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Abstract

We introduce a simple method for probabilistic predictions on tabular data based on Large
Language Models (LLMs) called JoLT (Joint LLM Process for Tabular data). JoLT uses the
in-context learning capabilities of LLMs to define joint distributions over tabular data con-
ditioned on user-specified side information about the problem, exploiting the vast repository
of latent problem-relevant knowledge encoded in LLMs. JoLT defines joint distributions
for multiple target variables with potentially heterogeneous data types without any data
conversion, data preprocessing, special handling of missing data, or model training, making
it accessible and efficient for practitioners. Our experiments show that JoLT outperforms
competitive methods on low-shot single-target and multi-target tabular classification and
regression tasks. Furthermore, we show that JoLT can automatically handle missing data
and perform data imputation by leveraging textual side information.

1. Introduction

When modeling tabular data, incorporating side information and domain expertise often
presents a challenge, particularly for lay users without advanced technical skills. As a result,
leveraging Large Language Models (LLMs) to integrate textual information for tabular data
prediction (Fang et al., 2024; Lu et al., 2024) is a natural approach. Trained on vast cor-
pora of internet data, LLMs possess substantial implicit knowledge and offer a user-friendly
interface for expressing and incorporating side information through natural language. Pre-
diction using LLMs typically uses one of two approaches – fine-tuning (Yosinski et al., 2014)
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or inference-time in-context learning (ICL) (Brown et al., 2020). Fine-tuning involves mod-
ifying LLM’s weights to adapt it for specific tasks. This approach has its own limitations,
including high resource requirements, overfitting risks with small datasets, and potential
privacy concerns when using sensitive data. In contrast, ICL is a simpler, more accessible
alternative, enabling predictions without gradient updates to the model. This approach
reduces the burden on users by eliminating the need for training or hyperparameter tuning,
making it suitable for scenarios with limited data, such as personalization (Massiceti et al.,
2021; Ding et al., 2017).

Requeima et al. (2024) introduced LLM Processes (LLMPs) which used pretrained LLMs
and ICL to do probabilistic regression conditioned on textual side information. LLMPs ef-
fectively combine data and metadata, such as dataset descriptions and column headings,
with the LLM’s latent knowledge. In this work, we build upon LLMPs and present JoLT
(Joint LLMP for Tabular data). JoLT extends LLMPs beyond regression to make joint
probabilistic predictions for multiple target variables, accommodating both numerical and
categorical data types. Our approach eliminates the need for preprocessing, missing data
imputation, model training, or hyperparameter tuning, making it highly accessible to non-
experts in machine learning. Additionally, JoLT empowers users to incorporate side in-
formation or provide specific instructions in plain language or text, allowing for seamless
integration of expert knowledge and contextual insights from the user and LLM into the
modeling process. Our main contributions are: (i) We present JoLT, a method that extends
LLMPs beyond regression to make joint probabilistic predictions for multiple target vari-
ables with heterogeneous data types on tabular datasets. (ii) We demonstrate that JoLT
outperforms competitive approaches on low-shot single and multiple target tabular classifi-
cation and regression tasks. (iii) We show that JoLT implicitly handles missing tabular data
and performs as well or better on downstream tasks when compared to imputing data as a
preprocessing step. (iv) Finally, we show that JoLT can also effectively impute missing data
by leveraging textual side information about the problem. Table 1 provides a summary.

Method
Automatically handle

missing data
Mixed types
+ strings

Can use
side info

In-context learning
(no training)

Joint probabilities
by default

Fast at
test time

Scalable to
large tables

TabLLM × ✓ ✓ × × × ×
TabPFN × × × ✓ × ✓ ×
XGBoost × × × × × ✓ ✓

JoLT (Ours) ✓ ✓ ✓ ✓ ✓ × ×

Table 1: JoLT: key features and comparison with competitive methods.

2. Method

In this section, we describe how to make heterogeneous multiple target probabilistic pre-
dictions in the presence of missing data using JoLT.

Prompt Engineering. In a prediction setting, tabular datasets consist of multiple
rows of examples or records. Each row consists of one or more columns of features and one
or more columns of targets to be predicted based on the feature values. Training examples
have both observed features and observed targets, while test examples only have observed
features. Fig. 1 shows how we design a prompt that contains the entire training set and
the features for a test example that is fed to the LLM in order to generate a prediction.
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Figure 1: Mapping tabular data to a prompt P . The diagram on the left depicts a tabular
dataset where the first N rows are training examples with F features and T targets fully observed.
The last row represents a test example with F observed features and unobserved targets. The
prompt at the top right is formed by serializing the N training examples and the test features into
a single string. The prompt serves as input to a pretrained LLM that will generate the targets to
complete the test example. See Table A.1 for nomenclature.

For each test example, we serialize each row of training data, including both features and
targets, plus the features of the test example to a string. Each feature column may be of
any data type (e.g. numerical - integer or floating point, categorical, date/time, addresses,
unstructured text, etc.) given that the type is or can be converted to a string. The target
columns can also be of any type. We do not perform any preprocessing or scaling of the data
as we want to retain the natural scale and units of the data such that related knowledge
encoded in the LLM can be leveraged. Importantly, we do not modify the LLM weights via
training or fine-tuning.

Prediction. Here we present two approaches to making predictions on multiple target,
heterogeneous data – rejection sampling and sampling from a full distribution.

Rejection Sampling. After feeding the prompt to the LLM, we use the autoregressive
token prediction capability of the LLM to generate the targets for the test example. Knowing
the number and types of the targets, we can parse the generated output and ensure it
conforms to the expected format. If not, we reject the sample. For numerical targets, we
ensure the sample contains a valid number, and for categorical targets, we ensure that it
contains a known category. For a point estimate of a quantity, we can take a single top 1
sample from the LLM. To obtain a point estimate and uncertainty for numerical targets,
we can take a set of samples and use the median for the point estimate and compute
a confidence interval over the range. For categorical targets, the set of samples form a
categorical distribution and the point estimate is the category with the most samples.

Full Distribution via LLM Logits. We can compute the probability of a target value
s that is a member of the set of possible target values S conditioned on a prompt P as:
p(y = s|P, s ∈ S) = p(y = s|P )/

∑
s′∈S p(y = s′|P ). For categorical targets, we can obtain

p(y = s|P ) for each category s from the LLM logits using Algorithm B.1 and then use
the expression above to get the normalized probability for each category. We can then
predict the target category that has the highest probability or sample from the resulting
full categorical distribution. This approach is generally preferable to sampling when |S| is
relatively small, as it grants direct access to the full predictive distribution while remaining
computationally tractable.

Computing Joint Predictive Distributions. Using the product rule, we can com-
pute the joint probability of the ground truth target values for any test example as:

p(y∗1, y
∗
2, . . . , y

∗
T ) = p(y∗1|“PY1⟨d⟩”)p(y∗2|“PY1⟨d⟩y∗1⟨s⟩Y2⟨d⟩”) . . .

p(y∗T |“PY1⟨d⟩y∗1⟨s⟩Y2⟨d⟩y∗2⟨s⟩ . . . YT ⟨d⟩”) (1)
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Figure 2: Left Missing data handling. The diagram depicts a tabular dataset with 4 rows of
training examples. The last row represents a test example with 2 unobserved targets. Empty cells
represent 40% (8 out of 20 feature cells) missing completely-at-random data. The prompt is formed
by simply omitting missing cells. Right JoLT imputation. To impute values for a specific row (in
pink), the features are reordered such that the features with existing values for the specific row are
positioned first. The prompt is constructed akin to Left, where instead of predicting targets Yi, the
model predicts the missing values for a specific row (e.g., columns X1 and X4 in the diagram).

where we have used the notation introduced in Fig. 1. Eq. (1) suggests that we can compute
the joint likelihood of a multiple target test example by computing the product of the
probability of each individual target conditioned on the text that precedes it using the logits
of the LLM which hold token probabilities. For a numerical target, we follow Requeima
et al. (2024) and approximate the probability of a ground truth value using Algorithm B.2.
If the target is categorical, we can use Algorithm B.1, with y set to the true target category.
In our experiments, for each test example, we compute the probability for each target, then
compute the joint probability using Eq. (1), and report the negative log likelihood (NLL)
as the mean of the joint NLLs over the test set.

Missing Data Handling. Our approach implicitly handles missing feature data in
both training and test sets. The strategy is to simply omit any missing feature data when
building the prompt as shown in Fig. 2 Left.

Missing Data Imputation. Our method can be extended to perform data impu-
tation. The approach involves imputing missing values row by row, while leveraging other
incomplete rows of the table as in-context training data for the LLM. To impute missing
values for a specific row, the columns of the table are first permuted so that the columns
containing missing values for that row are positioned after those with non-missing values.
Following the procedure described above, a separate prompt is constructed for each row,
and the LLM predicts the missing values conditioned on the prompt. See Fig. 2 Right.

3. Experiments

In this section, we evaluate the performance of JoLT prediction on single- and multiple-
target low-shot tabular prediction tasks.

Classification Setting. In this experiment, we compare JoLT low-shot classification
performance using the same nine datasets as Hegselmann et al. (2023b). Fig. F.1 shows that
on 7 of the 9 datasets, JoLT is able to outperform, often by a large margin, boosted decision
trees (XGBoost), LLM fine-tuning (TabLLM), and TabPFN (which also uses ICL, but no
LLM) in the low-shot classification setting by utilizing column header side information.
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Multi-target Prediction. Here, we evaluate the ability of JoLT to predict multiple
heterogeneous targets and compute joint distributions on three different datasets.

Wine Quality. The first dataset is the Wine Quality dataset (Cortez et al., 2009) where
there are two targets - one numerical (Alcohol %) and one categorical (Wine Quality on the
scale of 0 to 10). This dataset is primarily comprised of numerical features, with the color
feature column being the only categorical variable. A sample JoLT prompt is shown in
Appendix D.1. We compare JoLT to two competitive methods that can make probabilistic
predictions - TabPFN (Hollmann et al., 2025, 2024) and a Gaussian Process (GP). To
produce multiple targets with TabPFN and the GP, we query the models autoregressively
with multiple passes. We use two variants of the LLM. One that uses both prefix text
⟨prefix⟩ and text from the column headers Xj , Yj , and a no text version that does not.
Fig. 3 indicates that JoLT without using textual information performs poorly across the
board. When using text, JoLT has the best classification accuracy, and the best NLL up
to 40 shots, but loses out to TabPFN on MAE after 20 shots and to the GP at 30 shots
and beyond. In all cases, TabPFN and the GP improve rapidly with increasing number of
shots. When leveraging text, JoLT outperforms other models in the low-shot setting, but
as the amount of training data increases, TabPFN dominates in terms of performance.
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Figure 3: Results for the Wine Quality dataset as a function of shots when evaluating on 1000 test
examples. The first target column is numerical (Alcohol %) using the metric MAE and the second
target column is categorical (Quality on a scale of 1 to 10) using accuracy as the metric. The joint
NLL is over both targets. The JoLT methods use the Gemma-2-27B LLM. The solid line and dots
indicate the mean over 5 seeds which affect the training shot and test example selection and the
shaded region shows a confidence interval of one σ. Tabular results are in Table F.3.

Movies. The second dataset is a subset of the Movies Box Office Dataset (2000-2024)
(Jilla, 2024) where we predict the movie rating as a continuous value on a scale of 0 to 10,
as well as eight binary categorical variables that indicate the movie genre, based on features
that include the movie title and worldwide box office revenue. We only used the 2024 data
and split the dataset (89 train, 99 test examples) so that the movies in the test set have a
release date after the release date of the Gemma-2 LLM. A sample JoLT prompt is shown
in Appendix D.2. The results are shown in Table 2. When predicting the numerical rating,
both JoLT and TabPFN have the same error. However, JoLT outperforms TabPFN by a
large margin in terms of AUC and NLL in predicting the genre attributes of the movies.
This is due to JoLT being able to use the text of the movie title to help predict the binary
genre targets, whereas TabPFN is not able to use text columns and hence performs poorly.

Rating Adventure Comedy Family Action Fantasy Thriller Drama Horror Mean NLL
Method (MAE ↓) (AUC ↑) (AUC ↑) (AUC ↑) (AUC ↑) (AUC ↑) (AUC ↑) (AUC ↑) (AUC ↑) (AUC ↑) ↓

TabPFN 1.09 0.55 0.59 0.55 0.64 0.57 0.32 0.55 0.52 0.54 5.59
JoLT 1.09 0.87 0.94 0.97 0.93 0.94 0.82 0.85 0.99 0.91 4.02

Table 2: Movie Results. JoLT used Gemma-2-27B. Bold indicates the highest results.
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Medals. The third dataset is the Olympic Games dataset collection (Ismail, 2024) where
we use the bronze, silver, and gold medal counts of 10 countries from the 1996 to 2020
summer Olympics to train on. The goal is to predict the silver and gold medal counts for
ten counties at the 2024 Olympics which were held after the release date of the Gemma-2
LLM that JoLT uses. A sample prompt is in Appendix D.3. Results are shown in Table 3.
JoLT has lower MAE and NLL when predicting the 2024 silver and gold medal counts as it
can use the name of the country as context, whereas TabPFN only gets a numerical label.

Method Silver (MAE ↓) Gold (MAE ↓) NLL ↓

TabPFN 4.16 4.91 5.89
JoLT 3.50 4.80 1.87

Table 3: Medals Results. Bold indicates the highest results.
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Figure 4: Effect of side information on JoLT’s predictive distribution for the Medals Dataset. Each
subplot corresponds to a different ⟨prefix⟩, shown in the title, and represents the distributions for
the country mentioned in the ⟨prefix⟩. The baseline predictive distribution is in blue, while the
distribution after adding side information is in orange. Shaded regions indicate the 25th and 75th
percentiles, and dots represent the median values.

Side Information Influence. In this section, we evaluate the effect of incorporating
side textual information on JoLT’s predictive distribution. Using the Medals dataset, we
predict the counts for bronze, silver, and gold medals. In Fig. 4, we apply four different
⟨prefix⟩ values that characterize a country’s performance at the 2024 Olympics. In all cases,
the resulting distribution shifts to better align with the textual information, demonstrating
the effectiveness of textual side information in refining JoLT’s predictions.

Handling Missing Data. In these experiments, we compare the omit strategy for
handling missing data, as outlined in Section 2, with a preprocessing-based imputation
method. To impute missing data, we replace missing numerical and categorical values with
the column-wise mean and the column-wise mode from the training data, respectfully. We
use two different datasets – the Wine Quality dataset as used in Section 3 whose features
are primarily numerical, and the Car dataset whose features are all categorical.

Figs. F.2 and F.3 show the results for the two datasets where the amount of data
missing completely-at-random (MCAR) varies from 10% to 40% in both the training and
test features. We evaluate four JoLT variants – omit and impute, each with or without
text, and TabPFN. The variants that do not use side text information perform the worst on
both datasets. The results show that JoLT implicitly handles missing data, obviating the
need to impute as a preprocessing step, which greatly simplifies the data science workflow.

Missing Data Imputation. While JoLT gracefully handles missing data while pre-
dicting, it is often required to recover missing feature values. In this experiment, we demon-
strate JoLT’s ability to use contextual information and predict multiple values seamlessly
to improve imputation performance. We use the Paris 2024 data from the Olympic Games
dataset collection (Ismail, 2024) which lists medals won by each of the 91 nations participat-
ing in the event. We use the following columns: Country, Gold, Silver, and Bronze. We then
eliminate a fixed percentage of the data completely-at-random. The country column cannot
be used by imputation methods that only use numerical data, but can be leveraged by JoLT.
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An example prompt is shown in Appendix D.4. The results are shown in Fig. 5 where JoLT
(gemma-2-27B) has significantly lower error than conventional imputation techniques that
include MICE (Little and Rubin, 2002), k-Nearest Neighbors (Troyanskaya et al., 2001),
mean, and iterative application of a Bayesian Ridge regressor.

10 20 30 40
Missing %

2

4

M
AE

 JoLT
Mean
kNN
Iterative
MICE

Figure 5: JoLT imputation. MAE as a function of % of missing data (MCAR) on the Medals
dataset for JoLT and four competitive methods. The dots are the mean over 3 seeds which affect
the missing pattern. The shaded region is a σ-confidence interval. Tabular results are in Table F.6.
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Appendix A. Nomenclature

Table A.1: Nomenclature used in prompt construction.

Symbol Description

P prompt
F number of features
T number of targets
N number of training examples or shots
M number of text examples

X1, X2, . . . , XF text heading for feature columns
Y1, Y2, . . . , YT text heading for target columns

xi,j jth feature value of the ith training example
yi,j jth target value of the ith training example
x∗
i,j jth feature value of the ith test example

y∗i,j jth target value of the ith test example
⟨prefix⟩ text string with side information
⟨d⟩ separates Xj and xi,j or Yj and yi,j
⟨s⟩ separates Xj⟨d⟩xi,j and Xj+1⟨d⟩xi,j+1

or Yj⟨d⟩yi,j and Yj+1⟨d⟩yi,j+1

⟨t⟩ separates examples

Appendix B. Algorithms

Algorithm B.1 Computing the log probability distribution function of a categorical target
y

Input: M: LLM model with vocabulary V
Input: T : tokenizer
Input: S: text string preceding y to condition on
Input: Y = {y1, . . . , yL}: set of possible classes

1 ST ← T (S) // Tokenize S
2 for i← 1 to L do
3 yTi ← T (yi) // Tokenize yi
4 li ← |yTi | // Number of tokens in yTi
5 logits ←M(ST + yTi ) // Forward pass; shape of logits = |ST + yTi | × |V|
6 for j ← 1 to li do
7 y logits[j] ← logits[−(li + 2) + j, yTi [j]] // Logits for token j in yTi
8 end
9 class logits[i] ← y logits.sum // Logits corresponding to class yi

10 end
11 y log pdf ← CrossEntropy(logits=class logits, target=y)
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Algorithm B.2 Computing the log probability distribution function of a numerical target
y (Requeima et al., 2024)

Input: M: LLM model; T : tokenizer
Input: n: number of digits after the decimal point for y
Input: A = {“0”, “1”, . . . , “9”, “− ”, “.”, “⟨t⟩”, “⟨s⟩”}: allowed characters for y
Input: S: text string preceding y to condition on

1 non numeric mask ← all tokens /∈ T (A) // Mask of non-numeric tokens

2 yT ← T (str(y)) // Tokenize y
3 l← |yT | // Number of tokens in yT

4 logits ←M(T (S) + yT ) // Run the LLM model forward

5 y logits ← logits[−l − 1 : −1] // Logits corresponding to y
6 y logits[non numeric mask] ← -100 // Mask out non-numeric tokens

7 y log pmf ← CrossEntropy(logits=y logits, targets=yT ).sum // Probability mass of

bin that includes y
8 y log pdf ← y log pmf + n log 10 // Convert probability mass to continuous

likelihood

Appendix C. Related Work

In this section, we survey related methods for tabular prediction and imputation. For a
more complete treatment, refer to Borisov et al. (2022) for a survey of deep learning methods
for tabular data and Fang et al. (2024); Lu et al. (2024) for applying LLMs to tabular data.

Classification and Multi-target prediction TabLLM (Hegselmann et al., 2023b)
fine-tunes an LLM for single target classification only. It can incorporate side informa-
tion, but performance is limited in the few-shot setting. TabPFN (Hollmann et al., 2025)
is an effective ICL method for both classification and regression and offers uncertainty
in the form of quantiles. However, it is restricted to handling numerical and categorical
data, is unable to incorporate text or side information, cannot predict multiple targets at
once, and does not perform well in the low-shot setting. LLM Processes (Requeima et al.,
2024) support multi-target regression with uncertainty estimates and side information but
do not handle classification or heterogeneous targets. JoLT extends LLM Processes by
enabling classification and supporting heterogeneous multiple targets in the tabular data
setting. Carte (Kim et al., 2024) uses a graph-attentional network pretrained across mul-
tiple tables, and subsequently fine-tuned on a downstream dataset. It can incorporate side
information while performing single-target regression or classification, but does not provide
uncertainty. Finally, GPs can make multiple target probabilistic predictions on heteroge-
neous data (Moreno-Muñoz et al., 2018), but require training and cannot easily incorporate
side information.

Handling Missing Data and Data Imputation There exists a myriad of widely
used imputation methods, including mean, median, and mode imputation, k-Nearest Neigh-
bors (Troyanskaya et al., 2001), MICE (Little and Rubin, 2002), and tree-based methods
like MissForest (Stekhoven and Bühlmann, 2011). However, they are restricted to using nu-
merical or categorical data, and hence, are unable to exploit side information. Furthermore,
they do not provide any estimates of uncertainty or distributions for the imputed values. In
contrast, Bayesian methods, such as Gaussian Processes (GPs) (Rasmussen and Williams,
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2006) and Gaussian Copula (Nelsen, 1999), offer the advantage of providing uncertainty
estimates. While Bayesian methods have been extended to handle missing data (Zhao and
Udell, 2020; Jafrasteh et al., 2023), their widespread adoption is hindered by scalability
limitations and the challenges associated with incorporating side information effectively.
Recent work has also explored the use of LLMs for data imputation. Anonymous (2024)
proposes a nearest-neighbor-based imputation method that operates in the embedding space
of an LLM. However, this method does not provide uncertainty estimates for the imputed
values. Ding et al. (2024) and Hayat and Hasan (2024) fine-tune LLMs to handle missing
data and report notable improvements on several downstream tasks. To the best of our
knowledge, there are no methods that utilize LLMs to perform data imputation in low-shot
scenarios. In contrast, JoLT handles missing data automatically, and if imputed values are
required, JoLT can impute missing data with uncertainty, has the ability to incorporate
side information, and operate well in the low-shot setting.

Appendix D. Sample Prompts

In this section, we provide sample prompts for various experiments.

D.1. Wine Quality Experiment Sample Prompt

A sample prompt with one training example, plus test example features, and ⟨d⟩ = “:”, ⟨s⟩
= “;”, and ⟨t⟩ = “\n” is:

“The data contains features that determine the quality of wine. Predict the alco-
hol content and the quality score of each wine based on the features.\nfixed acidity:
6.2; volatile acidity: 0.23; citric acid: 0.35; residual sugar: 0.7; chlorides: 0.051;
free sulfur dioxide: 24.0; total sulfur dioxide: 111.0; density: 0.992; pH: 3.37;
sulphates: 0.43; color: white; alcohol: 11.0; quality: 3\nfixed acidity: 9.9;
volatile acidity: 0.49; citric acid: 0.23; residual sugar: 2.4; chlorides: 0.087;
free sulfur dioxide: 19.0; total sulfur dioxide: 115.0; density: 0.995; pH: 2.77; sul-
phates: 0.44; color: white;”

D.2. Movies Box Office Sample Prompt

A sample prompt with one training example, plus test example features, and ⟨d⟩ = “:”, ⟨s⟩
= “;”, and ⟨t⟩ = “\n” is:

“Each example contains 10 columns: Movie Name, Revenue in Millions
of Dollars, Rating, and 8 genre tags (Adventure, Comedy, Family, Ac-
tion, Fantasy, Thriller, Drama, and Horror). Predict the movie rating
and genre tags.\nMovie Name:Kung Fu Panda 4;ID:36;Revenue in $Mil-
lions:547.7;Rating:7.1;Adventure:No;Comedy:No;Family:Yes;Action:Yes;Fantasy:Yes;
Thriller:No;Drama:No;Horror:No\nMovie Name:Speak No Evil;ID:120;Revenue in
$Millions:76.8;”
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D.3. Olympic Games Dataset Prompt

A sample prompt with one training example, plus test example features, and ⟨d⟩ = “:”, ⟨s⟩
= “;”, and ⟨t⟩ = “\n” is:

“Each example contains five columns: Olympic Year, Country, Bronze Medal
Count, Silver Medal Count, and Gold Medal Count that describe what type and
how many medals a country won at the Olympic games that year. Predict the
number of silver and gold medals won by that country in that year.\nOlympic
Year:2020;Country:Netherlands;Bronze Medal Count:14;Silver Medal Count:12;Gold
Medal Count:10\nOlympic Year:2024;Country:USA;Bronze Medal Count:42;’”

D.4. Imputation Prompt

A sample prompt with one training example, plus test example features, and ⟨d⟩ = “:”, ⟨s⟩
= “;”, and ⟨t⟩ = “\n” is:

“Each example contains four columns: Country, Silver Medal Count, Bronze Medal
Count, and Gold Medal Count that describe what type and how many medals a coun-
try won at the Paris 2024 olympics.\nCountry:Thailand;Silver Medal Count:3;Bronze
Medal Count:2;Gold Medal Count:1\nCountry:Slovakia;Silver Medal Count:0;Bronze
Medal Count:1;”

Appendix E. Datasets

Classification For the few-shot classification experiments, we utilize the nine datasets
introduced in Hegselmann et al. (2023b). The serialized versions of these datasets are
obtained from Hegselmann et al. (2023a). These datasets are:

• Bank (Moro et al., 2014) contains records relevant to a direct marketing campaigns
(phone calls) of a Portuguese banking institution. The classification goal is to predict
if the client will subscribe to a term deposit (binary classification). It consists of
45, 211 rows and 16 features; 5, 289 labels are positive.

• Blood (Yeh, 2008) contains 748 donor records from the Blood Transfusion Service
Center in Taiwan. The classification task is to predict whether a donor returned for
another blood donation.

• Calhousing (Pace and Barry, 1997) has entries of houses found in a given California
district and some summary stats about them based on the 1990 U.S. census data.
Following (Hegselmann et al., 2023a), the goal is to predict whether the house value
is below or above the median in its district.

• Cars (Bohanec, 1988) contains records of various cars, characterized by six attributes.
The task is a multiclass classification problem to evaluate the state of each car.
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• Creditg (Hofmann, 1994) contains 1000 records, each described by 20 attributes, and
the task is to classify individuals as either good or bad credit risks. Of these records,
700 are classified as good credit risks.

• Diabetes (Smith et al., 1988): originally from the National Institute of Diabetes and
Digestive and Kidney Diseases, this dataset aims to diagnostically predict whether a
patient has diabetes based on specific diagnostic measurements. Among the records,
268 cases are positive for diabetes.

• Heart (Detrano et al., 1989) combines records from four hospitals in Cleveland, Hun-
gary, Switzerland, and Long Beach V. The task is to predict the presence of heart
disease in patients. Among the 918 patients, 508 are diagnosed as positive for heart
disease.

• Income (Becker and Kohavi, 1996) contains records of 48, 842 individuals with 12
attributes collected in the 1994 U.S. Census. The classification task is to predict
whether annual income of an individual exceeds $50K. The dataset has 11, 687 positive
labels.

• Jungle (van Rijn and Vis, 2014) consists of 44, 819 endgame positions from Jungle
Chess. Each position is described by 6 attributes, and the task is to predict whether
the white player wins. Among the records, 23, 062 are positive outcomes for the white
player.

Multi-target prediction For the multi-target prediction in Section 3, we use the follow-
ing datasets:

• Wine Quality (Cortez et al., 2009) contains records of Portuguese wines, each char-
acterized by 11 physiochemical attributes. The original task is to predict wine quality
on a scale from 0 to 10. To evaluate multi-target prediction capabilities, we mod-
ified the task to predict both the wine quality (categorical) and alcohol percentage
(numerical).

• Movies Box office Dataset (2000-2024) (Jilla, 2024) provides a comprehensive
analysis of global box office performance from 2000 to 2024. Each row represents a
movie and includes attributes such as release year, genres, production budget, world-
wide gross, and additional descriptive features. The dataset contains 4955 movies.

• Olympic Games (1994-2024) (Ismail, 2024) is a database of medals awarded at the
Summer and Winter Olympic Games from 1994 to 2024. Each table in the database
corresponds to a specific Olympic Games, detailing medal counts by participating
countries. Each row includes the country code and the number of gold, silver, and
bronze medals won by the respective country.

In Section 3, we evaluate using the Cars and Wine Quality datasets, while in Section 3,
we use a subset of the Olympic Games dataset.
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Appendix F. Additional Experimental Results

In this section, we expand on the main paper by providing additional experimental results,
along with tabular versions of the findings originally presented as plots. For any experi-
ment with a regression target, we use top-1 sampling. The one exception is in the Movies
experiment, where we use 50 samples and take the median as the point estimate.

F.1. Classification

In this section, we compare JoLT classification performance using datasets from Hegselmann
et al. (2023b). To make a fair comparison, we use the same serialized datasets provided
by Hegselmann et al. (2023a). The datasets used in this experiment are described in Ap-
pendix E. We consider XGBoost (Chen and Guestrin, 2016), TabPFN (Hollmann et al.,
2025), and TabLLM (Hegselmann et al., 2023b) as competitive baselines for comparison.
Like JoLT, TabLLM also relies on an LLM for prediction. However, TabLLM utilizes fine-
tuning on the training data as opposed to ICL, which is the main focus of JoLT. Fig. F.1
shows that on 7 of the 9 datasets, JoLT is able to outperform, often by a large margin,
boosted decision trees (XGBoost), LLM fine-tuning (TabLLM), and TabPFN (which also
uses ICL, but no LLM) in the low-shot classification setting by utilizing column header
side information. However, expectedly, the gap shrinks with an increasing number of shots.
Table F.2 presents the tabular version of Fig. F.1.

Summary: JoLT is able to outperform boosted decision trees (XGBoost), LLM fine-
tuning (TabLLM), and TabPFN (which also uses ICL, but without an LLM) in the low-shot
classification setting by utilizing column header side information. XGBoost and TabPFN
cannot use side information and rely on larger amounts of training data to perform well.
TabLLM can leverage text information, but tends to overfit when fine-tuning on a small
amount of training data.
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Figure F.1: Area Under the Receiver Operating Characteristic Curve (AUC) as a function of
shot for JoLT using two different LLMs and three competitive methods. The solid line and dots
indicate the mean over 5 seeds which affect the training shot selection and the shaded region shows
a confidence interval of one σ. Competitive data from Hegselmann et al. (2023b). Tabular results
are in Table F.2.
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Table F.2: Classification. AUC as a function of shot for three JoLT configurations and
three competitive methods. Values are the mean and 95% confidence interval (CI) over 5
seeds that affect the training shot selection. Due to limited computational resources values
at 16 and 32 shots with 0 CI use only a single seed. Competitive data from (Hegselmann
et al., 2023b).

Shot

Dataset Method 0 4 8 16 32

XGBoost - 0.5±0.00 0.56±0.08 0.68±0.04 0.76±0.03
TabPFN - 0.59±0.12 0.66±0.07 0.69±0.02 0.76±0.03

bank TabLLM 0.63±0.01 0.59±0.09 0.64±0.04 0.65±0.04 0.64±0.05
JoLT (Gemma-2-2B) 0.46±0.00 0.62±0.05 0.62±0.05 0.57±0.05 0.52±0.09
JoLT (Gemma-2-27B) 0.61±0.00 0.72±0.01 0.72±0.01 0.71±0.01 0.73±0.00
JoLT (Qwen-2.5-72B) 0.73±0.00 0.83±0.01 0.81±0.02 0.77±0.00 0.73±0.00

XGBoost - 0.5±0.00 0.58±0.06 0.66±0.04 0.67±0.05
TabPFN - 0.52±0.07 0.64±0.04 0.67±0.01 0.7±0.04

blood TabLLM 0.61±0.04 0.58±0.08 0.66±0.03 0.66±0.06 0.68±0.04
JoLT (Gemma-2-2B) 0.56±0.00 0.62±0.08 0.58±0.04 0.64±0.06 0.59±0.05
JoLT (Gemma-2-27B) 0.70±0.00 0.72±0.03 0.68±0.03 0.73±0.02 0.71±0.05
JoLT (Qwen-2.5-72B) 0.64±0.00 0.71±0.04 0.71±0.02 0.73±0.02 0.72±0.03

XGBoost - 0.5±0.00 0.62±0.09 0.74±0.03 0.79±0.04
TabPFN - 0.63±0.11 0.63±0.10 0.8±0.03 0.85±0.03

calhousing TabLLM 0.61±0.01 0.63±0.04 0.6±0.06 0.7±0.07 0.77±0.07
JoLT (Gemma-2-2B) 0.45±0.00 0.72±0.01 0.66±0.09 0.76±0.04 0.78±0.04
JoLT (Gemma-2-27B) 0.64±0.00 0.83±0.01 0.82±0.04 0.85±0.02 0.85±0.01
JoLT (Qwen-2.5-72B) 0.64±0.00 0.83±0.01 0.80±0.04 0.84±0.01 0.84±0.01

XGBoost - 0.5±0.00 0.59±0.04 0.7±0.07 0.82±0.03
TabPFN - 0.64±0.05 0.75±0.04 0.87±0.04 0.92±0.02

car TabLLM 0.82±0.02 0.83±0.03 0.85±0.03 0.86±0.03 0.91±0.02
JoLT (Gemma-2-2B) 0.73±0.00 0.84±0.02 0.79±0.02 0.79±0.04 0.74±0.04
JoLT (Gemma-2-27B) 0.82±0.00 0.89±0.01 0.90±0.01 0.91±0.01 0.94±0.01
JoLT (Qwen-2.5-72B) 0.86±0.00 0.89±0.04 0.88±0.02 0.89±0.04 0.94±0.01

XGBoost - 0.5±0.00 0.51±0.06 0.59±0.04 0.66±0.03
TabPFN - 0.58±0.07 0.59±0.03 0.64±0.05 0.69±0.06

creditg TabLLM 0.53±0.04 0.69±0.04 0.66±0.04 0.66±0.04 0.72±0.05
JoLT (Gemma-2-2B) 0.52±0.00 0.52±0.03 0.53±0.06 0.55±0.04 0.50±0.04
JoLT (Gemma-2-27B) 0.48±0.00 0.55±0.02 0.54±0.04 0.56±0.04 0.53±0.01
JoLT (Qwen-2.5-72B) 0.60±0.00 0.56±0.03 0.57±0.05 0.60±0.08 0.65±0.05

XGBoost - 0.5±0.00 0.59±0.14 0.72±0.06 0.69±0.07
TabPFN - 0.61±0.11 0.67±0.10 0.71±0.06 0.77±0.03

diabetes TabLLM 0.68±0.05 0.61±0.08 0.63±0.07 0.69±0.06 0.68±0.04
JoLT (Gemma-2-2B) 0.62±0.00 0.73±0.06 0.71±0.06 0.76±0.02 0.73±0.06
JoLT (Gemma-2-27B) 0.82±0.00 0.81±0.02 0.79±0.01 0.80±0.02 0.80±0.02
JoLT (Qwen-2.5-72B) 0.78±0.00 0.83±0.02 0.82±0.02 0.82±0.02 0.82±0.02

XGBoost - 0.5±0.00 0.55±0.12 0.84±0.06 0.88±0.04
TabPFN - 0.84±0.05 0.88±0.04 0.87±0.05 0.91±0.02

heart TabLLM 0.54±0.04 0.76±0.12 0.83±0.04 0.87±0.04 0.87±0.05
JoLT (Gemma-2-2B) 0.64±0.00 0.74±0.01 0.80±0.04 0.72±0.08 0.65±0.09
JoLT (Gemma-2-27B) 0.74±0.00 0.82±0.02 0.85±0.01 0.87±0.01 0.88±0.01
JoLT (Qwen-2.5-72B) 0.89±0.00 0.87±0.01 0.88±0.01 0.89±0.01 0.90±0.02

XGBoost - 0.5±0.00 0.59±0.05 0.77±0.02 0.79±0.03
TabPFN - 0.73±0.07 0.71±0.08 0.76±0.08 0.8±0.04

income TabLLM 0.84±0.00 0.84±0.01 0.84±0.02 0.84±0.04 0.84±0.01
JoLT (Gemma-2-2B) 0.82±0.00 0.82±0.02 0.82±0.01 0.83±0.02 0.83±0.01
JoLT (Gemma-2-27B) 0.86±0.00 0.85±0.00 0.85±0.01 0.85±0.01 0.85±0.00
JoLT (Qwen-2.5-72B) 0.83±0.00 0.86±0.00 0.85±0.01 0.86±0.00 0.86±0.00

XGBoost - 0.5±0.00 0.58±0.06 0.72±0.04 0.78±0.03
TabPFN - 0.65±0.07 0.72±0.04 0.71±0.06 0.78±0.02

jungle TabLLM 0.6±0.00 0.64±0.01 0.64±0.02 0.65±0.03 0.71±0.02
JoLT (Gemma-2-2B) 0.67±0.00 0.60±0.02 0.59±0.04 0.55±0.04 0.61±0.04
JoLT (Gemma-2-27B) 0.62±0.00 0.62±0.01 0.63±0.01 0.63±0.02 0.64±0.01
JoLT (Qwen-2.5-72B) 0.62±0.00 0.62±0.01 0.62±0.01 0.61±0.03 0.64±0.01
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F.2. Multi-target Prediction

This section extends Section 3 by presenting a tabular version (Table F.3) of Fig. 3, which
displays the results of predicting two target columns from the Wine Quality dataset (Cortez
et al., 2009) as a function of shots.

Table F.3: Multi-target Prediction. Results for predicting two target columns from the Wine
Quality dataset (Cortez et al., 2009) as a function of shots. 1000 test examples were used. The
first target column is numerical (Alcohol %) using the metric Mean Absolute Error (MAE) and the
second target column is categorical (Quality on a scale of 1 to 10) using classification accuracy as
the metric. The joint NLL is over both targets. The LLMP methods use the Gemma-2-27B LLM.
LLMP (Text) utilized both prefix text ⟨prefix⟩ and text from the column headers Xj , Yj , whereas
LLMP (No Text) did not. Values are the mean and 95% confidence interval (CI) over 5 seeds that
affect the training shot and test example selection.

Shots

Method Metric 10 20 30 40 50

MAE↓ 0.880±0.144 0.688±0.077 0.535±0.050 0.472±0.047 0.418±0.017
TabPFN ACC↑ 0.282±0.074 0.419±0.054 0.466±0.023 0.476±0.023 0.503±0.007

NLL↓ 3.281±0.149 2.724±0.135 2.314±0.060 2.159±0.077 2.013±0.030

MAE↓ 0.942±0.044 0.771±0.020 0.622±0.014 0.551±0.023 0.510±0.014
GP ACC↑ 0.338±0.046 0.400±0.030 0.412±0.007 0.445±0.010 0.448±0.007

NLL↓ 7.185±2.573 7.980±3.322 8.499±3.532 1.879±0.068 1.795±0.021

MAE↓ 0.866±0.005 0.891±0.038 0.818±0.049 0.768±0.033 0.804±0.011
LLMP (No text) ACC↑ 0.197±0.024 0.449±0.046 0.477±0.018 0.480±0.024 0.503±0.006

NLL↓ 3.285±0.143 2.747±0.086 2.589±0.048 2.534±0.032 2.552±0.029

MAE↓ 0.718±0.056 0.686±0.022 0.657±0.053 0.620±0.025 0.638±0.011
LLMP (Text) ACC↑ 0.459±0.013 0.522±0.002 0.519±0.010 0.526±0.007 0.526±0.006

NLL↓ 2.434±0.101 2.268±0.048 2.293±0.084 2.205±0.057 2.248±0.019
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F.3. Handling Missing Data

This section expands on Section 3 by reporting our findings for the Wine Quality and Car
datasets. Fig. F.2 and Table F.4 show results for the Wine Quality dataset, while Fig. F.3
and Table F.5 present results for the Car dataset. In both cases, the amount of data miss-
ing completely-at-random (MCAR) varies from 10% to 40% in both the training and test
features. As discussed in the main text, we evaluate four JoLT variants—omit and impute,
each with or without side text information—and compare them against TabPFN. Remark-
ably, for the JoLT variants that use side text information, the omit approach performs
almost identically to imputing data on the Wine Quality dataset and exceeds it on the Car
dataset. Interestingly, the opposite is true when no side text is used — impute performs
better than omit. This supports our argument that the heading text labels on each feature
cell helps the LLM to do a better job of knowing what features are missing (or present) and
compensate appropriately. Compared to TabPFN, JoLT omit outperforms at low shot and
performs similarly at higher shot. The exception is at 40% missing using the car dataset
where JoLT omit outperforms TabPFN by a large margin.
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Figure F.2: Performance metrics for JoLT that uses the gemma-2-27B LLM and TabPFN as a
function of shots and percentage of data missing completely-at-random (MCAR) on the multitarget
Wine Quality dataset (Cortez et al., 2009). 200 test examples were used. The solid line and dots
indicate the mean over 3 seeds which affect the training shot and test example selection as well as
the missing pattern and the shaded region shows a confidence interval of one σ. The first target
column is numerical (Alcohol %) using the metric Mean Absolute Error (MAE) and the second
target column is categorical (Wine Quality on a scale of 1 to 10) using classification accuracy as the
metric (ACC). The joint negative log-likelihood (NLL) is over both targets. Tabular version is in
Table F.4.
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Table F.4: Missing Data Handling on Wine Quality. Performance metrics for JoLT that
uses the gemma-2-27B LLM and TabPFN as a function of shots and percentage of data missing
completely-at-random (MCAR) on the Wine Quality dataset (Cortez et al., 2009). 200 test examples
were used. Values are the mean and 95% confidence interval over 5 seeds that affect the training
and test shot selection and the missing pattern. The first target column is numerical (Alcohol %)
using the metric Mean Absolute Error (MAE) and the second target column is categorical (Wine
Quality on a scale of 1 to 10) using classification accuracy as the metric (ACC). The joint negative
log-likelihood (NLL) is over both targets.

Shots

Missing % Method Metric 10 20 30 40 50

MAE 0.943±0.053 0.875±0.030 0.832±0.081 0.809±0.026 0.824±0.035
LLMP Impute (No Text) ACC 0.309±0.120 0.475±0.048 0.480±0.014 0.470±0.051 0.473±0.023

NLL 3.420±0.428 2.746±0.025 2.595±0.100 2.608±0.036 2.570±0.078

MAE 0.955±0.051 0.931±0.015 0.880±0.069 0.854±0.029 0.877±0.059
LLMP Omit (No Text) ACC 0.370±0.100 0.435±0.058 0.472±0.012 0.440±0.081 0.492±0.019

NLL 3.716±0.377 3.067±0.139 2.882±0.166 2.812±0.058 2.750±0.100

MAE 0.718±0.038 0.769±0.027 0.760±0.106 0.707±0.022 0.690±0.059
10 LLMP Impute (Text) ACC 0.458±0.030 0.527±0.023 0.532±0.013 0.532±0.013 0.530±0.020

NLL 2.458±0.058 2.409±0.043 2.428±0.093 2.347±0.020 2.356±0.041

MAE 0.718±0.045 0.745±0.005 0.724±0.093 0.692±0.001 0.657±0.057
LLMP Omit (Text) ACC 0.462±0.019 0.522±0.011 0.535±0.021 0.555±0.007 0.515±0.042

NLL 2.484±0.077 2.401±0.018 2.424±0.065 2.322±0.010 2.299±0.053

MAE 0.942±0.260 0.686±0.094 0.693±0.047 0.652±0.052 0.639±0.040
TabPFN ACC 0.282±0.123 0.428±0.055 0.485±0.055 0.482±0.039 0.482±0.021

NLL 3.188±0.227 2.745±0.090 2.441±0.028 2.339±0.060 2.379±0.056

MAE 0.956±0.081 0.945±0.025 0.877±0.071 0.867±0.040 0.858±0.064
LLMP Impute (No Text) ACC 0.284±0.091 0.467±0.049 0.487±0.019 0.473±0.072 0.495±0.012

NLL 3.558±0.508 2.852±0.052 2.643±0.087 2.654±0.028 2.607±0.073

MAE 0.936±0.041 0.972±0.048 0.933±0.073 0.927±0.014 0.924±0.075
LLMP Omit (No Text) ACC 0.351±0.088 0.440±0.030 0.460±0.020 0.465±0.045 0.490±0.030

NLL 3.714±0.318 3.248±0.044 3.062±0.258 3.022±0.074 2.951±0.181

MAE 0.781±0.066 0.828±0.059 0.769±0.098 0.743±0.046 0.766±0.055
20 LLMP Impute (Text) ACC 0.455±0.023 0.528±0.042 0.520±0.035 0.528±0.019 0.540±0.005

NLL 2.574±0.086 2.492±0.053 2.474±0.107 2.409±0.025 2.451±0.009

MAE 0.750±0.051 0.807±0.044 0.770±0.077 0.738±0.074 0.722±0.056
LLMP Omit (Text) ACC 0.443±0.010 0.510±0.044 0.540±0.039 0.543±0.031 0.552±0.025

NLL 2.641±0.073 2.465±0.042 2.465±0.044 2.393±0.039 2.400±0.018

MAE 0.982±0.201 0.725±0.105 0.737±0.047 0.700±0.085 0.698±0.042
TabPFN ACC 0.302±0.080 0.412±0.063 0.448±0.068 0.472±0.040 0.468±0.005

NLL 3.292±0.264 2.810±0.074 2.541±0.053 2.459±0.026 2.475±0.070

MAE 0.958±0.074 0.956±0.016 0.907±0.053 0.903±0.030 0.884±0.072
LLMP Impute (No Text) ACC 0.266±0.083 0.455±0.045 0.497±0.016 0.473±0.056 0.495±0.024

NLL 3.515±0.441 2.888±0.067 2.684±0.072 2.679±0.053 2.648±0.082

MAE 0.967±0.067 1.014±0.056 0.976±0.082 0.953±0.039 0.959±0.059
LLMP Omit (No Text) ACC 0.265±0.112 0.427±0.048 0.475±0.028 0.440±0.077 0.470±0.035

NLL 4.010±0.222 3.691±0.315 3.521±0.321 3.420±0.223 3.307±0.209

MAE 0.832±0.032 0.877±0.023 0.787±0.072 0.791±0.046 0.804±0.075
30 LLMP Impute (Text) ACC 0.437±0.035 0.528±0.047 0.522±0.046 0.523±0.033 0.508±0.007

NLL 2.656±0.071 2.552±0.040 2.509±0.077 2.493±0.037 2.542±0.020

MAE 0.804±0.034 0.860±0.033 0.805±0.058 0.790±0.037 0.750±0.074
LLMP Omit (Text) ACC 0.437±0.027 0.505±0.058 0.510±0.062 0.525±0.035 0.520±0.035

NLL 2.730±0.042 2.581±0.015 2.569±0.011 2.513±0.029 2.486±0.016

MAE 0.998±0.174 0.734±0.073 0.760±0.067 0.763±0.099 0.767±0.037
TabPFN ACC 0.292±0.070 0.425±0.030 0.440±0.024 0.475±0.016 0.462±0.019

NLL 3.315±0.255 2.846±0.191 2.700±0.142 2.622±0.097 2.553±0.072

MAE 0.966±0.040 0.976±0.042 0.956±0.077 0.931±0.026 0.928±0.077
LLMP Impute (No Text) ACC 0.284±0.069 0.438±0.028 0.468±0.021 0.462±0.047 0.480±0.018

NLL 3.475±0.311 2.948±0.019 2.782±0.110 2.750±0.055 2.718±0.134

MAE 0.974±0.020 1.050±0.050 1.012±0.058 1.024±0.015 1.000±0.056
LLMP Omit (No Text) ACC 0.245±0.076 0.392±0.065 0.448±0.016 0.450±0.068 0.465±0.012

NLL 4.229±0.595 3.777±0.251 3.656±0.244 3.563±0.161 3.539±0.193

MAE 0.876±0.020 0.945±0.036 0.827±0.063 0.861±0.041 0.862±0.074
40 LLMP Impute (Text) ACC 0.440±0.017 0.512±0.033 0.525±0.020 0.523±0.016 0.507±0.007

NLL 2.763±0.034 2.635±0.003 2.536±0.029 2.552±0.029 2.600±0.041

MAE 0.865±0.017 0.930±0.028 0.846±0.028 0.838±0.013 0.803±0.068
LLMP Omit (Text) ACC 0.435±0.035 0.483±0.021 0.502±0.026 0.530±0.049 0.533±0.037

NLL 2.836±0.018 2.678±0.005 2.628±0.016 2.596±0.032 2.551±0.048

MAE 1.080±0.224 0.823±0.117 0.791±0.042 0.809±0.064 0.821±0.035
TabPFN ACC 0.268±0.102 0.423±0.045 0.438±0.019 0.490±0.014 0.457±0.024

NLL 3.351±0.217 2.926±0.183 2.724±0.091 2.660±0.087 2.616±0.076
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Figure F.3: AUC for JoLT using the gemma-2-27B LLM and TabPFN as a function of shots
and percentage of data missing (MCAR) on the Car classification dataset (Bohanec, 1988). 200
test examples were used. The solid line and dots indicate the mean over 3 seeds which affect the
training shot and test example selection as well as the missing pattern and the shaded region shows
a confidence interval of one σ. Tabular version is in Table F.5

Table F.5: Missing Data Handling on Cars. AUC for JoLT using the gemma-2-27B
LLM and TabPFN as a function of shots and percentage of data missing completely-at-
random (MCAR) on the Car classification dataset (Bohanec, 1988). 200 test examples were
used. Values are the mean and 95% confidence interval (CI) over 5 seeds that affect the
training and test shot selection and the missing pattern.

Shot

Missing % Method 10 20 30 40 50

JoLT Impute (No Text) 0.710±0.083 0.791±0.026 0.818±0.023 0.856±0.029 0.862±0.002
JoLT Omit (No Text) 0.685±0.082 0.778±0.033 0.808±0.003 0.844±0.028 0.827±0.029

10 JoLT Impute (Text) 0.736±0.061 0.813±0.010 0.819±0.012 0.851±0.022 0.856±0.007
JoLT Omit (Text) 0.755±0.030 0.822±0.046 0.841±0.027 0.877±0.038 0.876±0.016
TabPFN 0.737±0.049 0.840±0.012 0.877±0.021 0.895±0.011 0.892±0.004

JoLT Impute (No Text) 0.632±0.061 0.722±0.077 0.720±0.068 0.791±0.019 0.793±0.034
JoLT Omit (No Text) 0.667±0.039 0.718±0.067 0.742±0.017 0.778±0.042 0.791±0.060

20 JoLT Impute (Text) 0.678±0.042 0.787±0.037 0.779±0.028 0.824±0.018 0.819±0.022
JoLT Omit (Text) 0.714±0.034 0.786±0.039 0.799±0.028 0.844±0.037 0.834±0.038
TabPFN 0.679±0.024 0.811±0.038 0.808±0.018 0.824±0.029 0.804±0.048

JoLT Impute (No Text) 0.589±0.046 0.643±0.053 0.665±0.017 0.723±0.024 0.712±0.014
JoLT Omit (No Text) 0.647±0.023 0.659±0.089 0.676±0.068 0.696±0.054 0.715±0.090

30 JoLT Impute (Text) 0.614±0.058 0.722±0.037 0.716±0.015 0.749±0.017 0.745±0.030
JoLT Omit (Text) 0.696±0.040 0.768±0.051 0.756±0.026 0.793±0.040 0.792±0.032
TabPFN 0.687±0.034 0.774±0.035 0.769±0.037 0.794±0.024 0.783±0.036

JoLT Impute (No Text) 0.613±0.048 0.692±0.048 0.692±0.086 0.706±0.032 0.718±0.044
JoLT Omit (No Text) 0.598±0.055 0.619±0.048 0.633±0.070 0.660±0.081 0.655±0.055

40 JoLT Impute (Text) 0.670±0.039 0.737±0.029 0.733±0.038 0.763±0.035 0.758±0.030
JoLT Omit (Text) 0.648±0.036 0.729±0.052 0.761±0.032 0.780±0.032 0.770±0.041
TabPFN 0.617±0.105 0.735±0.028 0.646±0.077 0.721±0.056 0.710±0.021
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F.4. Data Imputation

This section provides the tabular version of Fig. 5 in Table F.6. In summary, JoLT can
outperform standard imputation techniques by leveraging text-based side information about
the setting (i.e. the country name, the numerical columns contained medal counts for the
2024 Olympic games, etc.) that is not possible with numerical only methods.

Table F.6: Imputation: MAE as a function of % of missing data (MCAR) on the Paris
2024 Olympic Medals dataset for JoLT that uses the gemma-2-27B and four competive
methods. Values are the mean and 95% confidence interval (CI) over 3 seeds that affect the
training and test shot selection and the missing pattern.

Missing %

Method 10 20 30 40

Mean 3.398±1.190 3.523±0.784 3.835±0.762 3.796±0.540
kNN 1.728±0.505 1.833±0.226 2.291±0.636 2.279±0.604
Iterative 1.544±0.026 1.844±0.161 2.033±0.515 2.400±0.492
MICE 1.679±0.436 2.138±0.579 2.254±0.681 2.523±0.867
JoLT 1.139±0.253 1.590±0.306 1.465±0.044 1.543±0.337

Appendix G. Limitations

Along with the flexibility of LLMs, JoLT inherits their drawbacks. Maximum context sizes
limit the size of tasks we can apply this method to and the amount of textual information
we can condition on. JoLT is significantly more computationally expensive compared to
competitive tabular prediction methods. In particular, both the computational complexity
and the maximum context size of the LLM limit the number of training examples and the
number of columns in the tabular dataset that can be reasonably processed. All of the
experiments were performed on readily available small to medium sized open source LLMs
that have fewer parameters and are generally less capable compared to large open source
and proprietary LLMs that are accessed through services. We expect our results to improve
and scale to larger tabular datasets with the use of proprietary LLMs.

Furthermore, we can combine ICL and fine-tuning to generalize to even larger datasets
in the future.

Appendix H. Discussion

In this paper, we introduce JoLT, a novel method for probabilistic predictions on tabular
data that leverages LLMs to define joint distributions over heterogeneous data types. JoLT
distinguishes itself from competitive methods by effectively utilizing side information, pro-
viding joint probabilities, and automatically handling missing data, all without requiring
additional training or data preprocessing. Through extensive experiments, we demonstrate
that JoLT excels in low-shot scenarios, particularly when rich text-based side information
is available, showcasing its versatility and practicality in real-world applications. Recently,
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Agarwal et al. (2024) demonstrated that in-context learning datasets with hundreds or
thousands of shots yield performance benefits, indicating that scaling the number of shots
might be an interesting direction for the future.

Impact Statement

Our work has demonstrated a new and useful ICL approach for generating probabilistic
predictions on tabular data. It has the potential to allow practitioners from fields such as
medical and ecological research to more easily employ probabilistic modeling and machine
learning. Like all machine learning technology, there is potential for abuse, and possible
consequences from incorrect predictions made with JoLT. Due to the black-box nature of
the method, we do not know the biases in the underlying LLMs used and what effect they
may have on JoLT output. However, LLM researchers are striving to make LLMs more
fair and equitable. An open area of research is whether LLM biases propagate to JoLT
predictions and whether de-biasing LLMs helps to fix such an issue.
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