
Unsupervised Membership Inference Attacks Against
Machine Learning Models

Yuefeng Peng
School of Cyber Science and Engineering

Wuhan University
yuefengpeng@whu.edu.cn

Bo Zhao
School of Cyber Science and Engineering

Wuhan University
zhaobo@whu.edu.cn

Hui Liu
School of Cyber Science and Engineering

Wuhan University
liuh824@whu.edu.cn

Yang An
School of Computer Science

Wuhan University
yangan@whu.edu.cn

Abstract

As a form of privacy leakage for machine learning (ML), membership inference
(MI) attacks aim to infer whether given data samples have been used to train a
target ML model. Existing state-of-the-art MI attacks in black-box settings adopt
a so-called shadow model to perform transfer attacks. Such attacks achieve high
inference accuracy but have many adversarial assumptions, such as having a dataset
from the same distribution as the target model’s training data and knowledge of the
target model structure. We propose a novel MI attack, called UMIA, which probes
the target model in an unsupervised way without any shadow model. We relax all
the adversarial assumptions above, demonstrating that MI attacks are applicable
without any knowledge about the target model and its training set. We empirically
show that, with far fewer adversarial assumptions and computational resources,
UMIA can perform on bar with the state-of-the-art supervised MI attack.

1 Introduction

Recent researches have shown ML models memorize sensitive information of training data [1, 2, 3],
making them susceptible to membership inference (MI) attacks [4, 5, 6]. In MI attacks, the adversary’s
goal is to determine whether given data points were used to train the target model. Since ML models
are usually trained on sensitive data such as medical records [7, 8] and facial images [9, 10], the
success of MI can lead to severe consequences. For example, the existence of a patient’s medical
record in a hospital’s analytical training set reveals that the patient was once a patient there.

MI attack can be regarded as a binary classification problem: classify the given data points into
members and non-members using a binary classifier. Shokri et al. [4] propose the first MI against ML
models, exploiting the differences in the target model’s prediction vectors on the members versus
the non-members. The main challenge for such attacks is that the adversary needs to collect enough
samples labeled as either members or non-members to predict membership for a new data sample
with unknown membership. Specifically, they generate a dataset based on data samples with known
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Table 1: A comparison to prior works. Xmeans the information is required by the adversary, -
otherwise.

source No.shadow
models

Target model
structure

Target
model’s

training data
distribution

Label
knowledge

Inference
accuracy

[4] multiple X X X high
[6] 1 - X - high
[6] 1 - - - unstable
[6] - - - - low
[5] - - - X low

Ours - - - - high

membership to train a ML model, referred to as an attack model, and then use the attack model to
classify a new data sample with unknown membership. However, when only given black-box access
(i.e., having access to the output probability distribution), the adversary cannot derive enough samples
with known membership of the target model’s training set. To solve this problem, Shokri et al. [4]
present the shadow training technique, which creates multiple so-called shadow models to mimic the
behavior of the target model. Since the adversary trains the shadow models, they know each data
sample’s membership of the shadow models’ training set and can thus construct a dataset to train an
attack model to perform transfer attacks. However, as shown by Salem et al. [6] and confirmed by
our experiments, when the shadow model is drastically different from the target model, the attack
performance is not promising. Creating shadow models of high quality, on the other hand, have many
requirements such as knowledge of the target model’s structure and training set.

Researchers also propose some attacks without any shadow model, using simple decision rules instead
of binary ML classifiers to predict membership [6, 5]. However, these methods cannot make an
effective inference due to the lack of samples labeled with ground truth membership information.
As shown in Table 1, existing attacks either make too many assumptions on the adversary or do not
perform that well.

In this paper, we introduce a novel MI attack, called UMIA, which achieves high inference accuracy
without shadow models. Specifically, given a batch of samples with unknown membership, UMIA first
extracts membership semantics via temperature scaling [11, 12], and then uses clustering algorithms
to divide these samples into members and non-members. We compare UMIA with the state-of-the-art
attacks. We empirically show that with far fewer adversarial assumptions and computational resource,
UMIA achieves similar inference accuracy to the attack with shadow models [6]. Our code is available
online 1.

2 Threat Model

Our attack is a batch attack. The threat model assumes an adversary trying to infer whether each
data point in a given dataset D′, called the target dataset, belongs to the target model h’s training
set D. Specifically, the adversary has access to a dataset D′ which partially overlaps with the h’s
training set D. However, the adversary does not know which and how many data points are in D′∩D.
The adversary’s goal is to infer which data points are in D′ ∩D. We assume the adversary only has
black-box access to h, i.e., the adversary can only query the target model h with samples to obtain
the prediction vectors of output classes. Under strong adversarial assumptions, prior works have
proposed high-performance MI attacks. In this paper, we aim to show that, in the absence of these
conditions, the adversary can still achieve similar MI accuracy via the unsupervised method. As
prior works did, we also assume black-box access to h. The difference is that we do not make any
assumptions related to h and its training data.

3 Methodology

3.1 Attack Framework

UMIA exploits the fact that output probability distributions of the target model h may vary between
members and non-members. Fig. 1 illustrates the framework of UMIA. Specifically, given a batch of

1https://github.com/elpx16443/umia
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target data samples, UMIA first obtains the outputs of them by querying h, then processes the output
probabilities to extract membership information, and finally uses clustering to divide these processed
output probabilities into two clusters, which represent members and non-members respectively. We
introduce the details below.

Figure 1: The framework of UMIA.

3.2 Processing

As mentioned above, given any data sample x, UMIA first extract membership semantics from its
output probability distribution h(x) given by h. As shown by Salem et al. [6] and confirmed by
our experiments, the class types (e.g., a bird or a car in CIFAR-10), are not important for MI, but
the ranking of scores in the output probabilities matters. Moreover, using full output probability is
unnecessary, and using the biggest scores in the output probability suffices. Based on this idea, after
get h(x) for each sample x, we select top-k values in h(x), denoted as hk(x), removing noisy ones
with small values.

Then, we rescale hk(x) using temperature scaling [11, 13, 14]. The high-level idea is as follows.
ML models tend to assign a high probability score to the correct class and assign small values to
other classes. For example, for the MNIST dataset, one correctly classified picture of a 2 may be
given a probability over 0.99 of being a 2 and a probability less than 0.01 of being others. Despite
containing useful membership information, the small values in the output probability have very little
influence on the following clustering stage. To address the problem, we rescale the output probability
to improve their influence in MI. Note that temperature scaling is also used in knowledge distillation
for a similar purpose [11, 15]. The rescaled output probability R(x;T ) is computed according to the
following equation:

Ri(hk(x);T ) =
exp(log(hi

k(x))/T )∑
j exp(log(h

j
k(x))/T ))

(1)

Here, hi
k(x) is the ith score in hk(x), and T is a temperature scaling parameter.

3.3 Clustering

After rescaling, we apply the K-means clustering algorithm to divide these processed output probabil-
ities into two clusters. Samples in the cluster with higher average confidence scores are labeled as
members, and others are labeled as non-members, based on our observation that ML models tend to
output higher confidence scores for data points on which they trained.

4 Evaluation

Experimental setup. We use seven datasets for evaluation: MNIST 2, CIFAR-10 [16], CIFAR-100
[16], Purchase [4], Location[4], Texas [4] and UCI Adult 3. For each dataset, we use its corresponding
model architecture that is consistent with prior works [4, 6]. We compare UMIA against the attack by
Salme et al. [6]., following the original configuration of the authors’ code 4.

Results. We first assume the adversary has full knowledge of the target model structure and same
data distribution. Such setting allows the adversary to train a high-quality shadow model but does not
benefit UMIA because it does not need any shadow model. As depeicted in Fig.2, although the most

2http://yann.lecun.com/exdb/mnist/
3http://archive.ics.uci.edu/ml/datasets/Adult
4https://github.com/AhmedSalem2/ML-Leaks
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Figure 2: Comparison of UMIA with attacks with shadow models.

Table 2: Accuracy of MI attacks on Purchase dataset.

Classifier Salem et al. UMIA
Neural Network Logistic Regression Random Forests

Neural Network 0.91 0.80 0.22 - 0.67 0.88
Logistic Regression 0.55 0.89 0.53 - 0.80 0.88

Random Forests 0.5 0.53 - 0.62 1.0 1.0

favorable setting is adopted for the attack by Salem el at., UMIA still achieves comparable inference
accuracy.

Then, we assume the adversary has no knowledge of the target models including their types. In
this setting, for the attack with shadow models, we use different ML classifiers such as Random
Forests as the shadow model and attack the target that is the same or different from the shadow, such
as a neural network. Table 2 depicts the results. We observe that only when the shadow model’s
structure is the same as its corresponding target model can the attack with shadow models achieve
high performance. On the other hand, UMIA provides high inference accuracy because it performs
MI by directly probing the target.

Finally, we demonstrate the attack efficiency of UMIA. Since MI attacks are widely used to evaluate
the privacy leakage of the training sets of ML models [17, 18] and modern ML models are usually
trained on big datasets, the attack efficiency is important for a good MI. The experimental result is
shown in Table 3. The average running time of UMIA is about 320 times faster than the attack with
shadow models. The experimental result demonstrates that UMIA is lightweight and efficient.

5 Conclusion

Despite the great success achieved, ML models are vulnerable to MI attacks, which raises severe
privacy risks. The existing state-of-the-art MI attacks make many assumptions on the adversary, such
as having knowledge of the target model’s structure and training set. we relax these assumptions by
introducing unsupervised MI attacks, UMIA, leveraging temperature scaling and unsupervised ML
algorithms. Our evaluation on various datasets shows that UMIA has a comparable performance with
the state-of-the-art attacks [6]. We demonstrate that the adversary can perform high accuracy MI
attacks at low cost in a broader range of scenarios.

Table 3: Running time (in seconds) of MI attacks on various datasets.

Dataset Salem et al. UMIA Total Seconds
Training Shadow Models Training Attack Models Total Seconds

CIFAR-10 23.14 24.94 48.08 0.13
CIFAR-100 23.65 24.62 48.27 0.09

Purchase 2.87 25.11 27.98 0.10
Location 1.05 3.49 4.54 0.04
MNIST 17.50 24.61 42.11 0.14
Texas 35.73 25.29 61.02 0.18
Adult 3.76 24.23 27.99 0.13
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