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ABSTRACT

The family of probabilistic values, axiomatically-grounded in cooperative game
theory, has recently received much attention in data valuation. However, it is of-
ten computationally expensive to compute exactly (exponential w.r.t. the number
of data to valuate denoted by n). The existing generic estimator costs O(n2 log n)
utility evaluations to achieve an (ϵ, δ)-approximation under the 2-norm, while
faster estimators have been developed recently for special cases (e.g., empirically
for the Shapley value and theoretically for the Banzhaf value). In this work, start-
ing from the discovered connection between probabilistic values and least square
regressions, we propose a Generic Estimator based on Least Squares (GELS)
along with its variants that costO(n log n) utility evaluations for many probabilis-
tic values, largely extending the scope of this currently best complexity bound.
Moreover, we show that each distributional value, proposed by Ghorbani et al.
(2020) to alleviate the inconsistency of probabilistic values induced by using dis-
tinct databases, can also be cast as optimizing a similar least square regression.
This observation leads to a theoretically-grounded framework TrELS (Training
Estimators based on Least Squares) that can train estimators towards the specified
distributional values without requiring any supervised signals. Particularly, the
trained estimators are capable of predicting the corresponding distributional val-
ues for unseen data, largely saving the budgets required for running Monte-Carlo
methods otherwise. Our experiments verify the faster convergence of GELS, and
demonstrate the effectiveness of TrELS in learning distributional values. Our code
is available at https://github.com/watml/fastpvalue.

1 INTRODUCTION

In cooperative game theory, the family of probabilistic values, to which the Shapley value (Shapley
1953) and the Banzhaf value (Banzhaf 1965) belong, is uniquely characterized by the axioms of
linearity, dummy, monotonicity and symmetry (Weber 1977, Theorems 5 and 10). The induced
formula of probabilistic values is often deemed essential for data valuation methods (Kwon and
Zou 2022a; Lin et al. 2022; Wang and Jia 2023), and is also proved effective in feature attribution
(Jethani et al. 2022; Kwon and Zou 2022b; Lundberg and Lee 2017). Specifically, data valuation
aims to impute an importance value to each data point z in the training datasetDtr that represents its
contribution to the performance of a model trained onDtr, and it is empirically expected that models
retrained without the “less valuable” data (e.g., data that are assigned with importance values lower
than a specified threshold) in Dtr may achieve performance gains (Ghorbani and Zou 2019).

Throughout, we identify the dataset Dtr with [n] = {1, 2, . . . , n}, where n = |Dtr| is its size.
Without ambiguity, for each subset S, its lower-case s is used to denote its cardinality |S|, and we
write S ∪ i and S\i instead of S ∪ {i} and S\{i}, respectively. Each probabilistic value can be
parameterized by a list of non-negative vectors P = {pn ∈ Rn

+}n≥1 such that
∑n

s=1

(
n−1
s−1

)
pns = 1

for every n ≥ 1, and the importance value assigned to the i-th data point is computed by

ϕi(U
n) = ϕi(U

n;P) =
∑

S⊆[n]\i

pns+1 (U
n(S ∪ i)− Un(S)) (1)
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where Un : 2[n] → R is a user-specified utility function and the superscript n is to indicate its
domain 2[n]. Typically, Un(S) outputs the performance of a chosen model trained on S ⊆ [n]. In
this work, Un(∅) denotes the performance of initialized models. Take classification tasks as an ex-
ample, Un(S) could be the accuracy or the cross-entropy loss reported on a held-out dataset Dperf .
It is obvious that computing ϕ(Un) exactly requires 2n times of evaluating the utility function Un,
and hence is intractable. Therefore, there has been much research devoted to developing efficient
estimators. To our best knowledge, there is only one family of generic estimators designed for all
probabilistic values: sampling lift and its weighted variant (Kwon and Zou 2022a). Specifically, the
sampling lift estimator requires O(n

2

ϵ2 log n
δ ) utility evaluations to achieve an (ϵ, δ)-approximation

(see Proposition 5 in the Appendix). We also note that Zhou et al. (2023, Lemma 1 and Proposition
1) analyzed convergence using (ϵ1, ϵ2, δ)-approximation instead where ϵ1 and ϵ2 account for the
multiplicative and additive error, respectively.

So far, many faster estimators have been proposed for specific probabilistic values. For instance, the
advent of faster estimators designed specifically for the Shapley value was witnessed (Covert and
Lee 2021; Kolpaczki et al. 2023; Lundberg and Lee 2017; Zhang et al. 2023b); Wang and Jia (2023,
Theorem 4.9) proved that the estimator based on their proposed maximum sample reuse (MSR) prin-
ciple only requires O( n

ϵ2 log
n
δ ) utility evaluations for the Banzhaf value, but they also demonstrated

in Appendix C.2 therein that the MSR estimator does not extend to many other probabilistic values,
e.g., the family of Beta Shapley values (Kwon and Zou 2022a), in which the Shapley value resides.
We also notice that Lin et al. (2022) discovered a framework of unconstrained least square regres-
sions that leads to an estimator for a subfamily of probabilistic values (which, however, does not
include the Shapley value). All in all, it is still an open question on how to efficiently approximate
other probabilistic values, e.g., the Beta Shapley values.

A potential drawback of the probabilistic values is that they depend on the underlying database Dtr.
Using another database, the recalculated importance values could be very inconsistent with the pre-
vious ones. To overcome this issue, Ghorbani et al. (2020) proposed the framework of distributional
values, in which the importance value of any (unseen) data point z is

ψ(z;D,w, U) = E
s
w∼[m]

E
S∼Ds−1

[U(S ∪ z)− U(S)] (2)

whereD is a data distribution, w ∈ Rm is a probability vector and the domain of the utility function
U is

⋃
n≥1{S ∼ Dn}. Empirically, D is replaced by 1

|B|
∑

z∈B δz where B is a (large) dataset
sampled from D (Ghorbani et al. 2020). Clearly, the computational cost for the distributional values
is a big hurdle for its practical deployment.

In this paper, starting from the discovered connection between probabilistic values and least squares
(see Proposition 2), we develop a Generic Estimator based on Least Squares (GELS) along with its
variants: GELS-R and GELS-Shapley. Precisely, GELS-R is to approximate the ranking of proba-
bilistic values, while GELS-Shapley is specific to the Shapley value. In addition, we demonstrate
that each distributional value can also be cast into a similar least square regression, which serves
as the theoretical ground for formulating the framework TrELS (Training Estimators based Least
Squares) that can train estimators towards the specified distributional value without requiring any
supervised signals. In other words, unlike Monte-Carlo methods, TrELS allows the use of trained
estimators for prediction. Our main contributions are summarized as follows:

1. We propose GELS and GELS-R for all probabilistic values, and prove that both of them require
O( n

ϵ2 log
n
δ ) utility evaluations to achieve an (ϵ, δ)-approximation for many probabilistic values,

matching the currently best bound for special cases; see Algorithms 1 and 2. In addition, we also
develop GELS-Shapley in Algorithm 3 specific to the Shapely value.

2. By casting the distributional values into optimizing least square regressions, we design TrELS
for training estimators towards distributional values without supervision. See Algorithm 4 and
Theorem 1.

3. Our experiments verify the faster convergence of GELS and GELS-R, and we also show that the
distributional values can be well-learned using TrELS.

4. As a minor side note, we also extend the approximation-without-requiring-marginal (ARM) es-
timator, designed specifically for the Shapley value (Kolpaczki et al. 2023), to the whole family
of probabilistic values. See Proposition 8 in the Appendix.
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2 BACKGROUND

The sampling lift estimator (Moehle et al. 2022) refers to any approximation algorithm designed
according to

ϕi(U
n) =

∑
S⊆[n]\i

pns+1 (U
n(S ∪ i)− Un(S)) = ES⊆[n]\i[U

n(S ∪ i)− Un(S)].

Its weighted variant is to use n
(
n−1
s

)
pns+1(U

n(S ∪ i) − Un(S)) with P (S) = 1
n

(
n−1
s

)−1
instead

(Kwon and Zou 2022a). Particularly, they are the same for the Shapley value. As summarized
in Proposition 5, the sampling lift requires O(n

2

ϵ2 log n
δ ) utility evaluations to achieve an (ϵ, δ)-

approximation. Recently, Kolpaczki et al. (2023) proposed an ARM estimator specifically for the
Shapley value, but we notice that it can be easily generalized for all probabilistic values. There-
fore, we present the generic formula of ARM in the main paper while leaving its justification to
Proposition 8 in the Appendix. The ARM estimator is to approximate by using

ϕi(U
n) = ES∼P+

ARM |i∈S [U
n(S)]− ES∼P−

ARM |i ̸∈S [U
n(S)]

where P+
ARM (S) ∝ pns for all non-empty subsets S ⊆ [n] and P−

ARM (S) ∝ pns+1 for all S ⊊ [n].

In addition, Lin et al. (2022) developed the average marginal effect (AME) that casts a subfamily of
probabilistic values as the uniquely optimal solution to

argmin
v∈Rn

E[(Y −X⊤v)2],

where X and Y are random variables whose distribution is induced by i) sampling t ∼ P where P
is any probability distribution on the open interval (0, 1), ii) sampling a subset S ⊆ [n] by including
each data point in [n] with probability t, and iii) setting Y = Un(S) and Xi = 1

t·MP
if i ∈ S

and −1
(1−t)MP

otherwise where MP = Et∼P [
1

t(1−t) ]. Particularly, the uniquely optimal solution is

just a probabilistic value parameterized by pns =
∫ 1

0
ts−1(1 − t)n−sdP (t). If P is uniform, the

corresponding pn is the one defining the Shapley value, but MP = ∞, and thus AME does not
work for the Shapley value.

On the other hand, Wang and Jia (2023) proposed the maximum sample reuse (MSR) principle
which aims to find a distribution PMSR on 2[n] such that for every i ∈ [n],

PMSR(S | i ∈ S) = pns and PMSR(S | i ̸∈ S) = pns+1,

with which Eq. (1) can be rewritten as ϕi(Un) = ES|i∈S [U
n(S)] − ES|i ̸∈S [U

n(S)]. Specifically,
PMSR is uniform over 2[n] for the Banzhaf value, and Wang and Jia (2023, Theorem 4.9) showed
that the resulting estimator only requiresO( n

ϵ2 log
n
δ ) utility evaluations. However, they also demon-

strated in Appendix C.2 therein that such PMSR exists if and only if pns+1 = η(n) · pns for every
1 ≤ s ≤ n− 1 where η(n) ∈ R, which excludes all Beta Shapley values.

A recently-proposed faster algorithm specific to the Shapley value is the complement estimator
(Zhang et al. 2023b) using the complement formula

ϕSh
i (Un) =

∑
S⊆[n] : i∈S

(s− 1)!(n− s)!
n!

(Un(S)− Un([n]\S)) ,

which was discovered half a century ago by Harsanyi (1963, Eq. (4.1)). Earlier, Lundberg and Lee
(2017) proposed the kernelSHAP estimator that exploits the fact that the Shapley value ϕSh(Un) is
the uniquely optimal solution to

argmin
v∈Rn

∑
∅⊊S⊊[n]

(
n− 2

s− 1

)−1(
Un(S)− Un(∅)−

∑
i∈S

vi

)2
s.t.

∑
i∈[n]

vi = Un([n])− Un(∅),
(3)

which was first discovered by Charnes et al. (1988, Theorem 4). Since it is difficult to analyze
whether the kernelSHAP is unbiased or not, Covert and Lee (2021, Eq. (9)) later proposed a (prov-
ably) unbiased variant, and suggested that the paired sampling technique can enhance both. Very
recently, Fumagalli et al. (2023, Theorem 4.5) and Zhang et al. (2023a, Eqs. (11) and (12)) simpli-
fied the formula of the unbiased kernelSHAP.
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3 MAIN RESULTS

In this section, we first show how to efficiently estimate the ranking induced by any probabilistic
value. Then, by introducing a null data point we show how to turn our ranking estimator into a bona
fide estimator, while retaining the same efficiency for many probabilistic values. Lastly, we extend
our theory to an unsupervised framework that trains estimators towards distributional values.

3.1 WHEN RANKING SUFFICES

Practitioners often need to screen training data before feeding them to a model, to remove outliers,
low-quality data, or even adversarial examples that are deemed harmful to training. Data valuation
is a natural way to achieve this goal, i.e., only data assigned with high importance values could be
considered potentially “valuable.” If one has a good estimate of the proportion of “valuable” data,
then the relative ranking, instead of the more precise and demanding importance values, suffices.
Our first results below pave the way to efficiently estimate the relative ranking underlying any prob-
abilistic value. Particularly, Gn = {Un : 2[n] → R} is the set that contains all possible utility
functions provided there are n data to valuate.
Proposition 1. Define, for every n ≥ 1, Un ∈ Gn and i ∈ [n],

Ri(U
n) = Ri(U

n;P) =
∑

∅⊊S⊊[n]

mn
s · 1i∈S · Un(S) (4)

where mn
s = mn

s (P) = pns + pns+1 for every s ∈ [n − 1]. Then, for every n ≥ 1 and Un ∈ Gn,
R(Un) and ϕ(Un) produce the same ranking. Precisely, R(Un) = ϕ(Un) + g(Un)1n where
g(Un) = g(Un;P) ∈ R. As a side note, it holds for any pn ∈ Rn.

We emphasize that Proposition 1 is closely related to Proposition 2 below in the sense that they
immediately imply each other; we first noticed a more general version of proposition 2 that applies
to all least square values (Ruiz et al. 1998, Definition 5), a broader family that includes all the
additive-efficient-normalized probabilistic values; see Appendix D for more details.
Proposition 2. Consider the problem

argmin
v∈Rn

∑
∅⊊S⊊[n]

mn
s ·
(
Un(S)−

∑
i∈S

vi

)2
, (5)

its uniquely optimal solution shares the same ranking as ϕ(Un). As a side note, it holds true for any
pn ∈ Rn that produces a non-negative weight vector mn with

∑n−1
s=1 m

n
s > 0.

Algorithm 1 summarizes the estimator induced by Propositions 1 and 2. Note that for GELS-R each
utility evaluation Un(S) can be used for updating s estimate of the specified probabilistic value. By
contrast, the (weighted) sampling lift estimator spends two utility evaluations to update the estimate
of only one data point.

3.2 WHEN PROBABILISTIC VALUES ARE DESIRED

Remark 1. To recover ϕ(Un) from R(Un), we introduce a null data point labeled as n + 1 to
extend each Un into U

n+1
such that U

n+1
(S) = Un(S ∩ [n]) for every S ⊆ [n + 1]. Meanwhile,

we construct pn+1 ∈ Rn+1 such that pns = pn+1
s + pn+1

s+1 for every s ∈ [n], and note that pn+1 may

contain negative weights. Proposition 1 demonstrates thatR(Un+1
) = ϕ(U

n+1
) + g(U

n+1
)1n+1.

Particularly, the definition of Eq. (1) makes that ϕn+1(U
n+1

) = 0 and the structure pns = pn+1
s +

pn+1
s+1 leads to ϕi(Un) = ϕi(U

n+1
) for every i ∈ [n]. Therefore, g(U

n+1
) = Rn+1(U

n+1
), and

we have the recovery formula ϕi(Un) = ϕi(U
n+1

) = Ri(U
n+1

) − Rn+1(U
n+1

). This idea is
summarized in Proposition 3 and Algorithm 2.

Proposition 3. The uniquely optimal solution v∗ to the problem

argmin
v∈Rn+1

∑
∅⊊S⊊[n+1]

pns ·
(
Un(S ∩ [n])−

∑
i∈S

vi

)2
(6)

satisfies that ϕi(Un) = v∗i − v∗n+1 for every i ∈ [n].
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Algorithm 1: GELS-R (Generic Estimator based on Least Squares for Rankings)
Input: A dataset Dtr ≡ [n] to be valuated, a utility function Un ∈ Gn, a weight vector

q ∈ Rn−1 defined by qs =
(
n
s

)
(pns + pns+1), and a total number T of samples

Output: An unbiased estimate r̂ toR(Un) up to some scalar
1 Normalize q into a probability vector q← q/

∑n−1
s=1 qs

2 r̂← 0n, t← 0n

3 for k = 1, 2, . . . , T do
4 Sample sk ∈ [n− 1] using the probability vector q
5 Uniformly sample Sk from {R ⊆ [n] | |R| = sk}
6 for i ∈ Sk do
7 ti ← ti + 1 and r̂i ← (1− 1

ti
)r̂i +

1
ti
Un(Sk)

Algorithm 2: GELS (Generic Estimator based on Least Squares)
Input: A Dtr ≡ [N ] to be valuated, a utility function Un ∈ Gn, a weight vector q ∈ Rn

defined by qs =
(
n+1
s

)
pns , and a total number T of samples

Output: An unbiased estimate ϕ̂ to ϕ(Un)

1 Introduce a null datum labeled by n+1, and extend Un to U
n+1

// U
n+1

(S) = Un(S ∩ [n])
2 Obtain r̂ ∈ Rn+1 from Algorithm 1 using [n+ 1], U

n+1
, q and T

3 ϕ̂i ← (
∑n

s=1
s

n+1qs)(r̂i − r̂n+1) for each i ∈ [n] // using unnormalized q

Remark 2. For the Shapley value, since
∑

i∈[n] ϕ
Sh
i (Un) = Un([n])−Un(∅) and by Proposition 1

ϕ(Un) = R(Un) + g(Un)1n, we have Un([n])− Un(∅) =
∑

i∈[n]Ri(U
n) + g(Un) · n, and thus

g(Un) = 1
n (U

n([n]) − Un(∅) −
∑

i∈[n]Ri(U
n)). Therefore, we can recover ϕSh(Un) without

introducing a null data point, which is summarized in Algorithm 3.

Proposition 4. Assume that ∥Un∥∞ ≤ u for every Un ∈
⋃

n≥1 Gn. We have the following re-

sults: i) GELS requires O( τ(n)nϵ2 log n
δ ) utility evaluations to achieve an (ϵ, δ)-approximation, i.e.,

P (∥ϕ̂(Un)− ϕ(Un)∥2 ≥ ϵ) ≤ δ; ii) for GELS-R estimator, it requires O(κ(n)nϵ2 log n
δ ) utility eval-

uations instead; iii) plus, the corresponding convergence of GELS-Shapley is O( n
ϵ2 log(n)

2 log n
δ ).

Remark 3. Appendix H presents that both τ(n) and κ(n) are proportional to the inverse square of
the average reuse rate of utility evaluations. In other words, the more estimates on average in ϕ̂
each utility evaluation are used to update, the more efficient GELS and GELS-R will be. Precisely,
we study the asymptotic behaviors of τ(n) and κ(n) for semi-values, which include all probabilistic
values mentioned and whose P can be summarized by a probability measure µ over the closed
interval [0, 1] by pns =

∫ 1

0
ts−1(1− t)n−sdµ(t). To sum, i) the Banzhaf value and the Beta Shapley

values with α, β > 1 corresponds to τ(n), κ(n) ∈ Θ(1); ii) for the Beta Shapley values with
α, β ≥ 1, it becomes τ(n), κ(n) ∈ O(log(n)2) instead; iii) particularly, κ(n) ∈ Θ(1) for the
Shapley value (which is the Beta Shapley value with α = β = 1), which indicates GELS-R requires
O( n

ϵ2 log
n
δ ) utility evaluations to achieve an (ϵ, δ)-approximation; however, we emphasize that the

convergence of GELS-R and GELS-Shapley cannot be compared directly as the definition of (ϵ, δ)-
approximation does not account for multiplicative error; iv) additionally, while using the paired
sampling technique, GELS-Shapley exactly recovers unbiased KernelSHAP, and thus Proposition 4
also proves that the convergence of unbiased KernelSHAP with the paired sampling technique is
O( n

ϵ2 log(n)
2 log n

δ ). We refer the reader to Appendices F, I and J for more details.

3.3 DISTRIBUTIONAL VALUE

We are now ready to combine the previous results with the notion of distributional values Eq. (2)
to establish an unsupervised framework for training estimators towards distributional values. We
refer the reader to Appendix A for more details of distributional values. Such trained estimators can
valuate any unseen data point sampled from the same (or close-enough) data distribution in a single
forward pass, which largely saves the budgets required for running Monte-Carlo methods otherwise.
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Algorithm 3: GELS-Shapley (Generic Estimator based on Least Squares for the Shapley value)

Input: A Dtr ≡ [N ] to be valuated, a utility function Un ∈ Gn, a weight vector q ∈ Rn−1

defined by qs = n
s(n−s) , and a total number T of samples

Output: An unbiased estimate ϕ̂ to the Shpaley value of Un

1 Obtain r̂ ∈ Rn from Algorithm 1 using [n], Un, q and T
2 r̂i ← r̂i ·Hn−1 for each i ∈ [n] // Hn−1 =

∑n−1
s=1

1
s

3 ϕ̂i ← r̂i +O for each i ∈ [n] // O = (Un([n])− Un(∅)−
∑n

i=1 r̂i)/n

As counterparts in feature attribution, Covert et al. (2023) and Jethani et al. (2022) exploited the
least square regression (3) together with the additive efficient normalization proposed by Ruiz et al.
(1998, Definition 11) to train neural networks that can then predict the Shapley value of any unseen
instance in a single forward pass.

In practice, the data distribution D in Eq. (2) is replaced by an empirical distribution B =
1

|B|
∑

z∈B δz where B is a sufficiently large dataset sampled by D. Substituting B for D in Eq. (2),
observe that there exists another probability vector ω ∈ Rm such that

ψ(z;B,w, U) = φ(z;B,ω, U) := E
s
ω∼[m]

E
S

U∼Bs−1

[U(S ∪ z)− U(S)] (7)

where U represents the uniform sampling and Bs−1 = {R ⊆ B | |R| = s − 1}. We point out φ is
more natural to analyze. If z ̸∈ B, Eq. (7) is equal to calculating some probabilistic value for z with
the domain of utility function being 2B∪z; if z ∈ B, it produces some probabilistic value of z up to
some scalar, with the domain of utility function being 2B .
Theorem 1. Consider the case whenB = [n] (recall thatDtr ≡ [n]) for the empirical distributional
values φ defined in Eq. (7). Let d ∈ Rm be a probability vector that satisfies ds ∝ n−s+1

s ωs for
every s ∈ [m], and v∗ be the uniquely optimal solution to

argmin
v∈Rn+1

E
s
d∼[m]

E
S

U∼Bs

(
Un(S ∩ [n])−

∑
i∈S

vi

)2
, (8)

where Bs = {R ⊆ [n+ 1] | |R| = s}. There is, for every i ∈ [n],

C · (v∗i − v∗n+1) = φ(i;B,ω, Un) where C =

m∑
s=1

n− s+ 1

n
ωs.

Additionally, setting pns ∝
(

n
s−1

)−1
ωs if s ∈ [m] and 0 otherwise such that pn defines a probabilistic

value, r̂ obtained in Algorithm 2 meets that E[r̂i]− E[r̂n+1] = φ(i;B,ω, Un) for every i ∈ [n].

Theorem 1 constitutes a theoretically unsupervised ground for training estimators towards distribu-
tional values. Precisely, let ϕθ(x, y) be a trainable model parameterized by θ; x and y stands for
features and label, respectively; we propose training the estimator ϕθ based on the specified utility
function Un ∈ Gn through optimizing

argmin
θ,ϕo

E
s
d∼[m]

E
S

U∼Bs

(
Un(S ∩ [n])− ϕo1n+1∈S −

∑
i∈S∩[n]

ϕθ(xi, yi)

)2

. (9)

As will be seen in the experiments, for any data point z ̸∈ B, the trained ϕθ indeed predicts quite
accurately the corresponding probabilistic value of z with the domain of utility function being 2B∪z!

Generally, it is impractical to train estimators using the exact distributional values, or regressing
with a reasonable approximation as supervised signals, since it is extremely expensive to calculate
them exactly. For example, in our experiments where N = 10, 000 and m = 1, 000, each unseen
data point requires 2

∑999
s=0

(
10,000

s

)
utility evaluations to compute exactly. Therefore, the merits of

training estimators through optimizing the problem (9) are clear: i) we do not have to be concerned
with what the exact distributional values are, and ii) Theorem 1 guarantees that each estimator will
be trained towards the exact distributional values. The outline of such an unsupervised framework
is summarized in Algorithm 4.
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Algorithm 4: TrELS (Training Estimators based on Least Squares)
Input: A database Dtr ≡ (xi, yi)1≤i≤n, a probability vector ω ∈ Rm with m < n, a utility

function Un ∈ Gn, a trainable model ϕθ with an additional trainable parameter ϕo, a
batch size Z and a total number T of batches used for training.

1 Compute d ∈ Rm by letting ds = n−s+1
s ωs for every s ∈ [m]

2 Normalize: d← d/
∑m

s=1 ds
3 for t = 1, 2, . . . , T do
4 loss← 0
5 for j = 1, 2, . . . , Z do
6 Sample sj from [m] according to the distribution vector d
7 Sample Sj uniformly from {R ⊆ [n+ 1] | |R| = sj}

8 loss← loss+
(
Un(Sj ∩ [n])− ϕo1n+1∈Sj

−
∑

i∈Sj∩[n] ϕθ(xi, yi)
)2

9 loss← loss/Z
10 Update θ and ϕo using loss

Evaluation Phase: C · (ϕθ(x, y)− ϕo) // C =
∑m

s=1
n−s+1

n ωs

4 EVALUATION

In this section we perform experiments to i) verify the faster convergence of Algorithms 1 and 2,
and ii) demonstrate that distributional values can be effectively predicted by trained estimators using
TrELS. The classification datasets employed are from open resources, which are iris, wind (both
are from OpenML), FMNIST (Xiao et al. 2017) and MNIST. For all utility functions, their outputs
are set to be the performance of the trained models reported on a dataset Dperf disjoint from Dtr.
Precisely, Un(S) reports the performance of the specified model trained on S ⊆ Dtr ≡ [n], and
we leave the specified model untrained for evaluating Un(∅). Without being stated explicitly, the
performance of trained models is measured by classification accuracy. In addition, we fix the random
seed to be 2024 to make all utility functions deterministic. To be computationally efficient, we
adopt one-mini-batch one-epoch learning for evaluating utility functions (Ghorbani and Zou 2019).
Logistic regression is implemented for iris and wind, while LeNet (LeCun et al. 1998) is employed
for FMNIST and MNIST.

4.1 FASTER CONVERGENCE OF THE PROPOSED ESTIMATORS

This experiment is performed on all the above-mentioned datasets. The SGD optimizer with a
learning rate 1.0 is employed for iris and wind, whereas we set the learning rate to be 0.1 instead
for MNIST and FMNIST. To evaluate the specified probabilistic values exactly, we set |Dtr| =
|Dperf | = 24. All estimators are run 30 times with different random seeds, which range from 0 to
29. We compare to the following benchmarks:

• those designed specifically for the Shapley value, including the complement (Zhang et al. 2023b),
kernelSHAP (Lundberg and Lee 2017), unbiased KernelSHAP (Covert and Lee 2021), group
testing (Jia et al. 2019), and simSHAP (Zhang et al. 2023a);

• those work for all probabilistic values, including the sampling lift (see Proposition 5) and its
weighted variant (Kwon and Zou 2022a), and the generalized ARM (see Proposition 8);

• AME (Lin et al. 2022), restricted to a subfamily of probabilistic values;
• MSR (Wang and Jia 2023), proposed specifically for the Banzhaf value.

The probabilistic values we consider are: i) Beta(1, 1), which equals to the Shapley value, ii)
Beta(2, 2),1 iii) Beta(4, 1), and iv) the Banzhaf value. Particularly, AME does not apply to Beta(4,
1) and the Shapley since both of them lead to MP =∞.

1This probabilistic value is special: i) it can be derived from the best min-polynomial approximation of the
Lovász extension of Un (Marichal and Mathonet 2008, Corollary 19), and ii) it is uniquely characterized by a
set of axioms proposed in multi-criteria decision making (Grabisch and Labreuche 2001, Theorem 2)

7
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Shapley Beta(2, 2) Banzhaf

Figure 1: Comparison of different estimators using the dataset wind. The relative difference is
plotted in log scale while the Spearman correlation is in logit scale. In addition, r = 1− r.

Remark 4. Covert and Lee (2021) proposed the paired sampling technique to enhance (unbiased)
kernelSHAP, and we point out that this technique can also be employed for our methods, (weighted)
sampling lift, group testing, AME, MSR and simSHAP. We only compare the plain estimators in the
main paper, and experiments including the paired sampling are provided in Appendix J.

We present some of the results in Figure 1, while deferring others to Appendix J. These results sup-
port that GELS, GELS-R are currently among the (empirically) fastest tier in the group of generic
estimators. For the Shapley value, we omit the results of GELS-R since GELS-R and GELS-Shapley
share the same ranking; GELS-Shapley converges significantly faster than GELS; however, GELS-
Shapley may converge slower compared with the complement and kernelSHPA; notice that their
faster convergence comes at the cost of using Θ(n2) memory storage instead of Θ(n); precisely,
the complement requires another O(n2) time complexity to aggregate all n2 estimates, whereas
kernelSHAP needs an extra O(n3) time complexity for calculating the inverse of matrices. For the
Banzhaf value, though GELS converges slower than MSR in terms of relative error, the performance
of GELS and GELS-ranking in terms of Spearman correlation is not worse than MSR, and some-
times better. For the Beta(2, 2), GELS and GELS-R achieve the best. We notice that the generalized
ARM almost enjoys the same empirical convergence across different experiment settings, except
that it is slower than GELS-Shapley in terms of relative error.

4.2 TRAINING ESTIMATORS

In this experiment, we demonstrate the effectiveness of training estimators using Algorithm 4 on
FMNIST and MNIST. The corresponding results for MNIST are included in Appendix J. For the
utility functions, the SGD optimizer with a learning rate 0.01 and one-mini-batch one-epoch learning
is adopted, and we take |Dtr| = 10, 000 and |Dperf | = 500 from the training set. LeNet is the
architecture we employ as a trainable estimator ϕθ, and the input of the softmax layer is taken as the
output of ϕθ. For training estimators, we employ the Adam optimizer (Kingma and Ba 2014) with a
learning rate 0.001. The batch size Z is set to be 10, 000, and we randomly generate 1, 000 batches.
After these batches have all been fed into the estimators, we permute and reuse them to continue
training. Therefore, we have in total 1, 000 utility evaluations per data point for training estimators.
Lastly, the probability vector ω ∈ R1,000 we employ is ωs ∝ s−

1
2 . Moreover, 200 data, denoted by

Dval, are taken from the training dataset for selecting the best trained models. For the results in the
second row of Figure 2, we report on another 200 data extracted from the test dataset, for which we
refer to as Dtest. To sum, Dtr, Dperf , Dval and Dtest are all disjoint, which means Dval and Dtest

are composed of unseen data. For Dval and Dtest, we randomly run 600, 000 utility evaluations for
each data point using Eq. (7) to generate estimates of the specified distributional value, which are

8
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Figure 2: i) The first row: The first plot is the empirical loss of the sampled batch, while the others
present the relative distance ∥φ̂ − φ∥2/∥φ∥2 and the Spearman correlation between φ and φ̂. φ̂ de-
notes the one predicted by the estimators trained on FMNIST. The first two plots are in log scale.
The label “best” reports the best one achieved by the trained estimators at each time point, whereas
“specific” is the one with the random seed being 0. ii) The second row: the two plots compare
the performance of the estimators trained on FMNIST with the Monte-Carlo method using Eq (2).
Specifically, TrELS-SC uses trained estimators that achieve the best Spearman correlation on Dval,
whereas RD stands for relative difference.

regarded as the ground-truths φ. All results are reported with mean and standard deviation using 30
different random seeds ranging from 0 to 29.

The performance curves of the estimators during training are shown in Figure 2. First of all, the
increasing curve in terms of the Spearman correlation indicates that the estimators trained under
TrELS are able to gradually learn the exact ranking. Secondly, the decreasing curve (the best one)
of the relative difference suggests that the transform C · (ϕθ(x, y)− ϕo) is essential for training!

Next, we examine the efficiency of the trained estimators by comparing them with the Monte-Carlo
method based on Eq. (7). Specifically, for each random seed, the trained estimators that achieves
the best performance on Dval are selected. The comparison is shown in the second row of Figure 2.
As clearly shown, the Monte-Carlo methods using 20, 000 utility evaluations for each data point are
still inferior to the estimators trained under our TrELS. Observe that TrELS-SC performs poorly in
terms of relative difference, which is expected since the reported relative differences during training
are significantly unstable.

5 CONCLUSION

In this work, we start from the least square regression to develop GELS with its variants for all
probabilistic values. GELS-R is to approximate the ranking of probabilistic values, whereas GELS-
Shapley is specifically designed for the Shapley value. The faster convergence of the proposed
estimators is theoretically guaranteed, and is also verified empirically in our experiments. Besides,
we also demonstrate how to cast each distributional value into a least square problem, making it the
first-time theoretically-grounded to train estimators towards distributional values in an unsupervised
manner, the framework of which is introduced as TrELS. Notably, our experiments show that the
estimators trained under TrELS learn the specified distributional values quite well in terms of both
relative difference and Spearman correlation. Our work significantly broadens the practicality of
deploying value-based data valuation methods on rather large datasets.
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A DISTRIBUTIONAL VALUES

Originally, (Ghorbani et al. 2020, Definition 2.2) proposed the Distributional Shapley value defined
by

ν(z;D,m,U) = E
S∼Dm−1

[ϕ(z;U, S ∪ z)]

where ϕ(z;U, S ∪ z) =
∑
T⊆S

t!(m− 1− t)!
m!

(U(T ∪ z)− U(T )).

Note that ϕ is supposed to be the Shapley value if z ̸∈ S and |S| = m − 1. Then, Ghorbani et al.
(2020, Theorem 2.3) proved that

ν(z;D,m,U) = E
k

U∼[m]

E
S∼Dk−1

[U(S ∪ z)− U(S)] (10)

where U refers to the uniform distribution. To improve the overall running time, they suggested
using a weighted sampling k w∼ [m] instead.

However, Eq. (10) holds only with an abuse of set operations. Precisely, repeated items are counted
in their proof, e.g., {x, y, x} = {x, x, y} ̸= {x, y} and {z, x, z} ∪ z = {z, x, z, z} ̸= {z, x, z}. In
this work, we adhere to set operations. Regarding Eq. (2), samples from Ds−1 are tuples that may
contain repeated items, but they are reduced to be sets.

Adhering to set operations, Eq. (10) is false. Take D ← 1
3δx + 1

3δy + 1
3δz , m ← 3 as an example

and assume U(∅) = 0, one can verify that

ν(z;D,m,U) =
1

3
U({z}) + 5

54
(U({x, z}) + U({y, z})− U({x})− U({y}))

+
2

27
(U({x, y, z})− U({x, y})),

E
k

U∼[m]

E
S∼Dk−1

[U(S ∪ z)− U(S)] =
1

3
U({z}) + 4

27
(U({x, z}) + U({y, z})− U({x})− U({y}))

+
2

27
(U({x, y, z})− U({x, y})).

Therefore, we refer to Eq. (2) in accordance with set operations as distributional values.

12



Published as a conference paper at ICLR 2024

B PROOFS FOR THE PROPOSED ALGORITHMS

Lemma 1. Let Jn ∈ Rn×n be the all-one matrix. The matrix A = aJn + bIn is invertible if and
only if na+ b ̸= 0 and b ̸= 0. Particularly, A−1 = − a

b(na+b)Jn + 1
b In.

Proof. Observe that the eigenvalues of Jn are 0 (with n − 1 independent eigenvectors) and n, and
thus the eigenvalues of aJn + bIn are b and na + b. Therefore, aJn + bIn is invertible if and only
if b ̸= 0 and na+ b ̸= 0.

A priori is that A−1 admits the form of xJn + yIn. Using AA−1 = In, we have the equation

(na+ b)x+ (a+ b)y = 1,

(na+ b)x+ ay = 0,

which leads to that x = − a
b(na+b) and y = 1

b .

Proposition 1. Define, for every n ≥ 1, Un ∈ Gn and i ∈ [n],

Ri(U
n) = Ri(U

n;P) =
∑

∅⊊S⊊[n]

mn
s · 1i∈S · Un(S) (4)

where mn
s = mn

s (P) = pns + pns+1 for every s ∈ [n − 1]. Then, for every n ≥ 1 and Un ∈ Gn,
R(Un) and ϕ(Un) produce the same ranking. Precisely, R(Un) = ϕ(Un) + g(Un)1n where
g(Un) = g(Un;P) ∈ R. As a side note, it holds for any pn ∈ Rn.

Proof.

ϕi(U
n) =

∑
S⊆[n]\i

pns+1(U
n(S ∪ i)− Un(S))

=
∑

S⊊[n] : i∈S

mn
sU

n(S) + [pnnU
n([n])−

∑
S⊊[n]

pns+1U
n(S)]

=
∑

∅⊊S⊊[n]

mn
s · 1i∈S · Un(S) + g(Un).

(11)

Proposition 2. Consider the problem

argmin
v∈Rn

∑
∅⊊S⊊[n]

mn
s ·
(
Un(S)−

∑
i∈S

vi

)2
, (5)

its uniquely optimal solution shares the same ranking as ϕ(Un). As a side note, it holds true for any
pn ∈ Rn that produces a non-negative weight vector mn with

∑n−1
s=1 m

n
s > 0.

Proof. Let Jn ∈ Rn×n be the all-one matrix, and In ∈ Rn×n be the identity matrix. Since the
problem (5) is convex, its optimal solution can be obtained by letting its derivative equal 0, which
yields

Av∗ = b

where A = eJn + dIn with e =
n−1∑
s=2

(
n− 2

s− 2

)
mn

s and d =

(
n−1∑
s=1

(
n− 1

s− 1

)
mn

s

)
− e,

and bi =
∑

S⊊[n] : i∈S

mn
s · Un(S) for every i ∈ [n].

(12)
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Specifically,

d = mn
1 +

n−1∑
s=2

((
n− 2

s− 1

)
+

(
n− 2

s− 2

))
mn

s −
n−1∑
s=2

(
n− 2

s− 2

)
mn

s =

n−1∑
s=1

(
n− 2

s− 1

)
mn

s

=

n−1∑
s=1

(
n− 2

s− 1

)
pns +

n−1∑
s=1

(
n− 2

s− 1

)
pns+1 = pn1 +

n−1∑
s=2

(
n− 2

s− 1

)
pns +

n−1∑
s=2

(
n− 2

s− 2

)
pns + pnn

=

n∑
s=1

(
n− 1

s− 1

)
pns = 1.

By Lemma 1, A−1 = − e
e·n+1Jn + In, which implies the uniqueness of the optimal solution.

Therefore,
v∗ = A−1b = b+ c1n (13)

where c = −e
e·n+1

∑n
i=1 bi. According to Eq. (4), we have b = R(Un). Therefore, v∗ and ϕ(Un)

share the same ranking. Suppose we have pn ∈ Rn with
∑n−1

s=1 m
n
s > 0, then there is v∗ =

1
db+ ĉ1n instead where ĉ = −e

e·n+d

∑n
i=1 bi. Since d =

∑n−1
s=1

(
n−2
s−1

)
mn

s > 0, the factor 1
d does not

change the ranking of b.

Proposition 3. The uniquely optimal solution v∗ to the problem

argmin
v∈Rn+1

∑
∅⊊S⊊[n+1]

pns ·
(
Un(S ∩ [n])−

∑
i∈S

vi

)2
(6)

satisfies that ϕi(Un) = v∗i − v∗n+1 for every i ∈ [n].

Proof. For each Un ∈ Gn, define U
n+1 ∈ Gn+1 by letting U

n+1
(S) = Un(S ∩ [n]). Substituting

U
n+1

(S) for Un(S ∩ [n]) in the problem (6), and reusing the Eq. (12) accordingly, we have

v∗ = A−1b

where bi = pnn · Un([n]) +
∑

S⊊[n] : i∈S

(pns + pns+1) · Un(S) ∀i ∈ [n],

and bn+1 =
∑
S⊊[n]

pns+1 · Un(S).

Using Eq. (11), we obtain ϕi(Un) = bi − bn+1 for every i ∈ [n]. Meanwhile, by Eq. (13), we have
v∗ = b+ c1n+1 for some c ∈ R, and thus vi − vn+1 = bi − bn+1 = ϕi(U

n) for every i ∈ [n].

Theorem 1. Consider the case whenB = [n] (recall thatDtr ≡ [n]) for the empirical distributional
values φ defined in Eq. (7). Let d ∈ Rm be a probability vector that satisfies ds ∝ n−s+1

s ωs for
every s ∈ [m], and v∗ be the uniquely optimal solution to

argmin
v∈Rn+1

E
s
d∼[m]

E
S

U∼Bs

(
Un(S ∩ [n])−

∑
i∈S

vi

)2
, (8)

where Bs = {R ⊆ [n+ 1] | |R| = s}. There is, for every i ∈ [n],

C · (v∗i − v∗n+1) = φ(i;B,ω, Un) where C =

m∑
s=1

n− s+ 1

n
ωs.

Additionally, setting pns ∝
(

n
s−1

)−1
ωs if s ∈ [m] and 0 otherwise such that pn defines a probabilistic

value, r̂ obtained in Algorithm 2 meets that E[r̂i]− E[r̂n+1] = φ(i;B,ω, Un) for every i ∈ [n].

Proof. Since Un(S ∪ i)− Un(S) = 0 if i ∈ S, for each i ∈ [n],

φ(i;B,ω, Un) =
∑

S⊆[n]\i : s<m

ωs+1

(
n

s

)−1

(Un(S ∪ i)− Un(S))

= C ·
∑

S⊆[n]\i

qs+1 · (Un(S ∪ i)− Un(S))
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where qs =
(

n
s−1

)−1 ωs

C if s ∈ [m] and 0 otherwise, and C =
∑m

s=1

(
n−1
s−1

)(
n

s−1

)−1
ωs =∑m

s=1
n−s+1

n ωs. On the other hand, the objective in the problem (8) can be rewritten as

∑
∅⊊S⊊[n+1] : s≤m

ds

(
n

s

)−1
(
U

n+1
(S)−

∑
i∈S

vi

)2

where U
n+1 ∈ Gn+1 is defined by letting U

n+1
(S) = Un(S ∩ [n]) for every S ⊆ [n + 1]. Note

that ds = αn−s+1
s ωs for every s ∈ [m] where α is a scalar that makes d a probability vector. By

Proposition 3, for every i ∈ [n],

v∗i − v∗n+1 =
∑

S⊆[n]\i

q̂s+1 · (Un(S ∪ i)− Un(S))

where q̂s = β · ds
(
n
s

)−1
for every s ∈ [m] and 0 otherwise. Suffice it to show that q̂s = qs for every

s ∈ [m]. Note that

1 =

m∑
s=1

(
n− 1

s− 1

)
q̂s =

m∑
s=1

(
n− 1

s− 1

)
β · αn− s+ 1

s
ωs

(
n

s

)−1

= α · β · C,

and thus

qs = β · α
(

n

s− 1

)−1

ωs = β

(
n

s− 1

)−1
s

n− s+ 1
ds = β

(
n

s

)−1

ds = q̂s.

For the side note, note that
L · (E[r̂i]− E[r̂n+1]) = v∗i − v∗n+1

where

L =

n∑
s=1

s

n+ 1

(
n+ 1

s

)
qs =

m∑
s=1

s

n+ 1

(
n+ 1

s

)(
n

s− 1

)−1
ωs

C
=

1

C
.

C PROOFS FOR CONVERGENCES

Proposition 5. Assume that ∥Un∥∞ ≤ u for every Un ∈
⋃

n≥1 Gn, any estimator based on the

sampling lift strategy requires O(n
2

ϵ2 log n
δ ) utility evaluations to achieve P (∥ϕ̂(Un) − ϕ(Un)∥2 ≥

ϵ) ≤ δ.

The sampling lift strategy refers to any estimator designed according to

ϕi(U
n) =

∑
S⊆[n]\i

pns+1 (U
n(S ∪ i)− Un(S)) = ES [U

n(S ∪ i)− Un(S)]

for every i ∈ [n] as
∑n

s=1

(
n−1
s−1

)
pns = 1. Precisely, Un(S ∪ i) − Un(S) is a random variable

following a certain probability distribution, denoted by Pi, on all subsets S ⊆ [n]\i. Let T be the
total number of samples and S = {(S1

1 , S
2
1 , . . . , S

n
1 ), (S

1
2 , S

2
2 , . . . , S

n
2 ), . . . , (S

1
T , S

2
T , . . . , S

n
T )} be

a list of T samples where each Si = {Si
1, S

i
2, . . . , S

i
T } are sampled from Pi. Then, the estimator

based on the sampling lift strategy is ϕ̂i(Un) = 1
T

∑T
k=1(U

n(Si
k ∪ i) − Un(Si

k)). There are two
slightly different implementations: i) sampling each Si independently, and ii) sampling Si for some
i ∈ [n], and then reusing all samples in Si for every other j ∈ [n] by swapping i and j, the latter of
which is our implementation. Nevertheless, the proof below works for both of them. Besides, the
proof is adapted from (Wang and Jia 2023, Theorem 4.8) where it is stated for the Banzhaf value.
Nevertheless, we point out that it applies to all probabilistic values.

Proof. For simplicity, we write ϕ = ϕ(Un) and ϕ̂ = ϕ̂(Un). Fix an i ∈ [n], since E[ϕ̂i] = ϕi, by
the Hoeffding’s inequality,

P (|ϕ̂i − ϕi| ≥ ϵ) ≤ 2 exp(−Tϵ
2

2u2
).
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Then,

P (∥ϕ̂− ϕ∥2 ≥ ϵ) ≤ P (
⋃
i∈[n]

|ϕ̂i − ϕi| ≥
ϵ√
n
) ≤ 2n exp(− Tϵ2

2nu2
)

Letting δ ≥ 2n exp(− Tϵ2

2nu2 ) leads to T ≥ 2nu2

ϵ2 log 2n
δ . Since each sample (S1

k, S
2
k, . . . , S

n
k ) invokes

2n utility evaluations, it requires O(n
2

ϵ2 log n
δ ) utility evaluations to achieve an (ϵ, δ)-approximation.

Proposition 4. Assume that ∥Un∥∞ ≤ u for every Un ∈
⋃

n≥1 Gn. We have the following re-

sults: i) GELS requires O( τ(n)nϵ2 log n
δ ) utility evaluations to achieve an (ϵ, δ)-approximation, i.e.,

P (∥ϕ̂(Un)− ϕ(Un)∥2 ≥ ϵ) ≤ δ; ii) for GELS-R estimator, it requires O(κ(n)nϵ2 log n
δ ) utility eval-

uations instead; iii) plus, the corresponding convergence of GELS-Shapley is O( n
ϵ2 log(n)

2 log n
δ ).

Proof. The proof is adapted from (Wang and Jia 2023, Theorem 4.9). First, we prove the conver-
gence for GELS-R. Note that it is an unbiased estimator of

r =

(
n−1∑
s=1

(
n− 1

s− 1

)
(pns + pns+1)

)−1

R(Un). (14)

Let γ(n) =
∑n−1

s=1 (
n−1
s−1)(p

n
s +pn

s+1)∑n−1
s=1 (

n
s)(pn

s +pn
s+1)

. For convenience, we write S = {S1, S2, . . . , ST } that contains

all sampled subsets, and Ti = |{S ∈ S | i ∈ S}| for every i ∈ [n]. For every i ∈ [n], define

ri =
1

γ(n)T

∑
S∈S : i∈S

Un(S).

Then, we have

|r̂i − ri| =

∣∣∣∣∣
(

1

Ti
− 1

γ(n)T

) ∑
S∈S : i∈S

Un(S)

∣∣∣∣∣ ≤ u

γ(n)T
|γ(n)T − Ti|.

Note that this inequality |r̂i − ri| ≤ u
γ(n)T |γ(n)T − Ti| still holds when Ti = 0. Since Ti ∼

binomial(T, γ(n)), by the Hoeffding’s inequality, there is

P (|Ti − γ(n)T | ≥ ∆) ≤ 2 exp(−2∆2

T
).

Therefore, |r̂i − ri| < u∆
γ(n)T provided that |Ti − γ(n)T | < ∆. Since ri = 1

T

∑
S∈S β(S, n)U

n(S)

where β(S, n) = γ(n)−1 if i ∈ S and 0 otherwise, and E[ri] = ri, using the Heoffding’s inequality
again yields

P (|ri − ri| ≥ σ) ≤ 2 exp(−γ(n)
2Tσ2

2u2
)

Therefore,
P (|r̂i − ri| ≥ ϵ) = P (|r̂i − ri| ≥ ϵ ∩ |Ti − γ(n)T | < ∆) + P (|r̂i − ri| ≥ ϵ ∩ |Ti − γ(n)T | ≥ ∆)

≤ P (|r̂i − ri| ≥ ϵ | |Ti − γ(n)T | < ∆) + 2 exp(−2∆2

T
)

≤ P (|ri − ri| ≥ ϵ−
u∆

γ(n)T
| |Ti − γ(n)T | < ∆) + 2 exp(−2∆2

T
)

≤
P (|ri − ri| ≥ ϵ− u∆

γ(n)T )

1− 2 exp(− 2∆2

T )
+ 2 exp(−2∆2

T
)

≤
2 exp(−

γ(n)2T(ϵ− u∆
γ(n)T )

2

2u2 )

1− 2 exp(− 2∆2

T )
+ 2 exp(−2∆2

T
)

≤ 3 exp(−
γ(n)2T

(
ϵ− u∆

γ(n)T

)2
2u2

) + 2 exp(−2∆2

T
)
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where 1−2 exp(− 2∆2

T ) ≥ 2
3 provided that T is sufficiently large. The next step is to determine ∆ by

solving the equation−
γ(n)2T(ϵ− u∆

γ(n)T )
2

2u2 = − 2∆2

T , which yields ∆ = γ(n)Tϵ
3u . Note that this solution

gives ϵ − u∆
γ(n)T = 2ϵ

3 > 0 and 2∆2

T = 2γ(n)2Tϵ2

9u2 . Besides, the inequality 1 − 2 exp(− 2∆2

T ) ≥ 2
3

leads to T ≥ 9 log(6)u2

2γ(n)2ϵ2 . Eventually, we have

P (|r̂i − ri| ≥ ϵ) ≤ 5 exp(−2γ(n)2Tϵ2

9u2
) (15)

provided that T ≥ 9 log(6)u2

2γ(n)2ϵ2 . Then,

P (∥r̂− r∥2 ≥ ϵ) ≤ P (
⋃
i∈[n]

|r̂i − ri| ≥
ϵ√
n
) ≤ 5n exp(−2γ(n)2Tϵ2

9u2n
). (16)

Solving 5n exp(− 2γ(n)2Tϵ2

9u2n ) ≤ δ leads to T ≥ 9u2n
2γ(n)2ϵ2 log

5n
δ , and thus GELS-R requires

max(
9 log(6)u2

2γ(n)2ϵ2
,

9u2n

2γ(n)2ϵ2
log

5n

δ
) = O(

κ(n)n

ϵ2
log

n

δ
)

utility evaluations to achieve an (ϵ, δ)-approximation where κ(n) = γ(n)−2.

Next, we prove the convergence for GELS. For simplicity, we write ϕ = ϕ(Un) and h =(∑n
s=1

(
n

s−1

)
pns

)−1

R(Un+1
); see Eq. (14). By Eq. (15), there is, for every i ∈ [n+ 1],

P (|ĥi − hi| ≥ ϵ) ≤ 5 exp(−2γ̃(n)2Tϵ2

9u2
)

provided that T ≥ 9 log(6)u2

2γ̃(n)2ϵ2 where γ̃(n) =
∑n

s=1 (
n

s−1)p
n
s∑n

s=1 (
n+1
s )pn

s

. Therefore, for every i ∈ [n],

P (|(ĥi − ĥn+1)− (hi − hn+1)| ≥ ϵ) ≤ P (|ĥi − hi| ≥
ϵ

2
∪ |ĥn+1 − hn+1| ≥

ϵ

2
)

≤ 10 exp(− γ̃(n)
2Tϵ2

18u2
).

let χ(n) =
∑n

s=1

(
n

s−1

)
pns and η(n) =

∑n
s=1

(
n+1
s

)
pns , and note that γ̃(n) = χ(n)

η(n) . As argued in

Remark 1, Ri(U
n+1

) − Rn+1(U
n+1

) = ϕi(U
n) for every i ∈ [n], and thus χ(n)(hi − hn+1) =

ϕi(U
n) for every i ∈ [n]. So, for every i ∈ [n],

P (|ϕ̂i − ϕi| ≥ ϵ) = P (|(ĥi − ĥn+1)− (hi − hn+1)| ≥
ϵ

χ(n)
) ≤ 10 exp(− Tϵ2

18u2η(n)2
).

Therefore,

P (∥ϕ̂− ϕ∥2 ≥ ϵ) ≤ P (
⋃
i∈[n]

|ϕ̂i − ϕi| ≥
ϵ√
n
) ≤ 10n exp(− Tϵ2

18u2nη(n)2
).

Solving δ ≥ 10n exp(− Tϵ2

18u2nη(n)2 ) yields T ≥ 18u2nη(n)2

ϵ2 log 10n
δ . To conclude, GELS requires

max(
9 log(6)u2

2γ̃(n)2ϵ2
,
18u2nη(n)2

ϵ2
log

10n

δ
) = O(

τ(n)n

ϵ2
log

n

δ
)

utility evaluations to achieve an (ϵ, δ)-approximation where τ(n) = η(n)2. Note that γ̃(n)−1 ≤
η(n) as χ(n) =

∑n
s=1

(
n

s−1

)(
n−1
s−1

)−1(n−1
s−1

)
pns =

∑n
s=1

n
n−s+1

(
n−1
s−1

)
pns ≥ 1.

Last, we prove the convergence for GELS-Shapley. Reusing Eq. (14), since pns = (s−1)!(n−s)!
n! for

the Shapley value, it is Hn−1 · r = R(Un) where Hn−1 =
∑n−1

s=1

(
n−1
s−1

)
(pns + pns+1) =

∑n−1
s=1

1
s .

By Eq. (16), there is

P (Hn−1 · ∥r̂− r∥2 ≥ ϵ) ≤ 5n exp

(
− 2Tϵ2

9u2nη(n− 1)2

)

17
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provided that T ≥ 9 log(6)u2

2γ(n)2ϵ2 . Note that
∑n−1

s=1

(
n
s

)
(pns + pns+1) =

∑n−1
s=1

(
n
s

)
pn−1
s = η(n− 1).

For convenience, let ϕSh be the corresponding Shapley value. As discussed in Remark 2,

ϕSh = Hn−1 · r+
Un([n])− Un(∅)−

∑n
s=1Hn−1 · ri

n
.

The procedure of casting Hn−1 · r into ϕSh is called additive-efficient-normalization (Ruiz et al.
1998, Definition 11). Particularly, we write

ϕ̂Sh = Hn−1 · r̂+
Un([n])− Un(∅)−

∑n
s=1Hn−1 · r̂i

n
.

As pointed out by Jethani et al. (2022, Appendix B), the additive-efficient-normalization is just an
orthogonal projection, and therefore we have

∥ϕ̂Sh − ϕSh∥2 ≤ ∥Hn−1 · r̂−Hn−1 · r ∥2,
which suggest

P (∥ϕ̂Sh − ϕSh∥2 ≥ ϵ) ≤ P (∥Hn−1 · r̂−Hn−1 · r ∥2 ≥ ϵ) ≤ 5n exp

(
− 2Tϵ2

9u2nη(n− 1)2

)
.

Solving δ ≥ 5n exp
(
− 2Tϵ2

9u2nη(n−1)2

)
yields T ≥ 9u2nη(n−1)2

2ϵ2 log 5n
δ . Since γ(n)−1 ≤ η(n − 1),

we eventually have that GELS-Shapley requires O(nτ(n)ϵ2 log n
δ ) utility evaluations to achieve an

(ϵ, δ)-approximation where τ(n) = η(n)2 > η(n− 1)2. Note that i) for the Shapley value, η(n) =∑n
s=1

(
n+1
s

)(
n−1
s−1

)−1 1
n =

∑n
s=1

n+1
s(n+1−s) =

∑n
s=1

(
1
s + 1

n+1−s

)
= 2Hn ∈ log n, and thus

η(n− 1) < η(n); and ii) γ(n)−1 ≤ η(n− 1) as γ(n) · η(n− 1) = Hn−1 ≥ 1.

D LEAST SQUARE VALUES

In this appendix, we demonstrate how we obtained proposition 2 at the very beginning without
knowing proposition 1.
Definition 1 (Least Square Values (Ruiz et al. 1998, Definition 5)). Suppose a non-negative non-
zero vector m ∈ Rn−1 is given, a least square value ξ(Un;m) ∈ Rn is defined to be the uniquely
optimal solution to the problem

argmin
v∈Rn

∑
∅⊊S⊊[n]

ms

(
Un(S)− Un(∅)−

∑
i∈S

vi

)2

s.t.
n∑

i=1

vi = Un([n])− Un(∅).

(17)

Specifically, Ruiz et al. (1998, Theorem 8) developed a system of axioms that uniquely characterizes
the family of least square values. Moreover, its relationship with the family of probabilistic values
was also revealed.
Proposition 6 (Ruiz et al. 1998, Theorem 12). For each vector of weights pn ∈ Rn that satisfies∑n

s=1

(
n−1
s−1

)
pns = 1, define m ∈ Rn−1 by letting ms = pns + pns+1, there exists some function

f : Gn → R such that

ξi(U
n;m) =

∑
S⊆[n]\i

pns · (Un(S ∪ i)− Un(∅)) + f(Un)

for every Un ∈ Gn and i ∈ [n].

As proposed by Ruiz et al. (1998, Definition 11), for each probabilistic value ϕ(Un), its additive-
efficient-normalization ϕ is defined to be

ϕ(Un) = ϕ(Un) +
1

n
(Un([n])− Un(∅)−

∑
i∈[n]

ϕi(U
n)).

18
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Using Proposition 6, one can verify that ξ(Un;m) = ϕ(Un) and f(Un) = 1
n (U

n([n])− Un(∅)−∑
i∈[n] ϕi(U

n)). Particularly, we notice that the constraint of the problem (17) and the term−Un(∅)
in the objective can be removed if it is the ranking that matters.
Proposition 7. Suppose a utility function Un ∈ Gn and a non-negative non-zero vector m ∈ Rn−1

are given, the uniquely optimal solution u∗ to the problem

argmin
u∈Rn

∑
∅⊊S⊊[n]

ms

(
Un(S)−

∑
i∈S

ui

)2

(18)

satisfies that there exists some c ∈ R such that
u∗ = ξ(Un;m) + c1n.

Proof. Since the optimization problem (17) is convex, it can be solved using the KKT condition.
Specifically, by introducing a dual variable λ ∈ R, there is

v⊤Av − 2b⊤v +
∑

∅⊊S⊊[n]

ms (U
n(S)− Un(∅))2 − 2λ(Un([n])− Un(∅)−

n∑
i=1

ϕi)

where Aij =

{∑n−1
s=1

(
n−1
s−1

)
ms, i = j∑n−1

s=2

(
n−2
s−2

)
ms, i ̸= j

, and bi =
∑

S⊊[n] : i∈S

ms (U
n(S)− Un(∅)) ∀i ∈ [n].

Letting its derivative equal 0 yields

Av − b+ λ1n = 0 and 1⊤
nv = Un([n])− Un(∅),

which leads to the uniquely optimal solution

v∗ = A−1

(
b− 1⊤

nA
−1b− Un([n]) + Un(∅)

1⊤
nA

−11n
1n

)
. (19)

Specifically,
n−1∑
s=1

(
n− 1

s− 1

)
ms −

n−1∑
s=2

(
n− 2

s− 2

)
ms

=m1 +

n−1∑
s=2

((
n− 2

s− 1

)
+

(
n− 2

s− 2

))
ms −

n−1∑
s=2

(
n− 2

s− 2

)
ms =

n−1∑
s=1

(
n− 2

s− 1

)
ms > 0,

by lemma 1, the existence of A−1 is guaranteed. On the other hand, letting the derivative of the
objective in the problem (18) equal 0 gives

u∗ = A−1(b+ t1n) where t = Un(∅) ·A11.

Therefore, we eventually have, for some c ∈ R,
u∗ = v∗ + c1n = ξ(Un;m) + c1.

for some c ∈ R.

Remark 5. To conclude, Proposition 2 is derived from Propositions 6 and 7.

E GENERALIZED ARM

As proposed by Kolpaczki et al. (2023), the Shapley value can be rewritten as, for every Un ∈ Gn
and i ∈ [n],

ϕSh
i (Un) = ES∼P+

ARM |i∈S [U
n(S)]− ES∼P−

ARM |i̸∈S [U
n(S)]

where P+
ARM (S) = 1

s·H
(
n
s

)−1
for every S ∈ S+ = {∅ ⊊ S ⊆ [n]} and P−

ARM (S) =
1

(n−s)·H
(
n
s

)−1
for every S ∈ S− = {S ⊊ [n]}; H =

∑n
s=1

1
s .

The estimator based on this formula is called the approximation-without-requiring-marginal estima-
tor. We found that this methodology can be easily adapted for every other probabilistic value, which
is summarized in the below.
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Proposition 8. For every Un ∈ Gn and i ∈ [n],

ϕi(U
n) = ES∼P+

ARM |i∈S [U
n(S)]− ES∼P−

ARM |i ̸∈S [U
n(S)]

where P+
ARM (S) ∝ ps for every S ∈ S+ and P−

ARM (S) ∝ ps+1 for every S ∈ S−.

Proof. Precisely, p+s = α·ps and p−s = β·ps+1 such that
∑n

s=1

(
n
s

)
p+s = 1 and

∑n−1
s=0

(
n
s

)
p−s+1 = 1.

Let S+ and S− be the corresponding random samples from S+ and S−, respectively. Fix an i ∈ [n],
observe that,

P (i ∈ S+) =

n∑
s=1

P (i ∈ S+ | |S+| = s) · P (|S+| = s) =

n∑
s=1

(
n− 1

s− 1

)(
n

s

)−1

·
(
n

s

)
p+s

= α

n∑
s=1

(
n− 1

s− 1

)
ps = α.

Therefore,

P (S+ | i ∈ S+) =
P (S+, i ∈ S+)

P (i ∈ S+)
=
α · ps
α

= ps.

Similarly,

P (i ̸∈ S−) =

N−1∑
s=0

P (i ̸∈ S− | |S−| = s) · P (|S−| = s) =

n−1∑
s=0

(
n− 1

s

)(
n

s

)−1

·
(
n

s

)
p−s

= β

n−1∑
s=0

(
n− 1

s

)
ps+1 = β,

which leads to

P (S− | i ̸∈ S−) =
P (S−, i ̸∈ S−)

P (i ̸∈ S−)
=
β · ps+1

β
= ps+1.

F PRACTICAL PROBABILISTIC VALUES

As provided by Dubey et al. (1981), each semi-value, which is a subfamily of probabilistic values,
can be expressed as, for every Un ∈ Gn and i ∈ [n],

ϕi(U
n) = ϕi(U

n;µ) =
∑

S⊆[n]\i

(∫ 1

0

ts(1− t)n−1−sdµ(t)

)
(Un(S ∪ i)− Un(S))

where µ is any probability measure on the closed interval [0, 1]. In other words, in view of Eq. (1),
there is pns =

∫ 1

0
ts−1(1− t)n−sdµ(t) .

To the best of our knowledge, practical semi-values, i.e., those ever studied in the previous refer-
ences, include the Banzhaf value (Wang and Jia 2023) and the Beta Shapley values with α, β ≥ 1
(Kwon and Zou 2022a; Kwon and Zou 2022b). Note that Beta(1, 1) is exactly the Shapley
value. For the Banzhaf value, the corresponding µ is the Dirac delta distribution δ0.5, which
leads to pns = 2−(n−1). For Beta(α, β), the corresponding probability density function for µ is
∝ tβ−1(1−t)α−1, and thus pns = Γ(α+β)

Γ(α)Γ(β) ·
Γ(β+s−1)Γ(α+n−s)

Γ(α+β+n−1) . Specifically, it is pns = (s−1)!(n−s)!
n!

for Beta(1, 1), i.e., the Shapley value.

G PRACTICAL ASPECT OF FASTER ESTIMATORS FOR PROBABILISTIC
VALUES

As far as we know, in feature attribution, FastSHAP is the only framework for training semi-value-
based explainers (Jethani et al. 2022), which is based on the least square regression Eq. (3) specific
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to the Shapley value. Recently, Kwon and Zou (2022b) showed that other candidates of the Beta
Shapley values tend to perform better than the Shapley value in feature attribution. Therefore, one
may ask how to cast other probabilistic values into optimization, which is answered by Proposi-
tions 1 and 3. Though AME proposed by Lin et al. (2022) provides an alternative way to achieve
this goal, it is restricted to a subfamily of semi-values, which does not include, e.g., the Shapley
value and Beta(4, 1) used in our experiments. Besides, as shown in our experiments of comparing
convergences, on Beta(2, 2), the induced estimator of AME does not rival our GELS-R and GELS
estimators, which are derived from solving the least square regressions (5) and (6).

Recall that the optimization problem used by FastSHAP is

Ez∈Z

 ∑
∅⊊S⊊[d]

d− 1(
d
s

)
s(d− s)

(
Uz(S)− Uz(∅)− 1⊤

S ϕ(z;θ)
)2

where d is the number of features (a counterpart of n), ϕ(z;θ) ∈ Rd is a trainable explainer param-
eterized by θ, Uz is a utility function based on the data point z = (x, y) where x and y represent the
features and label, respectively, and 1S ∈ Rd is defined by 1S(i) = 1 if i ∈ S and 0 otherwise.

Assume {S}∅⊊S⊊[d] is ordered so that each utility function Uz can be treated as a vector Uz ∈
R2d−2. Besides, let W ∈ R(2d−2)×(2d−2) be a diagonal matrix such that W (S, S) = d−1

(ds)s(d−s)
,

and define X ∈ R(2d−2)×d by letting the S-th row of X is 1S . Very recently, Zhang et al. (2023a)
discovered that

Ez∈Z
[
∥ϕ(z;θ)− (X⊤WX)−1X⊤W (Uz − Uz(∅)12d−2) ∥2X⊤WX

]
= Ez∈Z

[
∥Uz − Uz(∅)12d−2 −Xϕ(z;θ)∥2W + Cz

]
= Ez∈Z

 ∑
∅⊊S⊊[d]

d− 1(
d
s

)
s(d− s)

(
Uz(S)− Uz(∅)− 1⊤

S ϕ(z;θ)
)2

+ Cz


where Cz = ∥(X⊤WX)−1X⊤W(Uz − Uz(∅)12d−2)∥2X⊤WX − ∥Uz(∅)12d−2 −Uz∥2W.

The convention is ∥z∥2A := z⊤Az. This relationship reveals that FastSHAP is just to train explain-
ers towards a (potentially) biased target (X⊤WX)−1X⊤W (Uz − Uz(∅)12d−2) under the metric
induced by X⊤WX; see Proposition 9. Therefore, they instead proposed to train explainers based
on

Ez∼Z [∥ϕ(z; θ)− ϕ∥2] (20)

where ϕ is any unbiased estimator for the Shapley value. They demonstrated in the experiments
that this framework of training explainers is not just simple but effective. Note that the target
(X⊤WX)−1X⊤W (Uz − Uz(∅)12d−2) is expected to be biased because compared with Eq. (3),
the efficiency constraint, which is supposed to be

∑d
i=1 ϕ(z;θ) = Uz([d]) − Uz(∅), has been re-

moved. Nevertheless, to overcome this issue, the authors of FastSHAP added an additive-efficient-
normalization layer on top during training and inference (Jethani et al. 2022, Table 3), which is
ϕ(z;θ)← ϕ(z;θ) + 1

d (Uz([d])− Uz(∅)−
∑d

i=1 ϕi(z;θ))1d.

Remark 6. Note that the framework (20) can be used for training explainers towards any proba-
bilistic value. Intuitively, a faster unbiased estimator substituted in the framework (20) would lead
to better training of explainers. All in all, faster estimators could possibly benefit the research line
of training probabilistic-value-based explainers in feature attribution.

Proposition 9. Let ϕ̂Sh = (X⊤WX)−1X⊤W (Uz − Uz(∅)12d−2) and ϕSh be the Shapley value
using the utility function Uz . Then, there is

ϕSh = ϕ̂Sh + ρ1d

where ρ = −1⊤
d (X

⊤WX)−1X⊤W(Uz − Uz(∅)12d−2)− Uz([d]) + Uz(∅)
1⊤
d (X

⊤WX)−11d
.

In other words, (X⊤WX)−1X⊤W (Uz − Uz(∅)12d−2) is potentially biased as ρ is not necessarily
zero.
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Proof. In view of the optimization problem (17), let ms ← d−1

(ds)s(d−s)
, n ← d and Un ← Uz .

By (Charnes et al. 1988, Theorem 4), the induced uniquely optimal solution v∗ is exactly ϕSh.
According to Eq. (19), we have

v∗ = A−1

(
b− 1⊤

d A
−1b− Uz([d]) + Uz(∅)

1⊤
d A

−11d
1d

)
where A = X⊤WX and b = X⊤W(Uz − Uz(∅)12d−2),

from which we can deduce

ϕSh = v∗ = A−1b+ ρ1d = ϕ̂Sh + ρ1d

where ρ = −1⊤
d A

−1b− Uz([d]) + Uz(∅)
1⊤
d A

−11d
.

H INTERPRETATION OF κ(N) AND τ(N) IN PROPOSITION 4

Recall that κ(n) = γ(n)−2 where γ(n) =
∑n−1

s=1 (
n−1
s−1)(p

n
s +pn

s+1)∑n−1
s=1 (

n
s)(pn

s +pn
s+1)

. Our interpretation of κ(n) is based

on γ(n). In Algorithm 1, for each non-empty proper subset S, its probability of being sampled is

P (S) =
pns + pns+1∑n−1

s=1

(
n
s

)
(pns + pns+1)

.

Since γ(n) =
∑

S⊊[n] : i∈S P (S), γ(n) is the probability that the i-th data point appears in a random
sample S. Thanks to symmetry, the choice of i is immaterial. Thus,

nγ(n) =

n∑
i=1

∑
S⊊[n] : i∈S

P (S) =
∑
S⊊[n]

n∑
i=1

1i∈SP (S) =
∑

∅⊊S⊊[n]

sP (S) = ES [s],

whence follows

γ(n) =
ES [s]

n
≥ 1

n
.

The lower bound is achieved when pn1 = 1 and pni = 0 for all i ≥ 2, corresponding to the semivalue
with µ = δ0, i.e., leave everything else out.

Looking into Algorithm 1, for each sampled utility evaluation Un(S), it is used to update the esti-
mates of s data. Therefore, γ(n) is just the average rate of reusing utility evaluations, and κ(n) is
the inverse square of this average rate. The higher γ(n) is, the more efficient GELS-R is. On the flip
side, reusing utility evaluations also creates correlation among the estimates. We conclude that for
the benefit to outweigh the cost, γ(n) needs to be on the order of ω( 1√

n
), which is easily satisfied as

long as the sequence {pns } is not exclusively concentrated around small s. All practical probabilistic
values used in the literature, including the ones in our experiments, meet this condition.

Recall that τ(n) =
(∑n

s=1

(
n+1
s

)
pns
)2

and we write ζ(n) = τ(n)−
1
2 . Observe that, for every

i ∈ [n],

2ζ(n) = λ · 1∑n
s=1

(
n
s

)
pns

+ (1− λ) · 1∑n
s=1

(
n

s−1

)
pns

where λ =
∑n

s=1 (
n
s)p

n
s∑n

s=1 (
n+1
s )pn

s

is the probability of subsets sampled by Algorithm 2 not containing the

introduced null data point (equivalently, the (n+ 1)-th data point). Then, for any i ∈ [n],

1∑n
s=1

(
n
s

)
pns

=

∑n
s=1

(
n−1
s−1

)
pns∑n

s=1

(
n
s

)
pns

=
∑

∅⊊S⊆[n] : i∈S

P ̸∋n+1(S)

22



Published as a conference paper at ICLR 2024

where P̸∋n+1(S) is the probability of the set S sampled by Algorithm 2 conditioned on that the
samples do not contain the (n+ 1)-th data point. Therefore,

n∑n
s=1

(
n
s

)
pns

=

n∑
i=1

∑
∅⊊S⊆[n]

1i∈SP̸∋n+1(S) =
∑

∅⊊S⊆[n]

sP̸∋n+1(S) = ES|S ̸∋n+1[s].

On the other hand, for every i ∈ [n],

1∑n
s=1

(
n

s−1

)
pns

=

∑n
s=1

(
n−1
s−1

)
pns∑n

s=1

(
n

s−1

)
pns

=
∑

∅⊊S⊊[n+1] : i ̸∈S,n+1∈S

P∋n+1(S),

which leads to

n∑n
s=1

(
n

s−1

)
pns

=

n∑
i=1

∑
∅⊊S⊊[n+1] : n+1∈S

1i ̸∈SP∋n+1(S)

=
∑

∅⊊S⊊[n+1] : n+1∈S

(n+ 1− s)P∋n+1(S) = ES|S∋n+1[n+ 1− s].

Eventually, we have

ζ(n) =
1

2n

(
λ · ES|S ̸∋n+1[s] + (1− λ) · ES|S∋n+1[n+ 1− s]

)
=

1

2n
ES [s1n+1̸∈S + (n+ 1− s)1n+1∈S ].

Looking into Algorithm 2, i) if the sampled subset S does not contain the null data, there are s of
{r̂i − r̂n+1}1≤i≤n receiving updates from Un(S); ii) for the other way, there are n+ 1− s of them
receiving updates from Un(S). To conclude, τ(n)

4 is the square inverse of the average rate of reusing
utility evaluations while running Algorithm 2.

I ASYMPTOTIC ANALYSIS

This appendix is mainly to analyze the asymptotic behavior (as n → ∞) of κ(n) and τ(n)
that appear in Proposition 4. For probabilistic values, generally, there is no restriction on how
{pn ∈ Rn}n≥1 are organized. Therefore, to analyze the convergence of our proposed estimators,
we focus on semi-values instead. According to Dubey et al. (1981), each semi-value corresponds to
a probability measure µ on the interval [0, 1] such that

pns =

∫ 1

0

ts−1(1− t)n−sdµ(t) for every 1 ≤ s ≤ n. (21)

Lemma 2. Suppose n > 1, and for each probability measure µ on the closed interval [0, 1], define

mµ
k =

∫ 1

0

tkdµ(t) and wµ
k =

∫ 1

0

(1− t)kdµ(t) for every k ≥ 0,

Mµ
k =

k∑
j=0

mµ
k and Wµ

k =

k∑
j=0

wµ
k for every k ≥ 0.

Then, there is

κ(n)
1
2 =

Mµ
n−2 +Wµ

n−2

Mµ
n−2

and τ(n)
1
2 =Mµ

n−1 +Wµ
n−1.

Proof. Recall that in Proposition 4 κ(n)
1
2 =

∑n−1
s=1 (

n
s)(p

n
s +pn

s+1)∑n−1
s=1 (

n−1
s−1)(pn

s +pn
s+1)

. By Eq. (21), there is pns+p
n
s+1 =

pn−1
s for every 1 ≤ s ≤ n− 1. Notice that

n−1∑
s=1

(
n

s

)
pn−1
s =

n−1∑
s=1

(
n− 1

s

)
pn−1
s +

n−1∑
s=1

(
n− 1

s− 1

)
pn−1
s .
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By Eq. (21),

n−1∑
s=1

(
n− 1

s

)
pn−1
s =

∫ 1

0

n−1∑
s=1

(
n− 1

s

)
ts−1(1− t)n−1−sdµ(t)

=

∫ 1

0

1

t

n−1∑
s=1

(
n− 1

s

)
ts(1− t)n−1−sdµ(t)

=

∫ 1

0

1− (1− t)n−1

t
dµ(t) =

∫ 1

0

(1− (1− t))(
∑n−2

j=0 (1− t)j)
t

dµ(t)

=Wµ
n−2

Note
∑n−1

s=1

(
n−1
s

)
ts−1(1− t)n−1−s =

∑n−2
j=0 (1− t)j still holds for t = 0. Similarly, one can get

n−1∑
s=1

(
n− 1

s− 1

)
pn−1
s =Mµ

n−2.

Recall that in Proposition 4 τ(n)
1
2 =

∑n
s=1

(
n+1
s

)
pns , and thus one can get τ(n)

1
2 =Mµ

n−1+W
µ
n−1

in a similar fashion.

Using the monotone convergence theorem, we have

lim
n→∞

Mµ
n = lim

n→∞

∫ 1

0

1− tn+1

1− t
dµ(t) =

∫ 1

0

lim
n→∞

1− tn+1

1− t
dµ(t) =

∫ 1

0

1

1− t
dµ(t),

lim
n→∞

Wµ
n = lim

n→∞

∫ 1

0

1− (1− t)n+1

t
dµ(t) =

∫ 1

0

1

t
dµ(t). (22)

Note that the extreme cases, e.g., limn→∞Mδ1
n =

∫ 1

0
1

1−tdδ1(t) is trivially true where the conven-
tion is 1

0 =∞. Therefore, τ(n) ∈ Θ(1) if and only if the two integrals in the above are finite. In par-
ticular, it holds if the probability density function p of µ satisfies limt→0

p(t)
ta = limt→1

p(t)
(1−t)b

= 0

for some a, b > 0; see Proposition 10. Interestingly, we have

κ(n)
1
2 = 1 +

Wµ
n−2

Mµ
n−2

≤ 1 +Wµ
n−2.

Thus, κ(n) = Θ(1) if the integral Eq. (22) is finite, meaning that µ cannot put “large” mass around
t = 0. However, this is not necessary as any symmetric probability measure µ, e.g., the uniform
distribution that leads to the Shapley value, will have κ(n) = 4.

Remark 7. For extreme cases µ = δ0 (leave everything else out) and µ = δ1 (leave one out), it
is clear that κ(n) ∈ Θ(1) for the latter but it becomes Θ(n2) for the former, in which case our
GELS-R (Algorithm 1) in fact only samples subsets of size 1, and therefore each utility evaluation
is used to update the estimate of one data point. By contrast, the (weighted) sampling lift estimator
always spends two utility evaluations to update the estimate of one data point.

Corollary 1. For the Banzhaf value, κ(n), τ(n) ∈ Θ(1). In other words, GELS, GELS-R and GELS-
Shapley require O( n

ϵ2 log
n
δ ) utility evaluations to achieve an (ϵ, δ)-approximation for the Banzhaf

value.

Proof. For the Banzhaf value, µ = δ0.5 (Dirac delta distribution), and thus limn→∞M δ0.5
n =

limn→∞W δ0.5
n = 2.

We now provide some easily verifiable conditions that determine the growth of κ(n) and τ(n).
Recall that as long as κ(n), τ(n) = o(n), our estimators are more efficient than the sampling lift
estimator.

Proposition 10. Assume the probability measure µ admits a density function p such that µ(S) =∫
S
p(t)dt for every Borel-measurable subset S ⊆ [0, 1], then,
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1. κ(n), τ(n) ∈ Θ(1) if there exist a, b > 0 such that limt→0
p(t)
ta = limt→1

p(t)
(1−t)b

= 0.

2. κ(n), τ(n) ∈ O(log(n)2) if lim supt→0 p(t) < ∞ and lim supt→1 p(t) < ∞. Examples
include if p is bounded (the so-called continuous semivalues used by Dubey et al. (1981)).

Proof. We first show that there exist counterexamples if these conditions are violated. For the
Shapley value with µ = U (the uniform measure), mU

k = wU
k = 1

k+1 , and thus τ(n) = Θ(log(n)2).
For the second, looking into Lemma 3, consider α = β < 1, τ(n) ∈ Θ(n2−2α).

Suppose there exist a, b > 0 such that limt→0
p(t)
ta = limt→1

p(t)
(1−t)b

= 0. Then, there exists some
ϵ, C > 0 such that p(t) ≤ Cta(1 − t)b if t < ϵ and t > 1 − ϵ. Define a positive measure µϵ by
letting µϵ(S) = µ(S ∩ [ϵ, 1 − ϵ]) for every Borel-measurable subset S ⊆ [0, 1]. Besides, define
another positive measure λ by letting λ(S) =

∫
S
Cta(1 − t)bdt for every Borel-measurable subset

S ⊆ [0, 1]. Therefore, we have µ ≤ µϵ + λ, which indicates that mµ
k ≤ mµϵ

k + mλ
k , and thus

Mµ
k ≤ Mµϵ

k +Mλ
k . By Lemma 3, Mλ

k ∈ Θ(1). For the other, observe that mµϵ

k ≤ m
δ1−ϵ

k , and
therefore Mµϵ

k ≤ M
δ1−ϵ

k ∈ Θ(1). The remaining case Wµ
k can be tackled similarly. To conclude,

κ(n), τ(n) ∈ Θ(1).

Suppose lim supt→0 p(t) < ∞ and lim supt→1 p(t) < ∞, then there exist ϵ, C > 0 such that
p(t) ≤ C for every t ∈ [0, ϵ) ∪ (1 − ϵ, 1]. Define µϵ as the one in the above. Then, µ ≤ µϵ + CU
where U denotes the uniform measure. Therefore, wµ

k ≤ wµϵ

k + wCU
k . Since wCU

k = C
k+1 , there

is WCU
k ∈ Θ(log n). Besides, Wµϵ

k ≤ W δϵ
k ∈ Θ(1). The remaining case Mµ

k can be dealt with
similarly. Therefore, the conclusion follows by using Lemma 2.

Next, we derive a more precise estimate for the Beta Shapley values.
Lemma 3. Let B(α, β) be the beta distribution with probability density function∝ tα−1(1− t)β−1.
Note that if µ = B(α, β), it yields the Beta(β, α) (a parameterized Beta Shapley value).

MB(α,β)
n ∈


Θ(log n) β = 1

Θ(1) β > 1

Θ(n1−β) 0 < β < 1

and W B(α,β)
n ∈


Θ(log n) α = 1

Θ(1) α > 1

Θ(n1−α) 0 < α < 1

.

Proof. Let Γ denote the Gamma function.

m
B(α,β)
k =

Γ(α+ β)

Γ(α)Γ(β)
· Γ(α+ k)Γ(β)

Γ(α+ β + k)
=

∏k−1
j=0 (α+ j)∏k−1

j=0 (α+ β + j)
.

We write ak ∼ bk if limk→∞
ak

bk
converges. Since Γ(x) = limn→∞

n!nx

x(x+1)···(x+n) , e.g., see (Rudin

1953, Eq. (95) in Chapter 8), we have mB(α,β)
k ∼ k!kα

k!kα+β = k−β , and thus the conclusion follows.
The remaining case can be derived similarly.

Remark 8. Lemma 3 is useful for obtaining the time complexity of the proposed estimators for
the Beta Shapley values parameterized by α, β > 0. If α, β > 1, the two proposed estima-
tors require O( n

ϵ2 log
n
δ ) utility evaluations to achieve an (ϵ, δ)-approximation. Note that this is

the currently best time complexity. For the Shapley value, i.e., Beta(1, 1), it is O( n
ϵ2 log

n
δ ) for

GELS-R, and O( n
ϵ2 log(

n
δ ) log(n)

2) for GELS and GELS-Shapley. To our knowledge, in terms of
(ϵ, δ)-approximation, the previously best time complexity for the Shapley value isO( n

ϵ2 log(
n
δ ) log n)

achieved by the group testing estimator (Wang and Jia 2023, Theorem C.7).

J MORE EXPERIMENT RESULTS

For training estimators on MNIST, all performance curves are provided in Figure 11. It can be seen
that the conclusions we have in the main paper still hold on MNIST.

The paired sampling technique was proposed by Covert and Lee (2021) to enhance (unbiased) Ker-
nelSHAP, but we notice that it can also be employed for GELS, GELS-R, GELS-Shapley, (weighted)
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sampling lift, group testing, AME, MSR and simSHAP. Precisely, suppose the sampled subsets
is {Sk}k≥1, the paired sampling employs sampled subsets {Tj}j≥1 such that T2k−1 = Sk and
T2k = [n]\Sk for every k ≥ 1. Roughly speaking, symmetric probabilistic values, i.e., pns = pnn−s
for every s ∈ [n] could possibly take advantage of this technique. Examples include the Shapley
value, the Banzhaf value and Beta(γ, γ). An exception is that weighted sampling lift can be coupled
with the paired sampling for any probabilistic value. In this appendix, we implement the paired sam-
pling technique if possible. The results with utility functions reporting the classification accuracy
on Dperf are shown in Figures 3, 4, 5 and 6. Moreover, we also set the utility functions to report the
cross-entropy loss instead, and the corresponding results are presented in Figures 7, 8, 9 and 10.
Remark 9. Observe that AME, simSHAP and group testing gain significant performance boosts us-
ing the paired sampling technique, while (unbiased) KernelSHAP takes advantage of this technique
occasionally. For other estimators, the paired sampling does not play a noticeable role. Interest-
ingly, while using the paired sampling technique, group testing is exactly equal to GELS, whereas
GELS-Shapley, unbiased KernelSHAP and simSHAP are all equal.

To see the equality between GELS and group testing while using the paired sampling technique,
notice that they share the same way of sampling subsets. Therefore, suppose we have one pair of
samples (S1, S2) where S2 = [n+1]\S1. According to Algorithm 2, the corresponding i-th estimate
of GELS is

ϕ̂GELS
i =


Hn · (Un(S1 ∩ [n])− Un(S2 ∩ [n])) , i ∈ S1 and n+ 1 ̸∈ S1

Hn · (Un(S2 ∩ [n])− Un(S1 ∩ [n])) , i ̸∈ S1 and n+ 1 ∈ S1

0, otherwise

where Hn =
∑n

s=1
1
s . Looking into the procedure of including a dummy player for group testing

(Wang and Jia 2023, Appendix C.3), the reader can verify that group testing produces the same i-th
estimate using the paired samples (S, [n+ 1]\S).
For the remaining equality while employing the paired sampling technique, observe that they also
have the same way of sampling subsets. Again, suppose we have one pair of samples (S1, S2) where
S2 = [n]\S1. By Algorithm 3, the corresponding i-th estimate of GELS-Shapley is

ϕ̂GELS-Shapley
i =


Un([n])− Un(∅)

n
+
Hn−1 · s2

n
(Un(S1)− Un(S2)) , i ∈ S1

Un([n])− Un(∅)
n

+
Hn−1 · s1

n
(Un(S2)− Un(S1)) , i ∈ S2

where Hn−1 =
∑n−1

s=1
1
s . As proved by Fumagalli et al. (2023, Theorem 4.5), the corresponding

i-th estimate of unbiased KernelSHAP is

ϕ̂unbiased KernelSHAP
i =

Ûn([n])− Ûn(∅)
n

+
2Hn−1

T

T∑
t=1

Ûn(St) ·
(
1i∈St

− st
n

)
where Ûn(S) = Un(S)− Un(∅). On the other hand, the corresponding i-th estimate of simSHAP
can be expressed as

ϕ̂simSHAP
i =

Un([n])− Un(∅)
n

+
2Hn−1

T

T∑
t=1

Un(St) ·
(
1i∈St −

st
n

)
. (23)

The reader can verify that ϕ̂GELS-Shapley
i = ϕ̂unbiased KernelSHAP

i = ϕ̂simSHAP
i using T = 2 and S2 =

[n]\S1. We point out that Eq. (23) is not the original formula of simSHAP but an equivalent one that
has been implicitly mentioned in (Fumagalli et al. 2023, Remark B.1 and Appendix B.4) where they
argued that the choice of Ûn is better than Un. Our experiments confirm that unbiased KernelSHAP
converges significantly faster than simSHAP while not using the paired sampling technique.
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Figure 3: Comparison of different estimators on four probabilistic values using the dataset wind.
The relative difference is plotted in log scale while the Spearman correlation is in logit scale. In
addition, r = 1 − r. The utility functions report the classification accuracy on Dperf . The dashed
lines correspond to the use of the paired sampling technique.
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Figure 4: Comparison of different estimators on four probabilistic values using the dataset iris.
The relative difference is plotted in log scale while the Spearman correlation is in logit scale. In
addition, r = 1 − r. The utility functions report the classification accuracy on Dperf . The dashed
lines correspond to the use of the paired sampling technique.
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Figure 5: Comparison of different estimators on four probabilistic values using the dataset MNIST.
The relative difference is plotted in log scale while the Spearman correlation is in logit scale. In
addition, r = 1 − r. The utility functions report the classification accuracy on Dperf . The dashed
lines correspond to the use of the paired sampling technique.
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Figure 6: Comparison of different estimators on four probabilistic values using the dataset FMNIST.
The relative difference is plotted in log scale while the Spearman correlation is in logit scale. In
addition, r = 1 − r. The utility functions report the classification accuracy on Dperf . The dashed
lines correspond to the use of the paired sampling technique.
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Figure 7: Comparison of different estimators on four probabilistic values using the dataset wind.
The relative difference is plotted in log scale while the Spearman correlation is in logit scale. In
addition, r = 1− r. The utility functions report the cross-entropy loss on Dperf . The dashed lines
correspond to the use of the paired sampling technique.
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Figure 8: Comparison of different estimators on four probabilistic values using the dataset iris. The
relative difference is plotted in log scale while the Spearman correlation is in logit scale. In addition,
r = 1−r. The utility functions report the cross-entropy loss onDperf . The dashed lines correspond
to the use of the paired sampling technique.
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Figure 9: Comparison of different estimators on four probabilistic values using the dataset MNIST.
The relative difference is plotted in log scale while the Spearman correlation is in logit scale. In
addition, r = 1− r. The utility functions report the cross-entropy loss on Dperf . The dashed lines
correspond to the use of the paired sampling technique.

33



Published as a conference paper at ICLR 2024

Sh
ap

le
y

B
an

zh
af

B
et

a(
2
,2
)

B
et

a(
4
,1
)

Figure 10: Comparison of different estimators on four probabilistic values using the dataset FM-
NIST. The relative difference is plotted in log scale while the Spearman correlation is in logit scale.
In addition, r = 1 − r. The utility functions report the cross-entropy loss on Dperf . The dashed
lines correspond to the use of the paired sampling technique.
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Figure 11: i) The first row: The first plot is the empirical loss of the sampled batch, while the
others present the relative distance ∥φ̂ − φ∥2/∥φ∥2 and the Spearman correlation between φ and φ̂.
φ̂ denotes the one predicted by the estimators trained on MNIST. The first two plots are in log scale.
The label “best” reports the best one achieved by the trained estimators at each time point, whereas
“specific” is the one with the random seed being 0. ii) The second row: the two plots compare
the performance of the estimators trained on MNIST with the Monte-Carlo method using Eq (2).
Specifically, TrELS-SC uses trained estimators that achieve the best Spearman correlation on Dval,
whereas RD stands for relative difference.
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