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Abstract
We design new differentially private algorithms
for the problems of adversarial bandits and
bandits with expert advice. For adversarial
bandits, we give a simple and efficient conversion
of any non-private bandit algorithm to a private
bandit algorithm. Instantiating our conversion
with existing non-private bandit algorithms
gives a regret upper bound of O

(√
KT√
ε

)
,

improving upon the existing upper bound

O

(√
KT log(KT )

ε

)
for all ε ≤ 1. In particular,

our algorithms allow for sublinear expected
regret even when ε ≤ 1√

T
, establishing the

first known separation between central and
local differential privacy for this problem. For
bandits with expert advice, we give the first
differentially private algorithms, with expected

regret O
(√

NT√
ε

)
, O

(√
KT log(N) log(KT )

ε

)
,

and Õ
(

N1/6K1/2T 2/3 log(NT )
ε1/3

+ N1/2 log(NT )
ε

)
,

where K and N are the number of actions and
experts respectively. These rates allow us to get
sublinear regret for different combinations of
small and large K,N and ε.

1. Introduction
In the adversarial bandit problem, a learner plays a se-
quential game against nature over T ∈ N rounds. In
each round t ∈ {1, . . . , T}, nature picks a loss function
ℓt : [K]→ [0, 1], hidden to the learner. The learner, using
the history of the game up to time point t− 1, selects a po-
tentially random action It ∈ {1, . . . ,K} and nature reveals
only the loss ℓt(It) of the selected action. For any sequence
of loss functions ℓ1, . . . , ℓT , the goal of the learner is to se-
lect a sequence of actions I1, . . . , IT , while only observing
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the loss of selected actions, such that its expected regret

E

[
T∑

t=1

ℓt(It)

]
− argmin

i∈[K]

T∑
t=1

ℓt(i)

is minimized, where the expectation is taken with respect to
the randomness of the learner.

Bandit algorithms, and in particular adversarial bandit algo-
rithms (Auer et al., 2002), have been of significant interest
for over two decades (Bubeck et al., 2012) due to their
applications to online advertising, medical trials, and recom-
mendation systems. In many of these settings, one would
like to publish the actions selected by bandit algorithms
without leaking sensitive user information. For example,
when predicting treatment options for patients with the goal
of maximizing the number of cured patients, one may want
to publish results about the best treatment without leaking
sensitive patient medical history (Lu et al., 2021). In online
advertising, a goal is to publish the recommended ads with-
out leaking user preferences. In light of such privacy con-
cerns, we study adversarial bandits under the constraint of
differential privacy (Dwork, 2006). Surprisingly, unlike the
stochastic setting (Azize & Basu, 2022), the price of privacy
in adversarial bandits is not well understood. Existing work
by Agarwal & Singh (2017) and Tossou & Dimitrakakis
(2017) give ε-differentially private bandit algorithms with

expected regret at most O
(√

KT log(K)

ε

)
1. However, their

algorithms satisfy the stronger notion of local differential
privacy and become vacuous for tasks with high privacy
requirements, where one might take ε < 1√

T
. In fact, it

was not known how large ε needs to be in order to obtain
sublinear expected worst-case regret.

Main Contributions. Motivated by this gap, we provide
new, differentially private algorithms for adversarial ban-
dits and bandits with expert advice with better trade-offs
between privacy and regret. In the adversarial bandits set-
ting, we provide a simple and efficient conversion of any
non-private bandit algorithm into a private bandit algorithm.
By instantiating this conversion with existing (non-private)

1Tossou & Dimitrakakis (2017) also claim to give an algorithm

with regret Õ
(

T2/3
√

K ln(K)

ε1/3

)
, however, we are unable to verify

its correctness. See Appendix G.1.
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bandit algorithms, we get ε-differentially private bandit algo-
rithms with expected regret at most O

(√
KT√
ε

)
, improving

upon the best known upper bounds for all ε ≤ 1. In particu-
lar, this result shows that sublinear regret is possible for any
ε ∈ ω

(
1
T

)
. As corollaries, we establish separations in the

achievable regret bounds between:

(1) Oblivious and Adaptive adversaries. In particular,
while we show that sublinear regret is possible for all
choices of ε ∈ ω( 1

T ) under an oblivious adversary,
this is not the case for an adaptive adversary, where
one cannot achieve sublinear regret if ε ∈ o( 1√

T
) (Asi

et al., 2023).

(2) Central and Local differential privacy. While our re-
sults show that sublinear regret is possible if ε ∈ o( 1√

T
)

under central differential privacy, it is well known that
this is not the case for local differential privacy.

For bandits with expert advice (Auer et al., 2002),
we give the first differentially private algorithms. In
particular, we give three different (ε, δ)-differentially
private bandit algorithms, obtaining expected re-

gret O
(√

NT√
ε

)
, O

(√
KT log(N) log(KT )

ε

)
, and

Õ
(

N1/6K1/2T 2/3 log(NT )
ε1/3

+ N1/2 log(NT )
ε

)
respectively.

These regret guarantees cover regimes with high-privacy
requirements and regimes with a large number of experts
N . In both settings, our techniques involve combining the
Laplace mechanism with batched losses.

1.1. Related Works

Adversarial Bandits and Bandits with Expert Advice.
We refer the reader to the excellent book by Bubeck et al.
(2012) for a history of stochastic and adversarial bandits.
The study of the adversarial bandit problem dates back
at least to the seminal work of Auer et al. (2002), who
show that a modification to the Multiplicative Weights Algo-
rithm, known as EXP3, achieves worst-case expected regret
O
(√

TK log(K)
)

. Following this work, there has been an
explosion of interest in designing better adversarial bandit
algorithms, including, amongst others, the work by Audibert
& Bubeck (2009), who establish that the minimax regret for
adversarial bandits is Θ

(√
TK

)
. More recently, there has

been interest in unifying existing adversarial bandit algo-
rithms through the lens of Follow-the-Regularized Leader
(FTRL) and Follow-the-Perturbed-Leader (FTPL) (Aber-
nethy et al., 2015). Surprisingly, while it was known since
the work of Audibert & Bubeck (2009) that an FTRL-based
approach can lead to minimax optimal regret bounds, it was
only recently shown that this is also the case for FTPL-based
bandit algorithms (Honda et al., 2023).

The first works for bandits with expert advice also date back
at least to that of Auer et al. (2002), who propose EXP4 and
bound its expected regret by O

(√
TK log(N)

)
, where N

is the number of experts. When N ≥ K, Seldin & Lugosi
(2016) prove a lower bound of Ω

(√
K

log(K)T log(N)
)

on
the expected regret, showing that EXP4 is already near opti-
mal. As a result, EXP4 has become an important building
block for related problems, like online multiclass classifica-
tion (Daniely & Helbertal, 2013; Raman et al., 2024) and
sleeping bandits (Kleinberg et al., 2010), among others.

Private Online Learning. Dwork et al. (2010a) initiated
the study of differentially private online learning. Jain et al.
(2012) extend these results to broad setting of online convex
programming by using gradient-based algorithms to achieve
differential privacy. Following this work, Guha Thakurta &
Smith (2013) privatize the Follow-the-Approximate-Leader
template to obtain sharper guarantees for online convex
optimization. In the special case of learning with expert ad-
vice, Dwork et al. (2014) and Jain & Thakurta (2014) give
private online learning algorithms with regret bounds of

O

(√
T log(N)

ε

)
. More recently, Agarwal & Singh (2017)

design private algorithms for online linear optimization
with regret bounds that scale like O(

√
T ) + O( 1ε ). In

particular, for the setting of learning with expert advice,
they show that it is possible to obtain a regret bound
that scales like O

(√
T log(N) + N log(N) log2 T

ε

)
, improv-

ing upon the work by Dwork et al. (2014) and (Jain &
Thakurta, 2014). For large N , this upper bound was
further improved to O

(√
T log(N) + T 1/3 log(N)

ε

)
and

O
(√

T log(N) + T 1/3 log(N)
ε2/3

)
by Asi et al. (2023) and Asi

et al. (2024) respectively in the oblivious setting.

Private Bandits. The majority of existing work on differen-
tially private bandits focus on the stochastic setting (Mishra
& Thakurta, 2015; Tossou & Dimitrakakis, 2016; Sajed &
Sheffet, 2019; Hu et al., 2021; Azize & Basu, 2022), linear
contextual bandits (Shariff & Sheffet, 2018; Neel & Roth,
2018), or adjacent notions of differential privacy (Zheng
et al., 2020; Tenenbaum et al., 2021; Ren et al., 2020). To
our knowledge, there are only three existing works that
study differentially private adversarial bandits. The first
is by Guha Thakurta & Smith (2013) who give an (ε, δ)-
differentially private bandit algorithm with expected regret
O
(

KT 3/4

ε

)
. Finally, and in parallel, Agarwal & Singh

(2017) and Tossou & Dimitrakakis (2017) improve the up-

per bound to O

(√
KT log(K)

ε

)
. We note that the private

algorithms given by Agarwal & Singh (2017) and Tossou
& Dimitrakakis (2017) satisfy the even stronger notion of
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Table 1. Summary of upper bounds with constant factors and dependencies on log 1
δ

suppressed. The three rows for Bandits with Experts
represent different algorithms with incomparable guarantees.

Existing Work Our Work

Adversarial Bandits
√

KT log(KT )

ε

√
KT√
ε

Bandits with Experts NA
√
NT√
ε

Bandits with Experts NA
√

KT log(N) log(KT )

ε

Bandits with Experts NA N1/6K1/2T 2/3 log(NT )
ε1/3

+ N1/2 log(NT )
ε

local differential privacy (Duchi et al., 2013).

2. Preliminaries
2.1. Notation

Let K ∈ N denote the number of actions and ℓ : [K] 7→
[0, 1] denote an arbitrary loss function that maps an action
to a bounded loss. For an abstract sequence z1, . . . , zn, we
abbreviate it as z1:n and (zs)

n
s=1 interchangeably. For a

measurable space (X , σ(X )), we let Π(X ) denote the set
of all probability measures on X . We let Lap(λ) denote the
Laplace distribution with mean zero and scale λ such that
its probability density function is fλ(x) = 1

2λ exp
(

−|x|
λ

)
.

Finally, we let [N ] := {1, . . . , N} for N ∈ N.

2.2. The Adversarial Bandit Problem

In the adversarial bandit problem, a learner plays a sequen-
tial game against nature over T ∈ N rounds. In each round
t ∈ [T ], the learner selects (potentially randomly) an action
It ∈ [K] and observes only its loss ℓt(It). The goal of
the learner is to adaptively select actions I1, . . . , IT ∈ [K]
such that its cumulative loss is close to the best possible
cumulative loss of the best fixed action i⋆ ∈ [K] in hind-
sight. Crucially, we place no assumptions on the sequence
of losses ℓ1, . . . , ℓT , and thus they may be chosen adversar-
ially.

Before we quantify the performance metric of interest, we
provide a formal definition of a bandit online learning algo-
rithm. This definition will be useful for precisely formaliz-
ing the notion of privacy (Section 2.4) and describing our
generic transformation of non-private bandit algorithms to
private ones (Section 3).

Definition 2.1 (Bandit Algorithm). A bandit algorithm is
a deterministic map A : ([K] × R)⋆ → Π([K]) which,
for every t ∈ N, maps a history of actions and observed
losses (Is, ℓs(Is))

t−1
s=1 ∈ ([K] × R)t−1 to a distribution

µt ∈ Π([K]). The learner then samples an action It ∼ µt.

We will slightly abuse notation by using A((Is, ℓs(Is))t−1
s=1)

to denote the random action It drawn from µt, the distribu-

tion thatA outputs when run on (Is, ℓs(Is))
t−1
s=1. In addition,

we will sometimes useHt := (Is, ℓs(Is))
t−1
s=1 to denote the

history of selected actions and observed losses induced by
running A up to, but not including, timepoint t ∈ N. Note
that Ht is a random variable and we may write the action
selected by algorithm A on round t ∈ N as A(Ht). It will
also be helpful to think aboutHt as the View ofA as a result
of its interaction with the adversary up to, but not including,
timepoint t.

Given a bandit online learner A, we define its worst-case
expected regret as

RA(T,K) = sup
ℓ1:T

(
E

[
T∑

t=1

ℓt(A(Ht))

]
− inf

i∈[K]

T∑
t=1

ℓt(i)

)
,

where the expectation is taken only with respect to the ran-
domness of the learner. Our goal is to design a bandit
algorithm A such that RA(T,K) = o(T ). Note that our
definition of regret means that we are assuming an oblivi-
ous adversary, one that selects the entire sequence of losses
ℓ1, . . . , ℓT before the game begins. This assumption is in
contrast to that of an adaptive adversary which, for every
t ∈ N, may select the loss ℓt based onHt. We leave quanti-
fying the rates for private adversarial bandits under adaptive
adversaries for future work. That said, we do note that the
lower bounds for adaptive adversaries established in full-
information setting by Asi et al. (2023) also carry over to
the bandit feedback setting. Accordingly, Corollary 3.2 and
Theorems 4 and 5 in Asi et al. (2023) show that the strong
separation in the possible rates for oblivious and adaptive
adversaries also holds under bandit feedback.

2.3. The Bandits with Expert Advice Problem

In adversarial bandits with expert advice (Auer et al., 2002),
we distinguish between a set of experts [N ] and the set of
available actions [K]. In each round t ∈ [T ], each expert
j ∈ [N ] predicts a distribution µj

t ∈ Π([K]). The learner
uses these predictions to compute its own distribution µ̂t ∈
Π([K]), after which it samples It ∼ µ̂t and observes the
loss ℓt(It). The goal of the learner is to compete against
the best fixed expert in hindsight while observing bandit
feedback. We need a new definition of a bandit with expert
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advice algorithm to account for the fact that the learner has
access to expert advice.

Definition 2.2 (Bandits with Expert Advice Algorithm). A
bandit with expert advice algorithm is a deterministic map
A : ([K]×R)⋆× (Π([K])N )⋆ → Π([K]) which, for every
t ∈ N, maps the history of actions and observed losses
(Is, ℓs(Is))

t−1
s=1 ∈ ([K] × R)t−1 as well the sequence of

expert advice µ1:N
1:t ∈ ((Π([K])N )t to a distribution µ̂t ∈

Π([K]). The learner then samples an action action It ∼ µ̂t.

One can now take an analogous definition of worst-case
expected regret to be

RA(T,K,N) := sup
ℓ1:T

sup
µ1:N
1:T

(
E

[
T∑

t=1

ℓt(A(Ht, µ
1:N
1:t ))

]

− inf
j∈[N ]

T∑
t=1

K∑
i=1

µi
t(j) · ℓt(i)

)

where the expectation is taken only with respect to the ran-
domness of the learner. As for adversarial bandits, our
definition of minimax regret for bandits with experts advice
implicitly assumes an oblivious adversary.

2.4. Differential Privacy

In this work, we are interested in designing bandit algo-
rithms that have low expected regret while satisfying the
constraint of differential privacy. Roughly speaking, differ-
ential privacy quantifies the following algorithmic property:
an algorithm A is a private bandit algorithm if, for any
two sequences of losses that differ in exactly one position,
the distributions over actions induced by running A on the
two loss sequences are close. Definition 2.3 formalizes this
notion of privacy in adversarial bandits.

Definition 2.3 ((ε, δ)-Differential Privacy in Adversarial
Bandits (Dwork et al., 2014)). A bandit algorithm A is
(ε, δ)-differentially private if for every T ∈ N, any two
sequences of loss functions ℓ1:T and ℓ′1:T differing at ex-
actly one time point t′ ∈ [T ], and any E ⊂ [K]T ,
we have that P [(A(H1),A(H2), . . . ,A(HT )) ∈ E] ≤
eεP [(A(H′

1),A(H′
2), . . . ,A(H′

T )) ∈ E]+ δ, where we let
Ht = (Is, ℓs(Is))

t−1
s=1 andH′

t = (I ′s, ℓ
′
s(Is))

t−1
s=1.

We note that the our notion of differential privacy in Defini-
tion 2.3 is inherently for an oblivious adversary. A different
definition of privacy is required if the adversary is allowed
to be adaptive i.e., having the ability to pick the loss ℓt using
the realized actions I1, . . . , It−1 played by the learner (see
Definition 2.1 in Asi et al. (2023) for more details). While
the utility guarantees of our bandit algorithms hold only for
oblivious adversaries, their privacy guarantees hold against
adaptive adversaries.

We use an analogous definition of differential privacy for
bandits with expert advice.
Definition 2.4 ((ε, δ)-Differential Privacy in Bandits
with Expert Advice (Dwork et al., 2014)). A bandit
with expert advice algorithm A is (ε, δ)-differentially
private if for every T ∈ N, any two sequences
of loss functions ℓ1:T and ℓ′1:T differing at exactly
one time point t′ ∈ [T ], and any E ⊂ [K]T ,
we have that P [(A(H1),A(H2), . . . ,A(HT )) ∈ E] ≤
eεP [(A(H′

1),A(H′
2), . . . ,A(H′

T )) ∈ E]+ δ, where we let
Ht = (Is, ℓs(Is))

t−1
s=1 andH′

t = (I ′s, ℓ
′
s(Is))

t−1
s=1.

Note that Definition 2.4 implicitly assumes that only the
sequence of losses is sensitive information and that expert
predictions are public.

Our main focus in this work will be on designing bandit
algorithms that satisfy pure differential privacy (i.e. when
δ = 0). In Appendix A, we review several fundamental
properties of privacy and privacy-preserving mechanisms
that serve as important building blocks.

3. Faster Rates for Private Adversarial Bandits
In this section, we establish a connection between non-
private bandit algorithms that can handle negative losses
and ε-differentially private bandit algorithms. Let B be any
bandit algorithm and define

R̃B(T,K, λ) := sup
ℓ1:T

(
E

[
T∑

t=1

ℓ̃t(B(H̃t))

]
− inf

i∈[K]
E

[
T∑

t=1

ℓ̃t(i)

])

= sup
ℓ1:T

(
E

[
T∑

t=1

ℓt(B(H̃t))

]
− inf

i∈[K]

T∑
t=1

ℓt(i)

)
,

where ℓ̃t(i) = ℓt(i) + Zt(i) with Zt(i) ∼ Lap(λ), H̃t =
(Is, ℓ̃s(Is))

t−1
s=1, and the expectation is taken with respect to

both the randomness of B and the losses ℓ̃1:T . Theorem 3.1
states that one can always convert B into an ε-differentially
private bandit algorithm A whose regret guarantees can be
written in terms of R̃B(T,K, λ).
Theorem 3.1 (Generic Conversion). Let B be any bandit
algorithm. Then, for every τ ≥ 1 and ε ≤ 1, there exists an
ε-differentially private bandit algorithm Aτ such that

RAτ
(T,K) ≤ τ R̃B

(
T

τ
,K,

1

ετ

)
+ τ.

In particular, picking τ = ⌈ 1ε⌉ means that there exists a
ε-differentially private bandit algorithm A such that

RA(T,K) ≤ 2

ε
R̃B (εT,K, 1) +

2

ε
.

As a corollary of Theorem 3.1, we establish new upper
bounds on the expected regret under the constraint of ε-
differential privacy that improves on existing work in all
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regimes of ε > 0. In particular, Corollary 3.2 follows by
letting B be the HTINF algorithm from Huang et al. (2022),
which modifies Follow-the-Regularized-Leader (FTRL) for
heavy-tailed losses.

Corollary 3.2 (FTRL Conversion). For every ε ∈ [ 1T , 1],
if B is HTINF with α = 2 and σ =

√
6, then Algorithm 1,

when run with B and τ = ⌈ 1ε⌉, is ε-differentially private
and suffers worse-case expected regret at most

O

(√
TK√
ε

+
1

ε

)
.

In Appendix E, we instantiate Theorem 3.1 with EXP3 and
FTPL to obtain two other upper bounds. In every case, our
upper bounds establish the first known separation in rates
between central differential privacy and local differential
privacy (see Appendix A for definition) for this problem.
Namely, while the lower bounds from Basu et al. (2019)
show that any local ε-differentially private bandit algorithm
must suffer linear Ω(T ) expected regret when ε < 1√

T
,

Corollary 3.2 gives an algorithm satisfying ε-central differ-
ential privacy (i.e. Definition 2.3) whose expected regret is
sublinear o(T ) even when ε < 1√

T
. The remainder of this

section is dedicated to proving Theorem 3.1. Corollary 3.2
is proven in Appendix D.

3.1. Proof of Theorem 3.1

The conversion behind Theorem 3.1 is remarkably simple.
At a high-level, it requires simulating the non-private ban-
dit algorithm on noisy batched losses. That is, instead of
passing every loss to the non-private bandit algorithm, we
play the same arm for a batch size τ , average the loss across
this batch, add independent Laplace noise to the batched
loss, and then pass this noisy batched loss to the non-private
bandit algorithm. By adding Laplace noise to batched losses
as opposed to the original losses (as is done by Tossou &
Dimitrakakis (2017) and Agarwal & Singh (2017)), the mag-
nitude of the required noise is reduced by a multiplicative
factor of the batch size.

However, a key issue that needs to be handled when adding
noise (whether to batched or un-batched losses) is the fact
that the losses fed to the non-private bandit algorithm can
now be negative and unbounded. Accordingly, in order to
get any meaningful utility guarantees, Theorem 3.1 effec-
tively requires our non-private bandit algorithm to handle
unbounded, negative (but still unbiased) losses. Fortunately,
there are several existing adversarial bandit algorithms that
can achieve low expected regret while observing negative
losses. Three of these are presented in Corollary 3.2, E.1,
and E.3. To the best of our knowledge, this is the first work
to establish a connection between handling negative losses
(for example in works that handle heavy-tailed losses) and

Algorithm 1 Non-Private to Private Conversion
1: Input: Non-private bandit algorithm B, batch size τ ,

privacy parameter ε ∈ (0, 1]
2: Initialize: j = 1
3: for t = 1, . . . , T do
4: if t = (j − 1)τ + 1 then
5: Receive action Ij from B.
6: end if
7: Play action It := Ij
8: Observe loss ℓt(It).
9: if t = jτ then

10: Define ℓ̂j(i) :=
1
τ

∑jτ
s=(j−1)τ+1 ℓs(i)

11: Pass ℓ̂j(Ij) + Zj to B, where Zj ∼ Lap( 1
τε ).

12: Update j ← j + 1.
13: end if
14: end for

(non-local) differential privacy.

Algorithm 1 provides the pseudo code for converting a non-
private bandit algorithm to a private bandit algorithm.

Lemma 3.3 (Privacy guarantee). For every bandit algo-
rithm B, batch size τ ≥ 1, and ε ≤ 1, Algorithm 1 is
ε-differentially private.

Proof. (sketch of Lemma 3.3) Observe that Algorithm 1
applies the bandit algorithm B on the losses ℓ̂1, . . . , ℓ̂⌊T

τ ⌋
in a black box fashion. Accordingly, the privacy guaran-
tee of Algorithm 1 follows from the privacy guarantee of
ℓ̂1(I1), . . . , ℓ̂⌊T

τ ⌋(I⌊T
τ ⌋) and post-processing. The privacy

of each ℓ̂j(Ij) follows from the Laplace mechanism. ■

A rigorous proof of Lemma 3.3 is in Appendix C.

Lemma 3.4 (Utility guarantee). For every bandit algorithm
B, batch size τ ≥ 1, and ε ≤ 1, the worst-case expected
regret of Algorithm 1 is at most τ R̃B(

T
τ ,K, 1

ετ ) + τ .

The proof of Lemma 3.4 follows from the following result
by Arora et al. (2012).

Theorem 3.5 (Theorem 2 in (Arora et al., 2012)). Let B be
any bandit algorithm. Let τ ≥ 1 be a batch size and let Aτ

be the batched version of B. That is, the bandit algorithm
Aτ groups the rounds 1, . . . , T into consecutive and disjoint
batches of size τ such that the j’th batch begins on round
(j − 1)τ + 1 and ends on round jτ . At the start of each
batch j the algorithm Aτ calls B and receives an action
Ij drawn from B’s internal distribution. Then, Aτ plays
this action for τ rounds. At the end of the batch, Aτ feeds
B with the average loss value 1

τ

∑jτ
s=(j−1)τ+1 ℓs(Ij). For

such an algorithm Aτ , its worst-case expected regret is at
most τ RB

(
T
τ ,K

)
+ τ.
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Note that Algorithm 1 is precisely the batched version of
its input B. Accordingly, Theorem 3.5 immediately implies
that on any sequence ℓ1:T , the expected regret of Algorithm
1 is at most τ R̃B(

T
τ ,K, 1

ετ ) + τ . We provide a complete
proof of Lemma 3.4 in Appendix C.

4. Upper bounds for Bandits with Expert
Advice

Theorem 3.1 also allows us to give guarantees for bandits
with expert advice. To do so, we need Theorem 4.1, due to
Auer et al. (2002), which shows that any bandit algorithm
can be converted into a bandit with expert advice algorithm
in a black-box fashion. For completeness, we provide this
conversion and the proof of Theorem 4.1 in Appendix F.

Theorem 4.1 (Bandit to Bandit with Expert Advice). Let
B be any bandit algorithm and RB(T,K) denote its worst-
case expected regret. Then, the worst-case expected regret
of Algorithm 5 when initialized with B is at most RB(T,N).

By treating each expert as a meta-action, Theorem 3.1 and
Theorem 4.1 can be used to convert a non-private bandit
algorithm B into a private bandit with expert advice algo-
rithm A in the following way: given a non-private bandit
algorithm B, use Theorem 3.1 to convert it into a private
bandit algorithm B′. Then, use Theorem 4.1 to convert
B′ into a private bandit with expert advice algorithm A.
By post-processing, the corresponding actions played by
A are also private. In fact, this conversion also satisfies a
stronger notion of privacy where the expert advice is also
taken to be sensitive information. Theorem 4.2 formalizes
this conversion.

Theorem 4.2 (Generic Conversion). Let B be any bandit
algorithm. Then, for every τ ≥ 1 and ε ≤ 1, there exists an
ε-differentially private bandit with expert advice algorithm
Aτ such that

RAτ
(T,K,N) ≤ τ R̃B

(
T

τ
,N,

1

ετ

)
+ τ.

In particular, by setting τ = ⌈ 1ε⌉, there exists an ε-
differentially private bandit with expert advice algorithm A
such that

RA(T,K,N) ≤ 2

ε
R̃B (εT,N, 1) +

2

ε
.

The proof of Theorem 4.2 is deferred to Appendix F since it
closely follows that of Theorem 3.1. Using HTINF for B in
Theorem 4.2 gives the following corollary.

Corollary 4.3 (FTRL Conversion). For every ε ∈ [ 1T , 1],
if B is HTINF with α = 2 and σ =

√
6, then Theorem

4.2 guarantees the existence of an ε-differentially private

algorithm whose worst-case expected regret at most

O

(√
TN√
ε

+
1

ε

)
.

The upper bound in Corollary 4.3 is non-vacuous for con-
stant or small N (i.e. N ≤ K). However, this bound is vac-
uous when N grows with T . To address this, we consider
EXP4 which enjoys expected regret O

(√
KT log(N)

)
in

the non-private setting, exhibiting only a poly-logarithmic
dependence on N (Auer et al., 2002). The following the-
orem shows that by adding independent Laplace noise to
each observed loss, a similar improvement over Corollary
4.3 can be established for large N , at the cost of a worse
dependence on ε.

Theorem 4.4 (Locally Private EXP4). For every ε ≤ 1,

Algorithm 6 when run with η =
√

log(N)

3TK
(
1+

10 log2(KT )

ε2

)
and γ = 4ηK log(KT )

ε is ε-differentially private and suffers
worst-case expected regret at most

O

(√
TK log(N) log(KT )

ε

)
.

Due to space constraints, we defer Algorithm 6, which just
adds independent Laplace noise to each observed loss, to
Appendix F. Note that when N ≤ K, the upper bound in
Corollary 4.3 is still superior to that of Theorem 4.4 for all
ranges of ε ≤ 1. The proof of Theorem 4.4 is also deferred
to Appendix F.

Algorithm 6 provides a stronger privacy guarantee than
what is actually necessary. Indeed, by adding independent
Laplace noise to each observed loss, Algorithm 6 actually
satisfies ε-local differential privacy (see Appendix A for
definition). Accordingly, in contrast to Corollary 3.2, the
upper bound in Theorem 4.4 is vacuous for ε ≤ 1√

T
. The

following algorithm uses the batching technique from Sec-
tion 3 to improve the dependence in ε from Theorem 4.4
while also improving the dependence on N from Corollary
4.3.

Theorem 4.5 (Private, Batched EXP4). For every ε, δ ∈
(0, 1], Algorithm 2, when run with

η =
(N log( 1δ ))

1/6 log1/3(NT ) log1/3(N)

T 1/3K1/2ε1/3
,

τ =
(N log( 1δ ))

1/3 log2/3(NT )T 1/3

ε2/3 log1/3(N)
,

6
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Algorithm 2 Private, Batched EXP4
1: Input: Action space [K], Number of experts N , batch

size τ , privacy parameters ε, δ > 0, learning rate η,
mixing parameter γ > 0

2: Initialize: r = 1, w1(j) = 1 for all j ∈ [N ]
3: for t = 1, . . . , T do
4: Receive expert advice µ1

t , . . . , µ
N
t ∈ Π([K])

5: if t = (r − 1)τ + 1 then
6: Set Pr(j)← wr(j)∑

j∈[N] wr(j)

7: end if
8: Set Qt(i)← (1− γ)

∑N
j=1 Pr(j)µ

j
t (i) +

γ
K .

9: Draw It ∼ Qt

10: Observe loss ℓt(It) and construct unbiased estimator
ℓ̂t(i) =

ℓt(i)I{It=i}
Qt(i)

11: if t = rτ then
12: Define ℓ̃r(j) := 1

τ

∑rτ
s=(r−1)τ+1 ℓ̂s · µj

s and

ℓ̃′r(j) := ℓ̃r(j) + Zj
r where

Zj
r ∼ Lap

(
0,

3K
√

N log( 1δ )

γτε

)
.

13: Update wr+1(j)← wr(j) · exp{−ηℓ̃′r(j)}
14: Update r ← r + 1.
15: end if
16: end for

and

γ = max

{
η1/3N1/3K2/3 log2/3(NT )

ε2/3τ2/3
,

12ηK
√
N log( 1δ ) log(NT )

ετ

}
,

satisfies (ε, δ)-differentially privacy and suffers worst-case
expected regret at most

O

(
N1/6K1/2T 2/3 · log1/6( 1δ ) log

1/3(NT ) log1/3(N)

ε1/3

+
N1/2 · log( 1δ )

1/2 log(NT ) log(N)

ε

)
.

The proof of Theorem 4.5 modifies the standard proof of
EXP4 to handle the noisy, batched losses. See Appendix
F for the full proof. Compared to Theorem 4.3 and 4.4,
Theorem 4.5 shows that Algorithm 2 enjoys sublinear regret
even when N ≥ T 1/4 and ε = 1√

T
. Table 2 summarizes the

three regimes and the corresponding algorithm that obtains
the best regret bound in that regime. Our upper bounds for
bandits with expert advice become vacuous when ε ≤ 1√

T

and N ≥ T. We leave deriving non-vacuous upper bounds
for this regime as an interesting direction for future work.

5. Barriers to Even Faster Rates for Private
Adversarial Bandits

In this work, we provided new algorithms for the private
adversarial bandit problem and its expert advice counterpart.
In the adversarial bandits setting, we provided a generic
conversion of a non-private bandit algorithm into a private
bandit algorithm. Instantiating our conversion with exist-
ing bandit algorithms resulted in private bandit algorithms
whose worst-case expected regret improve upon all exist-
ing work in all privacy regimes. In the bandits with expert
advice setting, we provide, to the best of our knowledge,
the first private adversarial bandit algorithms by modifying
EXP4.

An important direction of future work is answering whether
it is possible to achieve an additive separation in ε and T .
We note that this is possible in the stochastic bandit setting
(Azize & Basu, 2022) as well as the the full-information
adversarial online setting (Agarwal & Singh, 2017). To
this end, we conclude our paper by discussing some road
blocks when attempting to derive such guarantees for the
adversarial bandit setting.

5.1. On the Hardness of Privatizing EXP3

First, we comment on the difficulty of privatizing EXP3.
In the full-information setting, a standard privacy analysis
for exponential weights shows that for every t ∈ [T ], the
per-round privacy loss at time step t is at most 2η, and for
η = ε√

T
advanced composition yields (ε, δ)-differential pri-

vacy with expected regret O(
√
T log(K)/ε) (Dwork et al.,

2014).

Unfortunately, it is not easy to bound the per-round privacy
loss of EXP3 uniformly across time. This is because EXP3
uses Inverse-Probability-Weighted estimators (Robins et al.,
1994) (see Algorithm 3). Thus the algorithm needs to know
not just the arm It but also the probability Pt with which
it was selected. It is, however, not clear how to account for
the privacy cost of releasing Pt and indeed we can construct
examples where the per-round privacy loss grows with the
time horizon T . We provide a more formal analysis of this
issue in Appendix G.1.

5.2. Limits of a Class of Adversarial Bandit Algorithms

In Section 3, we established upper bounds of O(
√
KT√
ε
) on

the expected regret for the private adversarial bandit prob-
lem. Unfortunately, by exploiting the ability to pick arbitrary
sequences of loss functions, we can show that for a large
class of bandit algorithms, including EXP3 and its batched

7
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Table 2. Summary of the three regimes for bandits with expert advice and the corresponding algorithm that obtains the best regret bound
in that regime.

Regime Best Alg. Guarantee
Low-dimension, High Privacy (N ≤ K) Cor. 4.3 O(

√
NT√
ϵ
)

High-dimension, Low Privacy (N ≥ K, ϵ ≥ K
N ) Thm. 4.4 O(

√
KT logN log(KT )

ϵ )

High-dimension, High Privacy (N ≥ K, ϵ ≤ 1√
T

) Thm. 4.5 O(N
1/6K1/2T 2/3 log(NT )

ϵ1/3
+ N1/2 log(NT )

ϵ )

variants, one cannot significantly improve upon this upper
bound. Informally, our result holds for any (adaptively) pri-
vate bandit algorithm that “quickly” reduces the probability
of playing a sub-optimal arm. We provide the formal details
below, starting with some intuition.

Consider an instance on two arms where arm 1 has loss
1
2 at each step, while arm 2 has loss 1 at each step. Any
algorithm that has regret R must play arm 2 at most O(R)
times on this instance. Informally, our lower bound applies
to bandit algorithms that drops the probability of playing
arm 2 to be about R

T within about o(T/R) steps. We note
that EXP3 drops this probability to O(RT ) in O(log T ) steps.
For algorithms of this kind, our lower bound shows that
any ε-differentially private algorithm (for ε < 1) must incur
regret O(

√
T/ε). Intuitively, the lower bound follows from

the fact that if the loss of arm 2 falls to 0 at step ≈ T/R
(while arm 1 is unchanged at 1

2 ), then an ε-differentially
private algorithm must pull arm 2 at least 1

ε times to “notice”
this change. Accounting for the accumulated regret in the
time it takes to pull arm 2 sufficiently many times, and
setting parameters appropriately yields the lower bound.

More formally, fix K = 2 and T ∈ N. For γ ∈ [0, 1],
τ ∈ {1, . . . , T} and p ∈ [T ], define the sets

Eγ :=
{
i1:T :

T∑
t=1

I{it = 2} ≥ γT
}

and

Ep
γ,τ :=

{
i1:T :

τ+ p
γ∑

s=τ+1

I{is = 2} ≤ p

}
.

Consider the sequence of loss functions ℓ1, . . . , ℓT , such
that ℓ1:T (2) = 1 and ℓ1:T (1) = 1

2 . Our assumptions on
the bandit algorithms are with respect to their behavior on
ℓ1, . . . , ℓT . In particular, we will consider bandit algorithms
A for which there exists γ ∈ [0, 1], τ < T

2 and γτ ≤ p ≤
γ(T − τ) such that:

(1) P(I1, . . . , IT ∈ Eγ) ≥ 1
2 and

(2) P(I1, . . . , IT ∈ Ep
γ,τ ) ≥ 1

2 ,

where I1:T are the random variables denoting the actions
played by A when run on the sequence of loss functions

ℓ1:T . The first condition simply lower bounds the proba-
bility that A plays action 2 by γ, when A is run on ℓ1:T .
The second condition states that A drops, and subsequently
maintains, the probability of playing action 2 to γ in roughly
τ rounds. Accordingly, when τ is small, condition (2) states
that A drops the probability of playing action 2 down to
γ relatively quickly. One should really think of γ as be-
ing O

(
RA(ℓ1:T )

T

)
, where RA(ℓ1:T ) denotes the expected

regret of A when run on ℓ1:T . Then, condition (1) is triv-
ially satisfied, while condition (2) states that A roughly
drops and keeps the probability of playing action 2 around
O
(

RA(ℓ1:T )
T

)
by round τ , and keeps it there. In other

words, after round τ , A plays action 2 on average p times
in p

γ ≈ O( pT
RA(T ) ) rounds. The latter property is reasonable

for bandit algorithms given that ℓt(2) − ℓt(1) =
1
2 for all

t ∈ [T ] , and thus any low-regret bandit algorithm should
not be playing action 2 often. Lemma 5.1 provides a lower
bound on the expected regret of private bandit algorithms
that satisfy these two conditions.

Lemma 5.1. Let ε ≤ 1 and A be any ε-differentially pri-
vate algorithm. If A satisfies conditions (1) and (2) with
parameters γ ∈ [0, 1

2 ], τ < T
2 and 2γτ ≤ p ≤ γ(T − τ),

then the worst-case expected regret of A is at least

max

{
γT

4
,

(
1− 1

2
eεp
)

p

4γ
− τ

2

}
≥√

pT (1− 1
2e

εp)

16
− τ

2
.

In particular, if A satisfies conditions (1) and (2) with pa-

rameters γ ∈ [0, 1
2 ], τ ∈ o

(√
T
ε

)
, and p = O( 1ε ), then the

worst-case expected regret of A is Ω
(√

T
ε

)
.

Lemma 5.1 shows that if one wants to design an ε-
differentially private algorithm (for ε ≤ 1) whose upper
bound enjoys an additive separation between T and ε, then
there cannot exist a γ ∈ [0, 1

2 ] such that it satisfies condi-

tions (1) and (2) with τ ∈ o
(√

T
ε

)
, and p ≤ γ(T − τ).

Unfortunately, an implication of Lemma 5.1 is that such an
additive separation is not possible for EXP3 and its batched
variants. Indeed, batched EXP3 on the loss sequence ℓ1:T ,
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where ℓt(1) = 1/2 and ℓt(2) = 1, has regret at least
γT + κ/η, where κ is the batch size. Assume, towards
a contradiction that for some setting of parameters, this was
o(
√
T/ε). This implies that γ is o(1/

√
εT ), and that κ/η is

o(
√
T/ε). EXP3 drops the probability of a bad arm to O(γ)

in log(1/γ)/η steps, and the batched version will do so in
κ log(1/γ)/η steps. Thus condition (2) is satisfied with τ
being o(

√
T/ε) and p = 1

ε (ignoring logarithmic factors).
This then yields a lower bound of ω(

√
T/ε) using Lemma

5.1, which contradicts the assumption. Thus the expected
regret has to be Ω(

√
T/ε) up to logarithmic factors. We

provide the proof of Lemma 5.1 in Appendix G.

6. Future work
There are several important directions of future work. First,
it is important to understand whether an additive separation
between ε and T is possible under bandit feedback. Note
that this is the case in the full-information setting under an
oblivious adversary (Asi et al., 2023). Another important
direction is improving our upper bounds for private bandits
with expert advice. In particular, it would be interesting to
see whether sublinear regret is possible for all N > 1 and
ϵ ∈ ω( 1

T ).

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Privacy properties and privacy-preserving mechanisms
Definition A.1 (ε-indistinguishability). Let X and Y be random variables with support X . Let

D∞(X||Y ) := max
S⊆X

[
ln
(P(X ∈ S)

P(Y ∈ S)

)]
be the max divergence. Then X and Y are ε-indistinguishable if and only if

max{D∞(X||Y ), D∞(Y ||X)} ≤ ε.

Definition A.2 ((ε, δ)-indistinguishability). Let X and Y be random variables with support X . Let

Dδ
∞(X||Y ) := max

S⊆X ,P(X∈S)≥δ

[
ln
(P(X ∈ S)− δ

P(Y ∈ S)

)]
be the δ-approximate max divergence. Then X and Y are (ε, δ)-indistinguishable if and only if

max{Dδ
∞(X||Y ), Dδ

∞(Y ||X)} ≤ ε.

The follow lemma relates the two notions of indistinguishability to differential privacy.

Lemma A.3 (Differential privacy ≡ Indistinguishability (Remark 3.2 in (Dwork et al., 2014))). Let X and Y be arbitrary
sets. Let A be a randomized algorithm such that A : Xn → Y . Then, A is ε-differentially private if and only if for every
pair of neighboring datasets x1:n and x′

1:n, we have that the random variablesA(x1:n) andA(x′
1:n) are ε-indistinguishable.

Likewise, A is (ε, δ)-differentially private if and only if for every pair of neighboring datasets x1:n and x′
1:n, we have that

the random variables A(x1:n) and A(x′
1:n) are (ε, δ)-indistinguishable.

Next, we cover composition.

Lemma A.4 (Basic Composition (Corollary 3.15 in (Dwork et al., 2014))). Let X ,Y1,Y2, . . . ,YT be arbitrary sets and
n ∈ N. Let A1,A2, . . . ,AT be a sequence of randomized algorithms where A1 : Xn → Y1 and At : Y1, . . . ,Yt−1,Xn →
Yt for all t = 2, 3, . . . , T. If for every t ∈ [T ] and every y1:t−1 ∈ Y1 × Y2 × · · · × Yt−1, we have that At(y1:t−1, ·) is
εt-differentially private, then the overall algorithm A : Xn → Y1 × Y2 × · · · × YT , defined as

A(x1:n) =
(
A1(x1:n),A2(A1(x1:n), x1:n), . . . ,AT (A1(x1:n),A2(A1(x1:n), x1:n), . . . , x1:n)

)
,

satisfies εT -differential privacy.

Lemma A.5 (Basic Composition (Corollary 3.15 in (Dwork et al., 2014))). Let X ,Y1,Y2, . . . ,YT be arbitrary sets and
n ∈ N. Let A1,A2, . . . ,AT be a sequence of randomized algorithms where A1 : Xn → Y1 and At : Y1, . . . ,Yt−1,Xn →
Yt for all t = 2, 3, . . . , T. If for every t ∈ [T ] and every y1:t−1 ∈ Y1 × Y2 × · · · × Yt−1, we have that At(y1:t−1, ·) is
εt-differentially private, then the overall algorithm A : Xn → Y1 × Y2 × · · · × YT , defined as

A(x1:n) =
(
A1(x1:n),A2(A1(x1:n), x1:n), . . . ,AT (A1(x1:n),A2(A1(x1:n), x1:n), . . . , x1:n)

)
,

satisfies εT -differential privacy.

Lemma A.6 (Advanced Composition (Dwork et al., 2010b; Kairouz et al., 2015)). Let X ,Y1,Y2, . . . ,YT be arbi-
trary sets and n ∈ N. Let A1,A2, . . . ,AT be a sequence of randomized algorithms where A1 : Xn → Y1 and
At : Y1, . . . ,Yt−1,Xn → Yt for all t = 2, 3, . . . , T. If for every t ∈ [T ] and every y1:t−1 ∈ Y1×Y2×· · ·×Yt−1, we have
that At(y1:t−1, ·) is εt-differentially private, then for every δ′ > 0, the overall algorithm A : Xn → Y1 × Y2 × · · · × YT ,
defined as

A(x1:n) =
(
A1(x1:n),A2(A1(x1:n), x1:n), . . . ,AT (A1(x1:n),A2(A1(x1:n), x1:n), . . . , x1:n)

)
,

satisfies (ε′, δ′)-differential privacy, where

ε′ ≤ 3

2

T∑
t=1

ε2t +

√√√√6

T∑
t=1

ε2t log

(
1

δ′

)
.

11
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Post-processing and group privacy will also be useful.
Lemma A.7 (Post Processing (Proposition 2.1 in (Dwork et al., 2014))). Let X ,Y,Z be arbitrary sets and n ∈ N. Let
A : Xn → Y and B : Y → Z be randomized algorithms. If A is (ε, δ)-differentially private then the composed algorithm
B ◦ A : Xn → Z is also (ε, δ)-differentially private.

For our lower bounds in Section 5, the notion of group privacy will be useful.
Lemma A.8 (Group Privacy (Theorem 2.2 in (Dwork et al., 2014))). Let X and Y be arbitrary sets and let n ∈ N. Suppose
A : Xn → Y is an ε-differentially private algorithm. Then, for every pair of datasets x1:n, x

′
1:n that differ in 1 ≤ k ≤ n

positions and every event E ⊆ Y , we have that

P [A(x1:n) ∈ E] ≤ ekεP [A(x′
1:n) ∈ E] .

For designing algorithms, the following primitive will be useful.
Definition A.9 (Laplace Mechanism (Definition 3.3 in (Dwork et al., 2014))). Let X be an arbitrary set and n ∈ N. Suppose
f : Xn → R is a query with sensitivity ∆ (i.e. for all pairs of datasets x1:n, x

′
1:n ∈ Xn that differ in exactly one index, we

have that |f(x1:n)− f(x′
1:n)| ≤ ∆). Then, for every ε, the mechanismM : Xn → R defined asM(x1:n) = f(x1:n) + Z,

where Z ∼ Lap(∆ε ), is ε-differentially private.

Lastly, as we make comparisons to local differential privacy, we define it below for the sake of completeness.
Definition A.10 (Local differential privacy (Duchi et al., 2013)). Let X and Y be arbitrary sets. A randomized mechanism
M : X → Y is (ε, δ)-LDP, if for every x ̸= x′ ∈ X and any measurable subset Y ⊂ Y , we have that

P [M(x) ∈ Y ] ≤ eεP [M(x′) ∈ Y ] + δ.

When δ = 0, we say that M is ε local differentially private.

B. Helper Lemmas
Lemma B.1 (Hazard Rate of Laplace distribution). Let D denote the Laplace distribution Lap(0, λ), f and F denote its
probability and cumulative density functions respectively. Define

hD(z) :=
f(z)

1− F (z)

to be the hazard rate function of Lap(0, λ). Then

sup
z∈R

hD(z) ≤
1

λ
.

Moreover, hD(z) is non-decreasing in z.

Proof. Recall that for λ > 0, we have

f(z) =
1

2λ
exp{−|x|

λ
}

and

F (z) =

{
1
2 exp{

z
λ}, if z ≤ 0

1− 1
2 exp{−

z
λ}, if z > 0

.

Fix x ∈ R. If x ≤ 0, then
f(x)

1− F (x)
=

1
2λ exp{xλ}

1− 1
2 exp{

x
λ}
≤ 1

λ

Otherwise, note that when x ≥ 0, we have

f(x)

1− F (x)
=

1
2λ exp{−x

λ }
1
2 exp{

−x
λ }

=
1

λ
.

This shows that supx∈R hD(x) ≤ 1
λ . To see that hD(x) is non-decreasing, note that when x ≤ 0, we have that hD(x) =

1
2λ exp{ x

λ}
1− 1

2 exp{ x
λ} is increasing in x and when x ≥ 0, hD(x) is constant. ■

12
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Lemma B.2 (Truncated Non-negativity of Noisy Losses). Let Z ∼ Lap(λ) and ℓ ∈ [0, 1]. Then, for any M ≥ 0, we have
that

E [(Z + ℓ)I{|Z + ℓ| > M}] ≥ 0.

Proof. Let M ≥ 0 and ℓ ∈ [0, 1]. Then, we can write

E [(Z + ℓ)I{|Z + ℓ| > M}] = ℓ · E [I{|Z + ℓ| > M}] + E [ZI{|Z + ℓ| > M}] .

Since ℓ ≥ 0, it suffices to show that E [ZI{|Z + ℓ| > M}] ≥ 0. To that end, note that

E [ZI{|Z + ℓ| > M}] = E [ZI{Z > M − ℓ}] + E [ZI{Z < −M − ℓ}] .

Suppose that M − ℓ ≥ 0. Then, since Z is symmetric random variable (around the origin), E [ZI{Z < −M − ℓ}] =
−E [ZI{Z > M + ℓ}]. Since M − ℓ < M + ℓ, we have that

E [ZI{|Z + ℓ| > M}] = E [ZI{Z > M − ℓ}]− E [ZI{Z > M + ℓ}] ≥ 0.

Finally, suppose that M − ℓ < 0. Then,

E [ZI{Z > M − ℓ}] = E [ZI{0 ≥ Z > M − ℓ}] + E [ZI{Z ≥ 0}] .

Using again the fact that Z is symmetric, we have that

E [ZI{0 ≥ Z > M − ℓ}] = −E [ZI{0 ≤ Z < ℓ−M}] .

Finally, since ℓ−M ≤M + ℓ, we have that

E [ZI{|Z + ℓ| > M}] = E [ZI{Z ≥ 0}]− E [ZI{0 ≤ Z < ℓ−M}]− E [ZI{Z > M + ℓ}] ≥ 0,

completing the proof. ■

Lemma B.3 (Norms of Laplace Vectors (Fact C.1 in (Agarwal & Singh, 2017))). If Z1, . . . , ZT ∼ (Lap(λ))N , then

P(∃t ∈ [T ] : ||Zt||2∞ ≥ 10λ2 log2(NT )) ≤ 1

T

C. Proof of Lemmas 3.3 and 3.4
C.1. Proof of Lemma 3.3

Note that the sequence of actions played by Algorithm 1 are completely determined by I1, . . . , I⌊T
τ ⌋ in a dataset-independent

way. Thus, by post-processing it suffices to show that the actions I1, . . . , I⌊T
τ ⌋ are output in a ε-differentially private

manner. Note that the distribution over the action I1 is independent of the dataset ℓ1, . . . , ℓT . Thus, it suffices to only
prove privacy with respect to the actions I2, . . . , I⌊T

τ ⌋. Consider the sequence of mechanisms M2, . . . ,M⌊T
τ ⌋, where

M2 : [K]× ℓ1:T → R× [K] is defined as

M2(i1, ℓ1:T ) =
(
ℓ̂1(i1) + Z1,B((i1, ℓ̂1(i1) + Z1))

)
,

for Z1 ∼ Lap( 1
τε ) and Mj : ([K]× R)j−2 × [K]× ℓ1:T → R× [K] is defined as

Mj((is, rs)
j−2
s=1, ij−1, ℓ1:T ) =

(
ℓ̂j−1(ij−1) + Zj−1,B((is, rs)j−2

s=1 ◦ (ij−1, ℓ̂j−1(ij−1) + Zj−1))
)
,

13
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for Zj−1 ∼ Lap( 1
τε ). Observe that Algorithm 1 is precisely the mechanism M : ℓ1:T → ([K] × R)T that adaptively

composes M2, . . . ,M⌊T
τ ⌋. We will now show that M is ε-differentially private by showing that M(ℓ1:t) and M(ℓ′1:t) are

ε-indistinguishable for arbitrary neighboring datasets ℓ1:T and ℓ′1:T .

Consider two datasets ℓ1:T and ℓ′1:T that differ in exactly one position. Let t′ ∈ [T ] be the index where the two datasets differ.
Let j′ ∈ {1, . . . ,

⌊
T
τ

⌋
} be the batch in where the t′ lies. That is, let j′ ∈ {1, . . . ,

⌊
T
τ

⌋
} such that t′ ∈ {(j′−1)τ+1, . . . , j′τ}.

Fix outcomes (is, rs)
⌊T

τ ⌋−2

s=1 ∈ ([K]× R)⌊
T
τ ⌋−2 and i⌊T

τ ⌋−1 ∈ [K].

For all j ≤ j′, we have that the random variables Mj((is, rs)
j−2
s=1, ij−1, ℓ1:T ) and Mj((is, rs)

j−2
s=1, ij−1, ℓ

′
1:T ) are 0-

indistinguishable. We now show that the random variables Mj′+1((is, rs)
j′−1
s=1 , ij′ , ℓ1:T ) and Mj′+1((is, rs)

j′−1
s=1 , ij′ , ℓ

′
1:T )

are ε-indistinguishable.

Recall that
Mj′+1((is, rs)

j′−1
s=1 , ij′ , ℓ1:T ) =

(
ℓ̂j′(ij′) + Zj′ ,B((is, rs)j

′−1
s=1 ◦ (ij′ , ℓ̂j′(ij′) + Zj′))

)
.

Note that the query ℓ̂j′(ij′) has sensitivity at most 1
τ . Indeed, we have that

∣∣∣ℓ̂j′(ij′)− ℓ̂′j′(ij′)
∣∣∣ =

∣∣∣∣∣∣1τ
j′τ∑

s=(j′−1)τ+1

ℓs(ij′)− ℓ′s(ij′)

∣∣∣∣∣∣ = 1

τ
|ℓt′(ij′)− ℓ′t′(ij′)| ≤

1

τ
.

Thus, by Definition A.9 and post-processing, we have that Mj′+1((is, rs)
j−2
s=1, ij−1, ℓ1:T ) and Mj′+1((is, rs)

j−2
s=1, ij−1, ℓ

′
1:T )

are ε-indistinguishable for all inputs.

To complete the proof, we now show that for all j > j′ + 1, Mj((is, rs)
j−2
s=1, ij−1, ℓ1:T ) and Mj((is, rs)

j−2
s=1, ij−1, ℓ

′
1:T ) are

0-indistinguishable. Fix some j > j′ + 1. Recall, that

Mj((is, rs)
j−2
s=1, ij−1, ℓ1:T ) =

(
ℓ̂j−1(ij−1) + Zj−1,B((is, rs)j−2

s=1 ◦ (ij−1, ℓ̂j−1(ij−1) + Zj−1))
)
.

Since for every s ∈ {(j − 1)τ + 1, . . . , jτ} we have that ℓs = ℓ′s, we get that ℓ̂j−1(ij−1) + Zj−1 and
ℓ̂′j−1(ij−1) + Zj−1 are same in distribution. The same can be said about B((is, rs)j−2

s=1 ◦ (ij−1, ℓ̂j−1(ij−1) + Zj−1))

and B((is, rs)j−2
s=1 ◦ (ij−1, ℓ̂

′
j−1(ij−1) + Zj−1)). Accordingly, Mj((is, rs)

j−2
s=1, ij−1, ℓ1:T ) and Mj((is, rs)

j−2
s=1, ij−1, ℓ

′
1:T )

are 0-indistinguishable for all inputs. Since M is the composition of M2, . . . ,M⌊T
τ ⌋, by basic composition, we have that

M(ℓ1:T ) and M(ℓ′1:T ) are ε-indistinguishable, and therefore M is ε-differentially private. This completes the proof.

C.2. Proof of Lemma 3.4

Let ℓ1, . . . , ℓT be any sequence of loss functions. Note that the bandit algorithm B is evaluated on the loss sequence
ℓ̂1 + Z1, . . . , ℓ̂⌊T

τ ⌋ + Z⌊T
τ ⌋ where ℓ̂j(i) = 1

τ

∑jτ
s=(j−1)τ+1 ℓs(i) and Zj ∼ Lap( 1

τε ). Let I1, . . . , I⌊T
τ ⌋ be the random

variables denoting the predictions of B as indicated in Line 4 in Algorithm 1. By definition of R̃B
(⌊

T
τ

⌋
,K, 1

τε

)
we get that

E

⌊T
τ ⌋∑

j=1

ℓ̂j(Ij)

− inf
i∈[K]

⌊T
τ ⌋∑

j=1

ℓ̂j(i) ≤ R̃B

(⌊
T

τ

⌋
,K,

1

τε

)
.

By definition of ℓ̂s, we have that

E

⌊T
τ ⌋∑

j=1

jτ∑
s=(j−1)τ+1

ℓs(Ij)

− inf
i∈[K]

⌊T
τ ⌋∑

j=1

jτ∑
s=(j−1)τ+1

ℓs(i) ≤ τ R̃B

(⌊
T

τ

⌋
,K,

1

τε

)
.

Next, note that by construction, we have that for every j ∈ {1, . . . ,
⌊
T
τ

⌋
} and s ∈ {(j − 1)τ + 1, . . . , jτ}, we have that

Is = Ij . Thus, we can write
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E

⌊T
τ ⌋∑

j=1

jτ∑
s=(j−1)τ+1

ℓs(Is)

− inf
i∈[K]

⌊T
τ ⌋∑

j=1

jτ∑
s=(j−1)τ+1

ℓs(i) ≤ τ R̃B

(⌊
T

τ

⌋
,K,

1

τε

)

which further gives

E

τ⌊T
τ ⌋∑

t=1

ℓt(It)

− inf
i∈[K]

τ⌊T
τ ⌋∑

t=1

ℓt(i) ≤ τ R̃B

(⌊
T

τ

⌋
,K,

1

τε

)
.

Finally, the expected regret for rounds τ
⌊
T
τ

⌋
+ 1, . . . , T can be bounded above by τ . Thus, overall, we have that

E

[
T∑

t=1

ℓt(It)

]
− inf

i∈[K]

T∑
t=1

ℓt(i) ≤ τ R̃B

(⌊
T

τ

⌋
,K,

1

τε

)
+ τ ≤ τ R̃B

(
T

τ
,K,

1

τε

)
+ τ.

Noting that ℓ1, . . . , ℓT was arbitrary completes the proof.

D. Proof of Corollary 3.2
The following Theorem from (Huang et al., 2022) will be useful.

Theorem D.1 (Theorem 4.1 in (Huang et al., 2022)). Let ℓ̃1, . . . , ℓ̃T be any sequence of random loss functions that satisfy
the following two properties: (1) for every i ∈ [K] and t ∈ [T ], the random variable ℓ̃t(i) is truncated non-negative and (2)
for every i ∈ [K] and t ∈ [T ], the random variable ℓ̃t(i) is heavy-tailed with parameters α ∈ (1, 2] and σ > 0. Then, the
expected regret of HTINF (Algorithm 1 in (Huang et al., 2022)) when run on ℓ̃1, . . . , ℓ̃T is at most 30σK1− 1

α (T + 1)
1
α .

We now make precise the definition of truncated non-negativity and heavy-tails.

Definition D.2 (Truncated Non-negativity). A random variable X is truncated non-negative if for every M ≥ 0, we have
that E [X · I{|X| > M}] ≥ 0.

In Appendix B, we prove that random losses of the form ℓ̃(i) = ℓ(i) + Zi are truncated non-negative when ℓ(i) ∈ [0, 1] and
Zi ∼ Lap(λ).

Definition D.3 ((α, σ)-Heavy-tailed loss). A random loss ℓ̃(i) is (α, σ)-heavy tailed if E
[
|ℓ̃(i)|α

]
≤ σα.

In addition, if ℓ̃(i) = ℓ(i) + Zi, where ℓ(i) ∈ [0, 1] and Zi ∼ Lap(λ), then ℓ̃(i) is (2,
√
2 + 4λ2)-heavy tailed. We are now

ready to prove Corollary 3.2.

Proof. (of Corollary 3.2) In order to use Theorem 3.1, we need to upper bound R̃HTINF(T, λ). Let ℓ1, . . . , ℓT be any
sequence of loss functions such that ℓt : [K] → [0, 1] and let ℓ̃1, . . . , ℓ̃T be such that ℓ̃t(i) = ℓt(i) + Zt(i) where
Zt(i) ∼ Lap(λ). Then, since for every t ∈ [T ] and i ∈ [K], we have that ℓ̃t(i) is truncated non-negative and (2,

√
2 + 4λ2)-

heavy tailed, Theorem D.1 implies that

R̃HTINF(T,K, λ) ≤ 30
√
(2 + 4λ2)K(T + 1).

Finally, to get Corollary 3.2, we just upper bound

2

ε
R̃HTINF(εT,K, 1) +

2

ε
≤ 208

√
TK√
ε

+
2

ε
,

for ε ≥ 1
T . ■
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Algorithm 3 EXP3 with Mixing
1: Input: Action space [K], learning rate η, mixing parameter γ > 0
2: Initialize: w1(i) = 1 for all i ∈ [K]
3: for t = 1, . . . , T do
4: Set Pt(i) = (1− γ) wt(i)∑

i∈[K] wt(i)
+ γ

K

5: Draw It ∼ Pt

6: Observe loss ℓt(It) and construct unbiased estimator ℓ̂t(i) =
ℓt(i)I{It=i}

Pt(i)

7: Update wt+1(i)← wt(i) · exp{−ηℓ̂t(i)} for all i ∈ [K]
8: end for

E. Additional Upper Bounds for Private Adversarial Bandits
In this section, we instantiate Theorem 3.1 with other (non-private) bandit algorithms to obtain two other regret upper
bounds.

E.1. EXP3 Conversion

Corollary E.1 follows by letting B in Theorem 3.1 be the classical EXP3 algorithm (Auer et al., 2002). See Appendix D for
the pseudocode of EXP3.

Corollary E.1 (EXP3 Conversion). For every ε ≤ 1, if B is EXP3 run with learning rate

η =

√
log(K)

22 εKT log2(εKT )

and mixing parameter γ = 4ηK log(εKT ), then Algorithm 1, when run with B and τ = ⌈ 1ε⌉, is ε-differentially private and
suffers worst-case expected regret at most

36
√

TK log(K) log(KT )√
ε

+
4

ε
.

Algorithm 3 provides the pseudocode for the version of EXP3 that we consider.

The following lemma about EXP3 will be useful when proving Corollary E.1.

Lemma E.2 ((Auer et al., 2002; Bubeck et al., 2012)). For any sequence of loss functions ℓ1, . . . , ℓT , where ℓt : [K]→ R,
if η > 0 is such that ηmaxi∈[K]−ℓ̂t(i) ≤ 1 for all t ∈ [T ], then EXP3 when run on ℓ1, . . . , ℓT outputs distributions
P1:T ∈ Π([K])T such that

E

[
T∑

t=1

K∑
i=1

Pt(i)ℓt(i)

]
≤ inf

i∈[K]

T∑
t=1

ℓt(i) + 2γT +
log(K)

η
+ η

T∑
t=1

K∑
i=1

ℓt(i)
2,

where ℓ̂t is the unbiased estimate of the true loss ℓt that EXP3 computes in Line 6 of Algorithm 3 and the expectation is
taken only with respect to the randomness of EXP3.

Proof. (of Corollary E.1) In order to use Theorem 3.1, we first need to bound R̃EXP3(T,K, λ). Let ℓ1, . . . , ℓT be any
sequence of loss functions such that ℓt : [K] → [0, 1] and let ℓ̃1, . . . , ℓ̃T be such that ℓ̃t(i) = ℓt(i) + Zt(i) where
Zt(i) ∼ Lap(λ). Let E be the event that there exists a t ∈ [T ] such that maxi∈[K] |Zt(i)|2 ≥ 10λ2 log2 KT . Then, Lemma
B.3 shows that P [E] ≤ 1

T . Moreover, note that E [Zt(i)|Ec] = 0 for all i ∈ [K] and t ∈ [T ]. Let A be the random variable
denoting the internal randomness of EXP3. We need to bound

R̃EXP3(T,K, λ) = E
A,Z1:T

[
T∑

t=1

ℓt(EXP3(H̃t))− inf
i∈[K]

T∑
t=1

ℓt(i)

]
.
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We can write R̃EXP3(T,K, λ) as

E
A,Z1:T

[
T∑

t=1

ℓt(EXP3(H̃t))− inf
i∈[K]

T∑
t=1

ℓt(i)

∣∣∣∣∣E
]
P(E) + E

A,Z1:T

[
T∑

t=1

ℓt(EXP3(H̃t))− inf
i∈[K]

T∑
t=1

ℓt(i)

∣∣∣∣∣Ec

]
P(Ec)

Since EA,Z1:T

[∑T
t=1 ℓt(EXP3(H̃t))− infi∈[K]

∑T
t=1 ℓt(i)

∣∣∣E] ≤ T , we have that

R̃EXP3(T,K, λ) ≤ E
A,Z1:T

[
T∑

t=1

ℓt(EXP3(H̃t))− inf
i∈[K]

T∑
t=1

ℓt(i)

∣∣∣∣∣Ec

]
+ 1

We now want to use Lemma E.2 to bound EA,Z1:T

[∑T
t=1 ℓt(EXP3(H̃t))− infi∈[K]

∑T
t=1 ℓt(i)

∣∣∣Ec
]
. Recall, that EXP3

is actually running on the noisy losses ℓ̃1, . . . , ℓ̃T . So, in order to use Lemma E.2, we need to pick γ, η > 0 such that

ηmaxi∈[K]−ˆ̃ℓt(i) ≤ 1, where we use ˆ̃
ℓt to denote the unbiased estimate that EXP3 constructs of the true (noisy) loss ℓ̃t. In

particular, recall that EXP3 constructs ˆ̃
ℓt(i) =

ℓ̃(i)I{It=i}
Pt(i)

where we used Pt(i) to denote the measure that EXP3 uses to
select its action It on round t ∈ [T ]. Moreover, given a mixing parameter γ > 0, we have that Pt(i) ≥ γ

K . Thus, we need to
pick γ and η such that

η max
i∈[K]

−ˆ̃ℓt(i) ≤
ηK

γ
max
i∈[K]

|Zt(i)| ≤ 1.

Conditioned on event Ec, we have that maxi∈[K] |Zt(i)| ≤ 4λ log(KT ). Thus, it suffices to pick γ = 4ηλK log(KT ).
Then, conditioned on the event Ec and the random variables Z1, . . . , ZT , we can use Lemma E.2 to get that

E
A

[
T∑

t=1

K∑
i=1

Pt(i)ℓ̃t(i)

∣∣∣∣∣Ec, Z1:T

]
≤ inf

i∈[K]

T∑
t=1

ℓ̃t(i) + 2γT +
log(K)

η
+ η

T∑
t=1

K∑
i=1

ℓ̃t(i)
2.

Taking an outer expectation, then gives that

E
A,Z1:T

[
T∑

t=1

K∑
i=1

Pt(i)ℓ̃t(i)

∣∣∣∣∣Ec

]
≤ inf

i∈[K]
E

Z1:T

[
T∑

t=1

ℓ̃t(i)

∣∣∣∣∣Ec

]
+ 2γT +

log(K)

η
+ η E

Z1:T

[
T∑

t=1

K∑
i=1

ℓ̃t(i)
2

∣∣∣∣∣Ec

]
.

Since Zt(i), conditioned on Ec, is zero-mean and Zt(i) conditioned on the history H̃t is independent of Pt(i), we have that

E
A,Z1:T

[
T∑

t=1

K∑
i=1

Pt(i)ℓt(i)

∣∣∣∣∣Ec

]
≤ inf

i∈[K]

T∑
t=1

ℓt(i) + 2γT +
log(K)

η
+ η E

Z1:T

[
T∑

t=1

K∑
i=1

ℓ̃t(i)
2

∣∣∣∣∣Ec

]
,

which further gives

R̃EXP3(T,K, λ) ≤ 2γT +
log(K)

η
+ η E

Z1:T

[
T∑

t=1

K∑
i=1

ℓ̃t(i)
2

∣∣∣∣∣Ec

]
+ 1.

It just remains to bound EZ1:T

[∑T
t=1

∑K
i=1 ℓ̃t(i)

2
∣∣∣Ec
]
. Note that we can write

17
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η E
Z1:T

[
T∑

t=1

K∑
i=1

ℓ̃t(i)
2

∣∣∣∣∣Ec

]
≤ ηK E

Z1:T

[
T∑

t=1

max
i∈[K]

ℓ̃t(i)
2

∣∣∣∣∣Ec

]

≤ ηK E
Z1:T

[
T∑

t=1

max
i∈[K]

(ℓt(i) + Zt(i))
2

∣∣∣∣∣Ec

]

≤ 2ηK E
Z1:T

[
T∑

t=1

(1 + max
i∈[K]

Zt(i)
2)

∣∣∣∣∣Ec

]

≤ 2ηK

T∑
t=1

(1 + 10λ2 log2 KT )

= 2ηTK(1 + 10λ2 log2 KT ).

Plugging this bound back in gives that

R̃EXP3(T,K, λ) ≤ 2γT +
log(K)

η
+ 2ηTK(1 + 10λ2 log2 KT ) + 1.

Recall that we picked γ = 4ηλK log(KT ). Substituting this selection gives

R̃EXP3(T,K, λ) ≤ 8ηλKT log(KT ) +
log(K)

η
+ 2ηTK(1 + 10λ2 log2 KT ) + 1.

We can then write

R̃EXP3(T,K, λ) ≤ log(K)

η
+ 2ηTK(1 + 10max{λ2, λ} log2 KT ) + 1.

Picking η =
√

log(K)
2TK(1+10max{λ2,λ} log2 KT )

, we get overall that

R̃EXP3(T,K, λ) ≤ 2

√
2TK log(K)(1 + 10max{λ2, λ} log2 KT ) + 1.

Finally, Corollary E.1 follows by the fact that

2

ε
R̃EXP3(εT,K, 1) +

2

ε
≤ 36

√
TK log(K) log(KT )√

ε
+

4

ε
.

This completes the proof. ■

E.2. FTPL Conversion

Corollary E.3 follows by using Follow-the-Perturbed-Leader (FTPL) with Geometric Resampling (Neu & Bartók, 2016).
The pseudocode for FTPL with Geometric Resampling is provided in Algorithm 4.

Corollary E.3 (FTPL Conversion). For every ε ∈ [ 1T , 1], if B is FTPL with perturbation distribution Lap
(

1
η

)
and

Geometric Resampling threshold M (see Algorithm 4), where M =
√
εKT and

η = min

{√
log(K)

(εKT + 10εKT log2(εKT ))
,

1

M(1 + 4 log(εT ))

}
,

18
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Algorithm 4 Bandit FTPL with Geometric Resampling (Neu & Bartók, 2016)
1: Input: M , η
2: Initialize: L̂0(i) = 0 for all i ∈ [K]
3: for t = 1, . . . , T do
4: Sample Z1, . . . , ZK i.i.d. from Lap(0, 1

η ).

5: Select action It ∈ argmini∈[K](L̂t−1(i) + Zi)
6: Observe loss ℓt(It)
7: Let Mt = 0.
8: for i = 1, 2, . . . ,M do
9: Sample Z ′

1, . . . , Z
′
K i.i.d. from Lap(0, 1

η ).

10: if It ∈ argmaxi∈[K](L̂t−1(i) + Z ′
i) then

11: Set Mt = i.
12: break
13: end if
14: end for
15: Define ℓ̂t(i) = ℓt(i)MtI{It = i}.
16: Update L̂t = L̂t−1 + ℓ̂t(i).
17: end for

Algorithm 1, when run with B and τ = ⌈ 1ε⌉, is ε-differentially private and suffers worse-case expected regret at most

32

√
KT log(K) log(KT )√

ε
+

2

ε
.

We now prove Corollary E.3. Lemma E.4 first bounds R̃B(T,K, λ) when B is Algorithm 4.

Lemma E.4. Let B denote Algorithm 4. Then, if M =
√
KT and

η = min

{√
log(K)

(KT + 10KTλ2 log2(KT ))
,

1

M(1 + 4λ log(T ))

}
,

we have that

R̃B(T,K, λ) ≤ 11λ
√
KT log(K) log(KT ) + 10

√
KT

Proof. Let ℓ1, . . . , ℓT be any sequence of loss functions such that ℓt : [K] → [0, 1] and let ℓ̃1, . . . , ℓ̃T be such that
ℓ̃t(i) = ℓt(i) +Gt(i) where Gt(i) ∼ Lap(λ). Let E be the event that there exists a t ∈ [T ] such that maxi∈[K] |Gt(i)|2 ≥
10λ2 log2 KT . Then, Lemma B.3 shows that P [E] ≤ 1

T . Moreover, note that E [Gt(i)|Ec] = 0 for all i ∈ [K] and t ∈ [T ].
We need to bound

R̃B(T,K, λ) = E
B,G1:T

[
T∑

t=1

ℓt(B(H̃t))− inf
i∈[K]

T∑
t=1

ℓt(i)

]
.

We can write R̃B(T,K, λ) as

E
B,G1:T

[
T∑

t=1

ℓt(B(H̃t))− inf
i∈[K]

T∑
t=1

ℓt(i)

∣∣∣∣∣E
]
P(E) + E

B,G1:T

[
T∑

t=1

ℓt(B(H̃t))− inf
i∈[K]

T∑
t=1

ℓt(i)

∣∣∣∣∣Ec

]
P(Ec)

Since EB,G1:T

[∑T
t=1 ℓt(B(H̃t))− infi∈[K]

∑T
t=1 ℓt(i)

∣∣∣E] ≤ T , we have that
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R̃B(T,K, λ) ≤ E
B,G1:T

[
T∑

t=1

ℓt(B(H̃t))− inf
i∈[K]

T∑
t=1

ℓt(i)

∣∣∣∣∣Ec

]
+ 1

≤ E
B,G1:T

[
T∑

t=1

ℓt(B(H̃t))

∣∣∣∣∣Ec

]
− inf

i∈[K]

T∑
t=1

ℓt(i) + 1

Let i⋆ be the arm that minimizes
∑T

t=1 ℓt(i). Moreover, let ˆ̃ℓt denote the unbiased estimate that Algorithm 4 constructs of
the true (noisy) loss ℓ̃t when run on the noisy losses ℓ̃1, . . . , ℓ̃T . We start with the following regret decomposition for FTPL
from (?)Lemma 3]honda2023follow.

E
B,G1:T

[
T∑

t=1

ˆ̃
ℓt(It)

∣∣∣∣∣Ec

]
− E

B,G1:T

[
T∑

t=1

ˆ̃
ℓt(i

⋆)

∣∣∣∣∣Ec

]
≤ 2 E

Z∼Lap( 1
η )K

[
max
i∈[K]

|Zi|
]
+ E

B,G1:T

[
T∑

t=1

K∑
i=1

ˆ̃
ℓt(i)(Pt(i)− Pt+1(i))

∣∣∣∣∣Ec

]
,

where we define Pt(i) := P
[
It = i|ˆ̃ℓ1, . . . , ˆ̃ℓt−1

]
. The first term on the right can be bounded as

2 E
Z∼Lap( 1

η )K

[
max
i∈[K]

|Zi|
]
≤ 6 log(K)

η
.

As for the second term, Lemma 5 from (Cheng et al.) gives that

exp{−η||ˆ̃ℓt||1} ≤
Pt+1(i)

Pt(i)
≤ exp{η||ˆ̃ℓt||1}.

Accordingly, we have that

Pt(i)(1− exp{η||ˆ̃ℓt||1}) ≤ Pt(i)− Pt+1(i) ≤ Pt(i)(1− exp{−η||ˆ̃ℓt||1}).

Thus, we can bound

ˆ̃
ℓt(i)(Pt(i)− Pt+1(i)) ≤ ˆ̃

ℓt(i)Pt(i)(exp{η||ˆ̃ℓt||1} − 1).

For η > 0 such that η||ˆ̃ℓt||1 ≤ 1, we have that

exp{η||ˆ̃ℓt||1} ≤ 2η||ˆ̃ℓt||1 + 1.

Since ||ˆ̃ℓt||1 ≤ |Mt(ℓt(It) + Gt(It))| ≤ M(1 + 4η log(T )), it suffices to pick η ≤ 1
M(1+4λ log(T )) . For this choice of η,

we have that

ˆ̃
ℓt(i)(Pt(i)− Pt+1(i)) ≤ 2Pt(i)η

ˆ̃
ℓt(i)||ˆ̃ℓt||1 ≤ 2Pt(i)η(

ˆ̃
ℓt(i))

2.

Plugging this in gives

E
B,G1:T

[
T∑

t=1

K∑
i=1

ˆ̃
ℓt(i)(Pt(i)− Pt+1(i))

∣∣∣∣∣Ec

]
≤ 2η E

B,G1:T

[
T∑

t=1

K∑
i=1

Pt(i)(
ˆ̃
ℓt(i))

2

∣∣∣∣∣Ec

]

and therefore
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E
B,G1:T

[
T∑

t=1

ˆ̃
ℓt(It)− ˆ̃

ℓt(i
⋆)

∣∣∣∣∣Ec

]
≤ 6 log(K)

η
+ 2η E

B,G1:T

[
T∑

t=1

K∑
i=1

Pt(i)(
ˆ̃
ℓt(i))

2

∣∣∣∣∣Ec

]
.

To bound the second term on the right hand side, we have that

E
B,G1:T

[
T∑

t=1

K∑
i=1

Pt(i)(
ˆ̃
ℓt(i))

2

∣∣∣∣∣Ec

]
= E

B,G1:T

[
T∑

t=1

K∑
i=1

Pt(i)(ℓ̃t(i))
2I{It = i}(Mt)

2

∣∣∣∣∣Ec

]

≤ 2 E
B,G1:T

[
T∑

t=1

K∑
i=1

Pt(i)(ℓ̃t(i))
2I{It = i} 1

(Pt(i))2

∣∣∣∣∣Ec

]

= 2 E
B,G1:T

[
T∑

t=1

K∑
i=1

(ℓ̃t(i))
2I{It = i} 1

Pt(i)

∣∣∣∣∣Ec

]

= 2 E
G1:T

[
T∑

t=1

K∑
i=1

(ℓt(i) +Gt(i))
2

∣∣∣∣∣Ec

]

≤ 2 E
G1:T

[
T∑

t=1

K∑
i=1

(1 +Gt(i)
2)

∣∣∣∣∣Ec

]
= 2KT + 20KTλ2 log2(KT ),

where the first inequality follows from Lemma 12 in (Cheng et al.). Thus,

E
B,G1:T

[
T∑

t=1

ˆ̃
ℓt(It)− ˆ̃

ℓt(i
⋆)

∣∣∣∣∣Ec

]
≤ 6 log(K)

η
+ 4ηKT + 40ηKTλ2 log2(KT ).

Next, note that

E
B,G1:T

[
T∑

t=1

ℓ̃t(It)− ℓ̃t(i
⋆)

∣∣∣∣∣Ec

]
= E

B,G1:T

[
T∑

t=1

ˆ̃
ℓt(It)− ˆ̃

ℓt(i
⋆)

∣∣∣∣∣Ec

]
+ E

B,G1:T

[
T∑

t=1

ℓ̃t(It)− ˆ̃
ℓt(It)

∣∣∣∣∣Ec

]

+ E
B,G1:T

[
T∑

t=1

ˆ̃
ℓt(i

⋆)− ℓ̃t(i
⋆)

∣∣∣∣∣Ec

]
.

Thus, it suffices to upper bound the latter two terms. Starting with the third term, we have that
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E
B,G1:T

[
T∑

t=1

ˆ̃
ℓt(i

⋆)− ℓ̃t(i
⋆)

∣∣∣∣∣Ec

]
= E

B,G1:T

[
T∑

t=1

ℓ̃t(i
⋆)(1− (1− Pt(i

⋆))M )− ℓ̃t(i
⋆)

∣∣∣∣∣Ec

]

= E
B,G1:T

[
T∑

t=1

ℓ̃t(i
⋆)− ℓ̃t(i

⋆)(1− Pt(i
⋆))M − ℓ̃t(i

⋆)

∣∣∣∣∣Ec

]

= E
B,G1:T

[
T∑

t=1

−ℓ̃t(i⋆)(1− Pt(i
⋆))M

∣∣∣∣∣Ec

]

= E
B,G1:T

[
T∑

t=1

−(ℓt(i⋆) +Gt(i))(1− Pt(i
⋆))M

∣∣∣∣∣Ec

]

= E
B,G1:T

[
T∑

t=1

−ℓt(i⋆)(1− Pt(i
⋆))M

∣∣∣∣∣Ec

]
≤ 0,

where the second equality follows by Lemma 4 from (Neu & Bartók, 2016). Now, for the second term, by Lemma 5 from
(Neu & Bartók, 2016) we have that

E
B,G1:T

[
T∑

t=1

ℓ̃t(It)− ˆ̃
ℓt(It)

∣∣∣∣∣Ec

]
≤ KT

eM
.

Combining all our bounds gives

E
B,G1:T

[
T∑

t=1

ℓ̃t(It)− ℓ̃t(i
⋆)

∣∣∣∣∣Ec

]
≤ 6 log(K)

η
+ 4η(KT + 10KTλ2 log2(KT )) +

KT

eM
.

For M =
√
KT and η = min

{√
log(K)

(KT+10KTλ2 log2(KT ))
, 1√

KT (1+4λ log(T ))

}
, we get that

E
B,G1:T

[
T∑

t=1

ℓ̃t(It)− ℓ̃t(i
⋆)

∣∣∣∣∣Ec

]
≤ 10λ

√
KT log(K) log(KT ) + 10

√
KT.

Since EB,G1:T

[∑T
t=1 ℓ̃t(It)− ℓ̃t(i

⋆)
∣∣∣Ec
]
= EB,G1:T

[∑T
t=1 ℓt(It)− ℓt(i

⋆)
∣∣∣Ec
]
, we have that

R̃B(T,K, λ) ≤ 10λ
√
KT log(K) log(KT ) + 10

√
KT + 1,

which completes the proof. ■

Equipped with Lemma E.4, we are now ready to prove Corollary E.3.

Proof. (of Corollary E.3) Let B be Algorithm 4 with the hyperparameters selected according to Lemma E.4. Then, we know
that

R̃B(T,K, λ) ≤ 11λ
√
KT log(K) log(KT ) + 10

√
KT.

By Theorem 3.1, we can convert B into an ε-differentially private algorithm A such that
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Algorithm 5 Bandit to Bandit with Expert Advice
1: Input: Bandit algorithm B, Number of experts N , Action space [K]
2: Initialize: B with action space [N ]
3: for t = 1, . . . , T do
4: Receive expert predictions µ1

t , . . . , µ
N
t ∈ Π([K])N

5: Sample Iit ∼ µj
t for all j ∈ [N ]

6: Define ℓ̃t(j) := ℓt(I
j
t ) for all j ∈ [N ]

7: Receive expert Jt ∈ [N ] from B
8: Play action IJt

t ∈ [K] and observe loss ℓt(IJt
t )

9: Pass ℓ̃t(Jt) to B
10: end for

RA(T,K) ≤ 2

ε
R̃B(εT,K, 1) +

2

ε

≤ 22

ε

√
KεT log(K) log(KT ) + 10

√
KT +

2

ε

≤ 32
√
KT log(K) log(KT )√

ε
+

2

ε
,

completing the proof. ■

F. Proofs for Bandits with Expert Advice
The following guarantee about Multiplicative Weights (MW) will be useful when proving utility guarantees.
Lemma F.1 ((Cesa-Bianchi & Lugosi, 2006; Littlestone & Warmuth, 1994)). For any sequence of loss functions ℓ1, . . . , ℓT ,
where ℓt : [N ]→ R, if η > 0 is such that ηmaxj∈[N ]−ℓt(j) ≤ 1 for all t ∈ [T ], then MW when run on ℓ1, . . . , ℓT outputs
distributions P1:T ∈ Π([N ])T such that

T∑
t=1

N∑
j=1

Pt(j)ℓt(j) ≤ inf
j∈[N ]

T∑
t=1

ℓt(j) +
log(N)

η
+ η

T∑
t=1

N∑
j=1

Pt(j)ℓt(j)
2.

F.1. Proof of Theorem 4.1

Proof. (of Theorem 4.1) Consider a loss sequence ℓ1, . . . , ℓT and a sequence of expert predictions µ1:N
1:T . Let j⋆ ∈

argminj∈[N ]

∑T
t=1

∑K
i=1 µ

j
t (i)ℓt(i) denote an optimal expert in hindsight. By definition of the bandit algorithm B,

pointwise for every I1:N1:T , we have that

E

[
T∑

t=1

ℓ̃t(Jt)

]
≤

T∑
t=1

ℓ̃t(j
⋆) + RB(T,N).

By definition of ℓ̃t, we then have that

E

[
T∑

t=1

ℓt(I
Jt
t )

]
≤

T∑
t=1

ℓt(I
j⋆

t ) + RB(T,N).

Taking an outer expectation with respect to the randomness of I1:N1:T , we have,

E

[
T∑

t=1

ℓt(I
j⋆

t )

]
=

T∑
t=1

K∑
i=1

µj⋆

t (i) · ℓt(i)
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Algorithm 6 Local-DP EXP4
1: Input: Action space [K], Number of experts N , privacy parameters ε > 0, η, γ > 0
2: Initialize: w1(j) = 1 for all j ∈ [N ]
3: for t = 1, . . . , T do
4: Receive expert advice µ1

t , . . . , µ
N
t

5: Set Pt(j) =
wt(j)∑

j∈[N] wt(j)

6: Set Qt(i) = (1− γ)
∑N

j=1 Pt(j)µ
j
t (i) +

γ
K .

7: Predict It ∼ Qt

8: Observe loss ℓt(It) and define ℓ′t(i) := ℓt(i) + Zi
t , where Zi

t ∼ Lap(0, 1
ε )

9: Construct unbiased estimator ℓ̂′t(i) =
ℓ′t(i)I{It=i}

Qt(i)

10: Define ℓ̃′t(j) := µj
t · ℓ̂′t for all j ∈ [N ]

11: Update wt+1(j)← wt(j) · exp{−ηℓ̃′t(j)}
12: end for

which completes the proof. ■

F.2. Proof of Theorem 4.2

Let B be any bandit algorithm. Then, for every τ ≥ 1. We need to show that there exists a ε-differentially private bandit
with expert advice algorithm Aτ such that

RAτ
(T,K,N) ≤ τ R̃B(

T

τ
,N,

1

ετ
) + τ.

Proof. (of Utility in Theorem 4.2). Fix ε ≤ 1 and τ ≥ 1. By Theorem 3.1, we can convert B into an ε-differentially private
bandit algorithm Bτ such that

RBτ
(T,K) ≤ τ R̃B(

T

τ
,K,

1

ετ
) + τ.

Then, using Theorem 4.1, we can convert Bτ into a bandit with expert advice algorithm Aτ such that

RAτ
(T,K,N) ≤ RBτ

(T,N) ≤ τ R̃B(
T

τ
,N,

1

ετ
) + τ,

completing the proof. ■

Proof. (of Privacy in Theorem 4.2) Consider the same algorithm as in the proof of the utility guarantee. That is, let Aτ be
the result of using Theorem 1 to convert B to Bτ and Theorem 4.1 to convert Bτ to Aτ . By Theorem 3.1, we know that Bτ
is ε-differentially private. It suffices to show that Algorithm 5, when given Eτ as input is also ε-differentially private. To that
end, let ℓ1:T and ℓ′1:T be two sequences that differ at exactly one timepoint. Let µ1:N

1:T be any sequence of expert advice and
fix Iit ∼ µi

t for all t ∈ [T ] and i ∈ [N ]. Observe that Algorithm 5 instantiates Bτ on the action space [N ] and simulates Bτ
on the sequence of losses ℓ̃t(j) := ℓt(I

j
t ). Let ℓ̃1:T and ℓ̃′1:T denote the two sequences of losses that Algorithm 5 simulates

Bτ on when run on ℓ1:T and ℓ′1:T respectively. Note that ℓ̃1:T and ℓ̃′1:T differ at exactly one timepoint. Thus, Bτ outputs
actions J1, . . . , JT in an ε-differentially private manner. Finally, by post-processing it follows that the sequence of actions
IJt
t output by Algorithm 5 is also ε-differentially private. ■

F.3. Proof of Theorem 4.4

Proof. (of Utility in Theorem 4.4) Fix ε ≤ 1. Let λ = 1
ε . Let ℓ1, . . . , ℓT be any sequence of loss functions and µ1:N

1:T be
any sequence of advice vectors. Let E be the event that there exists a t ∈ [T ] such that maxi∈[K] |Zi

t |2 ≥ 10λ2 log2(KT ).

Then, Lemma B.3 shows that P [E] ≤ 1
T . Moreover, note that E

[
Zi
t

∣∣Ec
]
= 0 for all i ∈ [K] and t ∈ [T ]. Let A be the

random variable denoting the internal randomness of Algorithm 6 when sampling actions It. We need to bound
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R(T,K,N) := E
A,Z1:T

[
T∑

t=1

ℓt(It)− inf
j∈[N ]

T∑
t=1

µj
t · ℓt

]
.

We can write R(T,K,N) as

E
A,Z1:T

[
T∑

t=1

ℓt(It)− inf
j∈[N ]

T∑
t=1

µj
t · ℓt

∣∣∣∣∣E
]
P(E) + E

A,Z1:T

[
T∑

t=1

ℓt(It)− inf
j∈[N ]

T∑
t=1

µj
t · ℓt

∣∣∣∣∣Ec

]
P(Ec)

Since EA,Z1:T

[∑T
t=1 ℓt(It)− infj∈[N ]

∑T
t=1 µ

j
t · ℓt

∣∣∣E] ≤ T , we have that

R(T,K,N) ≤ E
A,Z1:T

[
T∑

t=1

ℓt(It)− inf
j∈[N ]

T∑
t=1

µj
t · ℓt

∣∣∣∣∣Ec

]
+ 1.

Accordingly, for the remainder of the proof, we will assume that event Ec has occurred, which further implies that
maxt∈[T ] maxi∈[K] |Zi

t | ≤ 4λ log(KT ).

Algorithm 6 runs Multiplicative Weights using the noisy losses ℓ̃′1, . . . , ℓ̃
′
T . For γ = 4ηKλ log(KT ), we have that
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We now analyze each of the three terms with expectations separately. First,
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Next,
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Finally,
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where the second equality follows by the unbiasedness of ℓ̂′t and the last by the fact that Zi
t is zero-mean (conditioned on

Ec). Putting all the bounds together, we get that

1

(1− γ)
E

A,Z1:T

[
T∑

t=1

K∑
i=1

Qt(i)ℓ̂
′
t(i)

∣∣∣∣∣Ec

]
is at most

inf
j∈[N ]

T∑
t=1

ℓt · µj
t +

log(N)

η
+

γ

K(1− γ)
E

Z1:T

[
T∑

t=1

K∑
i=1

ℓ̂′t(i)

∣∣∣∣∣Ec

]
+

η

(1− γ)
E

A,Z1:T

[
T∑

t=1

K∑
i=1

Qt(i)ℓ̂
′
t(i)

2

∣∣∣∣∣Ec

]
.

Multiplying both sides by (1− γ), we have that EA,Z1:T
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which implies that
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Using the fact that ℓ̂′t is an unbiased estimator of ℓ′t gives that
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Since Zi
t is zero-mean (conditioned on Ec) and independent of Qt(i), we get that,
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It suffices to bound the expectation on the right-hand side. To that end, observe that
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Thus, overall we have that
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Plugging in our choice of γ = 4ηKλ log(KT ),

E
A,Z1:T

[
T∑

t=1

K∑
i=1

Qt(i)ℓt(i)

∣∣∣∣∣Ec

]
≤ inf

j∈[N ]

T∑
t=1

ℓt · µj
t +

log(N)

η
+ 4ηKTλ log(KT ) + 2ηKT (1 + 10λ2 log2 KT ).
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For our choice λ = 1
ε , we get
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Finally, noting that

R(T,K,N) ≤ E
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completes the proof. ■

The proof of privacy in Theorem 4.4 is identical to the proof of Lemma 3.3 after taking batch size τ = 1, so we omit the
details here.

F.4. Proof of Theorem 4.5

Proof. (of Utility in Theorem 4.5) Fix ε, δ ∈ (0, 1] and batch size τ . Let λ =
3K
√

N log( 1
δ )

γτε . Let ℓ1, . . . , ℓT be any sequence
of loss functions and µ1:N

1:T be any sequence of advice vectors. Let E be the event that there exists a r ∈ {1, . . . ,
⌊
T
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⌋
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⌋
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]. Let A be the random variable denoting the internal randomness of Algorithm 6 when

sampling actions It. We need to bound
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Accordingly, for the remainder of the proof, we will assume that event Ec has occurred, which further implies that
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′
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Taking expectation of both sides, we have that
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E
A,Z1:T

⌊T
τ ⌋∑

r=1

N∑
j=1

Pr(j)ℓ̃
′
r(j)

∣∣∣∣∣∣∣Ec

 ≤ inf
j∈[N ]

E
Z1:T

⌊T
τ ⌋∑

r=1

ℓ̃′r(j)

∣∣∣∣∣∣∣Ec

+
log(N)

η
+ η E

A,Z1:T

⌊T
τ ⌋∑

r=1

N∑
j=1

Pr(j)ℓ̃
′
r(j)

2

∣∣∣∣∣∣∣Ec

 .

Using the fact that Zj
r is zero-mean and conditionally independent of Pr given the history of the game up to and including
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We now analyze each of the three terms with expectations separately. First,
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To bound the first of the two terms above, note that:
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τ
E

A,Z1:T

τ⌊T
τ ⌋∑

t=1

K∑
i=1

(
Qt(i)− γ

K

1− γ

)
ℓ̂2t (i)

∣∣∣∣∣∣∣Ec


≤ 1

τ(1− γ)
E

A,Z1:T

τ⌊T
τ ⌋∑

t=1

K∑
i=1

Qt(i)ℓ̂
2
t (i)

∣∣∣∣∣∣∣Ec

 .

Finally,

inf
j∈[N ]

E
Z1:T

⌊T
τ ⌋∑

r=1

ℓ̃r(j)

∣∣∣∣∣∣∣Ec

 =
1

τ
inf

j∈[N ]
E

Z1:T

⌊T
τ ⌋∑

r=1

rτ∑
s=(r−1)τ+1

ℓ̂s · µj
s

∣∣∣∣∣∣∣Ec


=

1

τ
inf

j∈[N ]
E

Z1:T

τ⌊T
τ ⌋∑

t=1

ℓ̂t · µj
t

∣∣∣∣∣∣∣Ec


=

1

τ
inf

j∈[N ]

τ⌊T
τ ⌋∑

t=1

ℓt · µj
t ,

where the last equality follows by the unbiasedness of ℓ̂t. Putting all the bounds together, we get that
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1

τ(1− γ)
E

A,Z1:T

τ⌊T
τ ⌋∑

t=1

K∑
i=1

Qt(i)ℓ̂t(i)

∣∣∣∣∣∣∣Ec

 ≤ 1

τ
inf

j∈[N ]

τ⌊T
τ ⌋∑

t=1

ℓt · µj
t +

log(N)

η
+

γ

(1− γ)

⌊
T

τ

⌋

+
η

τ(1− γ)
E

A,Z1:T

τ⌊T
τ ⌋∑

t=1

K∑
i=1

Qt(i)ℓ̂
2
t (i)

∣∣∣∣∣∣∣Ec


+ 10η

⌊
T

τ

⌋
λ2 log2(N

⌊
T

τ

⌋
).

Multiplying both sides by τ(1− γ), gives

E
A,Z1:T

τ⌊T
τ ⌋∑

t=1

K∑
i=1

Qt(i)ℓ̂t(i)

∣∣∣∣∣∣∣Ec

 ≤ (1− γ) inf
j∈[N ]

τ⌊T
τ ⌋∑

t=1

ℓt · µj
t +

τ(1− γ) log(N)

η
+ τγ

⌊
T

τ

⌋

+ η E
A,Z1:T

τ⌊T
τ ⌋∑

t=1

K∑
i=1

Qt(i)ℓ̂
2
t (i)

∣∣∣∣∣∣∣Ec


+ 10η(1− γ)τ

⌊
T

τ

⌋
λ2 log2(N

⌊
T

τ

⌋
),

which implies that

E
A,Z1:T

τ⌊T
τ ⌋∑

t=1

K∑
i=1

Qt(i)ℓ̂t(i)

∣∣∣∣∣∣∣Ec

 ≤ inf
j∈[N ]

τ⌊T
τ ⌋∑

t=1

ℓt · µj
t +

τ log(N)

η
+ γT

+ η E
A,Z1:T

τ⌊T
τ ⌋∑

t=1

K∑
i=1

Qt(i)ℓ̂
2
t (i)

∣∣∣∣∣∣∣Ec


+ 10ηTλ2 log2(N

⌊
T

τ

⌋
).

Using the fact that ℓ̂t is an unbiased estimator of ℓt gives that

E
A,Z1:T

τ⌊T
τ ⌋∑

t=1

K∑
i=1

Qt(i)ℓt(i)

∣∣∣∣∣∣∣Ec

 ≤ inf
j∈[N ]

τ⌊T
τ ⌋∑

t=1

ℓt·µj
t+

τ log(N)

η
+γT+η E

A,Z1:T

τ⌊T
τ ⌋∑

t=1

K∑
i=1

ℓ2t (i)

∣∣∣∣∣∣∣Ec

+10ηTλ2 log2(N

⌊
T

τ

⌋
).

By the boundedness of the loss, we have

E
A,Z1:T

τ⌊T
τ ⌋∑

t=1

K∑
i=1

Qt(i)ℓt(i)

∣∣∣∣∣∣∣Ec

 ≤ inf
j∈[N ]

τ⌊T
τ ⌋∑

t=1

ℓt · µj
t +

τ log(N)

η
+ γT + ηKτ

⌊
T

τ

⌋
+ 10ηTλ2 log2(N

⌊
T

τ

⌋
).
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Bounding the regret in the last τ rounds by τ , gives

E
A,Z1:T

[
T∑

t=1

K∑
i=1

Qt(i)ℓt(i)

∣∣∣∣∣Ec

]
≤ inf

j∈[N ]

T∑
t=1

ℓt · µj
t +

τ log(N)

η
+ γT + ηTK + 10ηTλ2 log2(NT ) + τ

≤ inf
j∈[N ]

T∑
t=1

ℓt · µj
t +

τ log(N)

η
+ γT + ηTK +

90ηTNK2 log( 1δ ) log
2(NT )

ε2γ2τ2
+ τ

Using Equation 1, then gives that

R(T,K,N) ≤ τ log(N)

η
+ γT + ηTK +

90ηTNK2 log( 1δ ) log
2(NT )

ε2γ2τ2
+ 2τ

Since η < 1, we trivially have that

R(T,K,N) ≤ 3τ log(N)

η
+ γT + ηTK +

90ηTNK2 log( 1δ ) log
2(NT )

ε2γ2τ2
.

Now, choosing γ = max

{
η1/3N1/3K2/3 log2/3(NT )

ε2/3τ2/3 ,
12ηK
√

N log( 1
δ ) log(NT )

ετ

}
, gives

R(T,K,N) ≤ 3τ log(N)

η

+ 90max

η1/3(N log( 1δ ))
1/3K2/3 log2/3(NT )

ε2/3τ2/3
,
ηK
√
N log( 1δ )) log(NT )

ετ

T + ηTK.

Choosing η =
(N log( 1

δ ))
1/6 log1/3(NT ) log1/3(N)

T 1/3K1/2ε1/3
and τ =

(N log( 1
δ ))

1/3 log2/3(NT )T 1/3

ε2/3 log1/3(N)
gives

R(T,K,N) ≤
95(N log( 1δ ))

1/6K1/2 log1/3(NT ) log1/3(N)T 2/3

ε1/3

+
(95N log( 1δ ))

1/3K1/2 log2/3(NT ) log2/3(N)T 1/3

ε2/3

≤
100N1/6K1/2T 2/3 log1/6( 1δ ) log

1/3(NT ) log1/3(N)

ε1/3

+
N1/2 log( 1δ )

1/2 log(NT ) log(N)

ε
.

which completes the proof. ■

Proof. (of Privacy in Theorem 4.5) Fix ε, δ ∈ (0, 1]. Note that the sequence of actions played by Algorithm 2 are completely
determined by the noisy loss vectors ℓ̃′1, . . . , ℓ̃

′
T
τ

. Thus, by post-processing it suffices to show that these vectors are output in
a ε-differentially private manner. From this perspective, Algorithm 2 can be viewed as the adaptive composition M of the
sequence of mechanisms M1, . . . ,M⌊T

τ ⌋, where M1 : ([K]×Π([K]))τ × ℓ1:T → RN is defined as

M1(I1:τ , µ
1:τ
1:T , ℓ1:T ) = (ℓ̃′1(1), . . . , ℓ̃

′
1(N))
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for ℓ̃′1(j) defined as in Line 10 of Algorithm 2. Likewise, for s ∈ {2, . . . ,
⌊
T
τ

⌋
}, define Ms : (RN )s−1× (Π([K])× [K])τ ×

ℓ1:T → RN such that

Ms(ℓ̃
′
1:s−1, µ

1:N
(s−1)τ+1:sτ , I(s−1)τ+1:sτ , ℓ1:T ) = (ℓ̃′sτ (1), . . . , ℓ̃

′
sτ (N)).

We will prove that M(ℓ1:T ) and M(ℓ′1:T ) are (ϵ, δ)-indistinguishable. To do so, fix two neighboring data sets ℓ1:T and ℓ′1:T .
Let t′ be the index where the two datasets differ. Let r′ ∈ {1, . . . ,

⌊
T
τ

⌋
} be the batch in where t′ lies. Fix a sequence of

outcomes x1:Tτ
∈
(
RN
)T

τ , µ1:N
1:T ∈ Π([K])NT , and I1:T ∈ [K]T .

For all r < r′, we have that the random variables Mr(x1:r−1, µ
1:N
(r−1)τ+1:rτ , I(r−1)τ+1:rτ , ℓ1:T )

and Mr(x1:r−1, µ
1:N
(r−1)τ+1:rτ , I(r−1)τ+1:rτ , ℓ

′
1:T ) are 0-indistinguishable. We now show that

Mr′(x1:r′−1, µ
1:N
(r′−1)τ+1:r′τ , I(r′−1)τ+1:r′τ , ℓ1:T ) and Mr′(x1:r′−1, µ

1:N
(r′−1)τ+1:r′τ , I(r′−1)τ+1:r′τ , ℓ

′
1:T ) are (ε, δ)-

indistinguishable. On input x1:r′−1, µ
1:N
(r′−1)τ+1:r′τ , and I(r′−1)τ+1:r′τ , the mechanism Mr′(·, ℓ1:T ) computes

ℓ̃′r′τ (j) = ℓ̃r′τ (j) + Zj
r′ , where Zj

r′ ∼ Lap
(
0,

3K
√

N log( 1
δ )

γτε

)
and

ℓ̃r′τ (j) =
1

τ

r′τ∑
m=(r′−1)τ+1

K∑
i=1

µj
m(i)ℓm(i)I{Im = i}

Qm(i)
,

for every j ∈ [N ]. Note that x1:r′−1 complete determines Qm(i). Moreover, the global sensitivity of ℓ̃r′τ (j), with respect to
neighboring datasets, is at most K

γτ since Qt(i) ≥ γ
K for all t ∈ [T ]. Accordingly, by the Laplace Mechanism and advanced

composition, we have that the outputs of Mr′(·, ℓ1:T ) and Mr′(·, ℓ′1:T ) are (ε, δ)-indistinguishable.

To complete the proof, it suffices to show that for all r ≥ r′+1, we have that the outputs of, Mr(·, ℓ1:T ) and Mr(·, ℓ′1:T ) are 0-
indistinguishable. However, this follows from the fact that for every r ≥ r′+1, we have that ℓ(r−1)τ+1:rτ+1 = ℓ′(r−1)τ+1:rτ

and that mechanism Mr does not access the true data ℓ1:(r−1)τ , but only the privatized, published outputs of the previous
mechanisms M1, . . . ,Mr−1. Thus, by advanced composition, we have that the entire mechanism M is (ε, δ)-differentially
private. ■

G. Barriers to Private Adversarial Bandits
G.1. Privacy leakage in EXP3

To better understand its per-round privacy loss, it is helpful to view EXP3 as the adaptive composition of T − 1 mechanisms
M2, . . . ,MT where Mt : [K]t−1×ℓ1:T → [K]. For every t ∈ {2, . . . , T}, the mechanism Mt, given as input the previously
selected actions I1, . . . , It−1 and the dataset ℓ1:T , computes the distribution

Pt(i) = (1− γ)
wt(i)∑K
j=1 wt(j)

+
γ

K

where wt(j) = exp{−η
∑t−1

s=1 ℓ̂s(j)} and ℓ̂s(j) =
ℓs(j)I{Is=j}

Ps(j)
. Then, Mt samples an action It ∼ Pt. The mechanism Mt

is εt-differentially private if for any pair of neighboring data sets ℓ1:T and ℓ′1:T , we have that

sup
I1,...,It−1∈[K]t−1

sup
i∈[K]

P[Mt(I1:t−1, ℓ1:T ) = i]

P[Mt(I1:t−1, ℓ′1:T ) = i]
≤ eεt .

Now, consider two neighboring datasets ℓ1:T and ℓ′1:T that differ at the first time point t = 1. Let P1, . . . , PT denote
the sequence of probabilities output by the mechanisms when run on ℓ1:T and let P ′

1, . . . , P
′
T denote the same for ℓ′1:T .

Since ℓ1 ̸= ℓ′1, we have that ℓ̂1 ̸= ℓ̂′1. Accordingly, P2 ̸= P ′
2. The key insight now is that because P2 ̸= P ′

2, we have
that ℓ̂2 ̸= ℓ̂′2, and so P3 ̸= P ′

3. Continuing this process gives that Pt ̸= P ′
t and ℓ̂t ̸= ℓ̂′t for all t ≥ 2. Unfortunately, this

difference in probabilities can cause the privacy loss to grow with t. To get some intuition, fix some t ≥ 2 and sequence
I1, . . . , It−1 ∈ [K]t−1. Consider the ratio
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Figure 1. Probabilities on action 2 assigned by EXP3 when run with γ = η = 0.0001, and T = 100 · 1
η

on datasets ℓ1:T and ℓ′1:T .

sup
i∈[K]

Pt(i)

P ′
t (i)
≈ sup

i∈[K]

wt(i)

w′
t(i)

∑K
j=1 w

′
t(j)∑K

j=1 wt(j)
≈ sup

i∈[K]

wt(i)

w′
t(i)

.

Observe that

sup
i∈[K]

wt(i)

w′
t(i)

= sup
i∈[K]

exp
{
η

t−1∑
s=1

ℓ̂′s(i)− ℓ̂s(i)
}

= sup
i∈[K]

exp
{
η
(ℓ′1(i)− ℓ1(i))I{I1 = i}

P1(i)
+ η

t−1∑
s=2

ℓs(i)I{Is = i}( 1

P ′
s(i)
− 1

Ps(i)
)
}
.

Since P ′
s(i) ̸= Ps(i) for every s ≤ t − 1, we can pick two neighboring sequences of losses and a sequence of actions

I1, . . . , IT such that supi∈[K]
ws(i)
w′

s(i)
grows very quickly with s. For example, the following choices for neighboring datasets

and sequences of actions will do. Let K = 2 and pick ℓ1:T such that ℓ1(1) = 1, ℓ1(2) = 0, and ℓt(1) = ℓt(2) = 1 for all
t ∈ {2, . . . , T}. Pick neighboring dataset ℓ′1:T such that ℓ′t(1) = ℓ′t(2) = 1, for all t ∈ [T ]. Finally, consider the sequence of
actions I1, . . . , IT such that It = 2 if t is odd and It = 1 if t is even. That is, the sequence of actions I1, . . . , IT alternates
between 2 and 1, starting with action 2.

We claim that for this choice of neighboring datasets and sequences of actions, Pt(2) and P ′
t (2) diverge rapidly with

Pt(2) approaching 1− γ
2 and P ′

t (2) approaching γ
2 . To see why, fix t ≥ 2 and suppose that It = 1. Then, by definition,

for the loss sequence ℓ1:T , we have that wt+2(1) = wt+1(1) = wt(1) exp
−η

Pt(1)
and wt+2(2) = wt(2) exp

−η
1−Pt+1(1)

.

Since It = 1, we know that Pt+1(1) < Pt(1) and therefore wt+2(2) > wt(2) exp
−η

1−Pt(1)
. Now, if Pt(1) < 1

2 , then
wt+2(1)/wt+2(2) < wt(1)/wt(2) < 1. Accordingly, Pt+2(1) < 1/2, and repeating the analysis would eventually
show that wt(1)/wt(2) → 0, implying that Pt(2) → 1 − γ

2 . A symmetric argument shows that if Pt(1) > 1/2, then
wt(2)/wt(1)→ 0, and therefore Pt(2)→ γ

2 . Since the two loss sequences ℓ1:T and ℓ′1:T are identical after time point t = 2,
an identical argument holds for ℓ′1:T . To complete the proof sketch, note that for loss sequence ℓ1:T , I4 = 1 and P4(1) <

1
2 ,

thus Pt(2)→ 1− γ
2 . On the other hand, for loss sequence ℓ′1:T , I2 = 1 and P ′

2(1) >
1
2 , giving that P ′

t (2)→
γ
2 .

We also verify this claim empirically in Figure 1, which gives a better sense of the rate of divergence between Pt(2) and
P ′
t (2). The code generating the figure above is provided below.
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import numpy as np
import matplotlib.pyplot as plt

eta = 0.0001
T = 100 * int(1/eta)
gamma = eta

# Execute EXP3 on loss sequence l_1, \dots, l_T
w_1 = 1
w_2 = 1
P_2 = 0
P_2_hist = []

for t in range(T):
Q_2 = (w_2/(w_2 + w_1)) #unmixed prob.
P_2 = (1-gamma) * Q_2 + gamma/2 #mixed prob.
P_2_hist.append(P_2)
if t == 0:

w_2 = w_2 * np.exp(0*eta/(P_2))
elif t % 2 == 0:

w_2 = w_2 * np.exp(-1*eta/(P_2)) #pull action 2 in even rounds
else:

w_1 = w_1 * np.exp(-1*eta/((1-P_2))) #pull action 1 in odd rounds

plt.plot(P_2_hist, label= "P_t(2)")

# Execute EXP3 on loss sequence l'_1, \dots, l'_T
w_1 = 1
w_2 = 1
P_2 = 0
P_2_hist = []

for t in range(T):
Q_2 = (w_2/(w_2 + w_1))
P_2 = (1-gamma) * Q_2 + gamma/2
P_2_hist.append(P_2)
if t % 2 == 0:

w_2 = w_2 * np.exp(-1*eta/(P_2)) #pull action 2 in even rounds
else:

w_1 = w_1 * np.exp(-1*eta/((1-P_2))) #pull action 1 in odd rounds

plt.plot(P_2_hist, label= "P'_t(2)")

plt.xlabel("t")
plt.legend()
plt.show()

We note that the authors of (Tossou & Dimitrakakis, 2017) acknowledge that this issue was overlooked when stating
Theorem 3.3 in (Tossou & Dimitrakakis, 2017). Therefore, we are unable to verify the Theorem 3.3. Unfortunately, (Tossou
& Dimitrakakis, 2017) use Theorem 3.3 in the proof of Corollary 3.3, which claims to give a private adversarial bandit

algorithm with expected regret Õ
(

T 2/3
√

K ln(K)

ε1/3

)
, ignoring log factors in 1

δ . Thus, we are unable to verify whether

Corollary 3.3 is correct.

G.2. Proof of Lemma 5.1

Proof. (of Lemma 5.1) Let A be any ε-differentially private algorithm (for ε ≤ 1) that satisfies condition (1) and (2) with
parameters γ ∈ [0, 1

2 ], τ < T
2 and 2γτ ≤ p ≤ γ(T − τ). Consider the alternate sequence of loss functions ℓ′1, . . . , ℓ

′
T such

that ℓ′1:τ = ℓ1:τ but ℓ′τ+1:T is such that ℓ′t(2) = 0 and ℓ′t(1) =
1
2 for all t ∈ {τ + 1, . . . , T}.
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It suffices to show that
P(I ′1, . . . , I ′T /∈ Ep

γ,τ ) ≤ eεp · P(I1, . . . , IT /∈ Ep
γ,τ ) ≤

1

2
eεp (2)

where I1:T and I ′1:T are the random variables denoting the selected actions of A when run on ℓ1:T and ℓ′1:T respectively.
Indeed, when I ′1, . . . , I

′
T ∈ Ep

γ,τ , we have that the regret of A when run on ℓ′1:T is at least p
2γ −

p
2 −

τ
2 . On the other hand,

if I1:T ∈ Eγ , we have that the regret of A on ℓ1:T is at least γ
2T . So with probability 1

2 , the regret of A on ℓ1:T is γ
2T and

with probability at least 1− 1
2e

εp, the regret of A on ℓ′1:T is at least p
2γ −

p
2 −

τ
2 ≥

p
4γ −

τ
2 , where the inequality follows

from the fact that γ ≤ 1
2 . Therefore, the worst-case expected regret is at least

max

{
1

2
· γT

2
, (1− 1

2
eεp)

(
p

4γ
− τ

2

)
−
(
1

2
eεp
)

τ

2

}
≥ max

{
γT

4
,

(
1− 1

2
eεp
)

p

4γ
− τ

2

}
.

To prove Equation 2, recall that we may write any randomized algorithm A as a deterministic function of an input x and an
infinite sequence of bits b1, b2, . . . generated uniformly at random. From this perspective, we can think of a randomized
bandit algorithm A as a deterministic mapping from a sequence of losses ℓ1:T and an infinite sequence of bits b ∈ {0, 1}N to
a sequence of T actions. That is,

A : {0, 1}N ×
(
[0, 1]K

)T → [K]T .

Using this perspective, Equation 2 is equivalent to showing that:

P
b∼{0,1}N

(A(b, ℓ′1:T ) /∈ Ep
γ,τ ) ≤ eεpPb∼{0,1}N(A(b, ℓ1:T ) /∈ Ep

γ,τ ).

Consider the following sequence of losses parameterized by S ⊂ {τ + 1, . . . , T}, |S| ≤ p:

ℓSt (i) =


1/2, if i = 1

0, if i = 2 and t ∈ S

1, i = 2 and t /∈ S

Let L := {ℓS1:T : S ⊂ {τ + 1, . . . , T}, S ≤ p } be the collection of all such sequences of loss functions. Note that every
ℓS1:T ∈ L differs from ℓ1:T only at time points t ∈ S. Thus, by group privacy (see Lemma A.8), we have that

sup
ℓS1:T∈L

P
b∼{0,1}N

(A(b, ℓS1:T ) /∈ Ep
γ,τ ) ≤ eεpP

b∼{0,1}N
(A(b, ℓ1:T ) /∈ Ep

γ,τ ).

Now, fix the sequence of random bits b ∈ {0, 1}N. Let i′1:T = A(b, ℓ′1:T ). Define S′ := {t ≥ τ + 1 : i′t = 2} and

S′
≤p be the first p such time points. Let i

S′
≤p

1:T = A(b, ℓS
′
≤p

1:T ). Let t′ = max{t ≥ τ + 1 :
∑t

s=τ+1 I{i′s = 2} ≤ p} and

tS
′
≤p = max{t ≥ τ + 1 :

∑t
s=τ+1 I{i

S′
≤p

s = 2} ≤ p}. Because bandit algorithms only observe the losses of the selected

action, we have that t′ = tS
′
≤p . In addition, we have that i′1:T ∈ Ep

γ,τ if and only if t′ ≥ τ + p
γ , and likewise for i

S′
≤p

1:T .
Therefore,

I{i′1:T ∈ Ep
γ,τ} = I{iS

′
≤p

1:T ∈ Ep
γ,τ}

and therefore

I{i′1:T /∈ Ep
γ,τ} = I{iS

′
≤p

1:T /∈ Ep
γ,τ}.

Taking expectation on both sides with respect to b ∼ {0, 1}N, gives that
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Pb∼{0,1}N(A(b, ℓ′1:T ) /∈ Ep
γ,τ ) = Pb∼{0,1}N(A(b, ℓS

′
≤p

1:T ) /∈ Ep
γ,τ )

≤ sup
ℓS1:T∈L

P
b∼{0,1}N

(A(b, ℓS1:T ) /∈ Ep
γ,τ )

≤ eεpP
b∼{0,1}N

(A(b, ℓ1:T ) /∈ Ep
γ,τ ),

completing the proof. ■
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