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Abstract

Maximizing the cumulative reward of a sequence of tasks under a time budget has been
ubiquitous in many applications in computing and machine learning. Often, tasks can have
random completion time and the controller needs to learn the unknown statistics while
making optimal decisions. In addition to the classic exploration-exploitation trade-off, it has
been shown that restarting strategy can boost the performance of the control algorithm by
interrupting ongoing tasks at the expense of losing its reward. In this work, we consider a
bandit setting where each decision takes a random completion time and yields a random
(possibly correlated) reward at the end, both with unknown values at the time of decision.
The goal of the decision-maker is to maximize the expected total reward subject to a stringent
time budget τ . As an additional control, we allow the decision-maker to interrupt an ongoing
task and forgo its reward for a potentially more rewarding restart. Unlike previous works,
we do not: assume any prior knowledge on the system statistics, or limit the action space of
restarting strategies to be finite. Under this general framework, we developed efficient bandit
algorithms to find optimal arms and restart strategies with O(log(τ)) and O(

√
τ log(τ))

regret for both finite and continuous set of restart times, respectively. Furthermore, through
numerical studies, we verified the applicability of our algorithm in the diverse contexts of:
(i) algorithm portfolios for SAT solvers; (ii) task scheduling in wireless networks; and (iii)
hyperparameter tuning in neural network training.

1 Introduction

Processes under a time budget, which continue until the total time spent exceeds a given time horizon, have
long been a focal point of scientific interest as a consequence of their universal applicability in a broad class
of disciplines in computing and machine learning (Redner, 2001; Condamin et al., 2007). It has been shown
that any process with time budget can employ controlled restarts with the goal of expediting the completion
times, thus increasing the time-efficiency of stochastic systems (Pal & Reuveni, 2017). Consequently, restart
strategies have attracted significant attention to boost the time-efficiency of stochastic systems in various
contexts. They have been extensively used to study diffusion mechanics (Evans & Majumdar, 2011; Pal
et al., 2016), target search applications (Kusmierz et al., 2014; Eliazar et al., 2007), throughput maximization
(Asmussen et al., 2008), and run-times of randomized algorithms (Hoos & Stützle, 2004; Luby et al., 1993;
Selman et al., 1994). In particular, they have been widely used as a tool for the optimization of randomized
algorithms that employ stochastic local search methods whose running times exhibit heavy-tailed behavior
(Luby et al., 1993; Gomes et al., 1998).

In this paper, we investigate the cumulative reward maximization problem in the context of budgeted decision
processes under controlled restarts in continuous time. Building on the knapsack bandit framework, we
address the challenge of selecting the optimal restart time in addition to the exploration-exploitation trade-off.
This learning problem has unique dynamics: the cumulative reward function is a controlled and stopped
random walk with potentially heavy-tailed increments, and the restart mechanism leads to right-censored
feedback, which imposes a specific information structure. In order to design efficient learning algorithms that
fully capture these dynamics, we incorporate new design and analysis techniques from bandit theory, renewal
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theory, and statistical estimation. For both finite and continuous sets of restart times, we develop provably
efficient online learning algorithms to learn the optimal action and restart strategy at the same time.

In addition to the theoretical performance guarantee, we investigate the budgeted-bandits learning problem
under controlled restart strategies through numerical studies. In particular, our empirical studies show that
our algorithm can be useful in boosting the performance of SAT solvers, scheduling tasks in distributed
networks, and deciding the early stopping time when training neural networks. These results verify the
applicability of this general framework and the performance of the proposed algorithms.

1.1 Related Work

Bandit problem with knapsack constraints and its variants have been studied extensively in the last decade.
In (György et al., 2007; Badanidiyuru et al., 2013; Combes et al., 2015; Xia et al., 2015; Tran-Thanh et al.,
2012; Cayci et al., 2020), the problem was considered in a stochastic setting. This basic setting was extended
to linear contextual setting (Agrawal & Devanur, 2016), combinatorial semi-bandit setting (Sankararaman
& Slivkins, 2017), adversarial bandit setting (Immorlica et al., 2019). For further details in this branch of
bandit theory, we refer to (Slivkins et al., 2019). As a substantial difference, these works do not incorporate a
restart or cancellation mechanism into the learning problem. Our work addresses the additional challenge of
deciding the optimal restart strategy while trying to maximize the cumulative reward.

The restart mechanisms have been popular, particularly in the context of boosting the Las Vegas algorithms.
The pioneering work in this branch is (Luby et al., 1993), where a minimax restart strategy is proposed to
achieve optimal expected run-time up to a logarithmic factor. In (Gagliolo & Schmidhuber, 2007), a hybrid
learning strategy between Luby scheme and a fixed restart strategy is developed in the adversarial setting. In
(Streeter & Golovin, 2009), an algorithm portfolio design methodology that employs a restart strategy is
developed as an extension of the Exp3 Algorithm in the non-stochastic bandit setting, and polynomial regret
is shown with respect to a constant factor approximation of the optimal strategy. These works are designed in
a non-stochastic setting for worst-case performance metrics. In contrast, our work incorporates the statistical
structure of the problem and learns the underlying statistics of the system based on empirical observations.

Combining the budgeted-bandits setting and controlled restart strategy is a particularly challenging problem.
In (Cayci et al., 2019), they tried to address the problem with prior knowledge of the moments. In addition,
they only considered uncorrelated rewards and a finite set of restart times. Later works like (Liu & Fang,
2023; 2024) extended the framework by adding additional stochastic constraints. However, they still focused
on a limited set of restart times. Our work improves on previous works by eliminating the necessity of prior
statistical knowledge and allowing a general (possibly continuous) set of restart times. In addition, we can
also allow correlations between the completion time and reward.

1.2 Contributions

In light of the related work above , our main contributions in this paper are as follows:

• This work provides a principled approach to continuous-time exploration-exploitation problems that
require restart strategies for optimal time efficiency. We study and explain the impact of restart
strategies in a general knapsack bandit setting that includes potentially heavy-tailed and correlated
time-reward pairs for each arm. The design and regret analysis of learning algorithms require tools
from renewal theory and stochastic control, as well as concentration inequalities for rate estimation.
These results can be useful in other bandit problems as well (cf. Section 2 to Section 4).

• For a finite set of restart times, we study algorithms that use variance estimates and the information
structure that stems from the right-censored feedback so as to achieve O(log(τ)) regret bounds with
no prior knowledge. In particular, we propose:

– the UCB-RB Algorithm based on rate estimation based on sample-mean estimator to achieve
particularly good performance for finite and small restart times (cf. Theorem 2).

– the UCB-RM Algorithm based on median-boosted rate estimation without assuming any knowl-
edge of higher-order moments to achieve good performance in a very general setting of large
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(potentially infinite) restart times at the expense of degraded performance for small restart times
(cf. Theorem 1).

• For a continuous decision set for restart strategies, we propose an algorithm called UCB-RC that
achieves O(

√
τ log(τ)) regret (cf. Theorem 3).

• We evaluate the performance of the learning algorithm developed in this paper for boosting the
performance of SAT solver, task scheduling in distributed networks, and finding early stopping time
for training neural networks (cf. Section 6).

1.3 Notation

In this subsection, we define some notation that will be used throughout the paper. I denotes the indicator
function. For any k ∈ Z+, [k] denotes the set of integers from 1 to k, i.e., [k] = {1, 2, . . . , k}. For x ∈ R,
(x)+ = max{0, x}. For two real numbers x, y, we define x ∧ y = min{x, y} and x ∨ y = max{x, y}.

In the following section, we describe the problem setting in detail.

2 System Setup

We consider a budgeted decision process with a given time horizon τ > 0. The increments of the process are
controlled as follows: if arm k ∈ [K] is selected at the n-th trial, the random completion time is Xk,n, that is
independent across k and independent over n for each k with the following weak conditions:

E[Xp
k,1] < ∞, p ≥ 4, (1)

Xk,n > 0, a.s. (2)

Note that Xk,n can potentially be a heavy-tailed random variable. Pulling arm k at trial n yields a reward
Rk,n at the end. Note that we allow Rk,n to be possibly correlated with Xk,n, and for simplicity, we assume
that Rk,n ∈ [0, 1] almost surely.

In our framework, the controller has the option to interrupt an ongoing task and restart it with a potentially
different arm. Namely, for a set of restart (or cutoff ) times T ⊂ [0, ∞], the controller may prefer to restart
the task from its initial state after time t ∈ T at the loss of the ultimate rewards and possible additional
time-varying cost of restarting the process. The additional cost is included, since in some applications, it
may take a resetting time to return to the initial state after a reset decision (Evans & Majumdar, 2011). We
model the resetting time as Ck(t) ∈ [0, t], which is a deterministic function of t ∈ T known by the controller
for simplicity. Note that the design and analysis presented in this paper can be extended to random resetting
time processes in a straightforward way.

If the n-th trial of arm k is restarted at time t ∈ T, then the resulting total time and reward are as follows:

Uk,n(t) = min{Xk,n, t} + Ck(t)I{Xk,n > t}, (3)
Vk,n(t) = Rk,nI{Xk,n ≤ t}, (4)

Note that the feedback (Uk,n(t), Vk,n(t)) in this case is right-censored.

Incorporating the restart mechanism, the control of the decision-maker consists of two decisions at n-th trial:

πn = (In, νn) ∈ [K] × T.

Here, In ∈ [K] denotes the arm decision, and νn ∈ T denotes the restart time decision. Under a policy
π = {πn : n ≥ 1}, let

Fπ
n = σ

(
{(UIi,i(νi), VIi,i(νi), I{XIi,i ≤ νi} : i = 1, 2, . . . , n}

)
,

be the history until n-th trial. We call a policy π admissible if πn+1 is Fπ
n -measurable for all n ≥ 1.
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For a given time horizon τ > 0, the objective of the decision-maker is to maximize the expected cumulative
reward collected in the time interval [0, τ ]. Specifically, letting

Nπ(τ) = inf{n :
n∑

i=1
UIi,i(νi) > τ}, (5)

be the number of pulls under policy π, the cumulative reward under π is defined as follows:

REWπ(τ) =
Nπ(τ)∑
n=1

VIn,n(νn). (6)

The decision-maker attempts to achieve the optimal reward:

OPT(τ) = max
π∈Π

E[REWπ(τ)], (7)

where Π is the set of all admissible policies. Equivalently, it aims to minimize the expected regret:

REGπ(τ) = OPT(τ) − E[REWπ(τ)]. (8)

2.1 Right-Censored Feedback and Information Structure

Since the feedback we obtain for a decision of (k, t) is the pair of right-censored random variables
(Uk,n(t), Vk,n(t)) as in equation 3, for any t′ ≤ t, we have the following:

Uk,n(t′) is σ
(
Uk,n(t)

)
-measurable,

Vk,n(t′) is σ
(
Vk,n(t)

)
-measurable.

In other words, the feedback from a restart time decision t > 0 can be faithfully used as feedback for another
restart time decision t′ ≤ t. This implies the information structure is asymmetric, i.e. the information gain by
a large t ∈ T is larger compared to t′ ≤ t. As we will see later, learning effectively from the right-censored data
using the information structure it incurred is important for designing an effective online learning algorithm.

3 Motivating Examples

The problem we proposed has many potential real-world applications where a controller has to make decisions
(possibly with restart) under a time budget with no prior knowledge of the statistics. In this section, we
provide some motivating examples that fall within the scope of this framework.

(Algorithm Portfolio Selection for SAT Solvers) Boolean satisfiability (SAT) is a canonical NP-complete
problem (Hoos & Stützle, 2004; Arora & Barak, 2009). As a consequence, the design of efficient SAT solvers
has been an important long standing challenge, and an annual SAT Competition is held for SAT solvers
(Heule et al., 2019). In these competitions, the objective of a SAT solver is to solve as many problem instances
as possible within a given time interval [0, τ ], which defines a budgeted decision process. As a result of the
completion time distributions, the restart strategies have been an essential part of the SAT solvers (Luby
et al., 1993; Selman et al., 1994). Therefore, the proposed framework can be used as a meta-learning algorithm
to improve the performance of SAT solvers.

(Task Scheduling in Distributed Server System) In many distributed server systems such as web servers,
data base servers, and computing clusters, tasks for service arrive randomly and must be assigned to one of
the host machines for processing (Liu & Fang, 2023). This is especially important if the communication is
through wireless channels. Under a limited time interval [0, τ ], a controller will try to maximize the number
of completed tasks. It has been shown that the task completion time has a heavy-tail distribution in many
applications (Harchol-Balter, 1999). Therefore, incorporating a restarting strategy as designed in the proposed
framework can be useful.
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(Tuning the Stopping Time for Neural Network Training) It is well-known that over-fitting can happen when
training a machine learning model such as a neural network on a training set for too many steps (Caruana
et al., 2000; Prechelt, 2002). Early stopping is a common strategy to terminate the training in order to
achieve higher testing performance on unseen data. It has been shown that early-stopped neural networks are
consistent (Ji et al., 2021) and more robust to noise (Li et al., 2020). However, the decision of early stopping
is often made based on experience of specific networks and applications. As an alternative, our framework
can be used as a general control method to boost the testing performance while finding an optimal early
stopping time.

We will revisit these examples with simulations in Section 6. In the next section, we first give an asymptotically-
optimal offline policy as a baseline.

4 Asymptotically-Optimal Offline Policy with Known Statistics

The control problem described in equation 7 is a variant of the well-known unknown stochastic knapsack
problem (Kleinberg & Tardos, 2006). In the literature, there are similar problems that are known to be
PSPACE-hard (Papadimitriou & Tsitsiklis, 1999; Badanidiyuru et al., 2013). Therefore, we need to first
find a tractable algorithm to approximate the optimal policy. In this section, we propose a simple policy for
the problem introduced in Section 2, and prove its efficiency by using the theory of renewal processes and
stopping times.

First, we define the (renewal) reward rate, which will be the main quantity of interest when designing
algorithms.
Definition 1 (Reward Rate). For a decision (k, t), the (renewal) reward rate is defined as follows:

rk(t) = E[Rk,1I{Xk,1 ≤ t}]
E[(Xk,1 ∧ t) + Ck(t)I{Xk,1} > t] = E[Vk,1(t)]

E[Uk,1(t)] . (9)

The reward rate rk(t) is the growth rate of the expected total reward over time if the controller persistently
chooses the action (k, t). In other words, the reward rate represents the time average reward per unit time. As
a consequence of the elementary renewal theorem (Gut, 2009), the reward of the offline policy that persistently
makes a decision (k, t) is E[REWπ(τ)] = rk(t) · τ + o(τ). In the following, we will provide an upper bound for
OPT(τ) based on rk(t) and the time horizon τ .
Proposition 1 (Upper bound for OPT). Let the optimal reward rate be defined as follows:

r∗ = arg max
(k,t)

rk(t). (10)

If there exists a p0 > 2 and u < ∞ such that E[(Xk,1)p0 ] ≤ u holds for all k ∈ [K], then we have the following
upper bound for OPT:

OPT(τ) ≤ r∗(
τ + Φ(u)

)
, (11)

for any τ > 0 where Φ(u) is a constant that is independent of τ .

Proof. The proof generalizes the optimality gap results in (Xia et al., 2015; Cayci et al., 2020). Under any
admissible policy π ∈ Π, an extension of Wald’s identity yields the following upper bound:

E[REWπ(τ)] ≤ r∗E[UNπ(τ)],

where Nπ(τ) is the first-passage time of the controlled random walk under π. The excess over the boundary,
E[UNπ(τ)] − τ , is known to be o(τ) for simple random walks by the elementary renewal theorem (Gut, 2009).
For controlled random walks, Lalley & Lorden (1986) shows that E[UNπ(τ)] − τ = O(u), which is independent
of τ , if E[Xp0

k,1] ≤ u < ∞ holds for all k ∈ [K] for some p0 > 2. Thus, under the moment assumption
equation 1, we have E[UNπ(τ)] − τ = O(1) as τ → ∞.
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Algorithm 1: Asymptotically-Optimal Offline Policy πoff

n = 0;
Sn = 0;
while Sn ≤ τ do

(k∗, t∗) = arg max
(k,t)

rk(t); // Maximize equation 9

if Xk∗,n ≤ t∗ then
Sn+1 = Sn + Xk∗,n;
Obtain reward Rk∗,n;

else
Sn+1 = Sn + t∗ + Ck∗(t∗); //Restart time

n = n + 1; //New epoch starts

From the discussion above, it is natural to consider an algorithm that optimizes rk(t) among all decisions
(k, t) as an approximation of the optimal policy. Accordingly, the optimal offline policy, denoted as πoff, is
given in Algorithm 1.

The performance analysis of πoff is fairly straightforward since the random process it induces is a simple
random walk.
Proposition 2. The reward under πoff is bounded as follows:

r∗τ ≤ E[REWπoff(τ)] ≤ r∗
(

τ + E[Y 2
∗ ](

E[Y∗]
)2

)
, (12)

where Y∗ = Uk∗,1(t∗) is the completion time of an epoch under πoff, and (k∗, t∗) is defined in Algorithm 1.

The proof of Proposition 2 follows from Lorden’s inequality for renewal processes (Asmussen, 2008).

As a consequence of Proposition 1 and Proposition 2, the optimality gap of the offline policy is bounded for
all τ > 0.
Corollary 1 (Optimality Gap of πoff). For any τ > 0, the optimality gap of πoff is bounded:

OPT(τ) − E[REWπoff(τ)] ≤ r∗Φ(u), (13)

where Φ(u) is the constant in Proposition 1.

As we can see, the expected reward of the simple offline policy only has a bounded gap with the best possible
policy, which can only be achieved by an NP-hard algorithm. In addition, we observed that the reward rate
rk(t) is the dominant component of the cumulative reward. Next, we will analyze the behavior of rk(t) with
respect to the restart time t.

4.1 When is it optimal to restart?

For any given arm k ∈ [K] and any set of restart times T, let the optimal restart time be defined as follows:

t∗
k ∈ arg max

t∈T
rk(t). (14)

If the completion time Xk,n and reward Rk,n are independent, then it was shown in (Cayci et al., 2019) that
it is optimal to restart a cycle at a finite time if the following condition holds:

E[Xk,1 − t|Xk,1 > t] > E[Xk,1] (15)

for t ∈ T\{∞}, and it is noted that all heavy-tailed and some light-tailed completion time distributions satisfy
this condition. If Xk,1 and Rk,1 are correlated, this is no longer true and the situation is more complicated.
In the following, we extend this result to correlated (Xk,1, Rk,1) pairs.

6



Under review as submission to TMLR

100 101 102 103 104

Restart time t

0

0.2

0.4

0.6

0.8

1

R
ew

ar
d 

ra
te

 r
k(t

)

 = -1
 = -0.5
 = 0
 = 0.5
 = 1

Figure 1: Impact of correlation between Xk,n and Rk,n on the optimal restart time for Xk,n ∼ Pareto(1, 1.2)
and γ ∈ [−1, 1]. Positive correlation between the completion time and reward leads to higher restart times,
and waiting until the completion of every task is optimal for γ ≥ 1 since waiting becomes more rewarding.

Proposition 3 (Optimal Restart Time). For a given arm
(
Xk,1, Rk,1, Ck(t)

)
, we have t∗

k < ∞ if and only if
the following holds:

E
[
Rk,1

∣∣Xk,1 > t
]

E
[
Xk,1 −

(
t + Ck(t)

)∣∣Xk,1 > t
] <

E[Rk,1]
E[Xk,1] , (16)

for some t > 0.

The proof follows from showing equation 16 is equivalent to rk(t) > E[Rk,1]/E[Xk,1] for any t > 0.

Interpretation of Proposition 3 is as follows: for any restart time t ∈ T \ {∞}, if the reward rate of waiting
until the completion (i.e., the residual reward rate) is lower than the reward rate of a new trial, then it is
optimal to restart.

Note that equation 15 is a special case of Proposition 3 with immediate returns, i.e., Ck(t) = 0, and Xk,n

and Rk,n are independent.

4.2 What is the impact of correlation on the restart time?

The correlation between Xk,n and Rk,n has a substantial impact on whether the optimal restart times are
finite or not. As an example, let Xk,n ∼ Pareto(1, α) for some α ∈ (1, 2), and Ck(t) = 0 for all t.

1. If Xk,n and Rk,n are independent, then equation 15 holds and t∗
k < ∞, i.e., it is optimal to restart

after a finite time.

2. If Rk,n = ωXγ
k,n for some ω > 0 and γ ≥ 1, then it is optimal to wait until the end of the task, i.e.,

t∗
k = ∞.

3. If Rk,n = ωXγ
k,n for ω > 0 and γ < 1, then we have t∗

k < ∞.

The impact of the correlation between Xk,n and Rk,n on the behavior of optimal restart time is illustrated in
Figure 1.

In the next section, we develop online learning algorithms for the problem, and present the regret bounds.

5 Online Policy for Controlled Restarts with Unknown Statistics

In this section, we develop online learning algorithms with provably good performance guarantees. The
right-censored nature of the feedback due to the restart mechanism imposes an interesting information
structure to this problem. We first describe the nature of this information structure.
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We consider a finite T = {t1, t2, . . . , tL} such that

t1 < t2 < . . . < tL ≤ ∞. (17)

Throughout the paper, we assume that any action set T satisfies the following assumption:
Assumption 1. Given a decision set T, there exists ϵ, µ∗ > 0 that satisfies the following:

E[min{Xk,1, t1}] ≥ µ∗,

and

P(Xk,1 ≤ t1|Rk,1 = ρ) ≥ ϵ, ∀ρ ∈ [0, 1],

for all k ∈ [K], where t1 = minT.

Note that Assumption 1 is a simple technical condition that ensures efficient estimation of rk(t) from the
samples of (Xk,n, Rk,n) for all t ∈ T.

In order to capture the benefits of the information structure, for arm k and restart time decision tl, let

Ik,l(n) = {i ≤ n : πi = (k, tl)}.

Then, the available feedback for a decision (k, tl) is as follows:

Ĩk,l(n) =
⋃
l′≥l

Ik,l(n).

The size of Ĩk,l(n), i.e., the number of samples available for (k, l) is defined as follows:

T̃k,l(n) = |Ĩk,l(n)| =
∑
l′≥l

Tk,l′(n), (18)

From above, it is observed that the information structure increases the number of samples substantially for
each decision, i.e., T̃k,l(n) ≥ Tk,l(n) for all k, l.

Compared with previous works (Cayci et al., 2019; Liu & Fang, 2023; 2024), we allow a general set of
restarting times. Under this general framework, the radius of the set of restart times T has a crucial impact
on algorithm design and performance, depending on the tail distributions of the completion times. In the
following subsection, we propose two algorithms for both small and large (potentially infinite) tL, and compare
their characteristics.

5.1 Finite Set of Restart Times: UCB-RM and UCB-RB

In this section, we considered a finite set of restart times and propose two algorithms UCB-RM and UCB-RB
based on median-of-mean estimators and empirical mean estimators respectively (Algorithm 2). Note that the
information structure that stems from the right-censored feedback is utilized. As we will see, this information
structure will lead to substantial improvements in performance.

5.1.1 UCB-RM Algorithm

For an index set S ⊂ Z+, let the empirical mean ÊS and empirical variance VS of a random sequence
{Yi : i ≥ 1} be defined as follows:

ÊS [Y ] = 1
|S|

∑
i∈S

Yi, (19)

VS [Y ] = 1
|S|

∑
i∈S

(
Yi − ÊS [Y ]

)2
. (20)
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In general, if the completion time distributions are such that the optimal restart time is very large or
potentially infinite for some arms, the radius of the set of restarting time T will be large. In this case, the
empirical rate estimation will not provide fast enough convergence rates, which can lead to substantially
deteriorated regret bounds.

In order to overcome this, we design a UCB-type policy that incorporates a median-based rate estimator
which is defined in Definition 2. This estimator can achieve good performance in a very general setting that
allows not restarting as a possible action, i.e., we consider a decision set

T = {t1 < t2 < . . . < tL = ∞},

where tL = ∞ implies the controller can wait until the task is completed.
Definition 2 (Median-based rate estimator). Consider (k, tl) ∈ [K] × T, and let G1, G2, . . . , Gm be a
partition of the set Ĩk,l(n) such that |Gj | = ⌊T̃k,l(n)/m⌋, ∀j ∈ [m] for m = ⌊3.5α log(n)⌋ + 1, α > 2. The
median-of-means estimator for Uk,n(tl) is defined as follows:

MĨk,l(n)(Uk(tl)) = median
{
ÊG1 [Uk(tl)], ÊG2 [Uk(tl)], . . . , ÊGm

[Uk(tl)]
}

, (21)

where ÊS [X] is the empirical mean of a sequence X over the index set S defined in equation 19. Then, the
median-based rate estimator for the action (k, tl) is defined as follows:

r̂M
k,l,n =

MĨk,l(n)(Vk(tl))
MĨk,l(n)(Uk(tl))

. (22)

Intuitively, the median-of-mean estimators are more robust to potentially large samples caused by heavy-tail
distribution.

Similarly, for variance estimation, using the empirical variance VS defined in equation 20, we can define

VM
Ĩk,l(n)(Uk(tl)) = median

{
VG1 [Uk(tl)], . . . ,VGm

[Uk(tl)]
}

,

With these median-based estimators, we can construct the confidence radii as

cM
k,l,n = (1 + β)2

(1 − β) ·
ηM

k,l,n + r̂M
k,l,n · ϵM

k,l,n

MĨk,l(n)(Uk(tl))
, β ∈ (0, 1), (23)

where the parameters are defined as

ϵM
k,l,n = 11

√√√√2VM
Ĩk,l(n)[Uk(tl)] log(nα)

T̃k,l(n)
, (24)

ηM
k,l,n = 11

√√√√2VM
Ĩk,l(n)[Vk(tl)] log(nα)

T̃k,l(n)
. (25)

In this way, the inequality r̂M
k,l,n + cM

k,l,n > rk(tl) holds with high probability for sufficiently large T̃k,l(n).
Therefore, we can construct a UCB-RM algorithm denoted as πM (Altorighm 2). At each decision step,
UCB-RM Algorithm makes a selection for the (n + 1)-th arm pull using the following criterion:

(In+1, νn+1) ∈ arg max
(k,l)∈[K]×[L]

{
r̂M

k,l,n + cM
k,l,n

}
. (26)

In the following theorem, we analyze the performance of the UCB-RM Algorithm.
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Theorem 1 (Regret Upper Bound for UCB-RM). For any arm k and restart time tl, let ∆k,l = r∗ − rk(tl)
and

Ck,l = C2(
Uk,1(tl)

)
+ C2(

Vk,1(tl)
)
, (27)

Kk,l = K
(
Uk,1(tl)

)
+ K

(
Vk,1(tl)

)
, (28)

z(β) = max
{

2
√

2(1 + β)2

(1 − β)3 ,
1
β

}
, β ∈ (0, 1), (29)

where C(X) and K(X) is the coefficient of variation and kurtosis of a random variable X, respectively
(Asmussen et al., 2008). Then the regret under the UCB-RM Algorithm is bounded as follows:

REGπM(τ) ≤
∑

k

3α min{ξM
k, ξ̃M

k} log(τ) + O(KL),

where for each k ∈ [K] and some constant ζ > 0, α > 2,

ξM
k =

L∑
l=1

{
112z2(β)Ck,l

r2
∗

∆k,l
+ 1024

(
Kk,l + ζ

)
∆k,l

}
, (30)

ξ̃M
k = max

l
∆k,l · max

l

{
112z2(β)Ck,l

r2
∗

∆2
k,l

+ 1024
(
Kk,l + ζ

)}
. (31)

Note that the regret upper bound in Theorem 1 is dependent only on the first- and second-order moments
of Xk,n and Rk,n. There is no dependency on tL. Therefore, the UCB-RM Algorithm is efficient for the
cases with very large (potentially infinite) tL. Also, compared with the median-based algorithm UCB-BwI in
(Cayci et al., 2019), UCB-RM Algorithm does not require any prior knowledge of the statistics like moments.
Instead, it uses empirical estimates for reward rate, mean completion time, and variances.

5.1.2 UCB-RB Algorithm

In many cases, the optimal restart time is finite for all arms, i.e., t∗
k < ∞, ∀k. Therefore, the action set T can

be localized around the potential optimal restart times and tL can have a finite value. Under this scenario,
the support set of the completion times Uk,n(t) is small for all t ∈ T, which enables the use of fast estimation
techniques. Based on this, we propose an algorithm with better performance based on empirical Bernstein
inequality inspired by the UCB-B2 Algorithm in the classical stochastic bandits with knapsacks setting (Cayci
et al., 2020). We denote the new algorithm as UCB-RB (πB). Since it uses empirical estimation, it inherently
assumes that tL < ∞.

For any (k, tl) pair, we define the empirical reward rate as:

r̂k,l,n =
ÊĨk,l(n)[Vk(tl)]
ÊĨk,l(n)[Uk(tl)]

, (32)

For α > 2 and β ∈ (0, 1), we can construct the confidence radii as

ck,l,n = (β + 1)2

1 − β

ηk,l,n + r̂k,l,nϵk,l,n

ÊĨk,l(n)[Uk(tl)]
, (33)

where the parameters are defined as

ϵk,l,n = 3tl log(nα)
T̃k,l(n)

+

√
2VĨk,l(n)(Uk(tl)) log(nα)

T̃k,l(n)
,

ηk,l,n = 3 log(nα)
T̃k,l(n)

+

√
2VĨk,l(n)(Vk(tl)) log(nα)

T̃k,l(n)
.

10
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Then, the controller under UCB-RB makes a decision at (n + 1)-th using the following criterion:

(In+1, νn+1) ∈ arg max
(k,tl)∈[K]×T

{
r̂k,l,n + ck,l,n

}
.

Algorithm 2: Online Learning Algorithms for Finite Set of Restart Times
UCB-RM (πM) and UCB-RB (πB)
n = 1, i = 1, S0 = 0;
// Begin initialization for init trials
while i ≤ init & Sn−1 ≤ B do

for k ∈ [K], l ∈ [L] do
(In, νn) = (k, tl);
Sn = Uk,n(tl);
Obtain reward Vk,n(tl);
n=n+1;

i=i+1;
while Sn−1 ≤ B do

// If using UCB-RM Algorithm
(In, νn) = arg max

(k,tl)
{r̂M

k,l,n−1 + cM
k,l,n−1}

// If using UCB-RB Algorithm
(In, νn) = arg max

(k,tl)
{r̂k,l,n−1 + ck,l,n−1}

if XIn,n ≤ νn then
Sn = Sn−1 + XIn,n;
Obtain reward RIn,n;

else
Sn = Sn−1 + νn + Ckn

(νn);
Update the estimates for l : tl ≤ νn;
Add n 7→ Ĩk,l(n) for all l : tl ≤ νn;
n = n + 1;

The following theorem provides problem-dependent regret upper bounds for the UCB-RB Algorithm.
Theorem 2 (Regret Upper Bound for UCB-RB). For any arm k and restart time tl, let ∆k,l = r∗ − rk(tl),
µk,l = E[Uk,1(tl)] and

Bk,l = 1
E[Vk,1(tl)]

+ 2tl

E[Uk,1(tl)]
, (34)

Then, the regret under the UCB-RB Algorithm is bounded as follows:

REGπB(τ) ≤
∑

k

3α min{ξk, ξ′
k} log(τ) + O(KL),

where for each k ∈ [K] and some α > 2,

ξk =
L∑

l=1
∆k,l · µk,l ·

{
z2(β)Ck,l

r2
∗

∆2
k,l

+ 2z(β)r∗Bk,l

∆k,l
+ 8

(
Kk,l + B2

k,l

)}
, (35)

ξ̃k = max
l

{∆k,l · µk,l} · max
l

{
z2(β)Ck,l

r2
∗

∆2
k,l

+ 2z(β)Bk,l
r∗

∆k,l
+ 8

(
Kk,l + B2

k,l

)}
, (36)

with Ck,l, Kk,l, and z(β) defined in Theorem 1.
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(Comparison between UCB-RM and UCB-RB) Comparing the coefficients of the log(τ) term in Theorem 2
and Theorem 1, we observe that the UCB-RM Algorithm suffers from a considerably large scaling coefficient.
This suggests that if the optimal restart times are known to be small, then the UCB-RB Algorithm is more
efficient than the UCB-RM Algorithm.

On the other hand, the regret upper bound in Theorem 2 grows at a rate O(t2
L log(τ)), where the constant

additive term is independent of τ and tL if E[Xp
k,1] < ∞ for some p > 2. Therefore, if the optimal restart

time can take on a large value, then the regret performance deteriorates significantly. This dependence on
tL stems from the nature of the empirical mean estimator used for estimating the reward rate, and it is
inevitable (Audibert et al., 2009). Therefore, the UCB-RB Algorithm is suitable only for the cases where the
restart times are small.

(Importance of Information Structure) For any arm k, ξk corresponds to the coefficient without using the
information structure, grows linearly with L, and shows that the dependence of the regret on ∆k,l is O(1/∆k,l).
On the other hand, ξ̃k reflects the effect of exploiting the structure, and it is usually much lower than ξk.
Hence, ignoring the constants, let ∆k = minl ∆k,l, ∀l, k ≠ k∗, we have the following order result for the regret:

REGRB(B) = O
(

t2
L

( ∑
k ̸=k∗

1
∆k

+ 1
minl ∆k∗,l

+
∑

k

max
l

∆k,l

)
log(τ)

)
,

since K(Z) ≤ b2 for a bounded random variable Z ∈ [0, b]. In other words, as a result of exploiting the
information structure, the effect of large L on the regret is eliminated.

Proof Sketch: The proof of Theorem 1 and Theorem 2 follows a similar strategy as (Cayci et al., 2019), and
can be found in detail in the Appendix. We will provide a proof sketch here. The main challenge in the
proof is two-fold: (1) analyzing the effect of using empirical estimates, and (2) finding tight upper and lower
bounds for the expectation of the total reward REWπ(τ), which is a controlled and stopped random walk with
non-i.i.d. increments.

For any (k, tl) ∈ [K] × T, let Tk,l(n) be the number of times the controller makes the decision (k, tl) in the
first n stages, and ∆k,l be the expected ’regret per unit time’ if (k, tl) is chosen. Then, by using tools from
renewal theory and martingale concentration inequalities, we express the regret as follows:

REGπB(τ) ≤
∑

(k,l):∆k,l>0

O(1) E[Tk,l(n0(τ))]E[Uk,1(tl)]∆k,l + O(KL),

where n0(τ) is a high-probability upper bound for NπB(τ), the total number of pulls in [0, τ ]. By using a
clean-event bandit analysis akin to (Audibert et al., 2009) to bound E[Tk,l(n0(τ))], we prove the theorem.

Note that the UCB-RM and UCB-RB Algorithm makes use of the median-of-mean method and empirical
estimates to achieve regret performance guarantee without any prior knowledge, and we devise novel tools to
analyze the impact of using these estimation methods on the regret. In the next section, we will develop a
learning algorithm for the case T is continuous.

5.2 Continuous Set of Restart Times: UCB-RC

When the set of restarting times T is continuous, one common technique is to discretize the set. The key
question is how to design a good discretization method with provably good regret performance. In this
section, we propose an algorithm called UCB-RC for smooth and unimodal rk(t) that has

√
τ log τ regret

guarantee.

For the notation simplicity, we will consider learning the optimal restart time for a single arm. The extension
to K > 1 is straightforward. Specifically, we make the following assumptions on the action set T and reward
rate function r1(t).
Assumption 2. The set of restart times T and reward rate r1(t) satisfy the following properties:

(i) Compactness: T is a compact subset of R+:

T = [tmin, tmax], (37)

12
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where 0 < tmin ≤ tmax < ∞. Furthermore, T satisfies Assumption 1 for some ϵ, µ∗ > 0 for efficient
estimation of r1(t).

(ii) Unimodality: There is an optimal restart time t∗
1 ∈ [tmin, tmax] such that

r∗ = r1(t∗
1) ≥ r1(t),

for all t ∈ T\{t∗
1}.

(iii) Smoothness: There exists δ0 > 0, a1 > 0, a2 > 0,and q > 1 such that:

• For all t, t′ ∈ [t∗
1, t∗

1 + δ0] (or [t∗
1 − δ0, t∗

1]), the following holds:

a1|t − t′|q ≤ |r1(t) − r1(t′)|

• For some δ ≤ δ0, if |t − t∗
1| ≤ δ, we have:

r∗ − r1(t) ≤ a2δq.

Note that Assumption 2 is satisfied for a broad class of distributions. For example, if Xk,n and Rk,n are
independent and Xk,n has a uniform, exponential, or Pareto distribution, then the conditions are trivially
satisfied.

Under Assumption 2, we design the UCB-RC algorithm (denoted as πc) based on the UCB-RB Algorithm
and the bandit optimization methodology in (Combes & Proutiere, 2014; Combes et al., 2015). As we will
see, making use of the information structure is necessary to achieve a good regret performance.

Algorithm 3: Online Learning Algorithms for Continuous Set of Restart Times
UCB-RC (πC)
//(1) Discretize the set of restarting times
Set the step size for discretization

δ =
(√

log(τ)/τ
)1/q

For rad(T) = tmax − tmin, let L(δ) = rad(T)/δ
Obtain the discretized set TQ = {t1, t2, . . . , tL(δ)}, where

tl = tmin + (l − 1) · ⌈1/δ⌉, l = 1, 2, . . . , L(δ).

//(2) Run the algorithm for discrete set
Run the UCB-RB Algorithm over the action set TQ.

The following theorem provides a regret bound for the UCB-RC Algorithm.
Theorem 3 (Regret Upper Bound for UCB-RC). Under Assumption 2, the regret for the UCB-RC Algorithm
satisfies the following asymptotic upper bound:

lim sup
τ→∞

REGπC(τ)√
τ log(τ)

≤ 6qa2
E[U1,1]

µ∗
+ 3αq

a1(q − 1)C
⋆z2(β)r2

∗, (38)

where
C⋆ =

(E[U2
1,1]

µ2
∗

+
E[V 2

1,1]
ϵ2

(
E[V1,1]

)2

)
.

and z(β) is defined in Theorem 1.

Proof Sketch: The detailed proof of Theorem 3 can be found in the Appendix. Here we give a sketch of the
proof. First, note that the UCB-RC Algorithm is based on discretizing the decision set T, and running the

13
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UCB-RB Algorithm over the discretized decision set TQ. Therefore, we need to show that the step size δ
chosen in UCB-RC can make sure the optimal reward rate over TQ is close enough to r∗. Second, we also
need to show that the number of quantization levels is kept sufficiently small. Finally, under the compactness
and smoothness assumptions summarized in Assumption 2, the regret upper bound can be obtained.

(Importance of Information Structure) The UCB-RC Algorithm is based on an extension of the UCB-type
algorithm for unimodal discrete-time stochastic bandits proposed in (Combes & Proutiere, 2014; Combes
et al., 2015). A straightforward extension of the algorithm in (Combes et al., 2015) would yield O(log(τ)

√
τ)

regret. However, the UCB-RC Algorithm achieves O(
√

τ log(τ)) regret in this case. The order reduction
by a factor of O(

√
log(τ)) is because UCB-RC incorporates the information structure that stems from the

right-censored feedback, as discussed in Section 2.1.

6 Numerical Experiments

In this section, we evaluate the performance of the proposed learning algorithms for three different applications:
algorithm portfolios for SAT solvers, task scheduling in distributed networks, and tuning stopping time for
neural network training.

For these experiments, the restart times are finite. Therefore, we used the UCB-RB Algorithm with α = 2.01,
(1 + β)2/(1 − β) = 1.01. For initialization, the controller performed 40 trials for each (k, tl) decision. For
comparison, we used Luby restart strategy with various hand-tuned base cutoff values as a benchmark (Luby
et al., 1993). Note that without any prior knowledge, the performance of Luby restart strategy is hit-or-miss,
depending on how close the chosen (guessed) base cutoff value is to the optimal restart time.

From the simulations, we will see that our setup is general enough that it can be applied to various different
fields. It is worth noting that there may exist fine-tuned algorithms for specific applications that outperform
both Luby and our algorithms. However, as a general framework, our algorithms do not require prior
knowledge of the system and can optimize the cumulative reward while finding the optimal restart time.

6.1 Algorithm Portfolios for SAT Solvers

In this experiment, we consider a similar setup as the SAT Competition: for a given time interval [0, τ ],
the performance metric is the number of solved problem instances, thus there is a unit reward for each
successful assignment, i.e., R1,n = 1. We evaluated the performance of the meta-algorithms over the widely
used Uniform Random-3-SAT benchmark set of satisfiable problem instances in the SATLIB library (Hoos
& Stützle, 2000). In the dataset uf-100-430, there are 1000 uniformly generated problem instances with
100 variables and 430 clauses, therefore it is reasonable to assume i.i.d. completion times. Each successful
assignment yields a reward R1,n = 1. We select T = {10−0.5+i×0.125 : i = 0, 1, . . . , 8}.

The empirical reward rate as a function of the restart time for the data set is given in Figure 2a. It is
observed that the controlled restarts are essential for optimal performance, in accordance with the power-law
completion time distributions (Gomes et al., 1998) and Proposition 3. This implies that our design is suitable
for this scenario. The number of solved problem instances for different τ values are given in Figure 2b. We
observe that the UCB-RB Algorithm learns the optimal restart strategy fast without any prior information,
and its performance outperforms alternatives, especially at large time horizons. On the other hand, Luby
restart strategy, which requires the base cutoff value as an input, is prone to perform badly with inaccurate
prior information. Even if a genie provides a well-chosen base cutoff value to Luby restart strategy, it is
outperformed linearly over τ by the UCB-RB Algorithm, which requires no prior information.

6.2 Task Scheduling in Distributed Networks

In this experiment, We considered a task scheduling problem for a single machine during its busy period.
The machine selected will have a random completion time for the task during which the controller can decide
whether to interrupt the machine. If the machine completes the task before interruption we receive a reward
of 1 otherwise the reward is 0. The objective of the controller is to maximize the cumulative reward under a
limited time τ .
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Figure 2: Performance of the restart strategies on the Random-3-SAT data set cbs-k3.

It has been shown that the task completion time in many distributed networks has a heavy-tailed distribution
(Harchol-Balter, 1999; Xu et al., 2024), therefore our restarting strategy fits into this setup. Using the
parameters defined in (Harchol-Balter, 1999), we plot the reward rate in Figure 3a. As we can see, the
heavy-tailed distribution fits well with our setup. We select T = {100.5+i×0.5 : i = 0, 1, . . . , 8}. The rewards
for different budgets are given in Figure 3b. Again, the UCB-RB algorithm outperforms the best Luby
algorithm which requires a manual tuning on the base parameter.
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Figure 3: Performance UCB-RB algorithms for task scheduling in distributed networks.

6.3 Tuning the Stopping time of Neural Networks

In this experiment, we consider a setup where we need to train a set of neural networks to solve a sequence
of tasks (with similar statistics). Each time, we start training a neural network with random initialization.
The controller will decide when to stop the training to evaluate the test results. If the test result reaches
a predetermined level we receive a reward 1 otherwise the reward is 0. Under a limited time τ (which is
equivalent to training resources like GPU time), we would maximize the cumulative reward.

Specifically, in our setup, we trained a RESNET-16 over the CIFAR-10 dataset where we used 80 : 20 split
for training set and testing set. To emulate the sequence of tasks, each time we randomly sample 10 percent
of the training data as the new tasks. The learning rate is set to 0.001 using an SGD optimizer with a batch
size of 64. We choose 0.9 as the reward threshold. As shown in Figure 4a, the empirical reward rate suggests
a restarting strategy in this work would be a good fit. We select T = {102+i×0.25 : i = 0, 1, . . . , 8}. Finally,
we plot the reward against the number of allowed steps in Figure 4b. As expected, the UCB-RB algorithm
can learn to optimize the cumulative reward without prior knowledge of the system statistics.
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Figure 4: Performance of UCB-RB on task solving when training a neural network.

7 Conclusions

In this paper, we considered the continuous-time bandit learning problem with controlled restarts, and
presented a principled approach with rigorous performance guarantees. For correlated and potentially
heavy-tailed completion time and reward distributions, we proposed a simple, intuitive, and near-optimal
offline policy with O(1) optimality gap, and characterized the nature of optimal restart strategies by using
this approximation. For online learning, we considered discrete and continuous action sets, and proposed
bandit algorithms that exploit the statistical structure of the problem to achieve tight performance guarantees.
In addition to the theoretical analysis, we evaluated the numerical performance of various applications and
observed that the learning solution proposed in this paper outperforms Luby restart strategy with no prior
information.
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A Appendix

B Proof of Proposition 3

Proof. It is optimal to stop if and only if the reward rate of interruption is greater than the reward rate
without interruption, i.e. rk(t) − E[Rk,1]/E[Xk,1].

rk(t) − E[Rk,1]/E[Xk,1] =
E[Vk,1(t)] · E[Xk,1]

E[Rk,1] − E[Uk,1(t)]
E[Uk,1(t)]E[Xk,1]/E[Rk,1]

18
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Using the identities

E[Uk,1(t)] = E[Xk,1 − (t + Ck(t))|Xk,1 > t](1 − P(Xk,1 ≤ t)) − E[Xk,1]
E[Vk,1(t)] = E[Rk,1] − E[Rk,1|Xk,1 > t](1 − P(Xk,1 ≤ t)

we have

rk(t) − E[Rk,1]/E[Xk,1]

= (1 − P(Xk,1 ≤ t))
E[Xk,1 − (t + Ck(t))|Xk,1 > t] − E[Rk,1|Xk,1 > t]E[Xk,1]

E[Rk,1]

E[Uk,1(t)]E[Xk,1]/E[Rk,1]

We get the results in Proposition 3 by letting the right side be greater than 0.

C Concentration Inequalities for Reward Rate Estimation

In this section, we will provide tight concentration inequalities for the empirical mean estimators and median-
of-mean estimators used in the main paper. First, we give a lemma that provides a basis to design these
concentration inequalities.
Lemma 1 (Proposition 2, (Cayci et al., 2020)). Consider a pair of parameters µX , µR > 0, and their
estimators µ̂X and µ̂R, respectively. Let r̂ = µ̂R/µ̂X and r = µR/µX . Then, for any β ∈ (0, 1), we have the
following inequality:

P
(

|r̂ − r| >
(1 + β)2

1 − β

η + r̂ · ϵ

µ̂X

)
≤ P(|µX − µ̂X | > ϵ) + P(|µR − µ̂R| > η), (39)

for any η ≤ βµR,and ϵ ≤ βµX .

Proof. Let
A(ϵ, η) = {|µX − µ̂X | ≤ ϵ} ∩ {|µR − µ̂R| ≤ η},

be the high-probability event. Then, by Proposition 1 in (Cayci et al., 2020), we have the following set
relation:

A(ϵ, η) ⊂
{

|r̂ − r| ≤ η + rϵ

µX − ϵ

}
.

For any β ∈ (0, 1), if ϵ ≤ βµX and η ≤ βµR is satisfied, then we have:

η + rϵ

µX − ϵ
≤ (1 + β)2

1 − β

η + r̂ϵ

µ̂X
,

within the set A(ϵ, η). By taking the compliment and using union bound, we obtain the result.

By using Lemma 1, we can prove tight concentration bounds for the renewal rate as follows.
Proposition 4 (Concentration inequalities for reward rate). Let {(Xn, Rn) : n ≥ 1} be a renewal reward
process.

1. If Xn ∈ [0, a] and Rn ∈ [0, b], let

r̂n =
Ê[n][X]
Ê[n][R]

,

and

ϵn(δ) =
√

2V[n](X) log(1/δ)
n

+ 3a log(1/δ)
n

,

ηn(δ) =
√

2V[n](R) log(1/δ)
n

+ 3b log(1/δ)
n

.
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Then, for any β ∈ (0, 1) and δ ∈ (0, 1), we have:

P
(

|r̂n − r| >
(1 + β)2

1 − β
· ηn(δ) + r̂nϵn(δ)

Ê[n][X]

)
≤ 12δ,

for any n ≥ 8
(
K(X1) + K(R1) + a2

V ar(X1) + b2

V ar(R1)

)
+ 3

(
C2(X1)

β2 + a
βE[X1] + C2(R1)

β2 + b
βE[R1]

)
.

2. Consider a renewal reward process such that E[X4
1 ] < ∞ and E[R4

1] < ∞. For m = ⌊3.5 log(1/δ)⌋ + 1,
let G1, G2, . . . , Gm be a partition of [n] such that |Gj | = ⌊n/m⌋. Then, we define the median-based
mean and variance estimators as follows:

M[n](X) = median{ÊG1 [X], ÊG2 [X], . . . , ÊGm [X]},

VM
[n](X) = median{VG1 [X],VG2 [X], . . . ,VGm

[X]}.

Let

r̂M
n =

ÊM
[n][R]

ÊM
[n][X]

,

and

ϵM
n(δ) = 11

√
2VM

[n](X) log(1/δ)
n

,

ηM
n(δ) = 11

√
2VM

[n](R) log(1/δ)
n

.

Then, for any β ∈ (0, 1) and δ ∈ (0, 1), we have:

P
(

|r̂M
n − r| >

(1 + β)2

1 − β
· ηM

n(δ) + r̂M
nϵM

n(δ)
ÊM

[n][X]

)
≤ 16.8δ,

for n ≥ 1024
(
K(X1) + K(R1) + C2(X1)+C2(R1)

β2 + ζ
)

for some ζ > 0.

Proof. 1. If n ≥ 8
(
K(X1) + a2

V ar(X1)
)
, then the following holds with probability at least 1 − 4δ:

|V[n](X1) − V ar(X1)| ≤ V ar(X1)/2,

where K(X) = E|X−EX|2

V ar2(X) is the kurtosis of a random variable X. Therefore, with probability at least
1 − 4δ, we have the following:√

3V ar(X1) log(1/δ)
n

+ 3a log(1/δ)
n

≤ βE[X1].

Hence, if n ≥ 3
(

C2(X1)
β2 + a

βE[X1]

)
also holds, then the above inequality is automatically satisfied,

where C(X) =
√

V ar(X)/E[X] is the coefficient of variation. Therefore, if

n ≥ 8
(
K(X1) + K(R1) + a2

V ar(X1) + b2

V ar(R1)

)
+ 3

(C2(X1)
β2 + a

βE[X1] + C2(R1)
β2 + b

βE[R1]

)
,

then we have
ϵn(δ) ≤ βE[X1],
ηn(δ) ≤ βE[R1],

with probability at least 1 − 8δ. Then we use Lemma 1 in conjunction with empirical Bernstein
inequality (see (Audibert et al., 2009)) to conclude the proof.

2. The proof follows from identical steps as Part 1, and uses Proposition 4.1 and Corollary 4.2 in
(Minsker et al., 2015) for the concentration results.
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D Proof of Theorem 1 and Theorem 2

The number of trials Nπ(τ) under an admissible policy π is a random stopping time, which makes the regret
computations difficult. The following proposition provides a useful tool for regret computations.
Lemma 2 (Regret Upper Bounds for Admissible Policies). Let Tk,l(n) be the number of steps where the
decision is (k, tl) in n trials, and µ∗ = mink,t E[Uk,1(tl)]. The following upper bound holds for any admissible
policy π ∈ Π and τ > µ∗/2:

REGπ(τ) ≤
∑
k,l

E
[
Tk,l

(2τ

µ∗

)]
∆k,lE[Uk,1(tl)] + exp(−τµ∗/t2

1)
1 − exp

(
µ2

∗/(2t2
1)

) ∑
k,l

∆k,lE[Uk,1(tl)] + r∗Φ,

where Φ is a constant.

The proof of Lemma 2 relies on Azuma-Hoeffding inequality for controlled random walks, which can be found
in (Cayci et al., 2019; 2020). Note that 2τ/µ∗ is a high-probability upper bound for the total number of
pulls Nπ(τ), and ∆k,lE[Uk,1(tl)] is the average regret per pull for a decision (k, tl). Lemma 2 implies that the
expected regret after 2τ/µ∗ pulls is O(1).

In the following lemma, we quantify the scaling effect of using empirical estimates.
Lemma 3. Under the UCB-RB Algorithm, we have the following upper bounds:

(i) If k = k∗, tl > t∗
k∗ or k ̸= k∗, ∀l, we have:

L∑
j=l

E[Tk,j(N)] ≤ 3
(

z2(β)Ck,j
r2

∗
∆2

k,j

+ 2z(β)Bk,j
r∗

∆k,j
+ 8

(
Kk,j + B2

k,j

))
log(Nα) + O(L),

(ii) If k = k∗ and tl < t∗
k∗ , we have E[Tk,l(n)] = O(1) for all n.

Proof. Consider a suboptimal decision (k, tl) where either {k = k∗, tl > t∗
k} or {k ̸= k∗} is true, and let

E1,n =
{

r̂∗ + c∗ ≤ r∗

}
, (40)

E2,n =
⋃
j≥l

{
r̂k,j,n ≥ ck,j,n + rk(tj)

}
, (41)

E3,n =
⋃
j≥l

{2ck,j,n ≥ ∆k,j}. (42)

Then, it is trivial to show by using contradiction that {(In+1, νn+1) = (k, tj) : j ≥ l} ⊂ ∪3
i=1Ei,n. In the

following, we provide a sample complexity analysis for the events above.

For notational simplicity, for j ≥ l, let Un := Uk,n(tj) and Vn := Vk,n(tj) for all n. For sample size s and any
δ ∈ (0, 1), let r̂s = Ê[s][V ]

Ê[s][U ]
, and

ϵs =
√

2V[s](U) log(1/δ)
s

+ 3tj log(1/δ)
s

, (43)

ηs =
√

2V[s](V ) log(1/δ)
s

+ 3 log(1/δ)
s

. (44)

Then, by Proposition 4, the following holds with probability at least 1 − 12δ:∣∣∣r̂s − rk(tj)
∣∣∣ ≤ (1 + β)2

1 − β

ηs + r̂sϵs

Ê[s][U ]
, (45)
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given s is sufficiently large such that

ϵs ≤ βE[U1],
ηs ≤ βE[V1].

(46)

By using empirical Bernstein inequality and union bound for the empirical variance, we have the following
inequalities with probability at least 1 − 8δ:

|V[s](U) − V ar(U1)| ≤ V ar(U1)/2,

|V[s](V ) − V ar(V1)| ≤ V ar(V1)/2,

if s ≥ s1,j(δ) := 8
(
K(U1) +K(V1) + 4t2

j

V ar(U1) + 1
V ar(V1)

)
log(1/δ). Therefore, the condition equation 46 implies

the following with probability at least 1 − 8δ for s ≥ s1,j(δ):

ϵ̃s :=
√

3V ar(U1) log(1/δ)
s

+ 3tj log(1/δ)
s

≤ βE[U1],

η̃s :=
√

3V ar(V1) log(1/δ)
s

+ 3 log(1/δ)
s

≤ βE[V1].
(47)

The inequalities in equation 47 simultaneously hold if

s ≥ s2,j(δ) := 3
( 1

β2

(
C2(U1) + C2(V1)

)
+ 1

β

( tj

E[U1] + 1
E[V1]

))
log(1/δ).

Also, note that
(1 + β)2

1 − β

ηs + r̂sϵs

Ê[s][U ]
≤ (1 + β)2

(1 − β)3
η̃s + rk(tj)ϵ̃s

E[U ]1
,

holds if equation 47 is true. Thus, by using this result, we show that

2(1 + β)2

1 − β

ηs + r̂sϵs

Ê[s][U ]
≤ 2(1 + β)2

(1 − β)3
η̃s + rk(tj)ϵ̃s

E[U ]1
≤ ∆k,j ,

with probability at least 1 − 8δ if s ≥ max{s1,j(δ), s2,j(δ), s3,j(δ)} for

s3,j(δ) = 3
(

8(1 + β)4

(1 − β)6
r2

∗
∆2

k,j

(C2(U1) + C2(V1)) + 2(1 + β)2

(1 − β)3 ( 1
E[V1] + 2tj

E[U1] )
)

log(1/δ).

In summary, the following events simultaneously hold with probability at least 1 − 12δ:∣∣∣r̂s − rk(tj)
∣∣∣ ≤ (1 + β)2

1 − β

ηs + r̂sϵs

Ê[s][U ]
≤ ∆k,j/2, (48)

if s ≥ max{s1,j(δ), s2,j(δ), s3,j(δ)}.

Note that the UCB-RB Algorithm is designed such that s = T ∗
k,j(n) and δ = n−α. Now we will use the above

analysis to provide an upper bound for
∑

j≥l E[Tk,j(n)]. First, let

Aj = {T ∗
k,j(n) ≤ uj}, j ≥ l

for uj = maxi{si,j(N−α)}. Then, equation 48, we have the following inequality:

P
((

∪j≥l Aj

)
∩

(
E1,n ∪ E2,n ∪ E3,n

))
≤ 16(L − l)/nα−1, (49)

where we used union bound to deal with the random sample size Tk,j ∗ (n) ≤ n in computing probabilities.
Now, recall that T ∗

k,j(n) =
∑

j′≥j Tk,j′(n) by definition, and we have the following relation:⋃
j≥l

Aj ⊂
{ ∑

j≥l

Tk,j(n) ≤ max
j≥l

uj

}
, (50)
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which follows from the fact that ∪j≥lAj = AL ∪ (AL−1 ∩ Ac
L) ∪ . . . ∪ (Al ∩ (∪l<j≤LAj)c), and

Aj ∩ (∪j′>jAj′)c ⊂ Aj ∩ Ac
j+1 ⊂ {Tk,j ≤ max{0, uj − uj+1}}.

Therefore, we have the following inequality:

∑
j≥l

Tk,l(N) ≤ max
j≥l

uj +
N∑

i=maxj≥l uj+1
I{E1,i ∪ E2,i ∪ E3,i}.

Taking the expectation in the above equality, and using equation 49 and equation 50, we have the following
result:

E[
∑
j≥l

Tk,l(N)] ≤ max
j≥l

uj + 16(L − l)α
α − 2 ,

which yields the result in part (i).

For part (ii), let (k, tl) be such that k = k∗ and tl < t∗
k. Following a similar analysis as part (i) yields

E[Tk,l(N)] ≤ O(log(Nα)), which implies that E[Tk∗,l∗
k∗ (N)] = Ω(N − log(N)). Therefore, since the number

of samples satisfies T̃k,l(N) ≥ Tk∗,l∗
k∗ (N) = Ω(N − log(N)), the decision (k∗, tl) is chosen at most O(1) times

(Lattimore & Munos, 2014; Cayci & Eryilmaz, 2017).

Combining Lemma 3 and Lemma 2, the results of Theorem 2 follows by summarizing over all arms. The
Proof of Theorem 1 are similar except for using the second part of results in Proposition 4.

E Proof of Theorem 3

The proof incorporates a variant of the regret analysis for quantized continuous decision sets given in (Combes
& Proutiere, 2014) into the regret analysis for budget-constrained bandits presented in Appendix D.

Step 1. First, we bound the regret that stems from using a quantized decision set. Recall from Proposition 1
that

OPT(τ) ≤ τ · r∗ + O(1),
and

OPTQ(τ) ≥ τ max
t∈TQ

r1(t),

where OPTQ(τ) is the optimal reward in the quantized decision set TQ, and r∗ = maxt∈T r1(t). Then, the
regret under the UCB-RC Algorithm is bounded as follows:

REGπC(τ) = OPT(τ) − E[REWπC(τ)],
= OPT(τ) − OPTQ(τ) + OPTQ(τ) − E[REWπC(τ)],
≤ τ

(
r∗ − max

t∈TQ

r1(t)
)

+ REGπC,Q(τ) + O(1),

where
REGπC,Q(τ) = OPTQ(τ) − E[REWπC(τ)],

is the regret under the UCB-RC Algorithm with respect to the optimal policy in the quantized decision set.
By Assumption 2, we have:

r∗ − max
t∈TQ

r1(t) ≤ a2δq,

since |t∗
1 − arg maxt∈TQ

r1(t)| ≤ δ. Thus, we have the following inequality:

REGπC(τ) ≤ a2τδq + REGπC,Q(τ) + O(1). (51)

Step 2. After we quantify the regret from using a quantized decision set, now we bound REGC,Q(τ), the
regret of the UCB-RC Algorithm with respect to the optimal algorithm in the quantized decision set. We
first present a variation of the decomposition in equation 50.
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Claim 1. Let l∗ = arg maxj r1(tj), and r∗
Q = maxj r1(tj) be the optimal reward rate in the quantized

decision set TQ. For any l ̸= l∗, let ∆1,l = r∗
Q − r1(tl), and

zl = 3
(

z2(β)C1,l

(r∗
Q)2

∆1,l
+ O(1)

)
log(Nα). (52)

Then, we have the following for any l ≤ k ≤ L(δ):

E[
k∑

j=l,j ̸=l∗

∆1,jT1,j(N)] ≤ zl +
k∑

j=l+1
j ̸=l∗

zj

(
1 − ∆1,j−1

∆1,j

)+
+ 16L(δ)α

α − 2 . (53)

Proof. We have the following relation for any l ≤ k ≤ L(δ):

∪k
j=lAj ⊂

{ k∑
j=l,j ̸=l∗

∆1,jT1,j(N) ≤ zl +
k∑

j=l+1
j ̸=l∗

zj

(
1 − ∆1,j−1

∆1,j

)+}
, (54)

which can be proved by induction. Note that the O(1) term in the RHS of equation 52 is bounded as follows:

2z(β)B1,lr
∗
Q + 8

(
K1,l + B2

1,l

)
∆1,l ≤ 2z(β)b0r∗ + 8r∗(κ + b2

0),

where b0 ≥ maxl B1,l and κ ≥ maxl K1,l are constants independent of δ, but depend on rad(T), ϵ and µ∗
under Assumption 2.

By following the same steps as Lemma 3, the proof follows.

By equation 51 and Proposition 2, the regret under UCB-RC is bounded as follows:

REGC(τ) ≤ a2δqτ + µ
∑

l∈[L(δ)]

E[∆1,lT1,l(2τ/µ∗)] + O
(
L(δ)

)
. (55)

where µ = maxt∈T E[U1,1(t)] and µ∗ = mint E[U1,1(t)].

Let the sets A, B, D be defined as follows:

A = {l∗ − 1, l∗, l∗ + 1},

B = {l : tmin + (l − 1)δ ∈ B(t∗
1, δ0)} ∩ Ac,

D = [L(δ)] ∩ (A ∪ B)c,

where B(x, ϵ0) denotes the ball in R centered at x with radius ϵ0 > 0.

• For any l ∈ A\{l∗}, we have the following by Assumption 2:

∆1,l ≤ r∗ − r1(tl) ≤ a2(2δ)q,

since r∗ ≥ r∗
Q and

∣∣∣t∗
1 −

(
tmin + (l − 1)δ

)∣∣∣ ≤ 2δ. Thus, we have:

∑
l∈A\{l∗}

E
[
∆1,lT1,l

(2τ

µ∗

)]
≤ a2µ · 2τ

µ∗
(2δ)q. (56)

• For l ∈ B, note that ∣∣∣(tmin + (l∗ − 1)δ
)

−
(
tmin + (l − 1)δ

)∣∣∣ ≥ δ(
∣∣l∗ − l

∣∣ − 1
)
,
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which implies the following by Assumption 2:

∆1,l ≥ a1
∣∣|l∗ − l| − 1

∣∣q
δq.

By using this result and Claim 1, we have the following bound:

E
[ ∑

l∈B

∆1,lT1,l

(2τ

µ∗

)]
≤ α

L(δ)∑
l=1

3z2(β)C1,lr
2
∗ log(τ)

a1(l · δ)q
+ O(log(τ)|B|),

≤ 3αz2(β)r2
∗

log(τ)
a1δq

C⋆
∞∑

l=1

1
lq

+ O(log(τ)|B|),

where C1,l ≤ C⋆ for all l ∈ L(δ) with

C⋆ =
(E[U2

1,1]
µ2

∗
+

E[V 2
1,1]

ϵ2
(
E[V1,1]

)2

)
.

Therefore, we have the following bound:

E
[ ∑

l∈B

∆1,lT1,l

(2τ

µ∗

)]
≤ 3αz2(β)r2

∗
log(τ)
a1δq

C⋆q

q − 1 + O(log(τ)|B|). (57)

• For l ∈ D, we have
∣∣∣(tmin + (l∗ − 1)δ

)
−

(
tmin + (l − 1)δ

)∣∣∣ ≥ δ0/2, hence the following holds by
Assumption 2:

∆1,l ≥ a1(δ0/2)q.

Consequently, we have the following upper bound:

E
[ ∑

l∈D

∆1,lT1,l

(2τ

µ∗

)]
≤ 3αz2(β)r2

∗C⋆ log(τ)L(δ)
a1(δ0/2)q

+ O(log(τ)|D|). (58)

Substituting the results in equation 56, equation 57 and equation 58 into equation 55, we obtain the following
upper bound:

REGπC(τ) ≤ a2
2µ

µ∗
τ(3δ)q + 3αq

q − 1C
⋆z2(β)r2

∗
log(τ)
a1δq

+ O(log(τ)L(δ)). (59)

With the choice δq =
√

log(τ)/τ , we have log(τ)L(δ) = o(
√

τ log(τ)). Therefore,

lim sup
τ→

REGπC(τ)√
τ log(τ)

≤ 6qa2
µ

µ∗
+ 3αq

a1(q − 1)C
⋆z2(β)r2

∗.
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