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Abstract
Graph neural networks have recently demon-
strated remarkable performance in predicting ma-
terial properties. Crystalline material data is man-
ually encoded into graph representations. Exist-
ing methods incorporate different attributes into
constructing representations to satisfy the con-
straints arising from symmetries of material struc-
ture. However, existing methods for obtaining
graph representations are specific to certain con-
straints, which are ineffective when facing new
constraints. In this work, we propose a code gen-
eration framework with multiple large language
model agents to obtain representations named
Rep-CodeGen with three iterative stages simu-
lating an evolutionary algorithm. To the best of
our knowledge, Rep-CodeGen is the first frame-
work for automatically generating code to obtain
representations that can be used when facing new
constraints. Furthermore, a type of representation
from generated codes by our framework satisfies
six constraints, with codes satisfying three con-
straints as bases. Extensive experiments on two
real-world material datasets show that a property
prediction method based on such a graph repre-
sentation achieves state-of-the-art performance in
material property prediction tasks.

1. Introduction
Over the past decades, machine learning methods have been
widely used in material science. These methods normally
employ hand-crafted descriptors as the representation of
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material data (Damewood et al., 2023). Recently, graph neu-
ral networks (GNN) have shown remarkable performance
in predicting material properties and become the dominant
technology (Chen et al., 2024b; Fang & Yan, 2024).

For most GNN-based material properties predicting meth-
ods, a crystalline material data instance is represented by
an attributed graph, where nodes represent the atoms and
the edges define the interatomic reactions of neighboring
atoms (Xie & Grossman, 2018). The attributes of the graph
commonly contain elemental properties as node features and
interatomic distances as edge features. With the manually
designed codes, the attributed graph can be translated into
a numerical form, called a graph representation, which can
be processed by GNN. As many important material prop-
erties are highly sensitive to the structure of materials, a
fundamental challenge for these methods is to obtain the
representation that can capture the structure of crystalline
material(Choudhary & DeCost, 2021).

A widely adopted solution by researchers is to incorpo-
rate different attributes into the process of constructing
the graph and the representation. CGCNN (Xie & Gross-
man, 2018), Matformer (Yan et al., 2022), and PotNet(Lin
et al., 2023) mainly focus on the distance of atoms, while
ALIGNN(Choudhary & DeCost, 2021), PerCNet(Huang
et al., 2025), and ComFormer(Yan et al., 2024) further in-
corperates angle attributes. With the different attributes,
representations satisfy different constraints arising from
symmetries of material structure. Ideally, representations
capture structures better when satisfying more constraints.
However, existing methods for obtaining graph representa-
tions are specific to certain constraints, which is ineffective
when facing new constraints. Moreover, the above research
strategy requires expert knowledge in both material and
computer science, which costs researchers years to learn.

Inspired by the achievements of large language models
(LLM) in code generation and material science, we propose
a code generation framework with multiple LLM agents
to obtain representations named Rep-CodeGen. The codes
generated by large language models are always of low qual-
ity when the task is difficult. Specificly, the main difficulty
is to guide LLM agents to generate codes to obtain repre-
sentation satisfying constraints, which requires LLM agents
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to accomplish the complex design of the material graph con-
struction process with material knowledge and the coding
process with computer science knowledge. Thus, we sim-
ulate the process of an evolutionary algorithm by dividing
the overall framework into three stages: crossover genera-
tion, evaluation summary, and parent selection. In crossover
generation stages, we incorporate two agents: the first agent
is used to take the prompts and generate plans on how to
write the codes, and the second agent is used to generate
codes according to plans. Then, in the evaluation summary
stage, we score the generated codes with a test dataset and
use the third agent to provide a detailed analysis. Finally, in
the parent selection stage, we set a metric to select the codes
with high scores as parent codes for the next loop. The main
contributions of this paper are as follows:

• We propose an interpretable framework for automati-
cally generating codes to obtain graph representations
that can be used when facing new constraints.

• We obtain a type of graph representation from gener-
ated codes by our framework satisfying six constraints
with codes satisfying three constraints as bases.

• Extensive experiments in two real-world material
datasets show that a property prediction method based
on such graph representation achieves state-of-the-art
performance in material property prediction tasks.

2. Related Works
2.1. Material Representation with Deep Learning

In recent decades, significant advancements in machine
learning have been achieved in the study of crystalline mate-
rials (Meredig et al., 2014; Oliynyk et al., 2016; Ward et al.,
2016; Ramprasad et al., 2017). For material property pre-
diction task, the development of representations that satisfy
constraints of crystalline material structures is crucial for
success. CGCNN (Xie & Grossman, 2018) introduced a
multigraph-based approach, leveraging periodicity and in-
variance under rotation and translation by encoding atomic
interactions through multiple edges between nodes. Subse-
quent studies have expanded on this foundation by incor-
porating additional physical insights. For example, SchNet
(Schütt et al., 2017) integrates force data into training, Meg-
Net (Chen et al., 2019) includes thermodynamic variables
like temperature and pressure, and ALIGNN (Choudhary
& DeCost, 2021) utilizes dual graph structures to represent
bond lengths and angles. To better capture the contributions
of individual atoms within a unit cell, GATGNN (Louis
et al., 2020) employs attention mechanisms to model local
atomic interactions. MatFormer (Yan et al., 2022) advances
this by introducing a framework that ensures periodic in-
variance, while PotNet (Lin et al., 2023) models interatomic

potentials through infinite distance summations.

Subsequently, to ensure that the graph representations of
material structures satisfy reflectional symmetry, methods
such as ComFormer(Yan et al., 2024) and PercNet(Huang
et al., 2025) extended the multigraph representation by intro-
ducing higher-dimensional features, including bond angles
and dihedral angles. These enhancements further improved
the prediction accuracy of machine learning algorithms in
material property prediction tasks.

To satisfy Lipschitz continuity, AMD(Widdowson et al.,
2022) and PDD(Widdowson & Kurlin, 2022) proposed mod-
eling materials as periodic point clouds. Unlike CGCNN
(Xie & Grossman, 2018), which represents bond lengths as
fixed scalars, these methods suggest using distance distribu-
tions to model bond lengths.

With the advancement of large language models (LLMs),
leveraging their generative capabilities across various do-
mains has emerged as a new research direction. Works
such as material LLM (Tao et al., 2024) and MatExpert
(Ding et al., 2024) propose modeling material generation
tasks directly as string generation tasks, producing materials
represented in CIF format. However, these works cannot
theoretically guarantee that the generated material structures
satisfy physical symmetry constraints, and the results lack
interpretability. This significantly undermines the trust of
domain experts in LLMs and even neural network outputs,
limiting the practical application of LLMs in the field of
materials. In contrast, we propose a novel approach to ap-
plying LLMs in the material domain. Specifically, instead
of directly generating representations, our method generates
interpretable code. Human experts can understand the un-
derlying principles of the results through the code, thereby
enhancing trust in the outputs of LLMs.

The statistics of constraint fulfillment for the aforemen-
tioned algorithms are provided in Table 3 in the Appendix.

2.2. Multi-agent System

To better leverage the potential of large language models
(LLMs), multi-agent systems often use specific frameworks
to connect and invoke multiple LLMs, enabling the comple-
tion of tasks that are more complex or specialized than what
a single LLM can achieve.

Due to the confabulations (or hallucinations) (Romera-
Paredes et al., 2024) inherent in LLM outputs, incorporating
evaluators to verify LLM-generated results is a common
approach in agent systems. For instance, Haluptzok et al.
(Haluptzok et al., 2022) employs a Python interpreter to fil-
ter the correctness of data generated by the language model,
thereby enhancing its performance. Similarly, Zelikman
et al. (Zelikman et al., 2022) adopts this idea by validating
previously generated data (such as explanations for answers)
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Figure 1. Constraints of Crystalline Material Structures. For simplicity, we use a 2D structure for illustration. (a) Permutation Invariance:
The atomic indices within the unit cell change. (b) Rotation Invariance: The lattice and all atomic coordinates undergo the same rotation.
(c) Translation Invariance: All atomic coordinates undergo the same translation. (d) Reflection Equivariance: The material structure
is mirrored along a specific plane. (e) Periodicity Equivariance: The lattice coordinates change. (f) Lipschitz Continuity: The atomic
coordinate x undergoes a small displacement ϵ.

to ensure that the LLM can be fine-tuned on correctly gener-
ated answers. Romera-Paredes et al. (Romera-Paredes et al.,
2024) utilizes a code executor to test LLM-generated code,
ensuring the accuracy of the generated data.

More relevant to our approach is the use of LLMs as a source
of mutations in genetic programming processes. Haluptzok
et al. (Haluptzok et al., 2022) was the first to propose the
concept of “evolution through large models”, leveraging
code-generating LLMs as mutation operators in genetic
programming (GP). This idea was subsequently applied to
various fields, including neural architecture search (Chen
et al., 2024a; Zheng et al., 2023; Nasir et al., 2024), code
generation (Romera-Paredes et al., 2024; Lehman et al.,
2023), symbolic regression (Meyerson et al., 2024), and
game exploration (Wang et al., 2023). Unlike previous
tasks, applying LLMs in real-world domains requires care-
ful consideration of physical rules and the generation of
interpretable results to enhance trustworthiness. To the best
of our knowledge, we are the first to apply the concept to the
field of material representation, proposing a representation
of material structures that surpasses current human-designed
representations.

3. Preliminaries
3.1. Material Notations

A material’s structure can be viewed as the infinite exten-
sion of its unit cell, with the unit cell serving as the small-
est representative entity illustrating the material’s struc-
ture. A material can be expressed as M = {A,X,L}.

Here, A = [a1, ..., aN ]⊤ ∈ AN denotes atom types, with
A representing the set of chemical elements and N rep-
resenting the number of atoms in the unit cell. X =
[x1, ...,xN ]⊤ ∈ RN×3 specifies the three-dimensional
coordinates of atoms in the Cartesian coordinate system.
L = [l1, l2, l3]

⊤ ∈ R3×3 represents the periodic lattice,
indicating the directions in which the unit cell extends in-
finitely in three-dimensional space.

3.2. Constraints of Crystalline Material Structures

We consider six widely recognized constraints that mate-
rial molecular representations should satisfy: permutation
invariance, rotation invariance, reflection equivariance, lip-
schitz continuity, periodicity equivariance, and translation
invariance. The illustrations of these constraints are shown
in Figure 1. Their detailed definitions are provided below.

Permutation Invariance: For any permutation p ∈ SN , we
have P (A,X,L) = P (Ap,X,L). This means that chang-
ing the order of the atoms does not affect the representation
of the material structure.

Rotation Invariance: For any rotation matrix R ∈ R3×3,
we have P (A,X,L) = P (A,XR,LR). This indicates that
applying the same rotation to both the atoms and the lattice
does not alter the representation of the material structure.

Translation Invariance: For any translation vector t ∈
R3×1, we have P (A,X,L) = P (A,X + t1T , L + t1T ),
where 1 ∈ R1×3. This means that translating both the
atoms and the lattice by the same vector does not change
the representation of the material structure.
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Figure 2. Pipeline of code generation framework with multiple LLM agents to obtain representations (Rep-CodeGen).

Reflection Equivariance: For any reflection matrix R ∈
R3×3, we have P (A,X,L) ̸= P (A,XR,LR). This im-
plies that performing the same reflection on both the atoms
and the lattice will change the representation of the material
structure.

Periodicity Equivariance: For any orthogonal matrix O ∈
R3×3, if L2 ̸= OL1, then P (A,X,L1) ̸= P (A,X,L2).
This indicates that changing the lattice coordinates of the
material structure will change the representation.

Lipschitz continuity: If the material structure m2 is ob-
tained by shifting each atom’s position in m1 by at most ϵ,
then d(P (m2), P (m1)) ≤ Cϵ, where C is a constant. This
means that the change in the representation of the material
structure should be continuous.

4. Methodology
In this section, we first introduce a code generation frame-
work with multiple LLM agents to obtain graph representa-
tions named Rep-CodeGen. An overview of Rep-CodeGen
is shown in Figure 2. We simulate the process of an evo-
lutionary algorithm by dividing the overall framework into
three stages: Crossover Generation, Evaluation Summary,
and Parent Selection. We will describe each component in
Sections 4.1, 4.2, and 4.3, respectively.

4.1. First Stage: Crossover Generation

The purpose of the first phase, the Crossover Generation,
is to generate new material structure representation codes
based on existing parent codes using Large Language Mod-
els (LLMs). To further improve the quality and interpretabil-
ity of the generated output, we adopted a two-step gener-
ation strategy. In the first step, the plan for solving the

problem is generated by Agent A. In the second step, a
complete code is generated based on the outlined plan by
Agent B. Below, we describe the detailed process of each
step.

4.1.1. SOLUTION GENERATION

The goal of solution generation is to utilize the Agent A to
devise a plan for generating material representation code that
satisfies all constraints, based on the physical constraints of
the parent code. In this section, the input to the Agent A
mainly consists of three parts: the problem description,
the parent code, and the task requirements. An example
template of such a prompt is shown in the Appendix D.1.

In the first part of the prompt, the problem description, we
begin by providing the Agent A with a natural language
explanation of the task, followed by a brief description of
the constraints to be satisfied. Then, we present all the
environmental code in the form of code, with the core being
an evaluate function that scores the generated representation
code. The second part, the description of the parent code,
includes the code of the parent code, the satisfaction of the
constraints, and the potential reasons for each constraint
being either satisfied or unsatisfied. These reasons and the
satisfaction status are obtained from the code evaluation and
Agent C analysis in the second stage, evaluation summary.
Finally, we describe the task to Agent A.

The Agent A serves as the creative core of our evolution-
ary framework, generating plans for new mutation code by
referencing the parent code and their constraint satisfaction
status, along with the reasons provided in the prompt. Based
on this information, Agent A attempts to generate a plan
for code that satisfies all constraints.
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4.1.2. CODE GENERATION

The goal of code generation is to use Agent B to generate
material representation code that satisfies all constraints,
based on the modification plan generated by Agent A. Sim-
ilar to the previous section on solution generation, the input
to the Agent B still consists of three parts: the problem
description, the parent code, and the task requirements. An
example template of such a prompt is shown in D.2.

Here, the problem description and the description of the
parent code are the same as in the previous prompt for
Agent A. The third part, the task description for the
Agent B, incorporates the output from Agent A, i.e., the
modification plan, as part of the input. Each iteration gen-
erates four codes, after which all the generated code is
evaluated and analyzed.

4.2. Second Stage: Evaluation Summary

The purpose of the second stage, Evaluation Summary, is to
assess the constraint satisfaction of the generated code using
the test data, and to utilize Agent C to analyze the reasons
behind the satisfaction or violation of these constraints. The
detailed process of each step is described below.

The code is evaluated and scored using a constructed dataset.
During the evaluation process, the input to the evaluation
function consists of test data for each constraint, and the
output is the score of the code for each constraint. We have
built dedicated test data for each constraint based on the MP-
20 dataset, with the construction process and the scoring
criteria for each constraint detailed below. The construction
of test sets for each constraint is shown in Appendix C. To
accelerate the evaluation process, a random subset of data is
sampled from the constructed test set for each evaluation.

If the code passes all test cases for a specific constraint,
we consider it to satisfy that constraint; otherwise, it is
deemed unsatisfied. Finally, incorrect codes (those that fail
to execute within the specified time and memory limits, or
produce invalid outputs) will be discarded. The correctly
running code, along with its constraint satisfaction status,
will be sent to the Agent C for cause analysis.

To enable Agent A to have a more accurate and deeper
understanding of the parent code, and to generate a mod-
ification plan that better meets the requirements, we use
the LLM to analyze the reasons for the code satisfying or
violating certain constraints before sending the generated
code to the code repository. Similar to the previous prompt
for the agent, the input to Agent C still consists of three
parts: the problem description, the code with its constraint
satisfaction status, and the task requirements. An example
template of such a prompt is shown in D.3.

Finally, the satisfaction status of the code on the various

constraint are used as labels, and the code, along with its
reasons, are stored in the code population.

4.3. Third Stage: Parent Selection

The main purpose of code population is twofold. First, it
stores the codes obtained from the previous step of the Eval-
uation Summary along with the reasons for their correspond-
ing constraint satisfaction. Second, it serves as a source for
parent codes for the first stage, Crossover Generation.

Parent selection, which refers to the process of sampling
codes from the code population to generate prompts in
Crossover Generation, is a crucial component of this frame-
work. For this, we cluster codes based on their signa-
tures, with codes having the same label being placed in
the same cluster. The signature of the i-th code is defined
as Si = [si1, . . . , s

i
K ], where K is the number of constrains,

and sik ∈ {0, 1} represents the satisfaction of the k-th con-
straint by the i-th code within its respective cluster. Specif-
ically, sik = 0 indicates that the code’s output does not
satisfy the k-th constraint, while sik = 1 indicates that the
constraint is satisfied. The number n represents the total
number of constraints, which is set to 6 by default.

To ensure diversity in sampling and comprehensive con-
straint satisfaction, we prioritize selecting two codes that
satisfy a larger number of constraints. For this purpose, we
propose a joint label for two clusters, Si,j = [si,j1 , . . . , si,jK ],
where K is the number of constrains, and the definition
of si,jk is as follows: if sik = 1 or sjk = 1, then si,jk = 1;
otherwise, si,jk = 0.

Based on this, the probability that the i-th cluster and the
j-th cluster are jointly selected as parent codes is given by:

Pi,j =
exp

(
Si,j

T

)
∑N

i′=1

∑N
j′=1 exp

(
Si′,j′

T

) ,
Si,j =

1

K

K∑
k=1

si,jk , Si′,j′ =
1

K

K∑
k=1

si
′,j′

k ,

(1)

where, N is the total number of clusters, K is the number of
constrains, and T is the temperature parameter related to the
current number of codes. Following Boltzmann distribution
(Maza & Tidor, 1993), a code pair with a larger Si′,j′ (i.e.,
satisfies more constraints) is more likely to be selected.

Considering the token limitations of the input and output of
the large model, when selecting parent codes from a cluster,
we tend to prefer shorter codes. In this case, the probability
of selecting the i-th code within a cluster is given by:
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Figure 3. Illustrations of graph representation constructed by ComFormer (a-c), PerCNet (d-h) and ours (i-k). For simplicity, we use a 2D
structure for illustration. (a) Illustration of ComFormer’s cutoff-based neighbor selection, where the red dashed circle (with a radius equal
to the cutoff value) encloses all atoms (blue nodes) that are neighbors of atom u (orange node), and black nodes represent non-neighbor
atoms. (b–c) Illustrations of ComFormer’s distance and angle features, where u1, u2, and u3 are the three nearest neighbors of atom u
and v is the neighbor of atom u. (d) Illustration of PerCNet’s cutoff-based neighbor selection. (e–h) Illustrations of PerCNet’s distance,
angle, and dihedral angle features, where u1 is the nearest neighbor of atom u, u2 is the neighbor with the smallest angle relative to the
edge uv, and v1 is the nearest neighbor of atom v. (i) Illustration of our proposed lattice-based neighbor selection, where all atoms (blue
nodes) within the red dashed box are neighbors of atom u (orange node). (j–k) Illustrations of our proposed distance and dihedral angle
features, where u1 and u2 are atoms obtained by extending atom u along the lattice directions.

Pi =
exp

(
−Ci

T

)∑Nc

i′=1 exp
(
−Ci′

T

) , (2)

where, Nc is the total number of codes in the cluster, and
Ci is the character count of the i-th code. With Equation 1
and 2, we achieve the goal that code pairs satisfying more
constraints and having shorter lengths are more likely to be
selected as parent codes.

5. Experiments
In this section, we address three key questions: (Q1) Can
our framework identify a representation that satisfies all
six aforementioned constraints, and how does this repre-
sentation differ from existing methods? (Q2) How does
the proposed material representation perform in material
property prediction tasks? (Q3) How effective is our pro-
posed multiple LLM agent architecture in generating graph
representation code when facing new constraints?

5.1. A Representation Obtained by Codes of
Rep-CodeGen

In this section, we answer question Q1. First, we introduce
the results of Rep-codeGen. Then, we provide a detailed ex-
planation of the material graph representation that satisfies
six constraints. Finally, we thoroughly discuss the differ-
ences between our proposed representation and existing
graph representation methods.

Results of Rep-CodeGen. The framework employs codes
satisfying three constraints as bases and iterates until a ma-
terial representation that passes all test cases (i.e., satisfies

all six constraints) is found. Ultimately, in the 14,076th
iteration, we identified code that successfully passed all test
cases. In the process of finding codes that satisfy six con-
straints, the framework generated a total of 56,304 codes, of
which 39.60% (22,297) were executed successfully. Among
these, 4,009 codes satisfied four constraints, 14,645 codes
satisfied five constraints, and 1 code satisfied six constraints.
These results demonstrate that Rep-CodeGen is capable of
generating code representations that satisfy new constraints.

Note that we employ three pre-trained QWen (Hui et al.,
2024) LLMs as distinct agents, and the entire process does
not require further retraining of the models and the results
on other LLMs are shown in section 5.3.

Material Graph Representation. The material represen-
tation code obtained by Rep-CodeGen is provided in Ap-
pendix B. Specifically, the proposed representation that sat-
isfies the physical constraints can be expressed as [u, v, attr],
where u represents the atomic number of all atoms in the
unit cell, and v represents the atomic number of each neigh-
bor of atom u. The attribute attr = {duv, θuv} includes the
distance and dihedral angle information between atoms u
and v. The illustrations of duv and θuv are shown in Figure
3 (j) and (k), where duv represents the edge distance be-
tween atom u and atom v, with atom v being any neighbor
of atom u. θuv represents the dihedral angle between the
half-planes uvk and uvl. This angle is also related to the
direction of normal vectors of the two half-planes and vector
uv. Here, atoms k and l are obtained by extending atom u
along the lattice direction.

Differences from Existing Graph Representation Meth-
ods. The proposed representation differs from existing
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Table 1. Comparison between our proposed material representation and other baselines in terms of test MAE on JARVIS dataset and
The Materials Project dataset. The best results are shown in bold, and the second best results are shown with underlines. The number in
parentheses after the algorithm represents the number of constraints that the algorithm satisfies.

Method
JARVIS Materials Project

Energy Hull Total Energy BandGap Formation Energy Formation Energy BandGap

meV meV/atom meV meV/atom meV/atom meV

CGCNN (4) 170 78 410 63 31 292
ALiGNN (4) 76 37 310 33.1 22.1 218

MatFormer (4) 64.2 35 300 32.5 21 211
PotNet (4) 55.4 32.4 273 29.4 18.8 204

PerCNet (5) 50.3 30.7 265 28.7 18.1 200
ComFormer (5) 47 28.8 260 27.2 18.3 193

Ours (6) 43.3 28.3 253 27.2 18.0 191

graph algorithms primarily in two aspects: the method of
acquiring neighbors v and the construction of features attr.
Below, we illustrate the distinctions of our representation by
comparing it with the most constrained graph representation
methods, namely ComFormer and PerCNet.

First, regarding the method of acquiring neighbors, exist-
ing methods, such as ComFormer(Yan et al., 2024) and
PerCNet(Huang et al., 2025) in Figure 3, predominantly
determine neighbor relationships based on a cutoff distance.
Specifically, atoms within a distance smaller than the cutoff
are considered neighbors. This approach lacks Lipschitz
continuity for atoms near the cutoff boundary, meaning that
minor positional changes of boundary atoms can lead to
significant alterations in neighbor relationships. In contrast,
our representation innovatively identifies neighbors based
on periodicity. For any atom within a unit cell, all atoms
within a 3× 3× 3 periodic region surrounding the unit cell
are considered neighbors, ensuring continuity to positional
variations.

Second, in terms of feature construction, ComFormer fo-
cuses on distance and angle information, while PerCNet
incorporates distance, angle, and dihedral angle informa-
tion. Our representation, on the other hand, emphasizes
distance and dihedral angle information. Notably, although
both our representation and PerCNet model dihedral angles,
our construction method differs significantly. As shown
in Figure 3, in PerCNet’s representation, among the four
atoms forming two faces, the two atoms besides atom u
and its neighbor v are selected based on their distance to
atom u. This distance-based selection still suffers from the
lack of Lipschitz continuity. In contrast, our representation
selects the remaining two atoms based on lattice coordinates
related to periodicity. Consequently, even if atomic coor-
dinates fluctuate, the derived distance and dihedral angle
information maintain Lipschitz continuity.

Detailed proofs demonstrating that our representation sat-
isfies all constraints proposed in Section 3.2, as well as the
role of the aforementioned distinctions, are provided in Ap-
pendices E.1 through E.6. To the best of our knowledge, this
material representation is the first to simultaneously satisfy
all of these constraints.

5.2. Performance Comparisons on Material Property
Prediction tasks

In this section, we aim to answer question Q2 by evaluating
the performance of the proposed presentation in terms of
Mean Absolute Error (MAE), consistent with prior studies
(Huang et al., 2025; Lin et al., 2023; Yan et al., 2022; Xie &
Grossman, 2018).

Setup. The Materials Project-2018.6 dataset contains
69,239 materials, and the JARVIS-DFT-2021.8.18 3D
dataset contains 55,722 materials. To ensure a fair com-
parison, we adopt the same data settings as previous works
(Huang et al., 2025; Xie & Grossman, 2018). The statistics
of data settings and neural network configurations are shown
in the Appendix F.1.

Results. The results of various graph-based representation
algorithms on the property prediction task are shown in Ta-
ble 1, and point cloud-based algorithms are shown in Table
5 in the Appendix. Across all tasks, based on the material
representation proposed by our multiple-agent architecture,
our method achieves the best performance. Notably, while
we employ the same network architecture as PerCNet for
processing graph representations, our method demonstrates
improved prediction accuracy across all tasks compared to
PerCNet. The most significant improvement is observed in
the prediction accuracy of Energy Hull, with an increase
of 13.9%. This result highlights that the performance gains
stem from the superiority of our representation rather than
the neural network architecture.
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Table 2. Constraint satisfaction results of representation codes generated by different large models under different frameworks. Algorithm
variants with (1e3) denote 1,000 candidate code generations. The goal of this experiment is to satisfy five constraints. Bold values
highlight bond metric superiority of our Rep-CodeGen framework over direct generation baselines.

Algorithm Improve Rate Constraint Satisfaction Spectrum
Zero One Two Three (Initial) Four Five

GPT 3.5 (1e3) 0.00% 0.00% 0.00% 14.39% 85.61% 0.00% 0.00%
GPT + Rep-CodeGen (1e3) 5.41% 2.70% 10.81% 5.41% 75.68% 5.41% 0.00%

Deep Seek (1e3) 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00%
Seek + Rep-CodeGen (1e3) 26.27% 0.00% 0.00% 0.42% 73.31% 26.27% 0.00%

QWen (1e3) 13.51% 2.70% 2.70% 10.81% 70.27% 13.51% 0.00%
Qwen + Rep-CodeGen (1e3) 66.53% 1.15% 1.54% 6.92% 23.85% 40.38% 26.15%

5.3. Performance Comparison on Evolution Ability of
Rep-CodeGen

In this section, we aim to address question Q3 by conduct-
ing a comparative analysis between two distinct experimen-
tal conditions: the performance of large language models
(LLMs) when augmented with Rep-CodeGen versus their
baseline capabilities in standalone operation.

Setup. We conduct experiments on three different large
language models: QWen (Hui et al., 2024), DeepSeek
(DeepSeek, 2025), and ChatGPT-3.5 (OpenAI, 2023). Each
LLM is evaluated on graph representation code generation
tasks under two operational settings: (1) LLM solely, (2)
LLM enhanced with Rep-CodeGen. To ensure a fair com-
parison, identical prompt templates are applied across corre-
sponding configurations, with the baseline LLM prompting
strategy detailed in Appendix F.2. Notably, in contrast to
the aforementioned experiments, our objective is to identify
representations that satisfy five known constraints, with the
number of evolutionary iterations restricted to 1000 due to
the resource limitation. As the code of graph representations
satisfies three constraints is used as bases, the framework
shows evolutionary ability if the generated codes of graph
representations satisfy four and five constraints. By contrast,
the framework shows degeneration if the generated codes
of graph representations satisfy two or fewer constraints.

In this section, we employ two complementary metrics: Im-
prove Rate: The proportion of executable codes that satisfy
more constraints than the initial code. Constraint Satisfac-
tion Spectrum: Distribution of codes satisfying incremental
constraint counts (0-5) among successful executions.

Results. As shown in Table 2, our framework significantly
improves the quality of generated code compared to directly
using LLMs. For GPT3.5, we can see the quality of codes
shows a degeneration to satisfy the two constraints, while
GPT3.5 with Rep-CodeGen shows both evolution and de-
generation. Note that, both the degeneration and evolution
show the exploration ability, which is key to the success
of generation models. The Deepseek shows no exploration
ability for this task and fails to identify satisfied codes. By

contrast, the Deepseek with Rep-CodeGen shows the explo-
ration ability and finds the codes satisfying four constraints.
Finally, the QWen shows the exploration ability and evolu-
tion ability. However, it can’t generate codes satisfying five
constraints. By contrast, Rep-CodeGen can significantly
improve the abilities of QWen and generate codes satisfy-
ing five constraints. Overall, Rep-CodeGen demonstrates
evolutionary capabilities across all three LLMs, supported
by its enhanced exploration ability.

6. Conclusion
In this work, we focus on the challenge of obtaining graph
representations of materials that are effective when facing
new constraints. We propose Rep-CodeGen with iterative
stages, a code generation framework with multiple LLM
agents, to generate high-quality codes to obtain graph rep-
resentations. To the best of our knowledge, Rep-CodeGen
is the first framework for automatically generating codes to
obtain graph representations. We take representation con-
struction task as a code-generation task, which can reduce
expert knowledge to a large extent. The researchers in mate-
rial science can focus more on investigating the constraints
brought by materials, while the researchers in computer sci-
ence can focus on improving the quality and efficiency of
generating methods. Furthermore, a type of representation
from generated codes by our framework satisfies six con-
straints with codes satisfying three constraints as bases. We
detailed analysis the difference between the obtained graph
representations and existing graph representations, and pro-
vide chemical insights into such representations. Extensive
experiments on two real-world material datasets show that
a property prediction method based on such graph repre-
sentations achieves state-of-the-art performance in material
property prediction tasks. Furthermore, to evaluate the gen-
eralizability of our framework, we conduct experiments on
different LLMs. The Rep-CodeGen shows evolution abil-
ity based on different LLMs, while the single LLM agent
shows limited ability when facing new constraints. In the fu-
ture, the proposed framework will be utilized to streamline
material structure generation tasks.
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A. The fulfillment of physical constraints of related works
The fulfillment of physical constraints by various algorithms is shown in Table 3.

Table 3. The fulfillment of physical constraints by various algorithms, where × indicates that the algorithm does not satisfy the constraint,
and ✓ indicates that it does.

Algorithm Permutation Rotation Reflection Lipschitz Periodicity Translation
Invariance Invariance Equivariance Continuity Equivariance Invariance

CGCNN ✓ ✓ × × ✓ ✓
ALiGNN ✓ ✓ × × ✓ ✓
MatFormer ✓ ✓ × × ✓ ✓
PotNet ✓ ✓ × × ✓ ✓
materialLLM × × × × ✓ ×
MatExpert × × × × ✓ ×
PerCNet ✓ ✓ ✓ × ✓ ✓
ComFormer ✓ ✓ ✓ × ✓ ✓
AMD ✓ ✓ × ✓ ✓ ✓
PDD ✓ ✓ × ✓ ✓ ✓
Ours ✓ ✓ ✓ ✓ ✓ ✓

B. Material representation code proposed by Rep-CodeGen
The code of material representation generated by our proposed Material Representation Code Generation (Rep-CodeGen)
with multi-agent architecture is shown in Code 1. To enhance readability, we have manually adjusted the variable naming
conventions in the generated code to align with those used in the paper and added necessary comments, while keeping other
parts unchanged.

Listing 1. Code of material representation generated by code generation framework with multiple LLM agents (Rep-CodeGen)
1@funsearch.evolve
2def representation(dataset_list: list) -> list:
3atoms_Attr_list = []
4for atoms_data in dataset_list:
5coords = np.array(atoms_data["coords"])
6elements = atoms_data["elements"]
7lattice_mat = np.array(atoms_data["lattice_mat"])
8num_atoms = len(coords)
9extended_atoms = []
10

11# Extend atoms based on lattice translations
12for dx in [0, -1, 1]:
13for dy in [0, -1, 1]:
14for dz in [0, -1, 1]:
15for i in range(num_atoms):
16coord_u = coords[i]
17element_u = elements[i]
18new_coord = np.array(coord_u + dx * lattice_mat[0] + dy * lattice_mat[1] + dz

* lattice_mat[2])
19extended_atoms.append([elements[i], new_coord])
20

21Attr_list = []
22for i in range(num_atoms):
23coord_u = extended_atoms[i][1]
24u = element_to_atomic_number[extended_atoms[i][0]]
25distances = []
26

27# Calculate distances to all other atoms
28for j in range(len(extended_atoms)):
29if i != j:
30coord_v = extended_atoms[j][1]
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31v = element_to_atomic_number[extended_atoms[j][0]]
32distance = np.linalg.norm(coord_u - coord_v)
33distances.append([j, distance])
34distances.sort(key=lambda x: x[1])
35nearest_neighbors = distances[:]
36

37# Process nearest neighbors
38for neighbor in nearest_neighbors:
39j = neighbor[0]
40distance = neighbor[1]
41u = element_to_atomic_number[extended_atoms[i][0]]
42v = element_to_atomic_number[extended_atoms[j][0]]
43Attr = np.round(distance, 2)
44Attr_list.append([u, v, Attr])
45

46# Calculate dihedral angle
47u_coord = extended_atoms[i][1]
48v_coord = extended_atoms[j][1]
49k_coord = extended_atoms[i + num_atoms][1]
50l_coord = extended_atoms[i + 3 * num_atoms][1]
51

52uv = np.array(v_coord) - np.array(u_coord)
53uk = np.array(k_coord) - np.array(u_coord)
54ul = np.array(l_coord) - np.array(u_coord)
55normal_ukl = np.cross(uk, ul)
56normal_uvk = np.cross(uv, uk)
57cos_angle = np.dot(normal_ukl, normal_uvk) / (np.linalg.norm(normal_ukl) * np.

linalg.norm(normal_uvk))
58cos_angle = np.clip(cos_angle, -1.0, 1.0)
59angle = np.arccos(cos_angle)
60cross_prod = np.cross(normal_ukl, normal_uvk)
61if np.dot(cross_prod, uv) > 0:
62dihedral_angle = np.degrees(angle)
63else:
64dihedral_angle = np.degrees(np.pi - angle)
65Attr_list.append([u, v, dihedral_angle])
66

67Attr_list.sort(key=lambda x: (x[0], x[1], x[2]))
68atoms_Attr_list.append(Attr_list)
69

70return atoms_Attr_list

C. The construction of test sets for each constraint
• Permutation Invariance: For each material structure in the mp-20 dataset, we rearrange the order of all the atoms. If

the representation of the material structure changes after rearranging, it is considered that the representation does not
satisfy permutation invariance.

• Rotation Invariance: For each material structure in the mp-20 dataset, we rotate all the atomic coordinates and lattice
coordinates within the unit cell by a random angle. If the representation of the material structure changes after rotation,
it is considered that the representation does not satisfy rotation invariance.

• Translation Invariance: For each material structure in the mp-20 dataset, we translate all the atomic coordinates
within the unit cell by the same random vector. If the representation of the material structure changes before and after
translation, it is considered that the representation does not satisfy translation invariance.

• Reflection Equivariance: For each material structure in the mp-20 dataset, we perform a mirror reflection of all the
atomic coordinates and lattice coordinates along a randomly chosen plane. If the representation before and after the
reflection remains the same, it is considered that the representation does not satisfy reflection equivariance.

• Periodicity Equivariance: For each material structure in the mp-20 dataset, we modify the lattice coordinates in
various ways such that the modified coordinates cannot be obtained by rotating or translating the original lattice
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coordinates. If the representation of the material structure before and after the modification remains unchanged, it is
considered that the representation does not satisfy periodicity equivariance.

• Lipschitz Continuity: For each material structure in the mp-20 dataset, we make small changes to the coordinates of
some atoms in the unit cell. If the material representation undergoes abrupt changes (such as a change in neighbor
relationships) or the difference between the representation before and after modification is too large, it is considered
that the representation does not satisfy Lipschitz continuity.

D. Prompt of all agents
D.1. Prompt of Agent A

An example template of the prompt of Agent A is :

I want to design a function that can construct a graph representation
of material molecules that satisfies specific constraints. The graph
representation of the material molecule should meet the following requirements:
<Symmetry Constraints>. \n Below is the code that describes this problem, which
does not require modification: <Problem Code>.\n Next is the function that
needs modification:<Representation Code>.\n The constraint satisfaction of the
material graph representations generated by the above representation function
is as follows: <Satisfaction Reason>.\n Your task is to outline a clear plan
and detailed steps to design a new representation function that fulfills all the
specified constraints.

D.2. Prompt of Agent B

An example template of the prompt of Agent B is :

I want to design a function that can construct a graph representation
of material molecules that satisfies specific constraints. The graph
representation of the material molecule should meet the following requirements:
<Symmetry Constraints>. \n Below is the code that describes this problem, which
does not require modification: <Problem Code>.\n Next is the function that needs
optimization: <Representation Code >. \n I hope to rewrite a new representation
function to replace the previous representation function, so that the graph
representation it generates satisfies all constraints. Here is my proposed plan:
<Modification Plan >. \n Your task is to rewrite a new representation function
to replace the previous one, based on the plan outlined above.

D.3. Prompt of Agent C

An example template of the prompt of Agent C is :

I want to design a function that can construct a graph representation
of material molecules that satisfies specific constraints. The graph
representation of the material molecule should meet the following requirements:
<Symmetry Constraints>. \n Below is the code that describes this problem, which
does not require modification: <Problem Code>.\n Next is the function that needs
optimization: <Representation Code >. \n The constraint satisfaction of the
material graph representations generated by the above representation function is
as follows: <constraint satisfaction >. \n Your task is to analyze the reasons
for each constraint being satisfied or not satisfied, one by one. Please present
the complete reasoning.

D.4. Description of Constraints

Below is the full description of the constraints:
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• Permutation invariance: Changing the atomic indices should not alter the graph representation.

• Rotation invariance: Rotating the atomic coordinates should not change the graph representation.

• Reflection equivariance: Performing a mirror symmetry on the lattice and atomic coordinates should result in a change
in the graph representation.

• Lipschitz continuity: If the coordinates of the crystal undergo continuous changes, the corresponding graph repre-
sentation should also change continuously. This means the neighbor relationships of each atom (i.e., which atom is a
neighbor) should not change, but the attributes of the corresponding neighbors (such as distance or angle) should vary
accordingly.

• Periodicity equivariance: The graph representation should implicitly incorporate lattice information, meaning that
any modification to the lattice coordinates (e.g., scaling the lattice by 1.5 times) should result in a change in the graph
representation.

• Translation invariance: Translating the atomic coordinates should not affect the graph representation.

E. Proof that the proposed representation satisfy material symmetry properties
Below, we will prove that the material representation found by Rep-CodeGen satisfies all the constraints proposed in Section
3.2, based on the representation formula in Section 5.1.

E.1. Permutation Invariance

As shown in Section 5.1, the features of atom u and its neighboring atom v depend solely on the atomic indices. For example,
if atom u is a carbon (C) atom, its feature value would be 6. Therefore, changing the arrangement of atoms does not affect
the final representation.

E.2. Rotation Invariance

The variables in attr, which contain distance and dihedral angle information, are relative quantities. Therefore, applying
rotation to the coordinates does not affect the material representation.

E.3. Reflection Equivariance

When the coordinates of the material undergo reflection, the directions of the vectors within the material will change. As a
result, the product of the variables cross prad and uv on line 61 of Code 1 will be altered. Therefore, the representation
we obtain satisfies reflection equivariance.

E.4. Lipschitz Continuity

The feature triplet [u, v,attr] for each atom within the unit cell exhibits continuity primarily in two aspects: the feature
value attr and the neighbor relationship v. Since attr is directly related to the coordinates, it inherently satisfies
continuity. The current method, however, employs a cutoff approach, which can lead to abrupt changes in the neighbor
relationships. In contrast, the representation we propose considers all atoms within a 3 × 3 × 3 lattice as neighbors,
ensuring that the neighbor relationships do not change due to small variations in the coordinates, thereby satisfying Lipschitz
continuity.

E.5. Periodicity Equivariance

For any atom u within the unit cell and its neighboring atom v, the coordinates of v are dependent on both the atomic
coordinates within the lattice and the lattice coordinates. Therefore, when the periodicity of the material changes, i.e., when
the lattice coordinates are modified, the coordinates of neighbor v will also change. As a result, the distance feature between
u and v will be adjusted accordingly, which ensures that the material representation satisfies periodicity equivariance.
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E.6. Translation Invariance

The variables in attr, which contain distance and dihedral angle information, are relative quantities. Therefore, applying
translation to the coordinates does not affect the material representation.

Table 4. Statistics of datasets.

Dataset JARVIS Materials Project

Formation Energy Total energy Bandgap Ehull Formation Energy BandGap

# training 44578 44578 14537 44296 60000 60000
# validation 5572 5572 1817 5537 5000 5000

# testing 5572 5572 1817 5537 4239 4239

F. Experimental Details
F.1. Experimental Setup of material Property Prediction tasks

The statistics of data settings are shown in Table 4. For all tasks, we utilize one NVIDIA RTX 24G 3090 GPU for computation.
To ensure a fair comparison, we employ the same network architecture and training methodology as PerCNet(Huang et al.,
2025), which also incorporates dihedral angle information. In terms of implementation, all models are trained using the
Adam optimizer with a one-cycle learning rate scheduler. The training configuration includes a learning rate of 0.001, a
batch size of 64, and a total of 500 training epochs.

F.2. Prompt of LLM without architecture assistance

An example template of the prompt of LLM is :

I want to design a function that can construct a graph representation
of material molecules that satisfies specific constraints. The graph
representation of the material molecule should meet the following requirements:
<Symmetry Constraints>. \n Below is the code that describes this problem, which
does not require modification: <Problem Code>.\n Next is the function that needs
modification:<Representation Code>.\n Your task is to provide a new, modified
function that will replace the current priority function. This new function
should generate a graph representation that satisfies all the given constraints,
and the function signature should remain the same as the original priority
function. Please ensure that the new function adheres to all the necessary
constraints and provides a correct implementation. Only the full code of the
new function should be returned, with no additional comments, explanations, or
suggestions.

F.3. Comparison with point cloud-based representation methods

The results of point cloud-based algorithms are shown in Table 5.

Table 5. Comparison between our proposed material representation and other baselines in terms of test MAE on JARVIS dataset in
formation energy task. The results of baselines are from related work (Keqiang et al., 2024)

Method Number of training materials Test MAE (eV/atom)
PDD(Widdowson & Kurlin, 2022) 29342 0.047
AMD(Widdowson et al., 2022) 24067 0.78
Ours 24067 0.027
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