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ABSTRACT

Recently, several algorithms have been proposed for One Class Learning (OCL)
with time series. However, several problems can be found in these methods, prob-
lems involving the collapse of hyperspheres, manual thresholds, numerical insta-
bilities and even the use of unlabeled instances during training, which directly
violates the concept of OCL. To avoid these problems and solve cases like the
numerical instability of some methods this paper proposes an end-to-end method
for time series one-class learning based on a Gaussian Mixture Model (GMM).
The proposed method combines the unsupervised learning technique of an au-
toencoder adapted to extract temporal and structural features of a time series, com-
bined with distribution learning, to provide better performance than other state-of-
the-art methods for the classification of time series data. ChronoGAM is a novel
method that is capable of improving the temporal importance of the representa-
tions learned by the autoencoding system. We propose a new objective function
with modifications to penalize the small values on the covariance matrix with-
out resulting in exploding gradient propagation, causing numerical instabilities,
and adapting the energy calculus to avoid the use of exponential functions. The
method is tested on over 85 benchmark datasets, generating 652 datasets. We gain
in 369 datasets, with an average ranking of 2.68, being the top-ranked method.

1 INTRODUCTION

Training machine learning models usually requires many labeled samples belonging to different
classes. However, it requires a considerable effort to label each instance. Especially, this effort needs
to be performed by domain experts, which makes labeling a longstanding and costly task (Cabral &
de Oliveira, 2014; Gao et al., 2020). In some scenarios, there may be interest in identifying instances
of a single class, which is commonly easier to obtain data than other classes. For instance, consider
the application of quantifying the number of disease-vector mosquitoes in a region using an insect
sensor (Reis et al., 2018). In this case, we may consider creating a model to identify the specimens
from the Aedes or Anopheles mosquito genus. If some other insect crosses the sensor, the model
may ignore it, independently of its species.

In this scenario, One-Class Learning (OCL) arises as an alternative to the most usual binary or
multiclass learning (Moya et al., 1993). OCL focuses on differentiating whether an instance belongs
to the interest class by training a model only with the interest instances (Emmert-Streib & Dehmer,
2022). Learning from a single class has been applied to several tasks, such as dealing with severe
class imbalance, outlier detection, novelty detection, and concept learning (Alam et al., 2020; Seliya
et al., 2021). This paper focuses on OCL for time series. With the increasing ease of access and
usage of sensors and other ways to monitor varied phenomena, many applications that use these data
have been emerging (Yeh et al., 2018). Similarly, the OCL for time series is gaining more attention
in application domains such as health monitoring and fraud detection (Pang et al., 2021; Mou et al.,
2023).

Classical algorithms for OCL, such as One-Class Support Vector Machines (Schölkopf et al., 1999),
have limitations when applied to time series data due to the difficulties in handling high-dimensional
data (Schölkopf et al., 2001). Several other methods have been proposed in the literature to overcome
this issue, most relying on deep learning approaches (Pang et al., 2021). Nevertheless, there are still
significant gaps in existing techniques and their application to time series data, as well as challenges
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related to balancing and stabilizing existing loss functions. Most of these methods are based on
learning data representations to address OCL problems using autoencoders (Ruff et al., 2018; Mou
et al., 2023; Hayashi et al., 2022; Ren et al., 2019). However, there are two main issues with
this premise: (i) the autoencoders used to learn representations are not entirely suitable or adapted
for time series, and (ii) the existing methods usually rely on unlabeled instances to learn a robust
representation, which directly contradicts the OCL base definition, where only instances of the target
class should exist in the training set.

Zong et al. (2018) proposed the Deep Autoencoding Gaussian Mixture Model (DAGMM) to deal
with these limitations. DAGMM incorporates errors and similarities in its learned representation
while using a network to estimate Gaussian Mixture Model (GMM) parameters and learn the distri-
bution of the components of the class of interest. However, a problem in the objective function used
by DAGMM can cause numerical instabilities that lead to model collapse. In this sense, we propose
an end-to-end method called Chrono Gaussian Mixture Model (ChronoGAM). We construct our so-
lution based on the assumption that adapting the autoencoder to capture representations considering
a time series’s temporal and structural features, combined with distribution learning, will perform
better than other state-of-the-art methods for time series one-class classification. By regularizing
the covariance matrix in the objective function, the GMM will avoid numerical instability that could
lead to a learning collapse. In summary, this paper has the following main contributions:

1. We propose an end-to-end method capable of outperforming other one-class learning meth-
ods by using a Gaussian Mixture Model, improving the temporal dependency on the repre-
sentations learned by the autoencoder;

2. We balance the loss function used by the DAGMM method to avoid numerical instability
in the calculus of the inverse covariance matrix;

3. The proposed method was empirically tested against other state-of-the-art methods for time
series one-class learning in over 85 benchmark datasets using the correct training setups for
one-class methods, generating 652 datasets.

2 RELATED WORKS

We divide the related methods into two categories, the two-step methods and end-to-end methods.
Each of these categories implements its own methods to define and find interest instances in the data.
In the few sections, we define each strategy used by these categories and the problems that each one
has when dealing with time series data.

Methods in the Two-Step category use strategies in two different phases. Generally, the first phase
uses an autoencoder to learn the data representation based on its reconstruction, while the second
phase uses the autoencoder’s pre-trained weights to work in a sub-space and map the instances of
interest using some strategy. End-to-end methods use only one training phase, some of them work
by learning the reconstruction of instances and using the error as a delimiter for the class of interest,
while other strategies combine reconstruction with other methods such as learning distributions.

2.1 TWO-STEP METHODS

Deep Support Vector Data Description (DeepSVDD) (Ruff et al., 2018) uses a deep neural net-
work, typically an autoncoder, to learn a latent representation of the interest class. The network is
trained to reconstruct the samples with minimal error. However, instead of using reconstruction er-
ror as a direct anomaly measure, DeepSVDD introduces a hypersphere in the learned representation
space, aiming to encapsulate the interest instances. During training, the network is optimized to
minimize the distance between the embedded representations of the interest instances and the center
of the hypersphere. Instances outside the hypersphere are considered as part of a non-interest class.
Recently, DeepSVDD-based methods have shown good performance in various domains of one-
class learning (Pang et al., 2021). Techniques such as Autoencoding One Class (AOC) (Mou et al.,
2023) and Deep Semi-Supervised Anomaly Detection (DeepSAD) (Ruff et al., 2020) are based on
the DeepSVDD method. However, these proposed methods use unlabeled instances to learn the ini-
tial data representation, which falls into the category of positive-unlabeled learning (PUL) (Bekker
& Davis, 2020).
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Models can learn representations better if they are trained without unlabeled data. However, this
can cause a problem where the representations are too close to the center used in the objective
function. This is called a local optimum and was identified by Ruff et al. (2018). The objective
function considers the distances from the representations to a center in space. To solve this problem,
all representations are mapped to a constant solution equal to the center. This is done during the
second-step training, which only considers the labeled instances. This approach tends to approach
an optimal solution. However, the model will map all data to this constant solution when new test
data is introduced. This results in the classification of all instances as the interest class.

2.2 END-TO-END METHODS

LSTM-AE (Provotar et al., 2019) rely on an autoencoder applied to the data to learn the represen-
tation of the interest class, and then a threshold is set based on the assumption that by learning the
reconstruction of the interest class, non-interest instances will have a higher reconstruction error, and
the threshold is used to separate these data (Liao & Yang, 2022; Mujeeb et al., 2019; Provotar et al.,
2019). However, these methods face issues such as the sensitivity of the defined threshold, which
can increase the false positive rate; dependence on the quality of the reconstruction, where unreliable
reconstruction directly impacts the classification of the interest class; and sensitivity to variations in
the interest instances, where data deviating from the original distribution may be classified as false
negatives.

Deep AutoEncoder Gaussian Mixture Model (DAGMM) (Zong et al., 2018) aims to address
these issues through a probabilistic modeling approach. Unlike relying solely on reconstruction
error, DAGMM utilizes a Gaussian Mixture Model to model the data distribution. The employed
AutoEncoder learns a low-dimension latent representation of the data, which is used to estimate the
latent density via a Gaussian Mixture Model. Consequently, detecting data outside the target class
becomes akin to capturing data outside the distribution. However, the structure proposed for the
AutoEncoder is insufficient to capture temporal features or relations on time series data, and the
objective function suffers from numerical instability, affecting how the model behaves on different
datasets.

3 CHRONOGAM: CHRONOLOGY GAUSSIAN MIXTURE MODEL FOR TIME
SERIES ONE-CLASS LEARNING

ChronoGAM combines the unsupervised learning technique of an autoencoder adapted to extract
time features with a new Gaussian Mixture Model strategy in an end-to-end way. First, we im-
plement an autoencoder that harnesses the power of convolutions to identify key temporal pat-
terns within the data based on the literature on convolutional approaches for time series classifi-
cation (Fawaz et al., 2019; Wang et al., 2017). The autoencoder employs a three-block encoder
structure, where each block consists of a convolutional layer and an activation. These convolutional
layers are instrumental in capturing the underlying structural features of time series (Fawaz et al.,
2019). The model comprehensively understands the temporal patterns inherent in the data by ex-
tracting these features, which can be interpreted as temporal features since the time series structure
represents the time dimension. Furthermore, the inclusion of an activation layer facilitates the re-
construction of the temporal data, ensuring that the model can effectively capture and represent the
intricate periodic patterns within the series.

In this aspect, we rely on the snake activation proposed by Ziyin et al. (2020), which has exhibited
remarkable performance in reconstructing time series data compared to other common activations
used for time series tasks, such as ReLU or LeakyReLU. For the decoder, the layer and block
sequence of the encoder are maintained in reverse order and use transposed convolutions instead of
normal convolutions. All the kernel sizes, filters, and output dimensions of the layers are preserved
in reverse order. This configuration allows the learning of a temporal series reconstruction using the
temporal dimension’s structural features.

In our Gaussian Mixture Model strategy, similar to the DAGMM (Zong et al., 2018), the objective
is to learn a low-dimensional representation considering the features of reconstruction errors and
cosine similarity and feed it into the Gaussian Mixture Model. Figure 1 provides an overview of
the architecture of the method. Our method learns a low-dimensional representation denoted as zc

3



Under review as a conference paper at ICLR 2024

through an encoder. The decoder produces the reconstruction x̂, which is used to calculate the mean
squared error (MSE) and cosine similarity, represented by the vector zr. Together, they form the
vector z and enter the estimation network.

Encoder (e) Decoder (d)

Estimation 
Network

Figure 1: General architecture of ChronoGAM. The structure of the AutoEncoder can be observed,
along with how latent representation, reconstruction errors, and cosine similarity (represented by
zr) are used for the GMM parameter estimation network. Adapted from Zong et al. (2018).

Thus, using an encoder function e and a decoder function d, the network obtains the values of
zc and x̂ through the following equations: zc = e(x;θe) and x̂ = d(zc;θd). Where zc denotes
the representation generated by the encoder e, x are the input data, x̂ represents the reconstructed
series with the decoder d, θe and θd are the encoder and decoder parameters, respectively. To
generate the input z for the estimation network, zr is first calculated using the following equation,
zr = [mse(x, x̂), s(x, x̂)], where s(·) is the cossine similarity function.

Finally, we can define z as a multidimensional vector composed by the concatenation of the vec-
tors zc and zr, z = [zc, zr]. Given the low-dimensional representation, the GMM-based network
performs density estimation. During the training phase, using a mixture-component distribution ϕ,
mixture means µ, and mixture covariances Σ, the estimation network will estimate the GMM param-
eters and evaluate a modified likelihood/energy for the data. The estimation network consists of an
MLP followed by a softmax output, the output of this MLP is the estimation parameters for the GMM
components. The density estimation π̂ can be calculated by π̂ = softmax(MLP(z;θm)), where θm
denotes the parameters of the estimation network and π̂ denotes the soft mixture-component predic-
tion. The estimation network predicts the relevant information for modeling the Gaussian mixture
from π̂. It calculates components such as means, covariance matrices, weights, and energies using
the predicted values. The model can estimate the GMM parameters using the following equations:

ϕ̂k =

N∑
i=1

π̂ik

N
, µ̂k =

∑N
i=1 π̂ikzi∑N
i=1 π̂ik

, Σ̂k =

∑N
i=1 π̂ik(zi − µ̂k)(zi − µ̂k)

T∑N
i=1 π̂ik

, (1)

where ϕ̂k represents the probability of the estimated mixture for the component k, µ̂k represents
the estimated mean for the component k, Σ̂ the mixture covariance for the component k, and k is
the number of dimensions for π̂. During the training phase, the threshold for the one-class learning
is defined as a percentile of all energies in the training data to avoid the necessity of manually
estimating that parameter.

The estimation of the energy of each sample is modified to avoid the use of functions such as exp,
which can cause very large values in the numerator of the equation, combined with small values of
the covariance matrix, which can cause explosions of gradients in the network, leading to numerical

4



Under review as a conference paper at ICLR 2024

instabilities and collapse of the model. In this sense, we improve the Energy strategy from Zong
et al. (2018) using a variation from the exp function, defined in Equation 2. It only considers the
exponential for values below 0, avoiding negative values, and for values greater than 0, the function
considers the value itself added to a constant 1 in order to preserve the continuity of the function
while preserving the magnitudes.

explu(x) =
{
exp(x) if x ≤ 0,

x+ 1 otherwise.
(2)

Using this exp variation, the energy estimation equation for each sample is calculated by:

E(z) = − log

 K∑
k=1

ϕ̂k

explu(− 1
2 (z− µ̂k)

T Σ̂−1
k (z− µ̂k))√

|2πΣ̂k|

 . (3)

We propose a new objective function with modifications to penalize the small values on the co-
variance matrix without resulting in exploding gradient propagation, causing numerical instabilities,
and adapting the energy calculus to avoid using exponential functions. With this strategy, we reduce
the number of cases where the model collapses due to these instabilities in training. The following
equation denotes the Objective Function used:

Lt(θe,θd,θm) =
1

N

N∑
i=1

Lr(xi, x̂i)+
λ1

N

N∑
i=1

E(zi)+λ2 min

 K∑
k=1

d∑
j=1

− log(Σ̂kjj), 100

 , (4)

where Lt is the total loss, N is the batch size, Lr is the reconstruction loss, E is the same energy
function defined by Equation 3, λ1 and λ2 are meta-parameters equal to 0.1 and 0.005 respectively.

4 EXPERIMENTAL EVALUATION

This section presents the experimental evaluation of this article. We present the used datasets and
experimental settings. Our goal is to demonstrate that our ChronoGAM outperforms other state-of-
the-art methods. The experimental evaluation codes are publicly available1.

4.1 DATASETS

We evaluated the proposed method on a set of 85 datasets provided by UCR repository (Dau et al.,
2018). For the experiments performed, the training and test instances proposed in the data sets were
maintained to facilitate the comparison of the results found in the literature. However, to use each
dataset in a one-class problem, a transformation is required since only instances of the interest class
can be present in the training set.

For each of the 85 datasets collected, each label, or class, is considered as an interest class for
the problem. For instance, a dataset with 10 classes will be transformed into 10 different datasets
considering each of its labels (1, . . . , 10) as a class of interest. Thus, after the transformation, only
instances of the class of interest are available for training, which results in a smaller training set
size, making it more challenging not only because it uses a single class but also because it has few
available instances. After the transformation, 652 sets of data are generated, respecting the premise
of one-class learning and ready for experiments. The table with the generated datasets and their
characteristics can be found in the Github repository since, due to the number of datasets generated,
the use of the table in this work would be unfeasible.

1Ommited link for blind-review purposes.

5



Under review as a conference paper at ICLR 2024

4.2 EXPERIMENTAL SETUP

As classic baselines, we use OCSVM Schölkopf et al. (1999) and IsolationForest Liu et al. (2008)
in order to compare the performance of deep learning algorithms with classic machine learning
algorithms for the problem, in this case the entire series are passed to the algorithms. To compare
with two-step methods, we use DeepSVDD Ruff et al. (2018), which is used as a basis for other
algorithms that implement losses based on hyperspheres, and do not use any unlabeled instance for
the training phase. As baselines for end-to-end methods, we use the DAGMM Zong et al. (2018),
which initially would be the main competitor, as it is the basis for this work and do not use any
manually defined threshold.

For deep learning baselines, all network characteristics, such as the number of layers, neurons, and
activations, are maintained as in the original proposal. With the exception of small adjustments
such as the number of neurons in the output layer and activations used in these layers that need to
be performed to adapt them to one-class problems with time series. On the ChronoGAM we use
three convolutional blocks, the convolutional layers use the respective filter numbers of (32, 32, 16).
Each layer employs a kernel of varying sizes, specifically (7, 5, 3), which enables the capture of
features in larger temporal contexts, while subsequently narrowing down to extract local features.
To produce a one-dimensional representation, a global average pooling and two linear layers with
output dimensions of (64, 1) are used. These parameters were chosen through the evaluation of
the application of neural networks to capture representations used in classification problems in the
literature, as in Fawaz et al. (2019).

5 RESULTS

This section discusses the results for each method used as baselines and the ChronoGAM proposed
in this work. Altogether, 19560 experiments were carried out with training sets of the datasets,
totaling approximately 45007 time series that were evaluated and 1350210 predictions throughout
the training phase. The results produce 3912 metrics used to evaluate and generate data to compare
the methods in this work.

Following other works from Fawaz et al. (2019); Lucas et al. (2019); Forestier et al. (2017); Petitjean
et al. (2016), we use the mean accuracy measure averaged over the experiments on the test set. In our
case, we use 5 runs. As Fawaz et al. (2019), we based our analysis in the recomendation of Demšar
(2006); Benavoli et al. (2016), using the Friedman test (Friedman, 1940) to reject the null hypothesis
and perform a pairwise post-hoc analysis with the average ranking comparinson replaced by the
Wilcoxon signed-rank test (Wilcoxon, 1945) with Holm’s alpha (5%) correction (Holm, 1979). To
facilitate the visualization of the rankings and the comparison between the methods, we rely on the
critical difference diagram proposed by Demšar (2006).

5.1 UCR DATASETS RESULTS

We provide the analyses and results of the models applied to the 652 datasets generated from the
transformation of 85 UCR datasets of univariate time series into one-class problems; the datasets
were selected based on works in the literature as in Fawaz et al. (2019). The critical difference dia-
gram corresponding to the tests performed with the 652 datasets is shown in Figure 2. It is possible
to observe that ChronoGAM using the strategy of regularizing the covariance matrix, outperforms
the other algorithms with an average ranking of approximately 2.25, while without using the regu-
larizer (wo. Reg), it is in second place with an average ranking of 2.68. ChronoGAM wins in 369
problems out of the 652 generated, significantly outperforming the other algorithms and their two
main competing baselines, DAGMM and IsolationForest. Table 1 shows the count of wins for each
algorithm.

ChronoGAM has been more successful than its main competitor (DAGMM) for two primary rea-
sons. Firstly, its autoencoder architecture is more flexible, using convolutional structures that are
able to detect temporal correlations in the data, as demonstrated in various studies on time series
classification (Fawaz et al., 2019; Wang et al., 2017; Zong et al., 2018). In contrast, DAGMM
only uses an MLP-based autoencoder, which cannot capture these dependencies. The second
reason is the covariance matrix regularizer, while the DAGMM uses a p =

∑K
k=1

∑d
j=1

1
Σ̂kjj
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123456

5.1557DeepSVDD
3.9977DAGMM
3.8980OCSVM 3.0069IsolationForest

2.6894ChronoGAM (wo. Reg)
2.2523ChronoGAM

f1

Figure 2: Critical difference diagram showing pairwise statistical difference comparison of 7 one-
class methods on the 652 generated datasets from 85 UCR time series classification repository.

Method Number of Top One
ChronoGAM 369
IsolationForest (Liu et al., 2008) 163
DAGMM (Zong et al., 2018) 72
OCSVM (Chen et al., 2001) 44
DeepSVDD (Ruff et al., 2018) 4

Table 1: Table comparing the win count of each method in each of the 652 datasets generated from
the 85 selected from the UCR repository.

which can easily cause very large values, making it difficult to correctly propagate the error to
the task, leading to numerical instabilities and exploding gradients, ChronoGAM uses the penalty
p = min(

∑K
k=1

∑d
j=1 − log(Σ̂kjj), α) where α = 100 , so values that would cause the gradient to

explode and cause numerical instabilities as well as disregarding the other tasks that make up the
objective function to simply minimize the covariance matrix are more easily avoided.
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Figure 3: Distribution of the f1 generated from the results of each of the algorithms tested in the 652
data sets generated from the 85 in the UCR repository.

Figure 3 shows the distribution of the count of the f1 score ranges obtained by each of the algorithms.
The more counts to the right of the distributions, the better the result of the model. It is possible to
notice models susceptible to collapses or failures. In these cases, a number of f1 scores obtained
in the range closest to 0 are observed. This behavior is common in models such as the DAGMM,
which has numerical instability due to the covariance matrix, and the DeepSVDD, which suffers
from hypersphere collapse. Models like IsolationForest distributes their results along the range of
possible values for an f1, obtaining a good average ranking. However, it is noted that good results
are rare and almost uncommon. ChronoGAM manages to better distribute these results in which the
performance was previously average at the end of the range of possible values, achieving state-of-
the-art results and avoiding numerical instability with regularization as in the DAGMM.
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Note that ChronoGAM has a better average ranking as shown in the critical difference diagram in
Figure 2, Figure 3 shows that the distribution of ChronoGAM’s f1 is more similar to the objective,
which is a higher count of values close to 1. The Table 1 shows the count of results in which each
algorithm won in the 652 sets tested. ChronoGAM also maintains a higher count when compared to
its competitors. Thus, the results obtained demonstrate that ChronoGAM outperforms other state-
of-the-art methods.

5.2 WHAT WE CAN EXTRACT FROM THE RESULTS?

Within the UCR repository, each dataset has a domain classification, i.e., a theme. Table 2 compares
algorithms in each of the themes in the UCR dataset repository. It is possible to notice that there is
again a dominance of ChronoGAM across different scenarios. With the exception of only two cases.
The first one concerns the cases of data sets with the Device theme, in which IsolationForest beats
ChronoGAM with a good difference in performance. However, due to the sample of 6 sets, it is not
possible to say based on this that IsolationForest will always beat ChronoGAM. The second theme
is Spectro, composed of 7 data sets. IsolationForest surpasses the performance of ChronoGAM
minimally, but it is possible to consider that due to the small difference between the performances,
with the correct adjustment for the appropriate data sets, ChronoGAM surpasses the performance of
IsolationForest.

Theme (#) OCSVM IsolationForest DeepSVDD DAGMM ChronoGAM
Image (29) 0.33 0.36 0.07 0.35 0.66
Sensor (18) 0.25 0.36 0.10 0.25 0.57
Motion (14) 0.32 0.42 0.09 0.29 0.50
Device (6) 0.19 0.45 0.11 0.13 0.10
Spectro (7) 0.48 0.58 0.18 0.31 0.57

Simulated (5) 0.31 0.48 0.09 0.25 0.61
ECG (6) 0.54 0.54 0.03 0.46 0.89

Table 2: Algorithms’ performance grouped by theme. Each entry presents the mean f1 score for the
algorithm in that theme. Bold indicates the best results.

Another characteristic of the data that is possible to observe is the size of the time series in each of
the data sets. Small considerations need to be taken when using a neural network model to extract
features from time series. Table 3 shows the algorithms’ results on the sets within each delimited
size range. Again, it is possible to notice that ChronoGAM outperforms the other methods in most
cases, with the exception of cases where the time series sizes are very small. In these cases, the
size of the series impacts the performance of the algorithm due to the size of the kernels used by
ChronoGAM, which in very small series may not capture local patterns in the data since the size of
the kernels becomes very large. Again, due to the small number of datasets with array sizes less than
81, precisely 14 sets, it is not possible to state that IsolationForest will outperform ChronoGAM on
the task.

Length (#) OCSVM IsolationForest DeepSVDD DAGMM ChronoGAM
<81 (14) 0.40 0.56 0.22 0.20 0.44

81-250 (19) 0.39 0.41 0.06 0.33 0.62
251-450 (22) 0.28 0.34 0.08 0.34 0.64
451-700 (13) 0.37 0.46 0.07 0.37 0.64
701-1000 (10) 0.49 0.55 0.03 0.43 0.79
>1000 (7) 0.14 0.21 0.08 0.17 0.51

Table 3: Algorithm’s performance by time series length. Each entry presents the mean f1 score for
the algorithm in that length range. Bold indicates the best model.

Figure 4 shows the representations learned by comparing DeepSVDD’s hypersphere strategy with
ChronoGAM. We observe the collapse of DeepSVDD mentioned in Section 2.1, where the model
maps all instances into the hypersphere since training only uses interest instances. We highlight the
useful representations learned by ChronoGAM for the one-class time series classification since we
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can discriminate the classes by learning from only one class. The representations of the figure were
generated from the test sets, i.e., from instances not used in the model’s training.
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Figure 4: Representations learned during training of the DeepSVDD and ChronoGAM methods in
three dimensions on the UWaveGestureLibraryAll dataset (interest class: 1). It is possible to observe
the collapse of DeepSVDD on the right, where instances of the class of interest (in blue) and those
of non-interest (in red) are mapped together close to the average of the representations.

Finally, it should be noted that our results showed that ChronoGAM outperforms other state-of-the-
art methods based on classic methods, such as IsolationForest, and based on deep learning, such as
DAGMM. Tests on 652 datasets generated by transforming the 85 UCR sets to one-class classifica-
tion problem sets showed that ChronoGAM has the best average ranking. The count of results and
an investigation of these counts’ distributions showed that ChronoGAM successfully avoided cases
where the other algorithms collapsed or presented instabilities. The average per theme shows that
with the exception of specific cases where the performance of IsolationForest can benefit from the
nature of the data, ChronoGAM loses in performance, but in 5 out of 7 themes, it outperforms the
other algorithms. We also show that, due to some concepts of the convolutions, such as the size of
the kernels, the model can be impacted by the size of the series. However, in the 6 range of analyzed
values, ChronoGAM surpasses its competitors in 5 of them.

6 CONCLUSION

In this paper, we have proposed the ChronoGAM method, a deep learning method that uses a Gaus-
sian Mixture Model (GMM) strategy with an autoencoder capable of capturing time dependency
on the data for time series one-class learning. The new objective function is capable of avoiding
numerical instabilities and also penalizing small values on the covariance matrix, which can cause
problems on the GMM, using Equation 4, so the model will avoid small Σ̂ values that will increase
the loss cost. We discuss some directions for future work and weaknesses: 1) Apply cross-dimension
dependency for multivariate time series since normal convolutions cannot be the best way to capture
the relation between time and structure in multivariate time series. 2) Use a Normalizing Flow to
learn the transformation of a complex data distribution on a Gaussian distribution, the GMM sup-
poses that the data are represented by a Gaussian distribution, which can cause poor performance for
some problems. 3) We discuss the weaknesses of other works, showing that for some other meth-
ods, we have problems of constant solutions; in future works, we leave the exciting research idea
of mapping the representation learned by the interest class of more flexible manners, i.e., learning
distributions or other subspaces that are not a hypersphere.
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A DETAIL OF EXPERIMETS

A.1 BENCHMARK DATASETS

As in Fawaz et al. (2019) we conduct the experiments on the following UCR benchmark datasets:

1) Adiac series have length of 176, 37 classes, and original train/test splits are 390/391. This dataset
is part of the Image theme datasets.
2) ArrowHead series have length of 251, 3 classes, and original train/test splits are 36/175. This
dataset is part of the Image theme datasets.
3) Beef series have length of 470, 5 classes, and original train/test splits are 30/30. This dataset is
part of the Spectro theme datasets.
4) BeetleFly series have length of 512, 2 classes, and original train/test splits are 20/20. This dataset
is part of the Image theme datasets.
5) BirdChicken series have length of 512, 2 classes, and original train/test splits are 20/20. This
dataset is part of the Image theme datasets.
6) Car series have length of 577, 4 classes, and original train/test splits are 60/60. This dataset is
part of the Sensor theme datasets.
7) CBF series have length of 128, 3 classes, and original train/test splits are 30/900. This dataset is
part of the Simulated theme datasets.
8) ChlorineConcentration series have length of 166, 3 classes, and original train/test splits are
467/3840. This dataset is part of the Sensor theme datasets.
9) CinCECGTorso series have length of 1639, 4 classes, and original train/test splits are 40/1380.
This dataset is part of the Sensor theme datasets.
10) Coffee series have length of 286, 2 classes, and original train/test splits are 28/28. This dataset
is part of the Spectro theme datasets.
11) Computers series have length of 720, 2 classes, and original train/test splits are 250/250. This
dataset is part of the Device theme datasets.
12) CricketX series have length of 300, 12 classes, and original train/test splits are 390/390. This
dataset is part of the Motion theme datasets.
13) CricketY series have length of 300, 12 classes, and original train/test splits are 390/390. This
dataset is part of the Motion theme datasets.
14) CricketZ series have length of 300, 12 classes, and original train/test splits are 390/390. This
dataset is part of the Motion theme datasets.
15) DiatomSizeReduction series have length of 345, 4 classes, and original train/test splits are
16/306. This dataset is part of the Image theme datasets.
16) DistalPhalanxOutlineAgeGroup series have length of 80, 3 classes, and original train/test
splits are 400/139. This dataset is part of the Image theme datasets.
17) DistalPhalanxOutlineCorrect series have length of 80, 2 classes, and original train/test splits
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are 600/276. This dataset is part of the Image theme datasets.
18) DistalPhalanxTW series have length of 80, 6 classes, and original train/test splits are 400/139.
This dataset is part of the Image theme datasets.
19) Earthquakes series have length of 512, 2 classes, and original train/test splits are 322/139.
This dataset is part of the Sensor theme datasets.
20) ECG200 series have length of 96, 2 classes, and original train/test splits are 100/100. This
dataset is part of the ECG theme datasets.
21) ECG5000 series have length of 140, 5 classes, and original train/test splits are 500/4500. This
dataset is part of the ECG theme datasets.
22) ECGFiveDays series have length of 136, 2 classes, and original train/test splits are 23/861.
This dataset is part of the ECG theme datasets.
23) ElectricDevices series have length of 96, 7 classes, and original train/test splits are 8926/7711.
This dataset is part of the Device theme datasets.
24) FaceAll series have length of 131, 14 classes, and original train/test splits are 560/1690. This
dataset is part of the Image theme datasets.
25) FaceFour series have length of 350, 4 classes, and original train/test splits are 24/88. This
dataset is part of the Image theme datasets.
26) FacesUCR series have length of 131, 14 classes, and original train/test splits are 200/2050.
This dataset is part of the Image theme datasets.
27) FiftyWords series have length of 270, 50 classes, and original train/test splits are 450/455. This
dataset is part of the Image theme datasets.
28) Fish series have length of 463, 7 classes, and original train/test splits are 175/175. This dataset
is part of the Image theme datasets.
29) FordA series have length of 500, 2 classes, and original train/test splits are 3601/1320. This
dataset is part of the Sensor theme datasets.
30) FordB series have length of 500, 2 classes, and original train/test splits are 3636/810. This
dataset is part of the Sensor theme datasets.
31) GunPoint series have length of 150, 2 classes, and original train/test splits are 50/150. This
dataset is part of the Motion theme datasets.
32) Ham series have length of 431, 2 classes, and original train/test splits are 109/105. This dataset
is part of the Spectro theme datasets.
33) HandOutlines series have length of 2709, 2 classes, and original train/test splits are 1000/370.
This dataset is part of the Image theme datasets.
34) Haptics series have length of 1092, 5 classes, and original train/test splits are 155/308. This
dataset is part of the Motion theme datasets.
35) Herring series have length of 512, 2 classes, and original train/test splits are 64/64. This dataset
is part of the Image theme datasets.
36) InlineSkate series have length of 1882, 7 classes, and original train/test splits are 100/550. This
dataset is part of the Motion theme datasets.
37) InsectWingbeatSound series have length of 256, 11 classes, and original train/test splits are
220/1980. This dataset is part of the Sensor theme datasets.
38) ItalyPowerDemand series have length of 24, 2 classes, and original train/test splits are
67/1029. This dataset is part of the Sensor theme datasets.
39) LargeKitchenAppliances series have length of 720, 3 classes, and original train/test splits are
375/375. This dataset is part of the Device theme datasets.
40) Lightning2 series have length of 637, 2 classes, and original train/test splits are 60/61. This
dataset is part of the Sensor theme datasets.
41) Lightning7 series have length of 319, 7 classes, and original train/test splits are 70/73. This
dataset is part of the Sensor theme datasets.
42) Mallat series have length of 1024, 8 classes, and original train/test splits are 55/2345. This
dataset is part of the Simulated theme datasets.
43) Meat series have length of 448, 3 classes, and original train/test splits are 60/60. This dataset is
part of the Spectro theme datasets.
44) MedicalImages series have length of 99, 10 classes, and original train/test splits are 381/760.
This dataset is part of the Image theme datasets.
45) MiddlePhalanxOutlineAgeGroup series have length of 80, 3 classes, and original train/test
splits are 400/154. This dataset is part of the Image theme datasets.
46) MiddlePhalanxOutlineCorrect series have length of 80, 2 classes, and original train/test splits
are 600/291. This dataset is part of the Image theme datasets.
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47) MiddlePhalanxTW series have length of 80, 6 classes, and original train/test splits are 399/154.
This dataset is part of the Image theme datasets.
48) MoteStrain series have length of 84, 2 classes, and original train/test splits are 20/1252. This
dataset is part of the Sensor theme datasets.
49) NonInvasiveFetalECGThorax1 series have length of 750, 42 classes, and original train/test
splits are 1800/1965. This dataset is part of the ECG theme datasets.
50) NonInvasiveFetalECGThorax2 series have length of 750, 42 classes, and original train/test
splits are 1800/1965. This dataset is part of the ECG theme datasets.
51) OliveOil series have length of 570, 4 classes, and original train/test splits are 30/30. This
dataset is part of the Spectro theme datasets.
52) OSULeaf series have length of 427, 6 classes, and original train/test splits are 200/242. This
dataset is part of the Image theme datasets.
53) PhalangesOutlinesCorrect series have length of 80, 2 classes, and original train/test splits are
1800/858. This dataset is part of the Image theme datasets.
54) Phoneme series have length of 1024, 39 classes, and original train/test splits are 214/1896. This
dataset is part of the Sensor theme datasets.
55) Plane series have length of 144, 7 classes, and original train/test splits are 105/105. This dataset
is part of the Sensor theme datasets.
56) ProximalPhalanxOutlineAgeGroup series have length of 80, 3 classes, and original train/test
splits are 400/205. This dataset is part of the Image theme datasets.
57) ProximalPhalanxOutlineCorrect series have length of 80, 2 classes, and original train/test
splits are 600/291. This dataset is part of the Image theme datasets.
58) ProximalPhalanxTW series have length of 80, 6 classes, and original train/test splits are
400/205. This dataset is part of the Image theme datasets.
59) RefrigerationDevices series have length of 720, 3 classes, and original train/test splits are
375/375. This dataset is part of the Device theme datasets.
60) ScreenType series have length of 720, 3 classes, and original train/test splits are 375/375. This
dataset is part of the Device theme datasets.
61) ShapeletSim series have length of 500, 2 classes, and original train/test splits are 20/180. This
dataset is part of the Simulated theme datasets.
62) ShapesAll series have length of 512, 60 classes, and original train/test splits are 600/600. This
dataset is part of the Image theme datasets.
63) SmallKitchenAppliances series have length of 720, 3 classes, and original train/test splits are
375/375. This dataset is part of the Device theme datasets.
64) SonyAIBORobotSurface1 series have length of 70, 2 classes, and original train/test splits are
20/601. This dataset is part of the Sensor theme datasets.
65) SonyAIBORobotSurface2 series have length of 65, 2 classes, and original train/test splits are
27/953. This dataset is part of the Sensor theme datasets.
66) StarLightCurves series have length of 1024, 3 classes, and original train/test splits are
1000/8236. This dataset is part of the Sensor theme datasets.
67) Strawberry series have length of 235, 2 classes, and original train/test splits are 613/370. This
dataset is part of the Spectro theme datasets.
68) SwedishLeaf series have length of 128, 15 classes, and original train/test splits are 500/625.
This dataset is part of the Image theme datasets.
69) Symbols series have length of 398, 6 classes, and original train/test splits are 25/995. This
dataset is part of the Image theme datasets.
70) SyntheticControl series have length of 60, 6 classes, and original train/test splits are 300/300.
This dataset is part of the Simulated theme datasets.
71) ToeSegmentation1 series have length of 277, 2 classes, and original train/test splits are 40/228.
This dataset is part of the Motion theme datasets.
72) ToeSegmentation2 series have length of 343, 2 classes, and original train/test splits are 36/130.
This dataset is part of the Motion theme datasets.
73) Trace series have length of 275, 4 classes, and original train/test splits are 100/100. This dataset
is part of the Sensor theme datasets.
74) TwoLeadECG series have length of 82, 2 classes, and original train/test splits are 23/1139.
This dataset is part of the ECG theme datasets.
75) TwoPatterns series have length of 128, 4 classes, and original train/test splits are 1000/4000.
This dataset is part of the Simulated theme datasets.
76) UWaveGestureLibraryAll series have length of 945, 8 classes, and original train/test splits are
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896/3582. This dataset is part of the Motion theme datasets.
77) UWaveGestureLibraryX series have length of 315, 8 classes, and original train/test splits are
896/3582. This dataset is part of the Motion theme datasets.
78) UWaveGestureLibraryY series have length of 315, 8 classes, and original train/test splits are
896/3582. This dataset is part of the Motion theme datasets.
79) UWaveGestureLibraryZ series have length of 315, 8 classes, and original train/test splits are
896/3582. This dataset is part of the Motion theme datasets.
80) Wafer series have length of 152, 2 classes, and original train/test splits are 1000/6164. This
dataset is part of the Sensor theme datasets.
81) Wine series have length of 234, 2 classes, and original train/test splits are 57/54. This dataset is
part of the Spectro theme datasets.
82) WordSynonyms series have length of 270, 25 classes, and original train/test splits are 267/638.
This dataset is part of the Image theme datasets.
83) Worms series have length of 900, 5 classes, and original train/test splits are 181/77. This
dataset is part of the Motion theme datasets.
84) WormsTwoClass series have length of 900, 2 classes, and original train/test splits are 181/77.
This dataset is part of the Motion theme datasets.
85) Yoga series have length of 426, 2 classes, and original train/test splits are 300/3000. This
dataset is part of the Image theme datasets.

A.2 MODEL HYPERPARAMETERS

For each of the baselines, the following hyperparameters were used:

1) OCSVM: kernel={linear, poly, rbf}, degree={2, 3}, γ={scale, auto}, ν={0.5, 0.6, 0.7, 0.8, 0.9,
1.}.
2) IsolationForest: n estimators={100, 200, 300}, max samples=auto, contamination=auto,
max features=1.
3) DeepSVDD: epoch=350, lr={10−3, 10−4, 10−5, 10−6}, weight decay={10−5, 10−6}, opti-
mizer=Adam, activation=LeakyReLU, filters=(128, 256, 128, 32), kernels=(7, 5, 3), representa-
tion dim={16, 32, 64} (The inverse filters and kernels are used in the decoder module).
4) DAGMM: epoch=350, lr={10−3, 10−4, 10−5, 10−6}, lr epochs step=(200, 215, 230),
lr decay={0, 0.1} optimizer=Adam, activation=Tanh, features=(120, 60, 30), representa-
tion dim={2, 3}, estimation features=({2, 3}, 10), dropout=0.3, 0.4, 0.5 (The inverse features are
used in the decoder module).
5) ChronoGAM: epoch=350, lr={10−3, 10−4, 10−5, 10−6}, lr epochs step=(200, 215, 230),
lr decay={0, 0.1} optimizer=Adam, activation={LeakyReLU, Tanh, Snake}, filters=(16, 32, 64),
kernels=(7, 5, 3), representation dim={2, 3}, estimation features=({2, 3}, 32), dropout=0.3, 0.4,
0.5 (The inverse filters and kernels are used in the decoder module).

All models and baselines are implemented in PyTorch and trained on a single NVIDIA RTX 3060
Ti with 16GB memory.

B EXTRA RESULTS

B.1 SHOWCASE OF MAIN RESULTS

Figure 5 shows some more representations generated from datasets used in this work. Each row
represents a data set while each column represents a model. It is possible to observe that in all
cases for the representations generated with DeepSVDD the fact mentioned in Section 2.1 occurs,
where the model finds a constant solution for all instances of the set, mapping all in a hyper-sphere
format when trying to encompass them. For the FordA set, considering the class of interest as label
1, DAGMM found instabilities such as those mentioned previously. In this way, the model maps
all instances as values close to infinity, generating the visualization of a single point due to the
non-numeric values caused by the explosion of the gradients.

It is evident that there is a distinction between the representations produced by ChronoGAM and
those generated by DAGMM. Upon inspection, it is easier to differentiate the instances of the in-
terest class. ChronoGAM representations are better at capturing temporal relationships in data,
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allowing for the separation of instances based on their patterns over time, and may be beneficial for
other tasks, which is also an advantage over IsolationForest. However, there are cases where a more
precise adjustment is needed, such as in the FordA set, which was purposely brought to the grid to
demonstrate that even when avoiding cases of numerical instability, some sets still have particular-
ities that must be addressed, whether by adjusting filters and kernels or by using different metrics
instead of cosine similarity to generate the final representations of the data.
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Figure 5: Representations learned through DeepSVDD, DAGMM and ChronoGAM. The sets used
were UWaveGestureLibraryAll (interest class: 1), FordA (interest class: 1) and ECG5000 (interest
class: 3). All representations generated were on test set instances never before seen by the methods.
Interest instances are in blue and non-interest in red.
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