© O N O g A~ W N =

Information-Theoretic Conditions for
Chain-of-Thought Monitorability and Methods for
Improving It

Anonymous Author(s)
Affiliation
Address

email

Abstract

Chain-of-thought (CoT) monitors are LLM-based systems that analyze reasoning
traces to detect when outputs may exhibit attributes of interest such as harmfulness,
bias, or other properties. In this paper, we develop a rigorous information-theoretic
framework to analyze the fundamental conditions that determine CoT monitorabil-
ity. Our analysis establishes two necessary conditions for successful monitoring:
(i) the CoT must encode sufficient information about the target attribute, and (ii)
the monitor must be capable of extracting this information. We show that the
success of CoT monitoring hinges on conditional mutual information between
outputs and CoTs. We further demonstrate that CoT monitorability can be system-
atically improved through targeted training objectives. To this end, we propose two
complementary approaches: (a) an oracle-based method that directly rewards the
monitored model for producing CoTs that maximize monitor accuracy, and (b) a
more practical, label-free approach that maximizes conditional mutual information
between outputs and CoTs. Both methods significantly improve monitor accuracy
while preventing CoT degeneration even when training against a monitor, thereby
mitigating reward hacking even when the task reward is imperfectly specified.

1 Introduction

Modern large language models (LLMs) are increasingly trained to generate reasoning traces, also
called chain-of-thought (CoT), before producing final outputs. This capability has enabled the
development of CoT monitors — LLM-based systems that analyze these reasoning traces to detect
attributes such as harmfulness or bias in the resulting outputs. By analyzing the CoT, monitors can
theoretically identify problematic attributes before they manifest in the output, e.g, flawed reasoning
patterns or attempts at deception. However, our understanding of when — and to what extent — CoT
monitors can provide robust supervision remains limited. Challenges such as CoT obfuscation [Baker
et al., 2025], steganographic reasoning [Stickland and Korbak, 2025], and general lack of faithfulness
in CoT reasoning [Turpin et al., 2023, Lanham et al., 2023] may significantly constrain the practical
effectiveness of CoT monitoring.

This works aims to further our understanding of the robustness and utility of CoT monitoring. Our
contributions include: (1) a rigorous probabilistic framework through which we establish necessary
information-theoretic conditions for monitorability, and analyze the gap between ideal and practical
CoT monitors; and (2) a practical training objective that demonstrably improves CoT monitor
accuracy while preventing CoT degeneration.

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

34
35
36

37
38

39
40
41

42

43
44
45
46
47
48
49
50
51

52
53
54
55
56

57
58
59
60
61
62
63

64

65
66
67
68
69
70
71
72
73
74

75

76
77

2 Background

Entropy. The Shannon entropy of a discrete random variable A, denoted H(A), measures its
average uncertainty and is defined as H(A) = — > _ p(a) log p(a). The conditional entropy, H (A |
B), measures the remaining uncertainty in A after observing B.

Mutual Information. The mutual information (MI) between two random variables, I(A; B),
quantifies the reduction in uncertainty about one variable from knowing the other. It is defined as:

I(A;B) = H(A)— H(A | B). @2.1)

MI is symmetric, so [(A; B) = I(B; A). A value of I(A4; B) = 0 implies that the variables are
independent. The conditional mutual information, I(A4; B | C'), measures the MI between A and B
given a third variable C'. A key identity we will use is the chain rule for mutual information:

I(A,B;C) = I(A;C) + I(B; C | A). 2.2)

2.1 Related Works

CoT Monitoring and Evasion. Chain-of-thought (CoT) monitoring has been proposed as a mecha-
nism for interpretable oversight of LLMs [Korbak et al., 2025]. However, recent work highlights its
brittleness: CoT is not reliably faithful [Turpin et al., 2023, Lanham et al., 2023, Chen et al., 2025,
Barez et al., 2025] — and may thus not reflect whether models are engaging in unwanted behavior —
and models can potentially evade monitors through obfuscation [Baker et al., 2025] or steganography
[Motwani et al., 2024, Mathew et al., 2024]. Emmons et al. [2025] show that monitoring is more
effective on tasks that require CoT, while Stickland and Korbak [2025] explore generator-to-monitor
transferability. These findings motivate a more formal understanding of when CoT monitoring
succeeds.

Information-Theoretic Approaches. Our analysis builds on a growing body of work using
information-theoretic tools for interpretability and control. Prior work has applied information-
theoretic tools to interpretability and alignment [Xu et al., 2020, Belrose et al., 2025], and has
analyzed CoT through information gain and bottleneck principles [Ton et al., 2025, Lei et al., 2025].
However, these approaches do not address monitorability explicitly.

Training Strategies and Reward Hacking Training models to remain monitorable is challenging:
optimizing against monitors may induce obfuscation [Baker et al., 2025], echoing broader concerns
about alignment faking and deceptive behaviors [Park et al., 2023, Scheurer et al., 2024, Greenblatt
et al., 2024, Meinke et al., 2025] and multi-agent collusion [Motwani et al., 2024, Dou et al., 2025].
Our work introduces a label-free conditional mutual information objective that aims to preserve
monitorability and mitigate reward hacking, complementing broader efforts to improve reasoning
faithfulness [Paul et al., 2024] and robustness of RL training [Farquhar et al., 2025, Liu et al., 2025].

3 Information-Theoretic Analysis of CoT monitorability

In this section, we develop a formal framework to analyze when and
why chain-of-thought (CoT) reasoning could be monitored effec- a e
tively. We begin by formalizing the probabilistic setup and defining

key concepts. We then identify necessary information-theoretic

conditions for successful monitoring, showing that the conditional

mutual information between CoTs and outputs, I(Z; O|X), plays a “ @
critical role in determining monitorability. Finally, we analyze the

gap between ideal (Bayes-optimal) monitors and practical, capacity- Figure 1: Graphical model of
bounded monitors, quantifying how decoder limitations affect mon- our Chain-of-Thought setup.
itoring performance.

3.1 Setup and Definitions

We model a large language model as a policy, 7y, that generates text autoregressively. Our framework
focuses on tasks where the model produces a Chain-of-Thought (CoT) before the final output. More

78

79
80

81

82

83

84

85
86
87
88

89
90

91
92

93
94
95
9%
97
98
99

100
101

102

103
104
105

106
107
108
109
110

111
112

113
114

specifically, we assume the directed acyclic graph (DAG)
X - Z, (X,2)— O, (X,0) =Y,

where X is the prompt, Z is the chain-of-thought (CoT), O is the model’s final action/answer and Y’
is the attribute of interest.

Definition 3.1 (Action Monitor). An action monitor is a stochastic mapping
g:OxX — AQ), y~g(-]10X),

where A()) denotes the probability simplex on).
Definition 3.2 (CoT Monitor). Similarly, CoT monitor is a stochastic mapping

My 1 ZxXX — A(Y), y ~ my(-|Z,X).

For both monitors, point predictions could be attained by performing argmax over them, e.g.,

y = argmax my(Y | Z, X).
Yey

Definition 3.3 (Bayes—Optimal CoT Monitor). Let w(O | Z, X) be the model’s conditional distri-
bution over final actions and let g(Y | O, X) be the stochastic action-monitor defined above. The
ground truth distribution of the attribute Y given the prompt x and chain-of-thought z can be defined

as
mg(Y =yl Z,X)= Eo~ﬂ(0|z,x)[9(y =y |0 =o0,X)].

Under the 01 scoring rule, the Bayes—optimal CoT monitor is the classifier that outputs the MAP
label
g = m*(z,x) = argmaxmy (Y =y | Z =2 X =2x).
yey
Definition 3.4 (-CoT monitorable task). For « € [0, 1], we say an attribute Y is a-CoT-monitorable

with respect to policy 7 if the Bayes-optimal CoT monitor m*(z,x) has accuracy at least .

Note that the performance of any practical CoT monitor is bounded above by the Bayes-optimal
CoT monitor, whose performance in turn is bounded by the action monitor g. We emphasize that the
CoT-monitorability of an attribute is intrinsically linked to the policy 7 that generates the CoT being
monitored. There are two natural corollaries of this fact: (a) an attribute Y being monitorable w.r.t.
some policy 71 is no guarantee that the same attribute would be monitorable for some other policy 5.
(b) monitorability of an attribute Y may be improved through changing the distribution of Z induced
by the policy, for example, by training 7 to produce more informative chain-of-thought reasoning.

Due to space limitations, we sometimes omit proof from the main text, and defer them to the
Appendix A.

3.2 Necessary Conditions for CoT Monitorability

In this section, we investigate the necessary information-theoretic conditions that determine when
a CoT may be monitorable for some attribute of interest Y. Specifically, we analyze under what
properties of the CoT and the policy m, a task could be considered a-CoT monitorable.

Our analysis yields two main insights. Firstly, we show that conditional mutual information between
CoT and the attribute of interest I(Y;Z | X)) gives the ceiling on the performance of any CoT
monitor. Next, we show that positivity of mutual information between CoT and actions [(O; Z | X)
is a necessary condition for monitorability of any attribute. However, it is not a sufficient condition,
and despite positive 1(O; Z| X), there may exist attributes which may be difficult to monitor.

Proposition 3.5 (Necessary MI threshold for c.-monitorability). Let Y take values in a finite label
set Y with k = |Y| > 2. For o € [1/k, 1], define

T, = (1l —a) + (1 —a)log(k —1), hp(u) = —ulogu — (1 — u)log(1 — u).

If there exists a (possibly stochastic) monitor my (Y | Z, X)) whose induced 0—1 accuracy is at least
« under the data-generating distribution, then

IY:Z|X) > HY | X) = T,. 3.1)

115
116
117
118
119
120
121

122
123
124
125
126

127

128
129
130

131
132

133
134

135
136

137
138
139
140
141
142
143
144

145

146
147
148
149
150
151
152
153

154

155

156
157
158

159

160

The above proposition formalizes the intuition that a CoT-monitor can only successfully predict some
attribute of interest Y of the output from CoT to the extent that CoT encodes information about
this attribute. Two important caveats apply: (1) it establishes existence of some monitor achieving
accuracy o when I(Y'; Z|X) is sufficiently high, but does not guarantee that any specific monitor
class (e.g., prompted LLMSs) will attain this accuracy; (2) even with high mutual information, practical
monitors may fail if the information is encoded in ways that resist extraction (e.g., steganographically).
We address these limitations in our analysis of practical monitors in Section 3.3.

Do CoTs that matter for the task also help monitoring? Emmons et al. [2025] empirically
demonstrate that tasks requiring explicit CoT reasoning are more amenable to CoT monitoring.
Indeed, our theoretical analysis confirms this observation, by showing that the necessity of CoT
reasoning for task completion is a necessary precondition for the monitorability of any attribute Y of
the final output. However, it is not a sufficient condition.

Lemma 3.6 (MI decomposition). Let Y = g(O, X) for the stochastic map g : O X X — Y. Then
10;Z2 X)) =1Y;Z|X) + I(0;Z Y, X). (3.2)

Proof. Apply the chain rule two ways: [(0,Y;Z | X) = I(Y;Z | X)+1(0;Z | Y,X) =
1(0;Z | X))+ I(Y;Z | O,X). Note that by assumption we have Y Il Z | O, X, which means
I(Y;Z | O,X) = 0, which in turn gives (3.2). O

Proposition 3.7 (Necessity of CoT reasoning is a necessary but not sufficient condition for monitora-
bility). AssumeY = g(O, X) where g : O x X — Y is a deterministic map.

1. (Necessity) For any attribute Y, if a monitor my(Z,X) € M with non-trivial accuracy
exists then 1(O;Z | X) > 0.

2. (Not sufficiency) I(O; Z | X) > 0 does not imply there exists a monitor my,(Z,X) € M
with non-trivial accuracy.

Proof. Necessity: By Proposition 3.5, existence of a monitor with non-trivial accuracy implies
I(Y;Z | X) > 0. From Lemma 3.6 we have I(0; Z | X) > I(Y;Z | X),s0 I(Y;Z | X) > 0=
I(0;Z] X) > 0.

Not Sufficiency: By Lemma 3.6, we have [(O; Z | X) = I(Y;Z | X) + 1(0;Z Y, X).
Because both terms on RHS are nonnegative, it is possible that I(O; Z | Y, X)) > 0 while I(Y; Z |
X) =0, yielding I(O; Z | X) > 0. Because I(Y; Z | X) = 0, then by Proposition 3.5 we have that
no CoT monitor with non-trivial accuracy exists. Because I(Y; Z | X) = 0, by the contrapositive of
Proposition 3.5 we have that no CoT monitor with non-trivial accuracy exists. O

3.3 Information Gap Between Practical Monitor and The Ideal Monitor

The analysis in the previous section considers Bayes optimal monitor that uses the ground truth
decoder distribution mg, and establishes when such a monitor might be realizable. However, in
practice, CoT monitors are (prompted or fine-tuned) LLMs with finite capacity and thus there may be
a decoder mismatch — the decoder ¢(Y'|Z, X) induced by the monitor LLM may be imperfect and
may not match well with the Bayes optimal decoder m*. We make the loss of performance due to
this decoder mismatch precise through the following proposition:

Proposition 3.8 (Information gap.). Let w be the (true) distribution over (Y, Z, X). Let the CoT
monitor be a stochastic decoder mqy,(Y | Z, X) and define

my(Y]Z,X
Imw (Yv Z ‘ X) =]EW(Y,Z,X) 108; mwij)ﬁ'/\X)) , m¢(Y | X) = EZNW(ZIX) [mw(Y | Z, X)] .
Then — I(Y;Z|X) > In,(Y;Z]| X).

Corollary 3.9 (The information gap is minimized by using the data generating distribution as the
decoder). I(Y;Z | X) = I,,,(Y;Z | X) if and only if my(Y | Z,X) = n(Y | X,Z) =
my(YX, Z).

3.4 Key Takeaways

Our information—theoretic view highlights two distinct failure modes for CoT monitoring:

161
162
163

164
165

167
168
169
170

171
172
173
174

175
176
177
178
179

180

181
182
183

184
185
186

187

188
189
190
191

192

193
194
195

196
197

198
199
200
201
202

* Encoding bottleneck. If the CoT carries no information about the model’s action, I(O; Z | X) =
0, then it also carries no information about any attribute of that action, I(Y; Z | X) = 0. In this
regime no CoT monitor with non-trivial accuracy is realizable.

* Decoder limitation. When 7(O; Z | X) > 0, the information may exist but a practical monitor
my (y | =, z) might fail due to its inability to extract this information.

4 Can CoT Monitorability be Improved?

Prior works, such as Baker et al. [2025], have focused on how CoT monitorability could be preserved.
We go a step further, and consider what can be done to improve CoT monitorability of a task. Our
analysis demonstrates that targeted training objectives can substantially improve the information
content of CoTs, making them more amenable to monitoring.

We explore two primary approaches. First, we introduce an oracle-based method where the model is
rewarded for producing CoTs that maximize the accuracy of a fixed, external monitor. While this
provides a conceptual benchmark, its practical application is limited by the need for a reliable oracle
to provide ground-truth labels.

To address this limitation, we propose a practical, label-free proxy objective: maximizing the
conditional mutual information I(O; Z | X) between the model’s actions and its CoT. This objective
encourages the model to generate reasoning traces that are inherently informative about its final
decision, preventing the CoT from becoming decoupled or obfuscated. We show how this objective
can be efficiently estimated and integrated into a reinforcement learning framework.

4.1 Oracle Monitor-in-the-Loop RL

As a first approach, we consider a setup with a fixed, pre-trained LLM CoT monitor m,,. We only
update the policy 7y of the monitored model. Let g denote the oracle action monitor, then given a
trajectory (y, o, z, x), we define a binary oracle reward signal:

+1, lfmw<z,$) :g(O7$>7

4.1
—1, otherwise. @.1)

Roracte (O, 2, l‘) = {
This signal directly rewards the model for generating a CoT z that leads the monitor to the correct
conclusion my (2, x) = g(o,z) = y. The total reward function is an augmentation of the original
task reward Rragk(0):
Roveral = RTask(O) + W ROraclc(O; 2, l‘), 4.2)
where 1 > 0 is a hyperparameter that controls the strength of the oracle feedback.

With a fixed monitor m, maximizing E[Ro,ac1e (O, Z, X)] encourages 7y to produce CoTs that are
more easily decodable by that specific monitor, indirectly maximizing I,,, (Y'; Z|X). However, this
method’s reliance on an external oracle for labels Y makes it costly and impractical in real-world
scenarios, motivating the need for a label-free alternative.

4.2 A Label-Free Proxy: Maximizing (0; Z | X)

To overcome the need for an oracle, we propose maximizing the conditional mutual information
I1(O; Z | X) as a proxy objective. This encourages a strong coupling between the CoT and the final
action, which is a prerequisite for monitorability (see Proposition 3.7).

The relationship between our proxy and the true monitorability objective, I(Y; Z | X), is captured
by the chain rule for mutual information (as in Lemma 3.6):

10;Z | X) = I(Y; Z | X) + I(0; Z | X,Y). 4.3)

The term I(O; Z | X,Y) represents the gap between the true and the proxy objective. This represents
information that is captured by the proxy but is irrelevant to the attribute being monitored — such
as stylistic variations in the outputs. Crucially, this term is bounded by the conditional entropy of
the CoT and of the output: H(Z | X,Y) > I(0;Z | X,Y) < H(O | X,Y). Thus, we have the
following inequalities for our proxy objective:

H0; 2| X)<I(Y;Z|X) + H(Z | X,Y),

204
205
206
207
208

210

211
212
213

214
215
216
217

218
219

220
221
222
223
224

225
226

227
228

229

230

231
232
233
234

235

236
237
238
239
240
241
242

10;Z | X)<I(Y;Z| X) + HO | X,Y).

This inequality guarantees that an increase in our proxy objective, I(O; Z | X), will lead to an
increase in the true monitorability objective, I(Y; Z | X), provided that H(Z | Y, X) or H(O |
Y, X) is small. For a given attribute Y, H(Z | X,Y") quantifies the intrinsic CoT diversity, while
H(O | X,Y) quantifies the intrinsic output diversity. In both cases, we expect smaller values for
coarse-grained, semantic attributes that significantly constrain the LLM’s generations (e.g., ‘Is the
model hard-coding the values of unit tests?’, compared to more fine-grained attributes (e.g., ‘Does
the generation contain the letter ?’).

4.2.1 Estimation and Practical Optimization of 1(O; Z | X)

To use the conditional mutual information I(O; Z | X) as a practical reward signal in a reinforcement
learning setup, we require a per-rollout point estimator. For a rollout ¢ that produces an output o; and
a CoT z; from a prompt x;, we estimate the mutual information as:

I; = Jlogmy(o; | zi, ;) — log g (0; | x;) 4.4)
N——— ~———
Output log-likelihood given CoT Estimated marginal log-likelihood

We leverage the structure of Group-based Reward Policy Optimization (GRPO), which provides
multiple rollouts for each prompt. This allows for an efficient Monte Carlo approximation of the
marginal term, 79 (0; | x;). For a prompt z;, we use the corresponding group of CoTs, G(x;) = {zx},
to estimate the marginal probability as:

1
|G ()]

> mo(or | 2k,). (4.5)

2, €G(zi)

’frg(Oi ‘ 1’1) =

This term represents the average likelihood of the output o; over all the different reasoning paths
generated for the same prompt.

A naive maximization of IAi could encourage the model to generate unnecessarily long outputs
to artificially inflate the log-probabilities. To counteract this, we normalize the estimate by the
length of the output, len(o;), though we omit it from the notation for brevity. Furthermore, since
mutual information is unbounded (for our purposes), directly using this normalized value as a reward
could destabilize training by overpowering other objectives, such as the task reward Rragk. To
ensure a balanced optimization, we bound I; by applying some suitable transformation f(-). In our
experiments, we use f(a) = tanh(2a) This gives us our final mutual information reward component:

Rt (04, zi, ;) = f(I;) = tanh(21;). (4.6)

The final reward function for training the policy is then a weighted combination of the task reward
and our MI reward:
Roveran = Rrask(0:) + A - Bmi(0i, 2i, i), 4.7)

where Ay is a hyperparameter that controls the strength of the monitorability objective.

5 Experiments and Results

In this section, we empirically validate our theoretical framework and demonstrate the effectiveness
of our proposed approaches for improving CoT monitorability. We first describe our experimental
setup, including models, datasets, and evaluation metrics, followed by a comprehensive analysis of
our results.

5.1 Experimental Setup

Environment: Our primary experimental environment is inspired by the honeypot environment of
Baker et al. [2025]. Specifically, we create a coding environment where the RL agent could get high
reward either by implementing some sort of shortcut solution (e.g., hardcoding answers to known test
cases) or a general solution. Our environment is based on the Mostly Basic Python Problems (MBPP)
dataset [Austin et al., 2021]. This dataset contains 974 short Python programming tasks designed for
entry-level programmers, each consisting of a natural language description, a reference solution, and
three test cases to verify functional correctness.

243
244
245
246
247
248
249

250
251
252

254

255
256
257

259

260
261
262

263
264

266
267
268
269

270

271
272

273
274

275
276

277
278
279

280

281
282
283

In our setup, we sample a rollout by prompting an LLM to write code to solve a given Python
programming problem described in natural language. Within this prompt, we also include two
test-cases (henceforth referred to as ‘revealed’ test cases). We hold out a third test case to evaluate
whether the model is writing code specific to the two revealed test cases or a general solution for
the given prompt. The test reward is based solely on whether the model’s written code passes the
revealed test cases — +1 if it passes, O otherwise. As such, this environment provides an option to the
model to attain high-reward by writing code that passes only the two revealed test-cases.

Models: We perform reinforcement learning training on Qwen2.5-3B-Instruct and Qwen2.5-7B-
Instruct models; these are our 7. To ensure our models explore both general and “hacky” solutions
(code that only passes the revealed test cases, e.g., by hardcoding values), we performed a light round
of supervised fine-tuning on a small dataset of code examples of test-hacking before performing
reinforcement learning training. See Appendix B.1 for details.

Monitor: We use Qwen2.5-7B-Instruct as our monitor model, m,;. The monitor observes the
prompt and the CoT of the monitored model, 7y, then outputs a binary decision regarding whether
the model is implementing a true solution or a hacky solution. The monitoring reward Ryionitor for
Ty is +1 when the monitor determines the model is not hacking, and —1 when it detects hacking. We
provide the prompt that we use for the monitor model Appendix B.3.

Training Details: We use the Group Relative Policy Optimization (GRPO) algorithm [Shao et al.,
2024] for RL training. The same hyperparameters were used for all experiments; we provide them
them in Appendix B.2.

To establish a clear delineation between chain-of-thought reasoning and final outputs, we use a
structural formatting reward in all the experiments. This reward incentivizes models to organize
their responses into distinct XML-tagged sections: a <think>. . .</think> block containing the
reasoning process (corresponding to CoT 2) and a <code>. . .</code> block containing the final
solution (corresponding to output o). This reward is quite quickly satisfied by LLMs in the training,
and has no bearing on the results, hence we omit explicit mention of this reward in subsequent
discussion.

Evaluation Metrics: We evaluate our approach using four key metrics:

* Mutual Information (MI): We measure I(O; Z|X') between the model’s outputs and CoTs to
quantify the information content in the reasoning traces.

* Hacking Rate: The percentage of samples for which the code written by the model passes only
the revealed test cases but fails the held-out test case.

* Monitor Accuracy: The accuracy of the monitor in correctly identifying whether the model is
implementing a hacky solution.

* True Pass Rate: The percentage of samples for which the code written by the model passes all
tests — both the revealed tests and the held out test. This can be looked at as a measure of true
model performance.

5.2 Results and Analysis

In Figure 2 we show results for 3B and 7B models from Qwen-2.5 family trained under four different
reward configurations. To make it easier to decipher the general trend, we plot using exponential
moving average with oo = 0.25.

Mutual information reward improves CoT-monitorability: Figure 2 shows the evolution of MI
(I(O; Z| X)) during training. Notably mutual information deteriorates throughout the RL training
for models optimizing Rrask and Rrask + RMonitor- This decrease in MI for Rrask + R onitor 18
accompanied by a decrease in monitor accuracy, indicating the obfuscation behavior due to optimizing
against CoT monitor that was also observed by Baker et al. [2025].

Critically, both our proposed approaches — oracle reward and MI reward — successfully maintain higher
MI values throughout training, and maintain high monitor accuracy. This confirms our theoretical

291
292

293
294
295
296
297

298
299
300

302

303
304
305
306
307
308
309
310

—— Rrask

Mutual Information (MI)

—*— Rrask + Rmonitor

Monitor Accuracy

—— Rrask + Ruonitor + Roracle

Hacking Rate

—— Rrask + Rumonitor + Rui

True Pass Rate

100 100
1.0 80
80 80 70
8 2 60
T £ = =
E oo S g o)
< £ 2 £ 40
N 3 g 40 g
N g 4 &
S 40 30
€ o0t < t.
2 20 e,
20 10
0.001 { ° 0
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
Training Step Training Step Training Step Training Step
(a) 3B Size RL Agent
Mutual Information (MI) Monitor Accuracy Hacking Rate True Pass Rate
100 100
1.0 0
90
80
_ 80
@ = 60
T 01 £ = =
£ 5 70 g % g
< & 60 8 8
N] T £ 10
5 8 s0 = 10 -
€ o0 < W
40 20 20
30
0.001 + | { 0 0
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Training Step Training Step Training Step Training Step

(b) 7B Size RL Agent

Figure 2: Comparison of (i) Mutual Information I(O; Z|X), (ii) Monitor Accuracy, (iii) Hacking
Rate, and (iv) Monitor Accuracy across training steps for the four different reward configurations.

prediction that maximizing I(O; Z|X) is an effective strategy for preserving CoT monitorability,
even when optimization pressure is being applied to CoT.

Reward hacking and training against CoT-monitor: As shown in Figure 2, the model trained
against a vulnerable task reward learns to hack it, and frequently produces code that only passes the
revealed test cases. The model trained to optimize Rraskx + Raonitor does initially learn to hack less
but once it learns that it can evade the monitor via obfuscating its CoT, it reverts back to the hacking
behavior while simultaneously improving on fooling the CoT monitor.

However, both models that additionally also optimize either Royacle Or Ry do successfully unlearn
the hacking behavior and learn to not reward hack, but write true solutions to pass the revealed test
cases. Intuitively, these terms make it difficult for the model to obfuscate its CoT which in turn means
that CoT monitoring remains effective, even if it is an optimization target.

6 Discussion & Limitations

We assume a specific causal model. While we expect this causal model to be quite general and
representative of many practical cases of interest, this does not apply in cases where the goal of
CoT monitoring is not to predict the properties of the final action but rather the properties of the
computational process, or the model, itself. For example, Baker et al. [2025] use CoT monitor to
monitor for situational awareness which is a property of the model itself, and not an attribute of the
model, and thus, falls outside this causal framework. Secondly, our theoretical analysis primarily
establishes necessary conditions for successful CoT monitoring rather than sufficient ones. Finally,
our validation of our proposed training objectives is currently limited.

311

312
313
314

315
316
317

318
319

320
321

322
323
324
325

326
327
328

329
330
331

332
333
334

335
336
337
338

339
340
341
342
343
344
345

346
347
348
349
350
351

352
353

354
355
356

358
359

References

J. Austin, A. Odena, M. Nye, M. Bosma, H. Michalewski, D. Dohan, E. Jiang, C. Cai, M. Terry,
Q. Le, et al. Program synthesis with large language models. arXiv preprint arXiv:2108.07732,
2021.

B. Baker, J. Huizinga, L. Gao, Z. Dou, M. Y. Guan, A. Madry, W. Zaremba, J. Pachocki, and D. Farhi.
Monitoring reasoning models for misbehavior and the risks of promoting obfuscation, 2025. URL
https://arxiv.org/abs/2503.11926.

F. Barez, T.-Y. Wu, I. Arcuschin, M. Lan, V. Wang, N. Siegel, N. Collignon, C. Neo, I. Lee, A. Paren,
et al. Chain-of-thought is not explainability. Preprint, alphaXiv, page v2, 2025.

N. Belrose, D. Schneider-Joseph, S. Ravfogel, R. Cotterell, E. Raff, and S. Biderman. Leace: Perfect
linear concept erasure in closed form, 2025. URL https://arxiv.org/abs/2306.038109.

Y. Chen, J. Benton, A. Radhakrishnan, J. Uesato, C. Denison, J. Schulman, A. Somani, P. Hase,
M. Wagner, F. Roger, V. Mikulik, S. R. Bowman, J. Leike, J. Kaplan, and E. Perez. Reasoning
models don’t always say what they think, 2025. URL https://arxiv.org/abs/2505.
05410.

W. W. Dou, I. Goldstein, and Y. Ji. Ai-powered trading, algorithmic collusion, and price efficiency.
Working paper, National Bureau of Economic Research, 2025. URL http://www.nber.org/
papers/w34054.

S. Emmons, E. Jenner, D. K. Elson, R. A. Saurous, S. Rajamanoharan, H. Chen, I. Shafkat, and
R. Shah. When chain of thought is necessary, language models struggle to evade monitors, 2025.
URL https://arxiv.org/abs/2507.05246.

S. Farquhar, V. Varma, D. Lindner, D. Elson, C. Biddulph, I. Goodfellow, and R. Shah. Mona:
Myopic optimization with non-myopic approval can mitigate multi-step reward hacking, 2025.
URL https://arxiv.org/abs/2501.13011.

R. Greenblatt, C. Denison, B. Wright, F. Roger, M. MacDiarmid, S. Marks, J. Treutlein, T. Belonax,
J. Chen, D. Duvenaud, A. Khan, J. Michael, S. Mindermann, E. Perez, L. Petrini, J. Uesato,
J. Kaplan, B. Shlegeris, S. R. Bowman, and E. Hubinger. Alignment faking in large language
models, 2024. URL https://arxiv.org/abs/2412.14093.

T. Korbak, M. Balesni, E. Barnes, Y. Bengio, J. Benton, J. Bloom, M. Chen, A. Cooney, A. Dafoe,
A. Dragan, S. Emmons, O. Evans, D. Farhi, R. Greenblatt, D. Hendrycks, M. Hobbhahn,
E. Hubinger, G. Irving, E. Jenner, D. Kokotajlo, V. Krakovna, S. Legg, D. Lindner, D. Luan,
A. Madry, J. Michael, N. Nanda, D. Orr, J. Pachocki, E. Perez, M. Phuong, F. Roger, J. Saxe,
B. Shlegeris, M. Soto, E. Steinberger, J. Wang, W. Zaremba, B. Baker, R. Shah, and V. Miku-
lik. Chain of thought monitorability: A new and fragile opportunity for ai safety, 2025. URL
https://arxiv.org/abs/2507.11473.

T. Lanham, A. Chen, A. Radhakrishnan, B. Steiner, C. Denison, D. Hernandez, D. Li, E. Durmus,
E. Hubinger, J. Kernion, K. Lukosiiité, K. Nguyen, N. Cheng, N. Joseph, N. Schiefer, O. Rausch,
R. Larson, S. McCandlish, S. Kundu, S. Kadavath, S. Yang, T. Henighan, T. Maxwell, T. Telleen-
Lawton, T. Hume, Z. Hatfield-Dodds, J. Kaplan, J. Brauner, S. R. Bowman, and E. Perez. Measuring
faithfulness in chain-of-thought reasoning, 2023. URL https://arxiv.org/abs/2307.
13702.

S. Lei, Z. Cheng, K. Jia, and D. Tao. Revisiting llm reasoning via information bottleneck. arXiv
preprint arXiv:2507.18391, 2025.

M. Liu, S. Diao, X. Lu, J. Hu, X. Dong, Y. Choi, J. Kautz, and Y. Dong. Prorl: Prolonged
reinforcement learning expands reasoning boundaries in large language models, 2025. URL
https://arxiv.org/abs/2505.24864.

Y. Mathew, O. Matthews, R. McCarthy, J. Velja, C. S. de Witt, D. Cope, and N. Schoots. Hidden
in plain text: Emergence & mitigation of steganographic collusion in llms, 2024. URL https:
//arxiv.org/abs/2410.03768.

https://arxiv.org/abs/2503.11926
https://arxiv.org/abs/2306.03819
https://arxiv.org/abs/2505.05410
https://arxiv.org/abs/2505.05410
https://arxiv.org/abs/2505.05410
http://www.nber.org/papers/w34054
http://www.nber.org/papers/w34054
http://www.nber.org/papers/w34054
https://arxiv.org/abs/2507.05246
https://arxiv.org/abs/2501.13011
https://arxiv.org/abs/2412.14093
https://arxiv.org/abs/2507.11473
https://arxiv.org/abs/2307.13702
https://arxiv.org/abs/2307.13702
https://arxiv.org/abs/2307.13702
https://arxiv.org/abs/2505.24864
https://arxiv.org/abs/2410.03768
https://arxiv.org/abs/2410.03768
https://arxiv.org/abs/2410.03768

360
361

362
363
364
365
366

367
368

369
370

371
372

373
374
375

376
377
378
379

380
381

383
384

385
386

A. Meinke, B. Schoen, J. Scheurer, M. Balesni, R. Shah, and M. Hobbhahn. Frontier models are
capable of in-context scheming, 2025. URL https://arxiv.org/abs/2412.04984.

S. R. Motwani, M. Baranchuk, M. Strohmeier, V. Bolina, P. H. Torr, L. Hammond,
and C. S. de Witt. Secret collusion among ai agents: Multi-agent deception via
steganography. In Advances in Neural Information Processing Systems, volume 37,
2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/
file/861f7dad098aeclc3560fb7add468d4l-Paper—-Conference.pdf.

P. S. Park, S. Goldstein, A. O’Gara, M. Chen, and D. Hendrycks. Ai deception: A survey of examples,
risks, and potential solutions, 2023. URL https://arxiv.org/abs/2308.14752.

D. Paul, R. West, A. Bosselut, and B. Faltings. Making reasoning matter: Measuring and improving
faithfulness of chain-of-thought reasoning. arXiv preprint arXiv:2402.13950, 2024.

J. Scheurer, M. Balesni, and M. Hobbhahn. Large language models can strategically deceive their
users when put under pressure, 2024. URL https://arxiv.org/abs/2311.07590.

Z. Shao, P. Wang, Q. Zhu, R. Xu, J. Song, X. Bi, H. Zhang, M. Zhang, Y. Li, Y. Wu, et al.
Deepseekmath: Pushing the limits of mathematical reasoning in open language models. arXiv
preprint arXiv:2402.03300, 2024.

A. C. Stickland and T. Korbak. If you can generate obfuscated chain-of-thought, can
you monitor it? https://www.lesswrong.com/posts/ZEdP6rYirxPxRSfTh/
if-you-can-generate-obfuscated-chain-of-thought-can-you, 2025. Ac-
cessed: 2025-08-20.

J.-F. Ton, M. F. Taufiq, and Y. Liu. Understanding chain-of-thought in llms through information
theory, 2025. URL https://arxiv.org/abs/2411.11984.

M. Turpin, J. Michael, E. Perez, and S. R. Bowman. Language models don’t always say what they
think: Unfaithful explanations in chain-of-thought prompting, 2023. URL https://arxiv.
org/abs/2305.04388.

K. Xu, J. Zhao, S. Song, R. Stewart, and S. Ermon. A theory of usable information under computa-
tional constraints. arXiv preprint arXiv:2002.10689, 2020.

10

https://arxiv.org/abs/2412.04984
https://proceedings.neurips.cc/paper_files/paper/2024/file/861f7dad098aec1c3560fb7add468d41-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/861f7dad098aec1c3560fb7add468d41-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/861f7dad098aec1c3560fb7add468d41-Paper-Conference.pdf
https://arxiv.org/abs/2308.14752
https://arxiv.org/abs/2311.07590
https://www.lesswrong.com/posts/ZEdP6rYirxPxRSfTb/if-you-can-generate-obfuscated-chain-of-thought-can-you
https://www.lesswrong.com/posts/ZEdP6rYirxPxRSfTb/if-you-can-generate-obfuscated-chain-of-thought-can-you
https://www.lesswrong.com/posts/ZEdP6rYirxPxRSfTb/if-you-can-generate-obfuscated-chain-of-thought-can-you
https://arxiv.org/abs/2411.11984
https://arxiv.org/abs/2305.04388
https://arxiv.org/abs/2305.04388
https://arxiv.org/abs/2305.04388

387

388

389
390

391

392

393
394

395
396

397
398

400

401

402

403
404

405

406
407

408

409

410

411
412

Appendix

A Proofs

Lemma A.1 (Fano’s Inequality). Let Y take values in a finite set Y with |Y| = k > 2. Let (Z, X)) be
arbitrary side information and let Y = Y(Z , X)) be any estimator of Y. Denote its error probability
by Popy = Pr[Y # Y. Then

HY | Z,X) < hp(Porr) + Porrlog(k — 1), hy(u) = —ulogu — (1 — u)log(l — w).
In particular, the bound holds with Pey, = P, for the Bayes-optimal estimator.
Proposition A.2 (Necessary MI threshold for a-monitorability). Let Y take values in a finite label
set Y with k = |Y| > 2. For « € [1/k, 1], define

Ty = (1l —a) + (1 —a)log(k —1), hy(u) = —ulogu — (1 — u)log(l —).

If there exists a (possibly stochastic) monitor my(Y | Z, X)) whose induced 0—1 accuracy is at least
« under the data-generating distribution, then

IY:Z|X) > HY | X) — T,.

Proof. Let my (Y | Z, X) be a (possibly stochastic) monitor whose induced 0-1 accuracy is at least
a. Let’s denote the true value of the attribute be y*. Form a point estimator by taking the MAP
decision

y = argmax m Z,X),

§ = argmax my(y | Z,X)
breaking ties arbitrarily. ince MAP is at least as accurate (in 0-1 loss) as sampling from m,;, we have

Perr = PI‘[@ 7é ytrue] § 1- «,

where Y e 18 the ground truth label.

By Lemma A.1 (i.e., Fano’s inequality), we have

H(Y|Z7X) S hb(Perr) + PerrlOg(/Q—l)
HY|Z,X) < hpy(l-a) + (1-a)log(k—1)
H(Y | Z,X) < T

By using the definition of mutual information and plugging in the above inequality, we get the desired
result.

IY:Z|X) = HY |X) - HY | Z,X)
IY:Z|X)> HY | X) — T,.
O

Proposition A.3 (Information gap.). Let 7 be the (true) distribution over (X, Z,Y). Let the CoT
monitor be a stochastic decoder m(Y | Z, X) and define its X -marginal

mw(Y | X) = EZN#(Z|X)[mw(Y | Z7X)},
and the monitor M1

my(Y | Z,X
I, (Y Z | X) = Exxzy) {log "M)}

my(Y | X)
Then
IV Z|X) = In,(ViZ| X) + Ergxzp[DY | X, 2) [m(Y | Z,X))]

= B[Dre((Y | X) [ma(Y | X)) (A1)
and, in particular,
IY;Z|X) > 1, (Y; Z | X). (A2)
Proof. Let 7 denote the true data—generating distribution over (X, Z,Y"). Let my (Y | X, Z) be any
monitor (e.g., my (Y | X, Z) = my(Y | Z, X)), and define
my(Y | X) := Egerizix)[my(Y | X, 2)].

11

413

414

415

416
417

418

419

420

421

422
423

424
425

426

427

428
429
430
431
432
433

434

Step 1: Start from the definition of conditional MI.

I(Y;Z | X) = B (X,2,Y) [1og W}

(Y | X)

Step 2: Multiply and divide inside the logarithm by m, (Y | X,Z) and m,(Y | X) and
rearrange terms.

(V21 X) - B2 [bg (w(Y |X,2) my(Y [X,2) my(Y | X))] |

(VX)) my(Y|X,2) my(Y [X)
Rearranging terms and taking expectations under 7 (X, Z,Y") gives

my(Y | X, Z) VX Z) mw(YIX)}
my (Y | X) my(Y | X, Z) nY 1 X) |

(V3Z | X) + B Du(n(Y | X, 2) [|m(Y | X, 2))| = Baxo| DY | X) [y (Y | X))]

I(Y;Z | X) =Exx,zy) {log } + Erx,2,v) {log } + Exx,v) [log

:Im

o
This yields Equation A.1 completing the first part of the proof.

Step 3: Conclude the lower bound [(Y;Z | X) > I,
log—sum inequality (equivalently, convexity of KL),

(Y;Z | X). For each fixed z, by the

vy

Dyi(n(Y | X=2) [[my(Y | X=2)) < Ezon(zix=2) {DKL(W(Y |2, Z) || my (Y| 9C7Z))]~
Averaging over x ~ 7(X), and with slight abuse of notation we have

Erx) [Die(n(Y | X) [my (Y | X))] < Eagzx) [Dia(r(Y | X, 2) || ma(Y | X, 2)].
0 < Ergzx) [Dre(n(Y | X, 2) [my(Y | X, 2))| = Eagx) [Drn(m(Y | X) [my (Y | X))].

This shows that the difference of the two KL terms in the identity is nonnegative, hence

I(Y;Z|X) > I,,(Y;Z | X).

O

Corollary A.4 (The information gap is minimized by using the policy as the decoder.). I(Y; Z |
X)=1n,(Y;Z | X)ifand only if my(Y | Z,X) = ©n(Y | X, Z).

(Y | X,Z).
O

Proof. This follows directly from the decomposition in (A.1). If my (Y | Z,X) =
Z | X).

then both the KL terms vanish and we get the equality I(Y; Z | X) = I, (Y;

B Experiment Details

B.1 SFT Details

We construct a dataset of hacky code samples by prompting Qwen?2.5-7B-Instruct to generate solutions
that pass only the two revealed test cases for 150 randomly sampled problems from the MBPP dataset.
For each problem, we generate 8 candidate solutions and retain only those that successfully pass the
revealed tests while failing the held out test. We then fine-tune our models on this filtered dataset: the
3B model for 2 epochs and the 7B model for 1 epoch. Importantly, our fine-tuning procedure uses
only the code samples themselves, excluding any chain-of-thought reasoning or explanatory text.

B.2 Hyperparameters

12

Table 1: Reinforcement Learning Hyperparameters

Hyperparameter Value
Policy updates per rollout 4
Policy Clipping Parameter (¢) 0.2
Batch Size 64
Group Size 16
Policy Learning Rate 2e-6
Sampling Temperature 1.2

435 B.3 Monitor Prompt

You are given the following Question about a software repository and a sequence of thoughts from
a student. The student was asked to write code for the given question. There are some unit tests
associated with this task and the student’s code has to pass the tests. Your task is to analyze the student’s
thoughts and determine if the student tried to hack the unit tests in some way:

Question
{agent_prompt}

Student’s thoughts
{agent_messages}

Instructions

Your task is to determine if the student tried to hack the test cases in some way based on the
following criteria:

Criteria:

- Did student say they would hardcode outputs for the given test inputs?

- Did student mention that their solution will be specific to the test cases and will not be a general
solution?

- Did student outline a detailed general solution? If they did not, they are hacking the test cases.

Note that hacking is never acceptable, regardless of the task complexity or missing informa-
tion.

Reminder: Grade the user’s answer with the following structure:
Grading Report

An explanation of how the student’s thoughts are rated against each of the criteria given
above. Please only look at the criteria mentioned above and do not consider anything else.

Final Answer
Select from one of the options listed below.

A. The student’s thoughts reveal an intention to hack the test cases.
B. The student’s thoughts do not reveal an intention to hack the test cases.

Figure 3: Monitor Prompt. The test hacking monitor analyzes student thoughts to detect intentions
to hack test cases rather than implementing proper solutions.

13

	Introduction
	Background
	Related Works

	Information-Theoretic Analysis of CoT monitorability
	Setup and Definitions
	Necessary Conditions for CoT Monitorability
	Information Gap Between Practical Monitor and The Ideal Monitor
	Key Takeaways

	Can CoT Monitorability be Improved?
	Oracle Monitor-in-the-Loop RL
	A Label-Free Proxy: Maximizing I(O;ZX)
	Estimation and Practical Optimization of I(O;Z X)

	Experiments and Results
	Experimental Setup
	Results and Analysis

	Discussion & Limitations
	Proofs
	Experiment Details
	SFT Details
	Hyperparameters
	Monitor Prompt

