIZED POLICY GRADIENT

Herein, we extend Reward Randomization to general multi-agent Markov games. We now utilize
RL terminologies and consider the 2-player setting for simplicity. Extension to more agents is
straightforward (Appx. B.3).

Consider a 2-agent Markov game M defined by (S,O,A, R, P ), where S is the state space; O =
{oi : s ∈ S, oi = O(s, i), i ∈ {1, 2}} is the observation space, where agent i receives its own
observation oi = O(s; i) (in the fully observable setting, O(s, i) = s); A is the action space for each
agent; R(s, a1, a2; i) is the reward function for agent i; and P (s′|s, a1, a2) is transition probability
from state s to state s′ when agent i takes action ai. Each agent has a policy πi(oi; θi) which produces
a (stochastic) action and is parameterized by θi. In the decentralized RL framework, each agent
i optimizes its expected accumulative reward Ui(θi) = Ea1∼π1,a2∼π2

[
∑
t γ

tR(st, at1, a
t
2; i)] with

some discounted factor γ.

Consider we run decentralized RL on a particular a Markov game M and the derived policy profile is
(π1(θ1), π2(θ2)). The desired result is that the expected reward Ui(θi) for each agent i is maximized.
We formally written this equilibrium evaluation objective as an evaluation function E(π1, π2) and
therefore the goal is to find the optimal policy profile (π?1 , π

?
2) w.r.t. E. Particularly for the games we

considered in this paper, since every (approximate) equilibrium we ever discovered has a symmetric
payoff, we focus on the empirical performance while assume a much simplified equilibrium selection
problem here: it is equivalent to define E(π1, π2) by E(π1, π2) = βU1(θ1) + (1− β)U2(θ2) for any
0 ≤ β ≤ 1. Further discussions on the general equilibrium selection problem can be found in Sec. 6.

The challenge is that although running decentralized PG is a popular learning approach for complex
Markov games, the derived policy profile (π1, π2) is often sub-optimal, i.e., there exists (π?1 , π

?
2) such

that E(π?1 , π
?
2) > E(π1, π2). It will be shown in Sec. 5 that even using state-of-the-art exploration

techniques, the optimal policies (π?1 , π
?
2) can be hardly achieved.

Following the insights from Sec. 2, reward randomization can be applied to a Markov game M
similarly: if the reward function in M poses difficulties for PG to discover some particular strategy, it
might be easier to reach this desired strategy with a perturbed reward function. Hence, we can then
define a reward function spaceR, train a population of policy profiles in parallel with sampled reward
functions from R and select the desired strategy by evaluating the obtained policy profiles in the
original game M . Formally, instead of purely learning in the original game M = (S,O,A, R, P ),
we define a proper subspace R over possible reward functions R : S × A × A → R and use
M(R′) = (S,O,A, R′, P ) to denote the induced Markov game by replacing the original reward
functionRwith anotherR′ ∈ R. To apply reward randomization, we drawN samplesR(1), . . . , R(N)

from R, run PG to learn (π
(i)
1 , π

(i)
2 ) on each induced game M(R(i)), and pick the desired policy

profile (π
(k)
1 , π

(k)
2 ) by calculating E in the original game M . Lastly, we can fine-tune the policies

π
(k)
1 , π(k)

2 in M to further boost the practical performance (see discussion below). We call this
learning procedure, Reward-Randomized Policy Gradient (RPG), which is summarized in Algo. 1.

Reward-function space: In general, the possible space for a valid reward function is intractably
huge. However, in practice, almost all the games designed by human have low-dimensional reward
structures based on objects or events, so that we can (almost) always formulate the reward function in
a linear form R(s, a1, a2; i) = φ(s, a1, a2; i)Tw where φ(s, a1, a2; i) is a low-dimensional feature
vector and w is some weight.

A simple and general design principle for R is to fix the feature vector φ while only randomize
the weight w, i.e., R = {Rw : Rw(s, a1, a2; i) = φ(s, a1, a2; i)Tw, ‖w‖∞ ≤ Cmax}. Hence, the
overall search space remains a similar structure as the original game M but contains a diverse range
of preferences over different feature dimensions. Notably, since the optimal strategy is invariant
to the scale of the reward function R, theoretically any Cmax > 0 results in the same search space.
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However, in practice, the scale of reward may significantly influence MARL training stability, so we
typically ensure the chosen Cmax to be compatible with the PG algorithm in use.

Note that a feature-based reward function is a standard assumption in the literature of inverse RL (Ng
et al., 2000; Ziebart et al., 2008; Hadfield-Menell et al., 2017). In addition, such a reward structure is
also common in many popular RL application domains. For example, in navigation games (Mirowski
et al., 2016; Lowe et al., 2017; Wu et al., 2018), the reward is typically set to the negative distance
from the target location LT to the agent’s location LA plus a success bonus, so the feature vector
φ(s, a) can be written as a 2-dimensional vector [‖LT − LA‖2, I(LT = LA)]; in real-time strategy
games (Wu & Tian, 2016; Vinyals et al., 2017; OpenAI et al., 2019), φ is typically related to the
bonus points for destroying each type of units; in robotics manipulation (Levine et al., 2016; Li et al.,
2020; Yu et al., 2019), φ is often about the distance between the robot/object and its target position; in
general multi-agent games (Lowe et al., 2017; Leibo et al., 2017; Baker et al., 2020), φ could contain
each agent’s individual reward as well as the joint reward over each team, which also enables the
representation of different prosociality levels for the agents by varying the weight w.

Fine tuning: There are two benefits: (1) the policies found in the perturbed game may not remain an
equilibrium in the original game, so fine-tuning ensures convergence; (2) in practice, fine-tuning could
further help escape a suboptimal mode via the noise in PG (Ge et al., 2015; Kleinberg et al., 2018).
We remark that a practical issue for fine-tuning is that when the PG algorithm adopts the actor-critic
framework (e.g., PPO), we need an additional critic warm-start phase, which only trains the value
function while keeps the policy unchanged, before the fine-tuning phase starts. This warm-start phase
significantly stabilizes policy learning by ensuring the value function is fully functional for variance
reduction w.r.t. the reward function R in the original game M when estimating policy gradients.

3.1 LEARNING TO ADAPT WITH DIVERSE OPPONENTS

Algorithm 2: Learning to Adapt
Input: game M , policy set Π2, initial πa

1 ;
repeat

draw a policy π′2 from Π2;
evaluate πa

1 and π′2 on M and collect data;
update θa via PG if enough data collected;

until enough iterations;
return πa

1 (θa);

In addition to the final policies π?1 , π?2 , another benefit
from RPG is that the population of N policy profiles
contains diverse strategies (more in Sec. 5). With
a diverse set of strategies, we can build an adaptive
agent by training with a random opponent policy
sampled from the set per episode, so that the agent is
forced to behave differently based on its opponent’s
behavior. For simplicity, we consider learning an
adaptive policy πa1 (θa) for agent 1. The procedure
remains the same for agent 2. Suppose a policy population P = {π(1)

2 , . . . , π
(N)
2 } is obtained during

the RR phase, we first construct a diverse strategy set Π2 ⊆ P that contains all the discovered
behaviors from P . Then we construct a mixed strategy by randomly sampling a policy π′2 from Π2 in
every training episode and run PG to learn πa1 by competing against this constructed mixed strategy.
The procedure is summarized in Algo. 2. Note that setting Π2 = P appears to be a simple and
natural choice. However, in practice, since P typically contains just a few strategic behaviors, it is
unnecessary for Π2 to include every individual policy from P . Instead, it is sufficient to simply ensure
Π2 contains at least one policy from each equilibrium in P (more details in Sec. 5.3). Additionally,
this method does not apply to the one-shot game setting (i.e., horizon is 1) because the adaptive agent
does not have any prior knowledge about its opponent’s identity before the game starts.

Implementation: We train an RNN policy for πa1 (θa). It is critical that the policy input does not
directly reveal the opponent’s identity, so that it is forced to identify the opponent strategy through
what it has observed. On the contrary, when adopting an actor-critic PG framework (Lowe et al.,
2017), it is extremely beneficial to include the identity information in the critic input, which makes
critic learning substantially easier and significantly stabilizes training. We also utilize a multi-head
architecture adapted from the multi-task learning literature (Yu et al., 2019), i.e., use a separate value
head for each training opponent, which empirically results in the best training performance.

4 TESTBEDS FOR RPG: TEMPORAL TRUST DILEMMAS

We introduce three 2-player Markov games as testbeds for RPG. All these games have a diverse
range of NE strategies including both “risky” cooperative NEs with high payoffs but hard to discover
and “safe” non-cooperative NEs with lower payoffs. We call them temporal trust dilemmas. Game
descriptions are in a high level to highlight the game dynamics. More details are in Sec. 5 and App. B.

5



Published as a conference paper at ICLR 2021

Gridworlds: We consider two games adapted from Peysakhovich & Lerer (2018b), Monster-Hunt
(Fig. 3) and Escalation (Fig. 4). Both games have a 5-by-5 grid and symmetric rewards.

Agent1

Apple

Agent2

Monster

+ =

+ =-2

+ =-2

+ =+2

+ =+2

+5  

+5

Figure 3: Monster-Hunt

Monster-Hunt contains a monster and two apples. Apples are static while
the monster keeps moving towards its closest agent. If a single agent
meets the monster, it loses a penalty of 2; if two agents catch the monster
together, they both earn a bonus of 5. Eating an apple always raises a
bonus of 2. Whenever an apple is eaten or the monster meets an agent, the
entity will respawn randomly. The optimal payoff can only be achieved
when both agents precisely catch the monster simultaneously.

Agent1

Agent2

Lit grid

+ =
+1  

+1
+ =-0.9L 

+ =-0.9L
Next  

lit grid

Figure 4: Escalation

Escalation contains a lit grid. When two agents both step on the lit grid,
they both get a bonus of 1 and a neighboring grid will be lit up in the next
timestep. If only one agent steps on the lit grid, it gets a penalty of 0.9L,
where L denotes the consecutive cooperation steps until that timestep,
and the lit grid will respawn randomly. Agents need to stay together on
the lit grid to achieve the maximum payoff despite of the growing penalty.
There are multiple NEs: for each L, that both agents cooperate for L steps
and then leave the lit grid jointly forms an NE.

Agar.io is a popular multiplayer online game. Players control cells in a Petri dish to gain as much
mass as possible by eating smaller cells while avoiding being eaten by larger ones. Larger cells move
slower. Each player starts with one cell but can split a sufficiently large cell into two, allowing them
to control multiple cells (Wikipedia, 2020). We consider a simplified scenario (Fig. 5) with 2 players
(agents) and tiny script cells, which automatically runs away when an agent comes by. There is a
low-risk non-cooperative strategy, i.e., two agents stay away from each other and hunt script cells
independently. Since the script cells move faster, it is challenging for a single agent to hunt them.
By contrast, two agents can cooperate to encircle the script cells to accelerate hunting. However,
cooperation is extremely risky for the agent with less mass: two agents need to stay close to cooperate
but the larger agent may defect by eating the smaller one and gaining an immediate big bonus.

Agent2

Agent1

(split)

Script Cell + = +Size(    )

+ = +Size(    )

+ =
+Size(    )

+ =
+Size(    )
-Penalty(    )

-Penalty(    )

(a) Basic elements

Script Cell

(fast)

Agent1

(slow)

Hunt 

Script Cell

Split

Eat

Size>threshold

Merge

(b) Common behavior: Split, Hunt and Merge
Figure 5: Agar.io: (a) a simplified 2-player setting; (b) basic motions: split, hunt script cells, merge.

5 EXPERIMENT RESULTS

In this section, we present empirical results showing that in all the introduced testbeds, including
the real-world game Agar.io, RPG always discovers diverse strategic behaviors and achieves an
equilibrium with substantially higher rewards than standard multi-agent PG methods. We use
PPO (Schulman et al., 2017) for PG training. Training episodes for RPG are accumulated over all the
perturbed games. Evaluation results are averaged over 100 episodes in gridworlds and 1000 episodes
in Agar.io. We repeat all the experiments with 3 seeds and use X (Y ) to denote mean X with standard
deviation Y in all tables. Since all our discovered (approximate) NEs are symmetric for both players,
we simply take E(π1, π2) = U1(π1, π2) as our evaluation function and only measure the reward of
agent 1 in all experiments for simplicity. More details can be found in appendix.

5.1 GRIDWORLD GAMES

Figure 6: Full process of
RPG in Monster-Hunt

Monster-Hunt: Each agent’s reward is determined by three features
per timestep: (1) whether two agents catch the monster together; (2)
whether the agent steps on an apple; (3) whether the agent meets the
monster alone. Hence, we write φ(s, a1, a2; i) as a 3-dimensional
0/1 vector with one dimension for one feature. The original game
corresponds to w = [5, 2,−2]. We set Cmax = 5 for sampling w.

We compare RPG with a collection of baselines, including standard
PG (PG), PG with shared reward (PG+SR), population-based training
(PBT), which trains the same amount of parallel PG policies as RPG, as
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RespawnStay in one grid and wait for Stag

Monster moves towards the closest agent

(a) Strategy w. w=[5, 0, 0] andw=[5, 0, 2] (by chance)
Two agents step on the same grid. Respawn

RespawnChase Agent1 Move together Move together

Chase Agent

(b) The final strategy after fine-tuning
Figure 7: Emergent cooperative (approximate) NE strategies found by RPG in Monster-Hunt

Hunt Script Cell

Split

Eat

(a) Cooperate

Close to each other Eat

(b) Attack
Figure 9: Emergent strategies in standard Agar.io:
(a) agents cooperate to hunt efficiently; (b) a larger
agent breaks the cooperation by attacking the other.

PBT RR RPG RND

Rew. 3.8(0.3) 3.8(0.2) 4.3(0.2) 2.8(0.3)
#Coop. 1.9(0.2) 2.2(0.1) 2.0(0.3) 1.3(0.2)
#Hunt 0.6(0.1) 0.4(0.0) 0.7(0.0) 0.6(0.1)

Table 2: Results in the standard setting of
Agar.io. PBT: population training of parallel
PG policies; RR: best policy in the RR phase
(w=[1, 1]); RPG: fine-tuned policy; RND: PG
with RND bonus in the original game.

well as popular exploration methods, i.e., count-based exploration (PG+CNT) (Tang et al., 2017) and
MAVEN (Mahajan et al., 2019). We also consider an additional baseline, DIAYN (Eysenbach et al.,
2019), which discovers diverse skills using a trajectory-based diversity reward. For a fair comparison,
we use DIAYN to first pretrain diverse policies (conceptually similar to the RR phase), then evaluate
the rewards for every pair of obtained policies to select the best policy pair (i.e., evaluation phase,
shown with the dashed line in Fig. 6), and finally fine-tune the selected policies until convergence
(i.e., fine-tuning phase). The results of RPG and the 6 baselines are summarized in Fig. 6, where RPG
consistently discovers a strategy with a significantly higher payoff. Note that the strategy with the
optimal payoff may not always directly emerge in the RR phase, and there is neither a particular value
of w constantly being the best candidate: e.g., in the RR phase, w = [5, 0, 2] frequently produces a
sub-optimal cooperative strategy (Fig. 7(a)) with a reward lower than other w values, but it can also
occasionally lead to the optimal strategy (Fig. 7(b)). Whereas, with the fine-tuning phase, the overall
procedure of RPG always produces the optimal solution. We visualize both two emergent cooperative
strategies in Fig. 7: in the sub-optimal one (Fig. 7(a)), two agents simply move to grid (1,1) together,
stay still and wait for the monster, while in the optimal one (Fig. 7(b)), two agents meet each other
first and then actively move towards the monster jointly, which further improves hunting efficiency.

Figure 8: RR in Escalation

Escalation: We can represent φ(s, a1, a2; i) as 2-dimensional vector
containing (1) whether two agents are both in the lit grid and (2) the
total consecutive cooperation steps. The original game corresponds
to w = [1,−0.9]. We set Cmax = 5 and show the total number of
cooperation steps per episode for several selected w values throughout
training in Fig. 8, where RR is able to discover different NE strategies.
Note that w = [1, 0] has already produced the strategy with the optimal
payoff in this game, so the fine-tuning phase is no longer needed.

5.2 2-PLAYER GAMES IN Agar.io

There are two different settings of Agar.io: (1) the standard setting, i.e., an agent gets a penalty of −x
for losing a mass x, and (2) the more challenging aggressive setting, i.e., no penalty for mass loss.
Note in both settings: (1) when an agent eats a mass x, it always gets a bonus of x; (2) if an agent
loses all the mass, it immediately dies while the other agent can still play in the game. The aggressive
setting promotes agent interactions and typically leads to more diverse strategies in practice. Since
both settings strictly define the penalty function for mass loss, we do not randomize this reward term.
Instead, we consider two other factors: (1) the bonus for eating the other agent; (2) the prosocial level
of both agents. We use a 2-dimensional vector w = [w0, w1], where 0 ≤ w0, w1 ≤ 1, to denote a
particular reward function such that (1) when eating a cell of mass x from the other agent, the bonus
is w0 × x, and (2) the final reward is a linear interpolation between R(·; i) and 0.5(R(·; 0) +R(·; 1))
w.r.t. w1, i.e., when w1 = 0, each agent optimizes its individual reward while when w1 = 1, two
agents have a shared reward. The original game in both Agar.io settings corresponds to w = [1, 0].

Standard setting: PG in the original game (w = [1, 0]) leads to a typical trust-dilemma dynamics:
the two agents first learn to hunt and occasionally Cooperate (Fig. 9(a)), i.e., eat a script cell with the
other agent close by; then accidentally one agent Attacks the other agent (Fig. 9(b)), which yields a big
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PBT w=[0.5, 1] w=[0, 1] w=[0, 0] RPG RND

Rew. 3.3(0.2) 4.8(0.6) 5.1(0.4) 6.0(0.5) 8.9(0.3) 3.2(0.2)
#Attack 0.4(0.0) 0.7(0.2) 0.3(0.1) 0.5(0.1) 0.9(0.1) 0.4(0.0)
#Coop. 0.0(0.0) 0.6(0.6) 2.3(0.3) 1.6(0.1) 2.0(0.2) 0.0(0.0)
#Hunt 0.7(0.1) 0.6(0.3) 0.3(0.0) 0.7(0.0) 0.9(0.1) 0.7(0.0)

Table 3: Results in the aggressive setting of Agar.io: PBT: population
training of parallel PG policies; RR: w=[0, 0] is the best candidate
via RR; RPG: fine-tuned policy; RND: PG with RND bonus.

Sacrifice
Split

Figure 10: Sacrifice strategy,
w=[1, 1], aggressive setting.

(smaller size)

Eat

Run away

Agent1

(smaller size)

Hunt Script Cell

Stay

Run away

Split Hunt again

(smaller size) Sacrifice

...

Hunt again

Sacrifice

Figure 11: Perpetual strategy, w=[0.5, 1] (by chance), aggressive setting, i.e., two agents mutually
sacrifice themselves. One agent first splits to sacrifice a part of its mass to the larger agent while the
other agent also does the same thing later to repeat the sacrifice cycle.

immediate bonus and makes the policy aggressive; finally policies converge to the non-cooperative
equilibrium where both agents keep apart and hunt alone. The quantitative results are shown in
Tab. 2. Baselines include population-based training (PBT) and a state-the-art exploration method for
high-dimensional state, Random Network Distillation (RND) (Burda et al., 2019). RND and PBT
occasionally learns cooperative strategies while RR stably discovers a cooperative equilibrium with
w = [1, 1], and the full RPG further improves the rewards. Interestingly, the best strategy obtained in
the RR phase even has a higher Cooperate frequency than the full RPG: fine-tuning transforms the
strong cooperative strategy to a more efficient strategy, which has a better balance between Cooperate
and selfish Hunt and produces a higher average reward.

Aggressive setting: Similarly, we apply RPG in the aggressive setting and show results in Tab. 3.
Neither PBT nor RND was able to find any cooperative strategies in the aggressive game while RPG
stably discovers a cooperative equilibrium with a significantly higher reward. We also observe a
diverse set of complex strategies in addition to normal Cooperate and Attack. Fig. 10 visualizes the
Sacrifice strategy derived with w = [1, 1]: the smaller agent rarely hunts script cells; instead, it waits
in the corner for being eaten by the larger agent to contribute all its mass to its partner. Fig. 11 shows
another surprisingly novel emergent strategy by w = [0.5, 1]: each agent first hunts individually
to gain enough mass; then one agent splits into smaller cells while the other agent carefully eats a
portion of the split agent; later on, when the agent who previously lost mass gains sufficient mass,
the larger agent similarly splits itself to contribute to the other one, which completes the (ideally)
never-ending loop of partial sacrifice. We name this strategy Perpetual for its conceptual similarity
to the perpetual motion machine. Lastly, the best strategy is produced by w = [0, 0] with a balance
between Cooperate and Perpetual: they cooperate to hunt script cells to gain mass efficiently and
quickly perform mutual sacrifice as long as their mass is sufficiently large for split-and-eat. Hence,
although the RPG policy has relatively lower Cooperate frequency than the policy by w = [0, 1], it
yields a significantly higher reward thanks to a much higher Attack (i.e., Sacrifice) frequency.

5.3 LEARNING ADAPTIVE POLICIES

Oppo. M. M-Coop. M-Alone. Apple.
#C-H 16.3(19.2) 20.9(0.8) 14.2(18.0) 2.7(1.0)
#S-H 1.2(0.4) 0.4(0.1) 2.2(1.2) 2.2(1.4)

#Apple 12.4(7.3) 3.3(0.8) 10.9(7.0) 13.6(3.8)

Table 4: Stats. of the adaptive agent in Monster-Hunt
with hold-out test-time opponents. #C(oop.)-H(unt):
both agents catch the monster; #S(ingle)-H(unt): the
adaptive agent meets the monster alone; #Apple: ap-
ple eating. The adaptive policy successfully exploits
different opponents and rarely meets the monster alone.

Monster-Hunt: We select policies trained
by 8 differentw values in the RR phase and
use half of them for training the adaptive
policy and the remaining half as hidden
opponents for evaluation. We also make
sure that both training and evaluation poli-
cies cover the following 4 strategy modes:
(1) M(onster): the agent always moves to-
wards the monster; (2) M(onster)-Alone:
the agent moves towards the monster but
also tries to keeps apart from the other agent; (3) M(onster)-Coop.: the agent seeks to hunt the
monster together with the other agent; (4) Apple: the agent only eats apple. The evaluation results are
shown in Tab. 4, where the adaptive policy successfully exploits all the test-time opponents, including
M(onster)-Alone, which was trained to actively avoids the other agent.
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Agent Adapt. Coop. Comp.
Opponent: Cooperative −→ Competitive
#Attack 0.2(0.0) 0.3(0.0) 0.1(0.1)

Rew. 0.7(0.7) -0.2(0.6) 0.8(0.5)

Opponent: Competitive −→ Cooperative
#Coop. 1.0(0.3) 1.4(0.4) 0.3(0.4)
Rew. 2.5(0.7) 3.6(1.2) 1.1(0.7)

Table 5: Adaptation test in Agar.io. Op-
ponent type is switched half-way per
episode. #Attack, #Coop.: episode
statistics; Rew.: agent reward. Adaptive
agents’ rewards are close to oracles.

Agar.io: We show the trained agent can choose to cooperate
or compete adaptively in the standard setting. We pick 2 co-
operative policies (i.e., Cooperate preferred, w=[1, 0]) and
2 competitive policies (i.e., Attack preferred, w=[1, 1]) and
use half of them for training and the other half for testing.
For a hard challenge at test time, we switch the opponent
within an episode, i.e., we use a cooperative opponent in the
first half and then immediately switch to a competitive one,
and vice versa. So, a desired policy should adapt quickly at
halftime. Tab. 5 compares the second-half behavior of the
adaptive agent with the oracle pure-competitive/cooperative
agents. The rewards of the adaptive agent is close to the
oracle: even with half-way switches, the trained policy is
able to exploit the cooperative opponent while avoid being exploited by the competitive one.

6 RELATED WORK AND DISCUSSIONS

Our core idea is reward perturbation. In game theory, this is aligned with the quantal response
equilibrium (McKelvey & Palfrey, 1995), a smoothed version of NE obtained when payoffs are
perturbed by a Gumbel noise. In RL, reward shaping is popular for learning desired behavior in
various domains (Ng et al., 1999; Babes et al., 2008; Devlin & Kudenko, 2011), which inspires our
idea for finding diverse strategic behavior. By contrast, state-space exploration methods (Pathak et al.,
2017; Burda et al., 2019; Eysenbach et al., 2019; Sharma et al., 2020) only learn low-level primitives
without strategy-level diversity (Baker et al., 2020).

RR trains a set of policies, which is aligned with the population-based training in MARL (Jaderberg
et al., 2017; 2019; Vinyals et al., 2019; Long et al., 2020; Forestier et al., 2017). RR is conceptually
related to domain randomization (Tobin et al., 2017) with the difference that we train separate policies
instead of a single universal one, which suffers from mode collapse (see appendix D.2.3). RPG is also
inspired by the map-elite algorithm (Cully et al., 2015) from evolutionary learning community, which
optimizes multiple objectives simultaneously for sufficiently diverse polices. Our work is also related
to Forestier et al. (2017), which learns a set of policies w.r.t. different fitness functions in the single-
agent setting. However, they only consider a restricted fitness function class, i.e., the distance to each
object in the environment, which can be viewed as a special case of our setting. Besides, RPG helps
train adaptive policies against a set of opponents, which is related to Bayesian games (Dekel et al.,
2004; Hartline et al., 2015). In RL, there are works on learning when to cooperate/compete (Littman,
2001; Peysakhovich & Lerer, 2018a; Kleiman-Weiner et al., 2016; Woodward et al., 2019; McKee
et al., 2020), which is a special case of ours, or learning robust policies (Li et al., 2019; Shen & How,
2019; Hu et al., 2020), which complements our method.

Although we choose decentralized PG in this paper, RR can be combined with any other multi-agent
learning algorithms for games, such as fictitious play (Robinson, 1951; Monderer & Shapley, 1996;
Heinrich & Silver, 2016; Kamra et al., 2019; Han & Hu, 2019), double-oracle (McMahan et al., 2003;
Lanctot et al., 2017; Wang et al., 2019; Balduzzi et al., 2019) and regularized self-play (Foerster et al.,
2018; Perolat et al., 2020; Bai & Jin, 2020). Many of these works have theoretical guarantees to
find an (approximate) NE but there is little work focusing on which NE strategy these algorithms
can converge to when multiple NEs exist, e.g., the stag-hunt game and its variants, for which many
learning dynamics fail to converge to a prevalence of the pure strategy Stag (Kandori et al., 1993;
Ellison, 1993; Fang et al., 2002; Skyrms & Pemantle, 2009; Golman & Page, 2010)..

In this paper, we primarily focus on how reward randomization empirically helps MARL discover
better strategies in practice and therefore only consider stag hunt as a particularly challenging
example where an “optimal” NE with a high payoff for every agent exists. In general cases, we can
select a desired strategy w.r.t. an evaluation function. This is related to the problem of equilibrium
refinement (or equilibrium selection) (Selten, 1965; 1975; Myerson, 1978), which aims to find a subset
of equilibria satisfying desirable properties, e.g., admissibility (Banks & Sobel, 1987), subgame
perfection (Selten, 1965), Pareto efficiency (Bernheim et al., 1987) or robustness against opponent’s
deviation from best response in security-related applications (Fang et al., 2013; An et al., 2011).
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We would suggest to visit https://sites.google.com/view/staghuntrpg for example
videos.

A PROOFS

Proof of Theorem 1. We apply self-play policy gradient to optimize θ1 and θ2. Here we consider a
projected version, i.e., if at some time t, θ1 or θ2 6∈ [0, 1], we project it to [0, 1] to ensure it is a valid
distribution.

We first compute the utility given a pair (θ1, θ2)

U1(θ1, θ2) =aθ1θ2 + cθ1(1− θ2) + b(1− θ1)θ2 + d(1− θ1)(1− θ2)

U2(θ1, θ2) =aθ1θ2 + bθ1(1− θ2) + c(1− θ1)θ2 + d(1− θ1)(1− θ2).

We can compute the policy gradient

∇U1(θ1, θ2) =aθ2 + c(1− θ2)− bθ2 − d(1− θ2) = (a+ d− b− c)θ2 + c− d
∇U2(θ1, θ2) =aθ2 − bθ1 + c(1− θ1)− d(1− θ1) = (a+ d− b− c)θ1 + c− d

Recall in order to find the optimal solution both θ1 and θ2 need to increase. Also note that the initial
θ1 and θ2 determines the final solution. In particular, only if θ1 and θ2 are increasing at the beginning,
they will converge to the desired solution.

To make either θ1 or θ2 increase, we need to have

(a+ d− b− c)θ1 + c− d > 0 or (a+ d− b− c)θ2 + c− d > 0 (1)

Consider the scenario a− b = ε(d− c). In order to make Inequality equation 1 to hold, we need at
least either θ1, θ2 ≥ 1

1+ε .

If we initialize θ1 ∼ [0, 1] and θ2 ∼ [0, 1], the probability of either θ1, θ2 ≥ 1
1+ε is 1−

(
1

1+ε

)2
=

2ε+ε2

1+2ε+ε2 = O (ε).

Proof of Theorem 2. Using a similar observation as in Theorem 1, we know a necessary condition to
make PG converge to a sub-optimal NE is

(a+ d− b− c)θ1 + c− d < 0 or (a+ d− b− c)θ2 + c− d < 0.

Based on our generating scheme on a, b, c, d and the initialization scheme on θ1, θ2, we can verify
that Therefore, via a union bound, we know

P ((a+ d− b− c)θ1 + c− d < 0 or (a+ d− b− c)θ2 + c− d < 0) ≤ 0.6. (2)

Since each round is independent, the probability that PG fails for all N times is upper bounded by
0.6N . Therefore, the success probability is lower bounded by 1− 0.6N = 1− exp (−Ω (N)).

B ENVIRONMENT DETAILS

B.1 Iterative Stag-Hunt

In Iterative Stag-Hunt, two agents play 10 rounds, that is, both PPO’s trajectory length and episode
length are 10. Action of each agent is a 1-dimensional vector, ai = {ti, i ∈ {0, 1}}, where ti = 0
denotes taking Stag action and ti = 1 denotes taking Hare action. Observation of each agent is
actions taking by itself and its opponent in the last round, i.e., ori = {ar−1i , ar−11−i ; i ∈ {0, 1}}, where
r denotes the playing round. Note that neither agent has taken action at the first round, so the
observation oi = {−1,−1}.
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Figure 12: Results on Monster-Hunt with 3 agents (3 seeds).

B.2 Monster-Hunt

In Monster-Hunt, two agents can move one step in any of the four cardinal directions (Up, Down,
Left, Right) at each timestep. Let ai = {ti, i ∈ {0, 1}} denote action of agent i, where ti is a
discrete 4-dimensional one-hot vector. The position of each agent can not exceed the border of 5-by-5
grid, where action execution is invalid. One Monster and two apples respawn in the different grids
at the initialization. If an agent eats (move over in the grid world) an apple, it can gain 2 points.
Sometimes, two agents may try to eat the same apple, the points will be randomly assigned to only
one agent. Catching the monster alone causes an agent lose 2 points, but if two agents catch the stag
simultaneously, each agent can gain 5 points. At each time step, the monster and apples will respawn
randomly elsewhere in the grid world if they are wiped. In addition, the monster chases the agent
closest to it at each timestep. The monster may move over the apple during the chase, in this case,
the agent will gain the sum of points if it catches the monster and the apple exactly. Each agent’s
observation oi is a 10-dimensional vector and formed by concatenating its own position pi, the other
agent’s position p1−i, monster’s positionpmonster and sorted apples’ position papple0, papple1, i.e.,
oi = {pi, p1−i, pmonster, papple0, papple1; i ∈ {0, 1}}, where p = (u, v) denotes the 2-dimensional
coordinates in the gridworld.

B.3 Monster-Hunt WITH MORE THAN 2 AGENTS

Here we consider extending RPG to the general setting of N agents. In most of the multi-agent
games, the reward function are fully symmetric for the same type of agents. Hence, as long as we
can formulate the reward function in a linear form over a feature vector and a shared weight, i.e.,
R(s, a1, . . . , aN ; i) = φ(s, a1, . . . , aN ; i)Tw, we can directly apply RPG without any modification
by setting R = {Rw : Rw(s, a1, . . . , aN ; i) = φ(s, a1, . . . , aN ; i)Tw}. Note that typically the
dimension of the feature vector φ(·) remains fixed w.r.t. different number of agents (N ). For example,
in the Agar.io game, no matter how many players are there in the game, the rule of how to get reward
bonus and penalties remains the same.

Here, we experiment RPG in Monster-Hunt with 3 agents. The results are shown in Fig. 12. We
consider baselines including the standard PG (PG) and population-based training (PBT). RPG reliably
discovers a strong cooperation strategy with a substantially higher reward than the baselines.

B.4 Escalation

In Escalation, two agents appear randomly and one grid lights up at the initialization. If two agents
step on the lit grid simultaneously, each agent can gain 1 point, and the lit grid will go out with an
adjacent grid lighting up. Both agents can gain 1 point again if they step on the next lit grid together.
But if one agent steps off the path, the other agent will lose 0.9L points, where L is the current length
of stepping together, and the game is over. Another option is that two agents choose to step off the
path simultaneously, neither agent will be punished, and the game continues. As the length L of
stepping together increases, the cost of betrayal increases linearly. ai = {ti, i ∈ {0, 1}} denotes
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action of agent i, where ti is a discrete 4-dimensional one-hot vector. The observation ai of agent
i is composed of its own position pi, the other agent’s positionp1−i and the lit grid’s position plit,
i.e., oi = {pi, p1−i, plit; i ∈ {0, 1}}, where p = (u, v) denotes the 2-dimensional coordinates in the
gridworld. Moreover, we utilize GRU to encode the length L implicitly, instead of observing that
explicitly.

B.5 Agar.io

In the original online game Agar.io, multiple players are limited in a circle petri dish. Each player
controls one or more balls using only a cursor and 2 keyboard keys "space" and "w". all balls
belonging to the player will move forward to where the cursor pointing at. Balls larger than a
threshold will split to 2 smaller balls and rush ahead when the player pressing the key "space". Balls
larger than another threshold will emit tiny motionless food-like balls when the player pressing "w".
Agar.io has many play modes like "Free-For-All" mode (All players fight for their own and can eat
each other) and "Team" mode (Players are separated to two groups. They should cooperate with other
players in the same group and eat other players belonging to another group).

We simplified settings of the original game Agar.io: Now agents don’t need to emit tiny mo-
tionless balls and all fight with each other (FFA mode). The action space of the game is
target × {split, no_split}. target ∈ [0, 1]2 means the target position that all balls belonging
to the agent move to. binary action split or no_split means whether the player chooses to split,
which will cause all balls larger than a threshold split to 2 smaller ones and rush ahead for a short
while. These split balls will re-merge after some time, then the agent can split again. When one
agent’s ball meets another agent’s ball and the former one is at least 1.2 times larger than the later, the
later will be eaten and the former will get all its mass. The reward is defined as the increment of balls’
mass. So every agent’s goal is getting larger by eating others while avoid being eaten. But larger
ball moves slower. So it’s really hard to catch smaller balls only by chasing after it. Split will help,
but it needs high accuracy to rush to the proper direction. In our experiments, there were 7 agents
interacting with each other. 2 agents were learned by our algorithm and would quit the game if all
balls were eaten. 5 agents were controlled by a script and would reborn at a random place if all balls
were eaten. Learn-based agents were initialized larger than script-based agents so it was basically
one-way catching. In this setting, cooperation was the most efficient behavior for learn-based agents
to gain positive reward, where they coordinated to surround script-based agents and caught them.

Observation space: We denote partial observation of agent i as oi, which includes global infor-
mation of the agent (denoted as oi,global) and descriptions of all balls around the agent (includ-
ing balls owned by the agent, denoted as oi,balls. and oi,balls = {oi,ball,1, oi,ball,2, ..., oi,ball,m},
where oi,ball,j denotes the j-th ball around the agent and there are m observed balls in all).
oi,global = {li,obs, wi,obs, pi,center, vi, si,alive, ni,own, ni,script, ni,other, ai,last, ri,max, ri,min,mi}
where li,obs, wi,obs (they are both 1D filled with a real number, from here the form like (1D, real)
will be used as the abbreviation) are the length and width of the agent’s observation scope, pi,center
(2D, real) is its center position, vi (2D, real) is the speed of its center, si,alive(1D, binary) is whether
the other learn-based agent is killed, ni,own, ni,script, ni,other(1D, real) are numbers of each type
of balls nearby (3 types: belonging to me, or belonging to a script agent, or belonging to another
learn-based agent), ai,last(3D, real) is the agent’s last action, ri,max, ri,min(1D, real) are maxi-
mal and minimal radius of all balls belonging to the agent. for any j = 1, 2, ...,m, oi,ball,j =
{pi,j,relative, pi,j,absolute, vi,j , vi,j,rush, ri,j , log(ri,j), di,j , ei,j,max, ei,j,min, si,j,rem, ti,j}, where
pi,j,relative, pi,j,absolute(2D, real) are the ball’s relative and absolute position, vi,j is its speed,
vi,j,rush is the ball’s additional rushing speed(when a ball splits to 2 smaller balls, these 2 balls will
get additional speed and it’s called vi,j,rush, otherwise vi,j,rush = 0), ri,j(1D, real) is its radius, di,j
is the distance between the ball and the center of the agent, ei,j,max, ei,j,min(1D, binary) are whether
the ball can be eaten by the maximal or minimal balls of the observing agent, si,j,rem(1D, binary) is
whether the ball is able to remerge at present. ti,j(3D, one hot) is the type of the ball.

The script-base agent can automatically chase after and split towards other smaller agents. When
facing extreme danger (we define "extreme danger" as larger learn-based agents being very close
to it), it will use a 3-step deep-first-search to plan a best way for escape. More details of the script
can be seen in our code. We played against the script-base agent using human intelligence for many
times and we could never hunt it when having only one ball and rarely catch it by split.
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C TRAINING DETAILS

C.1 GRIDWORLD GAMES

In Monster-Hunt and Escalation, agents’ networks are organized by actor-critic (policy-value)
architecture. We consider N = 2 agents with a policy profile π = {π0, π1} parameterized by
θ = {θ0, θ1}. The policy network πi takes observation oi as input, two hidden layers with 64 units
are followed after that, and then outputs action ai. While the value network takes as input observations
of two agents, o = {o0, o1} and outputs the V-value of agent i, similarly two hidden layers with 64
units are added before the output.

In Escalation, we also place an additional GRU module before the output in policy network and
value network respectively, to infer opponent’s intentions from historical information. Note that
64-dimensional hidden state of GRU h will change if the policy network is updated. In order to both
keep forward information and use backward information to compute generalized advantage estimate
(GAE) with enough trajectories, we split buffer data into small chunks, e.g., 10 consecutive timesteps
as a small data chunk. The initial hidden state hinit, which is the first hidden state h0, is kept for
each data chunk, but do another forward pass to re-compute {h1, ..., hM−1}, where M represents the
length of one data chunk, and keep buffer-reuse low, e.g., 4 in practice.

Agents in Monster-Hunt and Escalation are trained by PPO with independent parameters. Adam
optimizer is used to update network parameters and each experiment is executed for 3 times with
random seeds. More optimization hyper-parameter settings are in Tab.6. In addition, Monster-Hunt
also utilizes GRU modules to infer opponent’s identity during adaption training and the parallel
threads are set to 64.

Count-based exploration: We just add the count-based exploration intrinsic reward rint to the
environment reward during training. when the agent’s observation is o, rint = α/no where α is a
hyperparameter adjusted properly (0.3 in Monster-Hunt and 1 in Escalation) and no is the number of
times the agent have the observation o.

DIAYN: In Monster-Hunt, we use DIAYN to train 10 diverse policy in the first 140k episodes
(DIAYN’s discriminator has 3 FC layers with 256, 128, 10 units respectively) and choose the policy
which has the best performance in Monster-Hunt’s reward settings to fine-tune in the next 280k
episodes. Note that DIAYN doesn’t have a warm-start phase before fine-tuning in its original paper so
we didn’t do so as well. Note that in the first unsupervised learning phase, DIAYN does not optimize
for any specific reward function. Hence, we did not plot the reward curve for DIAYN in Fig.7 for this
phase. Instead, we simply put a dashed line showing the reward of the best selected pair of policies
from DIAYN pretraining.

MAVEN: We use the open-sourced implementation of MAVEN from https://github.com/
AnujMahajanOxf/MAVEN.

Population-based training: In each PBT trial, we straightforward train the same amount of parallel
PG policies as RPG with different random seeds in each problem respectively and choose the one
with best performance as the final policy. Note that the final training curve is averaged over 3 PBT
trials.

C.2 Agar.io

In Agar.io, we used PPO as our algorithm and agents’ networks were also organized by actor-critic
(policy-value) architecture with a GRU unit (i.e., PPO-GRU). We consider N = 2 agents with a
policy profile π = {π0, π1} sharing parameter θ. The policy network πi takes observation oi as input.
At the beginning, like (Baker et al., 2019), oi,balls is separated to 3 groups according to balls’ types:
oi,ownballs, oi,scriptballs and oi,otherballs. 3 different multi-head attention models with 4 heads and
64 units for transformation of keys, inquiries and values are used to embed information of 3 types of
balls respectively, taking corresponding part of oi,balls as values and inquiries and oi,global as keys.
Then their outputs are concatenated and transformed by an FC layer with 128 units before being
sent to a GRU block with 128 units. After that, the hidden state is copied to 2 heads for policy’s and
value’s output. The policy head starts with 2 FC layers both with 128 units and ends with 2 heads to
generate discrete(split or no_split) and continuous(target) actions. The value head has 3 FC layers
with 128, 128, 1 unit respectively and outputs a real number.
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Hyper-parameters Value

Initial learning rate 1e-3
Minibatch size 320 chunks of 10 timesteps

Adam stepsize (ε) 1e-5
Discount rate (γ) 0.99

GAE parameter (λ) 0.95
Value loss coefficient 1
Entropy coefficient 0.01
Gradient clipping 0.5

PPO clipping parameter 0.2
Parallel threads 64(Escalation),256(Monster-Hunt)

PPO epochs 4
reward scale parameter 0.1

episode length 50

Table 6: PPO hyper-parameters used in Gridworld games, learning rate is linearly annealed during
training.

Hyper-parameters Value

Learning rate 2.5e-4
Minibatch size 2 * 512 chunks of 32 timesteps

Adam stepsize (ε) 1e-5
Discount rate (γ) 0.995

GAE parameter (λ) 0.95
Value loss coefficient 0.5
action loss coefficient 1

Entropy coefficient 0.01(discrete), 0.0025(continuous)
Gradient clipping 20

PPO clipping parameter 0.1
Parallel threads 128

PPO epochs 4
episode length 128

Table 7: PPO hyper-parameters used in Agar.io

PPO-GRU was trained with 128 parallel environment threads. Agar.io’s episode length was uniform-
randomly sampled between 300 and 400 both when training and evaluating. Buffer data were split
to small chunks with length = 32 in order to diversify training data and stabilize training process.
and the buffer was reused for 4 times to increase data efficiency. Hidden states of each chunk
except at the beginning were re-computed after each reuse to sustain PPO’s "on-policy" property
as much as possible. Action was repeated for 5 times in the environment whenever the policy
was executed and only the observation after the last action repeat was sent to the policy. Each
training process started with a curriculum-learning in the first 1.5e7 steps: Speed of script agents
was multiplied with x, where x is uniformly random-sampled between max{0, (n− 1e7)/5e6} and
min{1,max{0, (n−5e6)/5e6}} at the beginning of each episode, where n was the steps of training.
After the curriculum learning, Speed was fixed to the standard. Each experiment was executed for 3
times with different random seeds. Adam optimizer was used to update network parameters. More
optimization hyper-parameter settings are in Tab.7.

D ADDITIONAL EXPERIMENT RESULTS

D.1 Monster-Hunt

In Monster-Hunt, we set Cmax = 5 for sampling w. Fig. 13 illustrates the policies discovered by
several selected w values, where different strategic modalities can be clearly observed: e.g., with
w = [0, 5, 0], agents always avoid monsters and only eat apples. In Fig. 14, it’s worth noting that
w = [5, 0, 2] could yield the best policy profile (i.e., two agents move together to hunt the monster.)
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Figure 13: Statistics of different policy profiles in Monster-Hunt.#Coop.-Hunt: frequency of both
agents catching the monster; #Single-Hunt: frequency of agents meeting the monster alone; #Apple:
apple frequency.
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Figure 14: Results in original Monster-Hunt. Original: PG in the original game; Share reward: PG
with shared reward in the original game; Finetune: fine-tuning the best policy obtained in the RR
phase and yielding the highest reward in the original game.

and doesn’t even require further fine-tuning with some seeds. But the performance of w = [5, 0, 2] is
significantly unstable and it may converge to another NE (i.e., two agents move to a corner and wait
for the monster.) with other seeds. So w = [5, 0, 5], which yields stable strong cooperation strategies
with different seeds, will be chosen in RR phase when w = [5, 0, 2] performs poorly. We demonstrate
the obtained rewards from different policies in Fig. 14, where the policies learned by RPG produces
the highest rewards.

D.2 Agar.io

D.2.1 STANDARD SETTING

We sampled 4 differentw and they varied in different degrees of cooperation. We also did experiments
using only baseline PG or PG with intrinsic reward generated by Random Network distillation (RND)
to compare with RPG. RR lasted for 40M steps, but only the best reward parameter in RR (w = [1, 1])
was warmed up for 3M steps and fine-tuned for 17M steps later. PG and RND were also trained for
60M steps in order to compare with RPGfairly. In Fig. 15, we can see that PG and RND produced
very low rewards because they all converged to non-cooperative policies. w = [1, 1] produced highest
rewards after RR, and rewards boosted higher after fine-tuning.
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(a) #Split (b) #Hunt

(c) #Attack (d) #Cooperate

(e) Reward

Figure 15: statistics of standard setting of Agar.io. (a) to (d) illustrate frequencies of Split, Hunt,
Attack and Cooperate during training under different reward parameters and algorithms. Split means
catching a script agent ball by splitting, Hunt means catching a script agent ball without splitting,
Attack means catching a learn-based agent ball, Cooperate means catching a script agent ball while
the other learn-based agent is close by.(the same below) (e) illustrates rewards of different policies.

D.2.2 AGGRESSIVE SETTING

We sampled 5 different w and their behavior were much more various. the other training settings were
the same as standard setting. in Fig. 16, we should notice that simply sharing reward (w = [1, 1])
didn’t get very high reward because attacking each other also benefits each other, so 2 agents just
learned to sacrifice, Again, Fig. 16 illustrates that rewards of RPG was far ahead the other policies
while both PG and PG+RND failed to learn cooperative strategies.

We also listed all results of Standard and Aggressive setting in Tab. 8 for clearer comparison.

D.2.3 UNIVERSAL REWARD-CONDITIONED POLICY

We also tried to train a universal policy conditioned on w by randomly sampling different w at the
beginning of each episode during training rather than fixing different w and training the policy later
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(a) #Split (b) #Hunt

(c) #Attack (d) #Cooperate

(e) Reward

Figure 16: Statistics of aggressive setting of Agar.io. (a) to (d) illustrate frequencies of Split, Hunt,
Attack and Cooperate during training under different reward parameters and algorithms.(e) illustrates
rewards of different policies.

on. But as Fig. 17 illustrates, the learning process was very unstable and model performed almost
the same under different w due to the intrinsic disadvantage of an on-policy algorithm dealing with
multi-tasks: the learning algorithm may pay more effort on w where higher rewards are easier to get
but ignore the performance on other w, which made it very hard to get diverse behaviors.

D.3 LEARN ADAPTIVE POLICY

In this section, we add the opponents’ identity ψ in the input of the value network to stable the
training process and boost the performance of the adaptive agent. ψ is a C-dimensional one-hot
vector, where C denotes the number of opponents.

D.3.1 Iterative Stag-Hunt

In Iterative Stag-Hunt, we randomize the payoff matrix, which is a 4-dimensional vector, and set
Cmax = 4 for sampling w. The parallel threads are 512 and the episode length is 10. Other training
hyper-parameter settings are the same as Tab.6. Fig 18 describes different w = [a, b, c, d] (i.e.,

22



Published as a conference paper at ICLR 2021

(a) #Split (b) #Hunt

(c) #Attack (d) #Cooperate

Figure 17: Statistics of Universal policy of Agar.io. (a) to (d) illustrate the frequency of Split, Hunt,
Attack and Cooperate when fixing different w while evaluating.

Settings Policy Rewards #Split #Hunt #Attack #Cooperate

Standard

w=[1,1] 3.843(0.23) 0.859(0.083) 0.411(0.034) 0.526(0.064) 2.203(0.136)

RPG 4.34(0.171) 0.971(0.13) 0.659(0.048) 0.548(0.038) 2.028(0.297)

w=[0.5,1] 3.827(0.489) 0.807(0.192) 0.365(0.106) 0.15(0.064) 2.342(0.286)

w=[1,0.5] 3.174(0.653) 0.718(0.148) 0.432(0.026) 0.458(0.031) 1.716(0.418)

Original 1.08(0.836) 0.3(0.19) 0.361(0.134) 0.291(0.098) 0.483(0.442)

RND 2.789(0.346) 0.499(0.061) 0.623(0.128) 0.242(0.037) 1.349(0.164)

PBT 3.822(0.347) 0.744(0.129) 0.585(0.146) 0.297(0.055) 1.935(0.167)

Aggressive

w=[0,0] 5.966(0.539) 1.195(0.155) 0.699(0.008) 0.517(0.066) 1.603(0.127)

RPG 8.907(0.292) 1.655(0.138) 0.862(0.053) 0.903(0.081) 2.039(0.209)

w=[0,1] 5.066(0.375) 0.785(0.041) 0.344(0.049) 0.346(0.058) 2.327(0.311)

w=[1,1] 4.622(0.277) 0.836(0.304) 0.934(0.108) 0.552(0.019) 0.028(0.023)

w=[0.5,1] 4.79(0.588) 0.678(0.31) 0.617(0.28) 0.67(0.194) 0.55(0.643)

Original 3.551(0.121) 0.717(0.032) 0.812(0.078) 0.412(0.018) 0.027(0.026)

RND 3.189(0.154) 0.626(0.065) 0.705(0.008) 0.382(0.029) 0.035(0.027)

PBT 3.348(0.222) 0.697(0.133) 0.732(0.096) 0.396(0.014) 0.007(0.005)

Table 8: Frequencies of 4 types of events and rewards of different policies of Agar.io after completely
training.
[4, 0, 0, 0], [0, 0, 0, 4], [0, 4, 4, 0], [4, 1, 4, 0]) yields different policy profiles. e.g., with w = [0, 0, 0, 4],
both agents tend to eat the hare. The original game corresponds to w = [4, 3,−50, 1]. Tab. 9 reveals
w = [4, 0, 0, 0] yields the highest reward and reaches the optimal NE without further fine-tuning.

Original w = [4, 0, 0, 0] w = [0, 0, 0, 4] w = [0, 4, 4, 0] w = [4, 1, 4, 0]

#Rewards 20.00(0.00) 74.76(2.88) 20.00(0.00) -470.0(0.00) -453.45(0.25)

Table 9: Evaluation of different policy profiles obtained via RR in original Iterative Stag-Hunt. Note
that w = [4, 0, 0, 0] has the best performance among the policy profiles, and is the optimal NE with
no further fine-tuning.
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(a) #Stag-Stag (b) #Stag-Hare

(c) #Hare-Stag (d) #Hare-Hare

Figure 18: Find different policy profiles via Reward Randomization in Iterative Stag-Hunt. #Stag-
Stag: the frequency of two agents both hunt the stag. #Stag-Hare: the frequency of agent1 hunts the
stag while agent2 eats the hare. #Hare-Stag: the frequency of agent1 eat the hare while agent2 hunts
the stag. #Hare-Hare: the frequency of two agents both eat the hare. Frequency: times of certain
behavior performed in one episode.

Oppo. Type Stag Hare TFT Random

#Stag 9.31(0.77) 3.6(4.33) 7.31(3.82) 5.35(3.48)

#Hare 0.69(0.77) 6.4(4.33) 2.69(3.81) 4.65(3.48)

Table 10: Statistics of the adaptive policy in Iterative Stag-Hunt with 4 hand-designed opponents with
different behavior preferences. #Stag: the adaptive agent hunts the stag; #Hare: the adaptive agent
eats the hare; The adaptive policy successfully exploits different opponents, including cooperating
with TFT opponent, which is totally different from trained opponents.

Utilizing 4 different strategies obtained in the RR phase as opponents, we could train an adaptive
policy which can make proper decisions according to opponent’s identity. Fig. 19 shows the adaption
training curve, we can see that the policy yields adaptive actions stably after 5e4 episodes. At the
evaluation stage, we introduce 4 hand-designed opponents to test the performance of the adaptive
policy, including Stag opponent (i.e., always hunt the stag), Hare opponent (i.e., always eat the hare),
Tit-for-Tat (TFT) opponent (i.e., always hunt the stag at the first step, and then take the action executed
by the other agent in the last step), and Random opponent (i.e., randomly choose to hunt the stag
or eat the hare at each step). Tab. 10 illustrates that the adaptive policy exploits all hand-designed
strategies, including Tit-for-Tat opponent, which significantly differ from the trained opponents.

D.3.2 Monster-Hunt

We use the policy population Π2 trained by 4 w values (i.e., w = [5, 1,−5], w = [4, 2,−2],w =
[0, 5, 0],w = [5, 0, 5]) in the RR phase as opponents for training the adaptive policy. In addition, we
sample other 4 w values (i.e., w = [5, 0, 0], w = [−5, 5,−5],w = [−5, 0, 5],w = [5,−5, 5]) from
Cmax = 5 to train new opponents for evaluation. Fig. 20 shows the adaption training curve of the
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(a) #Stag-Stag (b) #Stag-Hare

(c) #Hare-Stag (d) #Hare-Hare

Figure 19: Adaption training curve in Iterative Stag-Hunt. #Stag-Stag: frequency of both agents
hunting the stag. #Stag-Hare: frequency of agent1 hunting the stag while agent2 eating the hare.
#Hare-Stag: frequency of agent1 eating the hare while agent2 hunting the stag. #Hare-Hare: frequency
of both agents eating the hare. Frequency: times of certain behavior performed in one episode.

monster-hunt game, where the adaptive policy could take actions stably according to the opponent’s
identity.

(a) #Coop.-Hunt (b) #Single-Hunt (c) #Apple

Figure 20: Adaption training statistics of Monster-Hunt. #Coop.-Hunt: frequency of both agents
catching the monster; #Single-Hunt: the adaptive agent meets the monster alone; #Apple: apple
frequency.

D.3.3 Agar.io

In Agar.io, we used 2 types of policies from RR: w = [1, 0] (i.e. cooperative) and w = [0, 1] (i.e.
competitive) as opponents, and trained a adaptive policy facing each opponent with probability=50%
in standard setting while only its value head could know the opponent’s type directly. Then we
supposed the policy could cooperate or compete properly with corresponding opponent. As Fig. 21
illustrates, the adaptive policy learns to cooperate with cooperative partners while avoid being
exploited by competitive partners and exploit both partners.
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More details about training and evaluating process: Oracle pure-cooperative policies are learned
against a competitive policy for 4e7 steps. So do oracle pure-competitive policies. And the adaptive
policy is trained for 6e7 steps. the length of each episode is 350 steps (the half is 175 steps). When
evaluating, The policy against the opponent was the adaptive policy in first 175 steps whatever we are
testing adaptive or oracle policies. When we tested adaptive policies, the policy against the opponent
would keep going for another 175 steps while the opponent would changed to another type and
its hidden state would be emptied to zero. When we tested oracle policies, the policy against the
opponent would turn to corresponding oracle policies and the opponent would also changed its type
while their hidden states were both emptied.

(a) #Cooperate (b) #Attack

Figure 21: Statistics of adaptation experiments of Agar.io. (a),(b) illustrate frequencies of Cooperate
and Attack when the adaptive policy was facing different partners. In (a), we can see that the agent
learned to cooperate when the partner was cooperative; In (b), the descend of the "v.s. competitive
partner" line at the beginning indicates that the adaptive policy was learning to avoid being exploit;
The rising of both lines in the end indicates that the adaptive policy was also learning to exploit its
partner.
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