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Abstract

Electroencephalography (EEG) is crucial for recording brain activity, with applica-
tions in medicine, neuroscience, and brain-computer interfaces (BCI). However,
challenges such as low signal-to-noise ratio (SNR), high inter-subject variabil-
ity, and channel mismatch complicate the extraction of robust, universal EEG
representations. We propose EEGPT, a novel 10-million-parameter pretrained
transformer model designed for universal EEG feature extraction. In EEGPT, a
mask-based dual self-supervised learning method for efficient feature extraction
is designed. Compared to other mask-based self-supervised learning methods,
EEGPT introduces spatio-temporal representation alignment. This involves con-
structing a self-supervised task based on EEG representations that possess high
SNR and rich semantic information, rather than on raw signals. Consequently,
this approach mitigates the issue of poor feature quality typically extracted from
low SNR signals. Additionally, EEGPT’s hierarchical structure processes spatial
and temporal information separately, reducing computational complexity while
increasing flexibility and adaptability for BCI applications. By training on a
large mixed multi-task EEG dataset, we fully exploit EEGPT’s capabilities. The
experiment validates the efficacy and scalability of EEGPT, achieving state-of-
the-art performance on a range of downstream tasks with linear-probing. Our
research advances EEG representation learning, offering innovative solutions for
bio-signal processing and AI applications. The code for this paper is available at:
https://github.com/BINE022/EEGPT.

1 Introduction

Electroencephalography (EEG) dynamically reflects the brain’s functional state by recording electrical
signals from the cerebral cortex [1]. EEG is essential for studying brain activity and is pivotal in
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brain-computer interface (BCI) applications due to its non-invasive and portable nature [2]. Despite
its potential, EEG-based methods face practical challenges due to low signal-to-noise ratio (SNR)
[3], high inter-subject variability, and significant task-dependent variations in EEG signals [4].
Self-supervised learning, as described by Yann LeCun in his AAAI 2020 keynote [5], has shown
advantages in natural language processing (NLP) [6], computer vision (CV) [7, 8], and speech analysis
[9]. More and more state-of-the-art (SOTA) models are pretrained by self-supervised learning on
large datasets and fine-tuned for specific applications, effectively reducing the need for extensive
labeled data. Masked autoencoders, a type of self-supervised learning method, have been successful
in NLP [6] and CV [8] by recovering masked patches based on context.

Recent advances in EEG analysis using self-supervised learning techniques have shown promising
results. In Falck et al. [10], a framework for learning EEG representations through contrastive learning
was proposed. This framework extends the SimCLR framework to time series data, training a channel
feature extractor. The model achieved an accuracy of 85.12% on the Sleep-EDF dataset [11] but was
only trained on EEG data collected during 20-second tasks, making it unsuitable for shorter tasks
such as motor imagery. BENDR [12] applied self-supervised learning based on masked autoencoders
and contrastive learning to EEG data. This approach addresses the challenges of multi-task and
multi-paradigm EEG data characterization, enhancing the model’s universality. BENDR uses a
convolutional encoder to extract features from local time windows, masks some features, and then
a transformer decoder predicts the information in the masked parts. EEG2VEC [13] introduced a
self-supervised model that learns EEG representations based on contrastive loss and reconstruction
loss. The pretrained model is used as a feature extractor for downstream tasks. Both EEG2VEC and
BENDR utilize convolutional neural network and transformer networks to learn local and global
features. EEG2VEC was validated in EEG match-mismatch and EEG regression tasks of the auditory
EEG challenge [14]. The Biosignal Transformer (BIOT) [15] model addresses the challenges of
cross-data learning with mismatched channels, variable lengths, and missing values in biosignals
such as EEG, ECG, and human activity sensory signals. BIOT tokenizes each channel separately into
fixed-length segments containing local signal features and then re-arranges the segments to form a
long "sentence". In the CHB-MIT seizure detection task [16], the pretrained BIOT models achieved
a 4% improvement. The Large Brain Model (LaBraM) [17] addresses EEG-based deep learning
model limitations by enabling cross-dataset learning. It segments EEG signals into channel patches
and uses vector-quantized neural spectrum prediction for training a neural tokenizer. This tokenizer
encodes raw EEG patches into neural codes, which pretrain transformers to predict the original neural
codes for masked patches. LaBraM outperformed SOTA methods in abnormal detection, event type
classification [18], emotion recognition [19], and gait prediction [20].

Universal models have clearly made progress in EEG data analysis. However, the extremely low
SNR of EEG signals and the complexity of brain activities during tasks make it challenging to
learn abstract features using masked autoencoders, which are commonly used in NLP and CV [12].
Additionally, the inconsistent sampling rates of different EEG acquisition devices and variations in
electrode channel locations [15] hinder the convolutional encoder’s ability to decouple the correlation
between electrode channels and EEG signals, resulting in robustness and scalability issues.

To address these issues, we propose a dual self-supervised EEG universal representation method
based on the spatio-temporal consistency of EEG signals [21], introducing the EEG Pretrained Trans-
former (EEGPT) for efficient feature extraction. Our method includes spatio-temporal representation
alignment and mask-based reconstruction, enhancing representation quality and model robustness.
Our method adopts a BERT-style masked recovery task [22] (not autoregressive task) objectives for
pretraining. Beyond the original waveform recovery, we align the predicted EEG signal features of
the masked parts with full EEG signal features. Additionally, a local spatio-temporal embedding
method improves compatibility across different EEG acquisition devices.

EEGPT, with over 10 million parameters, is pretrained on a mixed multi-task EEG dataset, including
data from PhysioMI [23], HGD [24], and M3CV [25]. This pretraining enables EEGPT to extract
universal representations for various tasks. For downstream tasks, we employ a linear-probing method,
which achieves SOTA performance while also reducing computational resource consumption and
preventing overfitting. Our experiments demonstrate EEGPT’s superior performance in motor imagery
classification [26], event-related potential (ERP) detection [27], and sleep stage detection [28],
showcasing its capability to extract high-level abstract features across spatio-temporal dimensions.
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Contributions of this paper:

• Proposal of EEGPT, a 10-million-parameter model for EEG universal feature extraction,
leveraging a mixed dataset to enhance performances across tasks and subjects.

• Development of a dual self-supervised method for EEG signals, combining spatio-temporal
representation alignment and mask-based reconstruction, improving feature quality and
convergence.

• Design of a hierarchical structure for decoupled processing of spatial and temporal in-
formation, reducing computational complexity and enhancing model flexibility for BCI
applications.

• Implementation of a local spatio-temporal embedding method, increasing robustness and
compatibility across different EEG acquisition devices.

• Conduct of comprehensive experiments on downstream datasets, demonstrating EEGPT
significantly outperforms existing models across multiple EEG tasks and that larger models
exhibit improved performance.

2 Method

Background: According to Kong and Zhang [29], a masked autoencoder learns features through
a form of denoising autoencoder: input signals occluded with random patch masks are fed into the
encoder, and the decoder predicts the original embeddings of the masked patches:

min
θ,ϕ

E
x∼D

H (dϕ(z), x⊙ (1−M)) , z = fθ(x⊙M) (1)

where "⊙" denotes element-wise product; M is the patch mask; fθ(·) and dϕ(·) are the encoder
and decoder, respectively; z is the learned representation; and H(·, ·) is the similarity measurement.
By minimizing the loss function, the model learns the optimal representation z of the input signal.
However, in practice, there is no explicit representation z (no split of encoder and decoder) in the
BERT-style model [22], and the model must be fine-tuned to locate effective representations. In
contrast, we add a spatio-temporal representation alignment branch to explicitly represent z, which
changes Equation 1 to Equation 2 (dual self-supervised method):

min
θ,ϕ

E
x∼D

H (dϕ(z), x⊙ (1−M)) +H(z, fθ(x)), z = fθ(x⊙M) (2)

This method encourages the encoded representations to take on a larger extent of semantics, similar
to the minimal sufficient representation in the Multi-View Entropy Bottleneck (MVEB) approach
[30], thereby improving the encoding quality and generalization [31].

EEG Pretrained Transformer (EEGPT): The structure of the EEGPT model is shown in Figure 1,
which includes operations such as patching, embedding, masking, encoder, predictor and reconstructor.
First, the model chunks the input EEG signal x ∈ RM×T (M channels and T time points) into patches
pi,j , and embeds each patch as a token tokeni,j by local spatio-temporal embedding (Section 2.3),
followed by splitting into masked parts M and unmasked parts M, respectively. Then, we pretain
the model using a dual self-supervised learning method, including spatio-temporal representation
alignment (Section 2.1) and mask-based reconstruction (Section 2.2). Finally, the linear-probing
method is used in downstream tasks (Section 2.4).

2.1 Spatio-temporal Representation Alignment

The spatio-temporal representation alignment method aligns the predicted features with the momen-
tum encoder’s output, enhancing the encoder’s ability to extract robust features and ensuring that the
encoder’s output contains high-quality global features. We employ the encoder and the predictor to
decouple spatial and temporal features, significantly reducing computational complexity.

Encoder: The encoder integrates spatial information from masked patches. Equation 3 describes how
the encoder (ENC) processes all masked tokeni,j at time j as input and produces the corresponding
output feature encj :

encj = ENC

(
{tokeni,j}

(i,j)∈M

)
(3)
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Figure 1: The EEGPT structure involves patching the input EEG signal as pi,j through masking (50%
time and 80% channel patches), creating masked part M and unmasked part M and then embedding
as tokeni,j by local spatio-temporal embedding. The encoder processes the masked part, extracting
features (encj) consisting of {ei}Si=1 for each time segment in the M part with summary tokens
{si}Si=1. The predictor predicts features (predj) for all time segments, aligning with the Momentum
Encoder output (mencj). Based on features extracted by the predictor and encoder, the reconstructor
generates reci,j to reconstruct the EEG signal of the M part.

Predictor: As in Equation 4, the predictor (PRED) utilizes features encj of the masked part from
the encoder, combined with temporal position information posj , to predict the complete encoded
feature. Embedding and unembedding [32] are performed linearly on the input and output. We
adopt the rotary position embedding method [33] to generate posj , introducing relative positional
and temporal information. To generate prediction features belonging to M, a learnable vector query
is used as the query token. Through self-supervised training, the encoder is encouraged to extract
more information about the correlation among tokens:

{predt}
t∈{1,2,...,N}

= PRED

(
{encj + posj}

∃i,(i,j)∈M

)
(4)

Momentum Encoder: The structure of the momentum encoder is identical to that of the encoder.
Equation 5 outlines how the momentum encoder (MENC) processes all tokeni,j at time j as input
and produces the corresponding output mencj . After each training iteration, the parameters of the
encoder are accumulated into the momentum encoder with a factor of τ = 0.01.

mencj = MENC

(
{tokeni,j}
(i,j)∈M∪M

)
(5)

We employ an alignment loss based on Mean Square Error (MSE) [34] to achieve spatio-temporal
representation alignment:

LA = − 1

N

N∑
j=1

||predj ,LN(mencj)||22 (6)

In Equation 6, LN denotes layer normalization [35], which helps to mitigate the effects of extreme
values and covariate shift, allowing the model to focus on more important features.

2.2 Mask-based Reconstruction

The mask-based reconstruction method aligns the reconstructed patches generated by the reconstructor
with the raw patches pi,j in the M part.
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Reconstructor: As shown in Equation 7, the reconstructor (REC) utilizes features encj from the M
part encoded by the encoder and features predj of the M part predicted by the predictor, along with
temporal position posj , to generate the reconstructed patch recu,t. We establish a "skip connection"
between the encoder and the reconstructor to help maintain the features and accelerate convergence.

{recu,t}
(u,t)∈M

= REC

(
{encj + posj}

∃i,(i,j)∈M
∪ {predj + posj}

∀i,(i,j)∈M

)
(7)

Mask-based reconstruction is achieved using a reconstruction loss based on the Mean Square Error
(MSE):

LR = − 1

|M|

∑
(i,j)∈M

||reci,j ,LN(pi,j)||22 (8)

The complete pretraining loss L is constructed by summing both LA and LR:

L = LA + LR (9)

2.3 Local Spatio-Temporal Embedding
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Figure 2: Illustration of local spatio-temporal embedding. The EEG signal is divided into equally sized
patches in the spatio-temporal dimensions. Each patch represents a time segment for a specific channel
without overlap. The patches are linearly embedded and incorporated with channel embedding
information to obtain a corresponding feature.

The local spatio-temporal embedding method first patches and embeds the EEG signal in the spatio-
temporal dimension before feeding it into the encoder, as shown in Figure 2. We denote the set of EEG
signal channels as {ci}Mi=1, where ci is the name of each channel. Firstly, the EEG signal is divided
into equally sized patches in the spatio-temporal dimensions, denoted as pi,j , i ∈ {1, 2, ...,M}, j ∈
{1, 2, ..., N}:

pi,j = xi,(j−1)d:jd (10)

where d represents patch’s time length, and N = T/d is the number of time patches. Next, the patches
are linearly embedded, combining the channel embedding information. We construct a Codex book
[36] {ςi ∈ Rde}Mi=1 (de is the embedding dimension) containing all learnable channel embedding
vectors and a mapping from channel names to channel embedding vectors ℜ : {ci}Mi=1 → {ςi}Mi=1.
This mapping flexibly corresponds the channels of the EEG data to the channels of the model inputs,
allowing the model to adapt to multiple datasets and improve channel adaptation. The patch’s content
is linearly embedded as Embed(pi,j) = WT

p pi,j + bp, where Wp ∈ Rd×de and bp ∈ Rde are
learnable parameters. Embedded token denotes as tokeni,j ∈ Rde :

tokeni,j = Embed(pi,j) + ςi (11)

Based on self-supervised learning task, the extracted features of patches are mutually predictable and
can ignore noise signals at smaller scales. The method aims to extract macroscopic features that span
larger scales, which are believed to be more easily recognizable and considered meaningful features.
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2.4 Linear-Probing Method

In the downstream tasks, we apply the pretrained encoder and concatenate additional modules to solve
classification tasks. As shown in Figure 3, we introduce the linear-probing method, which freezes the
parameters in the pretrained model and only changes the parameters in the additional linear modules.
These modules include adaptive spatial filters (1× 1 convolution) for aligning channels between EEG
and the model, and a linear layer to map the features to logits. The encoder passes the output tokens
corresponding to summary tokens to the linear classification head. This approach helps avoid the
overfitting problem when a large parameter model is fine-tuned using a limited number of samples.
Since the additional module is straightforward, the performance is solely determined by the encoder,
allowing us to assess the model’s capability.

3 Experiments

3.1 Datasets and Data Processing

Table 1: Datasets for pretraining and downstream tasks

Datasets Paradigms Subjects Targets

pretraining Datasets

PhysioMI MI&ME 109 5
HGD MI 14 4
TSU SSVEP 35 40
SEED EMO 15 3
M3CV MULTI 106 -

Downstream Datasets

BCIC-2A MI 10 4
BCIC-2B MI 10 2
Sleep-EDFx SLEEP 197 5
KaggleERN ERN 26 2
PhysioP300 P300 9 2
TUAB Abnormal 2383 2
TUEV Event 288 6

We curated EEG public datasets of various paradigms for model pretraining as shown in Table 1. It
contains motor imagery (MI) and execution (ME) datasets PhysioMI [23], HGD [24], steady-state
visual evoked potential (SSVEP) dataset TSU [37], emotional classification dataset SEED [38] and
multi-subject multi-session multi-paradigm dataset M3CV [25]. To assess the practical utility of
the learned representations in downstream tasks, we curated a list of datasets as shown in Table 1.
It contains MI datasets BCIC-2A [39], BCIC-2B [40], sleep stage detection dataset Sleep-EDFx
[11] , error related negativity (ERN) dataset KaggleERN [41] and event-related potentials dataset
PhysioP300 [23]. We also curated a dataset of abnormal EEG signals dataset TUAB and event
type classification dataset TUEV from Temple University EEG Corpus [18]. These diverse datasets
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enable comprehensive evaluation of the proposed EEGPT model across various tasks. Each dataset
underwent similar and distinct preprocessing steps, including cropping (4s), re-referencing (average),
channels selecting, scaling (mV) and resampling (256Hz). There are 0-38Hz bandpass filtering in MI
datasets for downstream tasks. More details refer to Appendix C.

3.2 Implementation and Settings

Model implementation. The implementation of encoder, predictor and reconstructor in EEGPT
adopts the vision transformer (VIT) [42] and sets S learnable summary tokens (similar to [CLS]
token) for summarizing information within the same time patches. We used 58 electrodes (M = 58),
as shown in Figure 4. The input signal has a sampling rate of fs = 256 Hz, and the input signal time
length is T = 1024. Each patch has a time length of d = 64, corresponding to a 250ms time window.
The 50% time and 80% channel patches of the patches are masked during training.

pretraining strategy. In pretraining, for each training dataset, we randomly sampled 10% of the
samples as the validation set. As shown in Table 6, we trained 8 variants with different embedding
dims, layers of transformer models (encoder, predictor, reconstructor) and summary tokens S. The
AdamW optimizer was employed with the OneCycle learning rate strategy [43] (initial learning rate
of 2.5e-4, maximum of 5e-4, minimum of 3.13e-5). The training was conducted for 200 epochs, with
a batch size of 64 and 16-bit mixed precision training on 8 Nvidia 3090 GPUs.

Evaluation strategy. For the data splitting of TUAB and TUEV, we strictly follow the same strategy
as BIOT [15] to compare all methods fairly. In other downstream tasks, we use the same experimental
configuration as BENDR [12], in which Leave-One-Subject-Out (LOSO) validation method are
used. Specially, KaggleERN uses 4-fold cross-validation with 10 subjects for testing, Sleep-EDFx
uses 10-fold cross-validation and ratio 6:2:2 in training, validation and test splitting. We use linear-
probing method for downstream tasks. Particularly, in the sleep stage detection task, we use a 4-layer
transformer encoder model as a classifier that integrates the output of our model for every 0.25s
for the purpose of processing a long task of 30s. We used the optimal large model in Section 3.5
for testing on all downstream tasks. To ensure the reliability of the experiments, we repeated each
experiment three times and calculated the standard deviation.

Baselines & Metrics. For the TUAB and TUEV datasets, we use the same baselines from BIOT
which are fully fine-tuned models. In other tasks, we use the pretrained BENDR [12], BIOT [15] and
LaBraM [17] as the baselines. The following metrics are used for comparison: 1) Balanced Accuracy
(BAC), 2) AUROC, 3) Weighted F1, 4) Cohen’s Kappa. We use AUROC only for binary classification
tasks and Weighted F1 only for multi-class classification tasks. More details refer to Appendix D.

3.3 Downstream Experiment Results

Table 2: The results of different methods on TUAB.

Methods Model Size Balanced Accuracy AUROC
SPaRCNet [44] 0.79M 0.7896±0.0018 0.8676±0.0012
ContraWR [45] 1.6M 0.7746±0.0041 0.8456±0.0074
CNN-T [46] 3.2M 0.7777±0.0022 0.8461±0.0013
FFCL [47] 2.4M 0.7848±0.0038 0.8569±0.0051
ST-T [48] 3.5M 0.7966±0.0023 0.8707±0.0019
BIOT [15] 3.2M 0.7959±0.0057 0.8815±0.0043
Ours-Tiny 4.7M 0.7959±0.0021 0.8716±0.0041
Ours 25M 0.7983±0.0030 0.8718±0.0050

We conducted a comparative analysis with other large models on the Temple University datasets, using
the same configuration as BIOT [15] for experiments on the TUAB and TUEV datasets. The results
are presented in Tables 2 and 3. In the TUAB dataset, the performance of EEGPT is comparable to
that of the BIOT model. In the TUEV dataset, EEGPT improves the balanced accuracy by 9.5%, and
the weighted F1 score by 6.9% compared to BIOT.

To further validate the effectiveness of our model, we conducted comparative experiments with
BENDR, BIOT, and LaBraM. The results are shown in Table 4. On the BCIC-2A and BCIC-
2B datasets for motor imagery tasks and the Sleep-EDFx dataset for sleep stage detection, our
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Table 3: The results of different methods on TUEV.

Methods Model Size Balanced Accuracy Weighted F1 Cohen’s Kappa
SPaRCNet [44] 0.79M 0.4161±0.0262 0.7024±0.0104 0.4233±0.0181
ContraWR [45] 1.6M 0.4384±0.0349 0.6893±0.0136 0.3912±0.0237
CNN-T [46] 3.2M 0.4087±0.0161 0.6854±0.0293 0.3815±0.0134
FFCL [47] 2.4M 0.3979±0.0104 0.6783±0.0120 0.3732±0.0188
ST-T [48] 3.5M 0.3984±0.0228 0.6823±0.0190 0.3765±0.0306
BIOT [15] 3.2M 0.5281±0.0225 0.7492±0.0082 0.5273±0.0249
Ours-Tiny 4.7M 0.5670±0.0066 0.7535±0.0097 0.5085±0.0173
Ours 25M 0.6232±0.0114 0.8187±0.0063 0.6351±0.0134

Table 4: The results of universal EEG models on various datasets.

Datasets Methods Balanced Accuracy Cohen’s Kappa Weighted F1 / AUROC

BCIC-2A

BENDR 0.4899±0.0070 0.3199±0.0094 0.4836±0.0076
BIOT 0.4590±0.0196 0.2787±0.0261 0.4282±0.0289

LaBraM 0.5613±0.0052 0.4151±0.0069 0.5520±0.0052
Ours 0.5846±0.0070 0.4462±0.0094 0.5715±0.0051

BCIC-2B

BENDR 0.7067±0.0011 0.4131±0.0022 0.7854±0.0029
BIOT 0.6409±0.0118 0.2817±0.0236 0.7095±0.0141

LaBraM 0.6851±0.0063 0.3703±0.0125 0.7576±0.0067
Ours 0.7212±0.0019 0.4426±0.0037 0.8059±0.0032

Sleep-EDFx

BENDR 0.6655±0.0043 0.6659±0.0043 0.7507±0.0029
BIOT 0.6622±0.0013 0.6461±0.0017 0.7415±0.0010

LaBraM 0.6771±0.0022 0.6710±0.0006 0.7592±0.0005
Ours 0.6917±0.0069 0.6857±0.0019 0.7654±0.0023

KaggleERN

BENDR 0.5672±0.0020 0.1461±0.0037 0.6030±0.0044
BIOT 0.5118±0.0089 0.0297±0.0224 0.5495±0.0167

LaBraM 0.5439±0.0029 0.0944±0.0066 0.5693±0.0052
Ours 0.5837±0.0064 0.1882±0.0110 0.6621±0.0096

PhysioP300

BENDR 0.6114±0.0118 0.2227±0.0237 0.6588±0.0163
BIOT 0.5485±0.0325 0.0968±0.0647 0.5308±0.0333

LaBraM 0.6477±0.0110 0.2935±0.0227 0.7068±0.0134
Ours 0.6502±0.0063 0.2999±0.0139 0.7168±0.0051

model exhibited accuracy improvements of 9.4%, 1.5%, 2.6%, respectively, compared to BENDR.
Considering that BENDR used full model fine-tuning while our model only fine-tuned an additional
linear layer, this suggests that our model extracts richer and more universal features. We used
the linear-probing method for BIOT and LaBraM. EEGPT improved by 2.3%, 3.6%, and 1.4%,
respectively, compared to LaBraM, and by 12.5%, and 8.1%, and 2.9%, respectively, compared to
BIOT. For the ERP-type task datasets, our model outperforms BENDR by 2.6% and 3.9% on the
KaggleERN and PhysioP300 datasets, respectively. The performance of our model on the PhysioP300
dataset is comparable to that of LaBraM, but higher by 3.0% on KaggleERN. Our model also
outperforms BIOT on the KaggleERN and PhysioP300 by 7.2% and 10.2%, respectively. On all
tasks, our model EEGPT achieves competitive results compared to BENDR, BIOT, and LaBraM.
This demonstrates that EEGPT learns consistent representational features over the temporal-spatial
dimensions, enabling the model to be more widely applied to multiple paradigm tasks and to achieve
better classification performance.

Combining the above experimental results, we demonstrate that the method proposed in this paper
addresses the issues of poor EEG channel adaptability, poor quality of EEG representations extracted
by existing self-supervised learning methods, and the lack of universality of representations across
multiple paradigms. Our method effectively extracts high-quality universal EEG representations.

3.4 Ablation Experiment Results

We conducted ablation experiments using the large model with four different configurations, and
the results are presented in Table 5. In the absence of alignment loss (LA), the reconstruction loss
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Table 5: The results of the ablation study.

Variants LA LR BCIC-2A-BAC BCIC-2B-AUROC KaggleERN-AUROC
A: w/o LA 37.13 0.57 0.5287±0.0086 0.7264±0.0381 0.5752±0.0164
B: w/o LN 0.15 0.002 0.5567±0.0088 0.7920±0.0012 0.5891±0.0227
C: w/o skip 0.12 0.56 0.5796±0.0011 0.7702±0.0122 0.6356±0.0296
D: with all 0.24 0.56 0.5846±0.0070 0.8059±0.0032 0.6621±0.0096

Table 6: The results of pretrained models.

variants de layers S params LA LR BCIC-2A-BAC (%)
tiny1 64 2/2/4 1 0.4M 0.32 0.60 49.19
tiny2 64 2/2/4 4 0.5M 0.36 0.60 50.03
tiny3 64 8/8/8 4 1.6M 0.17 0.59 51.58
little 128 8/8/8 4 6.4M 0.18 0.57 54.18
base1 256 6/6/6 1 19M 0.24 0.56 54.53
base2 256 8/8/8 4 25M 0.33 0.56 56.48
base3 512 6/6/6 1 76M 0.14 0.58 54.47
large 512 8/8/8 4 101M 0.24 0.56 58.46

is comparable to that of the version D model, but there is a significant performance degradation of
6%∼9% in the downstream task. Without layer normalization on the targets of reconstruction loss,
the version B model demonstrated a lower pretrain loss L, but it was affected by extreme values and
covariate shift [35], resulting in a 3%,1% and 7% reduction in downstream tasks performance. The
version C model, which removes the skip connection and uses all {predt}Nt=1 from the predictor
as inputs to the reconstructor, exhibited lower alignment loss and comparable reconstruction loss
compared to the version D model, but showed a 1%∼3% lower performance in the downstream task.
These results suggest that the dual self-supervised method proposed in this paper is effective, as the
spatio-temporal alignment improves the quality of the EEG representations extracted by the model.

3.5 Pretrain Experiment Results
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Figure 5: Scaling laws with EEGPT parameter size N. Axes are all on a logarithmic scale.

We designed 8 variants to investigate the effects of model size (embedding size de / layers) and
summary token (S) on pretraining loss and downstream task accuracy. To evaluate the performance
of the pretrained models, we used the linear-probing method to test cross-subject classification
tasks on the BCIC-2A dataset. The experimental results are presented in Table 6. As the model size
(embedding size de / layers) and summary tokens (S) increased, the reconstruction loss (LR) gradually
decreased, and the performance on the downstream task improved. For models with the same S,
larger models exhibited lower alignment loss LA and higher performance. We also investigated the
trends in accuracy and reconstruction loss as the model size increased, as shown in Figure 5. These
trends can be summarized by the scaling laws: ACC = (33.6 ∗N)0.029 and LR = (0.72 ∗N)−0.014,
where N is the parameter count of the model. The results of the downstream task experiments
indicate that larger models generally achieve higher accuracy, with the large model, featuring an
8-layer, 512-embedding dimension, and 4 summary tokens, exhibiting the highest accuracy. For
simplicity, we used the optimal large model for testing on all downstream tasks.

9



4 Conclusion

In this paper, we propose a self-supervised EEG Pretrained Transformer (EEGPT) model with
over 10 million parameters for universal EEG representation learning. We employ a dual self-
supervised approach for pretraining, involving spatio-temporal representation alignment and mask-
based reconstruction. The spatio-temporal representation alignment aligns masked patches’ features
with full patches’ features, enhancing the quality of EEG representations and concentrating key
information in the encoder output. The mask-based reconstruction leverages the spatial and temporal
consistency exhibited by EEG signals to extract complementary features in both dimensions. We
design a hierarchical structure for EEGPT, which first extracts stable spatial representations from
short-term EEG signals, then captures the temporal correlations among long-term EEG signals. This
structure not only reduces computational complexity but also enhances the flexibility and adaptability
of EEGPT in BCI applications. Experiments demonstrate that our dual self-supervised pretrain
model significantly outperforms the popular universal feature extraction models BENDR, BIOT,
and LaBraM on tasks such as motor imagery, sleep stage detection and ERP-type classification.
Compared with BIOT on the TUEV dataset, we achieved a 9.5% performance improvement. These
tasks, which have different channel configurations and sampling rates, suggest that EEGPT is scalable.
In the future, we plan to further enrich the pretraining EEG dataset and expand the model size and
applicability.
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A Additional results

This section provides additional experimental results to support the claims in the main paper.

A.1 Ablation study for the predictor
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Figure 6: Validation loss curves during pretraining, where ’baseline’ is the standard EEGPT model
and ’no_predictor’ is the model without the predictor.

We conducted a pretraining experiment after removing the predictor, the variation of LR loss with
the number of iteration steps during training is shown in Figure 6. In this figure, ’baseline’ is the
standard EEGPT model and ’no_predictor’ is the model without the predictor. We can see that the
reconstruction loss LR of the ’no_predictor’ model after removing the predictor does not decrease,
which indicates that directly aligning the outputs of the encoder and the momentum encoder does
lead to the problem of representation collapse, resulting in the reconstruction task not being able to
learn meaningful representation.

A.2 Ablation study for pretraining methods

Table 7: The results of the ablation study for pretraining methods.

Variants LA LR BCIC-2A-BAC BCIC-2B-AUROC KaggleERN-AUROC
A: w/o LA 37.13 0.57 0.5287±0.0086 0.7264±0.0381 0.5752±0.0164
B: w/o LN 0.15 0.002 0.5567±0.0088 0.7920±0.0012 0.5891±0.0227
C: w/o skip 0.12 0.56 0.5796±0.0011 0.7702±0.0122 0.6356±0.0296
D: with all 0.24 0.56 0.5846±0.0070 0.8059±0.0032 0.6621±0.0096

In the ablation experiments, we used the BCIC-2A, BCIC-2B and KaggleERN datasets to test the
model with the linear probing method, the results are shown in Table 7. We can conclude that (1) the
model performance degradation on all datasets without LA loss is significant (6% to 9%); (2) without
layer normalisation on the reconstruction target, the performance of the version B model degraded by
3%, 1%, and 7% on BCIC-2A, BCIC-2B, and KaggleERN, respectively; and (3) the performance
of version C model (removed the skip connection) is reduced by 1%, 3% and 3% on these datasets,
respectively.

A.3 Ablation study for fine-tuning methods

We have added experiments comparing linear probing method and full fine-tuning method, as well
as experiments comparing with and without adaptive spatial filter. The experimental results are
displayed in Table 8. In Table 8, ’ASF’ stands for with an adaptive spatial filter, in contrast to feeding
the signal directly into the model; ’L-P’ stands for using linear probing, in contrast to using full
fine-tuning of the model. Model variants A and C are the models with full fine-tuning and linear
probing after excluding the adaptive spatial filter, respectively. Model variants B and D are models
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Table 8: The results of the ablation study for fine-tuning methods.

Variants ASF L-P BCIC-2A-BAC BCIC-2B-AUROC KaggleERN-AUROC

A 0.5774±0.0072 0.7871±0.0054 0.6078±0.0101
B ✓ 0.5183±0.0155 0.7541±0.0083 0.6110±0.0019
C ✓ 0.5586±0.0089 0.7974±0.0030 0.6463±0.0081
D ✓ ✓ 0.5846±0.0070 0.8059±0.0032 0.6621±0.0096

with full fine-tuning and linear probing after using adaptive spatial filter, respectively. The results
show that on the BCIC-2B and KaggleERN datasets, variants C and D tested with linear probing
achieved better results than variants A and B using full fine-tuning; on the BCIC-2A dataset, variant
A with full fine-tuning and no adaptive spatial filter is close to variant D with linear probing and an
adaptive spatial filter, but overall the linear probing used by models C and D outperform A and B.
The results show that variants B and D using adaptive spatial filter achieve better results compared to
variants A and C without adaptive spatial filter.

A.4 Scaling laws experiments
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Figure 7: Results on TUAB dataset. Scaling laws with EEGPT parameter size N. Axes are all on a
logarithmic scale.
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Figure 8: Results on BCIC-2B dataset. Scaling laws with EEGPT parameter size N. Axes are all on a
logarithmic scale.

We added the results of the scale law experiments on the TUAB dataset and the BCIC-2B dataset,
as shown in Figure 7 and 8. The results on the TUAB dataset show that the scaling law of the test
balanced accuracy metric with model size (N ) for TUAB is: BAC = (0.74 ∗N)0.0034; the results
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on the BCIC-2B dataset show that the scaling law of the AUROC metric with model size (N ) for
BCIC-2B is: AUROC = (0.61 ∗N)0.0157.

A.5 Effect of pretrain data size
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Figure 9: Results on BCIC-2A dataset. Scaling laws with pretrain data size D. Axes are all on a
logarithmic scale.
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Figure 10: Results on BCIC-2B dataset. Scaling laws with pretrain data size D. Axes are all on a
logarithmic scale.

We added pretraining experiments using 100%, 50%, 25%, and 12.5% of the training data and tested
them on the downstream tasks of BCIC-2A and BCIC-2B. The results are presented in Figure 9 and
10. The results show that the scaling law of the balanced accuracy metric with the total amount of
data D (the percentage of the training data used) for BCIC-2A is: ACC = (0.58 ∗D)0.0461; and
the scaling law of the AUROC metric with the total amount of data D for BCIC-2B is:AUROC =
(0.79 ∗D)0.0325.

A.6 Results of LaBraM on TUAB and TUEV

Table 9: The results of different methods on TUAB.

Methods Model Size Balanced Accuracy AUROC
BIOT [15] 3.2M 0.7959±0.0057 0.8815±0.0043
LaBraM [17] 5.8M 0.8140±0.0019 0.9022±0.0009
Ours-Tiny 4.7M 0.7959±0.0021 0.8716±0.0041
Ours 25M 0.7983±0.0030 0.8718±0.0050
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Table 10: The results of different methods on TUEV.

Methods Model Size Balanced Accuracy Weighted F1 Cohen’s Kappa
BIOT [15] 3.2M 0.5281±0.0225 0.7492±0.0082 0.5273±0.0249
LaBraM [17] 5.8M 0.6409±0.0065 0.8312±0.0052 0.6637±0.0093
Ours-Tiny 4.7M 0.5670±0.0066 0.7535±0.0097 0.5085±0.0173
Ours 25M 0.6232±0.0114 0.8187±0.0063 0.6351±0.0134

LaBraM employs a larger pretraining dataset than ours, which also contains the TUEG dataset that
is similar to the TUAB and TUEV distributions, and whose paper illustrates the scale effect of the
amount of pretraining data, which may have facilitated the learning of a richer and more downstream
task-adaptable representation for LaBraM.

A.7 Ablation study of self-supervised learning on TUAB

Table 11: The results of different methods on TUAB.

Methods Model Size Balanced Accuracy AUROC
BIOT [15] 3.2M 0.7959±0.0057 0.8815±0.0043
Ours (no pretrained) 25M 0.7553±0.0014 0.8260±0.0018
Ours 25M 0.7983±0.0030 0.8718±0.0050

We tested the model with randomly initialized parameters (no pretrained model) on the TUAB dataset
and the test results are shown in Table 11. In Table 11, ’Ours (no pretrained)’ represents the model
that is not loaded with pretrained parameters. By comparison, we see that the model without using
self-supervised pretraining has the worst performance on TUAB, with a 4% reduction in balance
accuracy and a 5% reduction in AUROC compared to the model loaded with pretraining parameters.

B CODE ACCESS

The code for this paper is available at: https://github.com/BINE022/EEGPT.

C DATASET DESCRIPTION

C.1 PRETRAINING DATASET DESCRIPTION

C.1.1 Motor Imagery and Motor Execution tasks: PhysioNetMI [23]

The PhysioNetMI dataset2 consists of over 1500 one-minute and two-minute EEG recordings obtained
from 109 volunteers. Subjects performed different motor execution/imagery tasks while recording
64-channel EEG using the BCI2000 system.

Preprocessing: All eight tasks were used during the pretraining of this paper, using a global average
reference, intercepting data from 0 to 6s after the start of each trial, and randomly intercepting data
from a 4s time window of these during pretraining.

C.1.2 Motor Imagery task: HGD [24]

The HGD dataset, a 128-electrode dataset, was taken from 14 healthy subjects with approximately
1,000 trials each. The four-second executive movement trials were divided into 13 runs. The four
types of movements were left-handed movements, right-handed movements, bipedal movements, and
rest. The training set consisted of approximately 880 trials for all but the last two runs, and the test
set consisted of approximately 160 trials for the last two runs. We access this dataset by MOABB3.

Preprocessing: All four tasks were used in the pretraining process of this paper, first downsampled
to 256 Hz and then standardized to mV, using a global average reference to intercept the data from 0

2https://physionet.org/content/eegmmidb/1.0.0/
3https://neurotechx.github.io/moabb/dataset_summary.html
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to 10s after the start of each trial, and randomly intercepting the data from a 4-s time window of these
during pretraining.

C.1.3 SSVEP task: TSU [37]

The TSU dataset4 is a benchmark dataset for brain-computer interfaces based on steady-state visual
evoked potentials (TSUBenckmark). This dataset collects SSVEP-BCI recordings from 35 healthy
subjects using a brain-computer interface (BCI) speller with 40 characters for experimental data
acquisition. SSVEP-BCI recordings were made for 40 characters that flashed at different frequencies
(8-15.8 Hz with 0.2 Hz intervals).

Stimuli: Each trial began with a visual cue (red square) indicating the target stimulus. The cue
appeared on the screen for 0.5 seconds. Subjects were asked to shift their eyes to the target as soon as
possible within the cue duration. After the cue was offset, all stimuli began flashing on the screen
simultaneously for 5 seconds. After the stimulus offset, the screen was blanked for 0.5 seconds, and
then the next trial began, which allowed subjects to have a short rest period between successive trials.

Signal: EEG of 35 subjects (64 channels, 250 Hz). Each subject’s experiment consisted of 6 blocks.
Each block contained 40 trials corresponding to all 40 characters displayed in randomized order.
Total: 35 persons x 6 blocks x 40 trials.

Preprocessing: All 40 tasks were used in the pretraining process of this paper, first downsampled to
256 Hz, and then standardized to mV, using a globally averaged reference to intercept the data from 0
to 4s after the start of each trial for pretraining.

C.1.4 Emotion Recognition task: SEED [38]

The SEED dataset, Shanghai Jiao Tong University Emotion EEG dataset (SEED)5, is an EEG dataset
provided by the BCMI lab led by Prof. Baoliang Lu.

Stimuli: 15 four-minute long movie clips from six Chinese movies.

Signal: EEG (62 channels, 200 Hz) from 15 subjects and eye movement data from 12 subjects.
Three experiments were conducted per subject, each approximately one week apart, for a total of 15
subjects x 3 sessions = 45 subjects.

Scores: Positive (1), negative (-1), and neutral (0).

Preprocessing: All three tasks were used in the pretraining process of this paper, first downsampled
to 256 Hz and then standardized to mV, using a global average reference to intercept the data from 0
to 10s after the start of each trial for pretraining.

C.1.5 Identification task: M3CV [25]

The M3CV dataset6 is a reliable brainprint identification system designed to withstand changes in
the mental state of the subjects (cross-paradigm test) and successfully identify individuals even after
several days (cross-session test). The Multi-Session Multi-Paradigm EEG database (Multi-Subject
Multi-Session Multi-Paradigm Commonality and Variability (M3CV)) contains 106 healthy subjects,
two sessions, and six types of EEG paradigms.

Experimental paradigms: Resting state, event-related potentials, evoked stimuli, P300, motor
execution, and SSVEP.

Preprocessing: The full task-state data were used in the pretraining process of this paper, first
upsampled to 256 Hz, and then standardized to mV, using a globally averaged reference, intercepting
data from 0 to 4s after the start of each trial for pretraining.

4http://bci.med.tsinghua.edu.cn/download.html
5https://bcmi.sjtu.edu.cn/home/seed/
6https://aistudio.baidu.com/competition/detail/315/0/related-material
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C.2 DOWNSTREAM DATASET DESCRIPTION

C.2.1 Motor Imagery Task: BCIC-2A [39]

This dataset7 consists of EEG data from 10 subjects and includes four different motor imagery tasks:
motor imagery of the left hand (Class 1), right hand (Class 2), feet (Class 3), and tongue (Class 4).
Each subject performed two sessions on different days, with a total of 288 trials per session.

Preprocessing: Uniform units; 0 to 38 Hz filtering was used; resampling to 256 Hz; EA normalization
[49] was used for each session. EA normalization is a common normalization method applied to data
from motion imagery tasks such as BCIC2A.

Experimental Configuration: Experiments using the LOSO method. In the BCIC2A dataset 4-
category cross-subject experiment, the accuracy of the model in this paper is lower than that of the
task-specific SOTA model. This may be related to the high individual variability of the BCIC2A data.
The fine-tuning method of combining the task-specific model with the model in this paper was used
for testing. The MSConvNet model, which has a multi-scale convolutional EEGNet-like structure,
was used as the motor imagery task-specific model. The model branch first maps the input 22-channel
EEG signal into 10-20 system standard channel data using an adaptive spatial filter (convolution);
then a pretrained encoder is used to extract the generic representations; and after collocating the
generic representations and the in-domain representations of Wenchao’s model branch, they are
mapped into category logits using a linear layer. Training is performed using the AdamW optimizer,
OneCycle learning rate strategy [43] (starting learning rate 5e-4, maximum 1e-3, minimum 4.22e-7),
100 rounds of training, and batch size of 72.

C.2.2 Motor Imagery Task: BCIC-2B [40]

This dataset8 consists of EEG data from 10 subjects. Each subject was given five training opportunities,
the first two of which were training data without feedback (screening) and the last three with feedback.
The three bipolar recordings (C3, Cz, and C4) were sampled at a frequency of 250 Hz. The dataset
consisted of motor imagery (MI) for two categories: left-handed (category 1) and right-handed
(category 2). Each subject participated in two sessions without feedback recordings on two different
days within a two-week period. Each session consisted of 120 category-balanced trials.

Preprocessing: Uniform units; 0 to 38 Hz filtering was used; resampling to 256 Hz; EA normalization
[49] was used for each session. EA normalization is a common normalization method applied to data
from motion imagery tasks such as BCIC2A.

Experimental Configuration: Experiment using LOSO validation method. The fine-tuned modeling
approach was used to test a cross-subject 2-categorization task on the BCIC2B dataset for the motor
imagery task. The input data are 3-channel (C3, Cz, and C4 channels) EEG data with 4s, 256Hz
sampling rate; to fully utilize the feature extraction capability of the model, spatial filters (convolution)
were used to map the 3-channels of the input data into 7-channels, which corresponds to the C5,
C3, C1, CZ, C2, C4, and C6 channels of the pretrained encoder; the features are extracted using the
pretrained encoder and then mapped into 7 channels using the linear layer mapped to category logits.
The training process is performed using AdamW optimizer, OneCycle learning rate strategy [43]
(starting learning rate 1.6e-5, maximum 4e-4, minimum 1.51e-7), 100 rounds of training, and batch
size of 64.

C.2.3 Sleep Stage Detection Task: Sleep-EDFx [11]

This dataset9 gives further insight into the generalizability of the model, as BCI data are typically
categorized in the context of a specific trial or event, whereas SSC is a much more continuous problem
that requires labeling the specific sleep stage that a subject is in over a long period of time. The
Sleep-EDFx dataset contains 197 (78 healthy subjects) all-night sleep recordings, which include EEG,
electrooculogram, chin EMG, and event markers.

Preprocessing: The preprocessing method of Banville et al. (2020) was referred to, which first
converts the data unit to mV, and then uses a 30Hz low-pass filter, intercepts the samples in 30s

7https://www.bbci.de/competition/iv/#datasets
8https://www.bbci.de/competition/iv/#datasets
9https://physionet.org/content/sleep-edfx/1.0.0/
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non-overlapping windows, and uses a channel-wise (channel-independent) z-score normalization for
each sample.

Experimental Configuration: Subjects were randomly divided according to the ratio of 60

C.2.4 ERN task: KaggleERN [41]

In this dataset10, each subject is presented with letters and numbers (showing 36 possible items
on a matrix) to spell words. Each item of the word is flashed in a random order grouped together
and selected one at a time. The selected item is the one that the online algorithm is most likely
to recognize as a typical target response. The goal of this challenge was to determine whether the
selected items were correct by analyzing the brain signals of subjects after receiving feedback. Two
transcription-spelling conditions were used: a fast mode with more errors (4 blinks per item); and a
slower, less error-prone condition (8 blinks per item).

Preprocessing: Uniform units; downsampling to 256 Hz; global averaging reference; intercepting 2
s of data starting at -0.7 s before the onset of flicker.

Experimental Configuration: For comparison with the BENDR paper, 10 of the subject data
were used as the test dataset, and the remaining subject data was used for 4-fold cross-validation
method training. KaggleERN uses fine-tuning method 1, with a sliding window of 125ms in steps,
to firstly map the 56 channels to the 19-channel EEG data of the 10-20 system by adaptive spatial
filters (convolution), and then features are extracted using a pretrained encoder, and finally mapped
into classification logits using a linear layer. The training process is performed using the AdamW
optimizer, the OneCycle learning rate strategy [43] (starting learning rate of 1.6e-5, maximum of
4e-4, and minimum of 1.51e-7), and 100 rounds of training with a batch size of 64.

C.2.5 P300 task: PhysioNetP300 [23]

In this dataset11, each participant was asked to spell a total of 20 characters using a traditional matrix
speller (Donchin speller). The target characters were randomly selected before the start of the run.
Each row and column of a standard 6x6 character matrix was randomly augmented for 100 ms at
50 ms intervals with approximately 20 flashes. During this time, subjects were asked to focus their
attention on the target character and mentally count the number of times the target character was
highlighted.

Preprocessing: Uniform units; 120Hz low-pass filtering was used; downsampling to 256Hz; and 2s
of data starting at -0.7s before the onset of the flicker was intercepted.

Experimental Configuration: For comparison with the BENDR paper, subjects 8, 10, and 12 were
removed and the data from the remaining 9 subjects were retained. Experiments were performed
using the LOSO cross-validation method. The PhysioNetP300 uses a fine-tuning method with a
sliding window of 125ms step size, using all channels used in the pretraining phase; the data from
each EEG channel is first adaptively scaled by an adaptive spatial filter (learnable scaling factor),
then features are extracted using the pretraining encoder, and finally mapped using the linear layer
mapping for classification logits. The training process uses AdamW optimizer, OneCycle learning
rate strategy [43] (starting learning rate 3.2e-5, maximum 8e-4, minimum 3.02e-7), 100 rounds of
training, and batch size of 64.

C.2.6 TUAB (abnormal detection) and TUEV (event type classification) [18]

TUAB12 is a corpus of EEGs which are 23-channel and sampled at 256 Hz. All data have been
annotated as normal or abnormal. There are total 409,455 10-second samples that we use for binary
classification to predict normal/abnormal.

TUEV13 is a subset of TUEG that contains annotations of EEG segments as one of six classes: (1)
spike and sharp wave (SPSW), (2) generalized periodic epileptiform discharges (GPED), (3) periodic
lateralized epileptiform discharges (PLED), (4) eye movement (EYEM), (5) artifact (ARTF) and

10https://www.kaggle.com/c/inria-bci-challenge/data
11https://physionet.org/content/erpbci/1.0.0/
12https://isip.piconepress.com/projects/tuh_eeg/html/downloads.shtml
13https://isip.piconepress.com/projects/tuh_eeg/html/downloads.shtml
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(6) background (BCKG). The EEG signals contain 23 channels at 256 Hz and are segmented into
112,491 5-second samples.

We conducted experiments using linear-probing on these two datasets. Since these datasets use
different electrodes and sampling rates compared to the model pretraining, we used two layers of
convolution (spatial convolution and temporal convolution) to adaptively fit the data. The spatial
convolution used a 1x1 convolution, and the temporal convolution used depthwise convolution. The
convolution kernel size for TUAB was (1, 15), and for TUEV, it was (1, 55). Both experiments used
the same optimizer and a learning rate of 5e-4. Due to GPU memory limitations, the batch size for
TUAB was 100, and for TUEV, it was 500.

Table 12: Model design for TUAB dataset.

Input Size Operator kernel stride groups padding

23× 2000 conv1d 1 1 1 0
20× 2000 batchnorm,gelu - - - -
20× 2000 conv1d 15 1 20 7
20× 2000 batchnorm,gelu - - - -
20× 2000 dropout(0.25) - - - -
20× 2000 eegpt-encoder 64 64 - -
31× 4× 512 flatten,linear - - - -
1 output - - - -

Table 13: Model design for TUEV dataset.

Input Size Operator kernel stride groups padding

23× 1000 conv1d 1 1 1 0
20× 1000 batchnorm,gelu - - - -
20× 1000 conv1d 55 1 20 27
20× 1000 batchnorm,gelu - - - -
20× 1000 dropout(0.5) - - - -
20× 1000 eegpt-encoder 64 64 - -
15× 4× 512 flatten,linear - - - -
6 output - - - -

The detailed modelling structure used in the downstream tasks is presented in Table 12 and Table 13.
The 23-channel input is first to reduce the number of channels to 20 by the convolution. Then, the
eegpt-encoder uses the following 20 channel embeddings as the inputs’ channel embeddings: [FP1,
FPZ, FP2, F7, F3, FZ, F4, F8, T7, C3, CZ, C4, T8, P7, P3, PZ, P4, P8, O1, O2]. The eegpt-encoder
maps 64-length window segments of the input signals to 4 (number of summary tokens) × 512-
dimensional features. Finally, the flatten and linear layers are used to output the final classification
score.

D METRICS DESCRIPTION

The following metrics are used for comparison: 1) Balanced Accuracy (BAC): The mean recall across
all classes, applicable to both binary and multi-class classification. 2) AUROC: The area under the
receiver operating characteristic curve, primarily used for binary classification. 3) Weighted F1: The
harmonic mean of precision and recall, with equal emphasis on both metrics, employed for evaluating
multi-class classification. 4) Cohen’s Kappa: A statistic measuring the agreement between categorical
variables X and Y, derived from the observed and expected frequencies in the diagonal of a square
contingency table. We set AUROC as the monitor score for binary classification and Cohen’s Kappa
as the monitor score for multi-class classification.
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E MORE IMPLEMENTATION DESCRIPTION

For model implementation, the BENDR code is downloaded and modified upon the github14, the
BENDR code is downloaded and modified upon this github15, and the LaBraM code is downloaded
and modified upon this github16. Other baselines implementations on the TUAB and TUEV datasets
are also referred to this repo17. The EEGPT structure implementation is mainly modified upon the
github18, and also references the code of BENDR. The ROPE embedding is implemented using the
code of Roformer [50] in github19.

We mainly use MNE package20, braindecode package21, and torcheeg package22 to load and prepro-
cess the data.

F MORE EXPERIMENT RESULTS DESCRIPTION

In the comparative experiments, the baseline model BIOT demonstrated an accuracy of 54% in the
binary classification task of EEG P300 signals on PhysioP300 dataset4, suggesting its ineffectiveness.

The P300 signal is an event-related potential (ERP) component commonly observed in EEG record-
ings. It is characterized by a positive deflection in voltage occurring approximately 300 milliseconds
after the presentation of a stimulus. The P300 component is primarily concentrated around the 300
ms mark and is crucial for tasks involving attention and stimulus evaluation.

One plausible reason for the suboptimal performance of the BIOT model is the inherent nature of the
P300 signal classification task, which predominantly relies on time-domain waveform features. The
BIOT model, however, applies a fast Fourier transform (FFT) to the input signals, thereby primarily
extracting frequency-domain features. This fundamental discrepancy between the feature domain
utilized by the model and the domain that is most pertinent to the classification task likely accounts
for the observed lack of efficacy. Additionally, while the P300 component is concentrated around the
300 ms mark, the BIOT model applies an FFT on 1-second length patches, which is overly extensive
and results in significant information loss. The "significant information loss" is mainly reflected in the
fact that the BIOT model only retains the spectral energy information for 1s of each patch after the
FFT, and discards the phase information. A similar situation also occurs in the binary classification
task for ERN signals [27] on the KaggleERN dataset.

G VISUALIZATION

G.1 Channel Relationship Visualization

To further demonstrate the effectiveness of the model implementation, this paper visualizes the
trained model. During the pretraining process, channel information is encoded through learnable
channel embeddings. This section visualizes the similarity between positional encodings to show the
relationship information learned by the model from the data.

Figure 11(a) shows the channel relationship diagram after model pretraining, using the cosine
similarity between channel embeddings to represent the relationships between channels. The left
figure shows relationships with similarity greater than 0.5, where channels are clustered based on
their front, back, left, and right positions. The right figure shows relationships with similarity greater
than 0.4, revealing not only nearby relationships but also long-distance relationships across brain
regions.

14https://github.com/SPOClab-ca/BENDR
15https://github.com/ycq091044/BIOT
16https://github.com/935963004/LaBraM
17https://github.com/ycq091044/BIOT
18https://github.com/google-research/vision_transformer
19https://github.com/ZhuiyiTechnology/roformer
20https://github.com/mne-tools/mne-python
21https://github.com/braindecode/braindecode
22https://github.com/torcheeg/torcheeg
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(a) Channel Embedding Similarity ≥ 0.5 (b) Channel Embedding Similarity ≥ 0.4

Figure 11: Channel Embedding Similarity Relationships

Figure 12: Channel Embedding Similarity Connection Diagram
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Figure 12 shows the cosine similarity relationships between channel embeddings, with electrode
positions placed according to their actual locations. Solid lines indicate relationships with similarity
greater than 0.3, while dashed lines indicate relationships with similarity between 0.1 and 0.3. It can
be seen that channels in close proximity have higher similarity, and there is also significant similarity
between distant electrodes on opposite sides.

G.2 BCIC2A Experiment Results Visualization

Figure 13: BCIC2A Channel and Class Pearson Correlation Diagram

Figure 13 shows the correlation between channels and motor imagery classes detected using the
channel perturbation method after training on the BCIC2A dataset. Gaussian multiplicative random
noise is randomly added to the signal amplitude of each channel, and the Pearson correlation
between the noise intensity and the changes in the corresponding class logits is calculated and
presented as a heatmap. Symmetric relationships are observed for electrodes related to left and right
hand movements, with bilateral electrodes corresponding to foot movements, and distinct channels
corresponding to the four different classes.

Figure 14: BCIC2A t-SNE Diagram

Figure 14 shows the t-SNE diagram of features learned by the model. It can be seen that the features
of the four classes are clustered in four different regions, demonstrating linear separability.

Figure 15 shows the confusion matrix, indicating that the recognition performance for foot movements
is the best, while samples from other classes are often misclassified as foot movements.
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Figure 15: BCIC2A Confusion Matrix Diagram

Figure 16: P300 spatio-temporal Attention Diagram

G.3 PhysioP300 Experiment Results Visualization

Figure 16 shows the model’s attention distribution for the P300 task. For temporal attention, the
model focuses more on the -0.1 to 1s time period. For spatial attention, the model focuses more on
the signals from the F1, FZ, F2, and FCZ channels.

Figure 17: P300 t-SNE Diagram

Figure 17 shows the t-SNE diagram of features extracted by the model for the two classes of samples.
The features of the two classes are distributed on two sides, with a confusion belt in the middle, but
overall the classes are linearly separable.
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Figure 18: P300 Confusion Matrix Diagram

The confusion matrix shows that the performance for the non-target class is better.

H LIMITATIONS

Firstly, although we have collected a large-scale multi-task mixed EEG dataset and utilized a model
structure with extensive parameters during the pretraining phase, there remains a significant disparity
compared to today’s large vision and language models. Our work is still in the exploratory phase of
training large EEG models to learn general representations. Encouragingly, our experiments have
shown that large EEG models can continue to be optimized, achieving considerable performance
improvements compared to existing methods developed for specific BCI tasks and general large EEG
models. Secondly, while EEGPT requires only linear-probing to adapt to small-scale downstream
tasks, it may still result in high memory costs. Finally, EEGPT was pretrained using 4s EEG data.
This may strict model’s capability. It is worth exploring the training of large EEG models with long
recordings.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We clearly state the claims made, including the contributions made in the
paper and important assumptions and limitations.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We point out the limitations of the work and explain why they are important to
consider in H.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

27



Answer: [NA]

Justification: The paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: This paper has detailed instructions on how to reproduce the main experimental
results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

28



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We release all code and data preprocess scripts in the supplemental material
and figshareB.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper specify all the training and test details in 3.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The results are accompanied by error bars, confidence intervals, or statistical
significance tests.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The paper provide sufficient information on the computer resources in 3.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The paper discusses the potential positive societal impacts, such as advance-
ments in EEG-based diagnostics and therapeutic applications, which could improve health-
care outcomes.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite the original paper of existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We release our code.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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