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ABSTRACT
EHRFlow is a large language model-driven platform that simpli-
fies electronic health record (EHR) data analysis for physicians
through natural language interactions, eliminating the need for
complex coding. EHRFlow integrates four key agents: PlanAgent,
ToolAgent, CodeAgent, and ReviewAgent in a dual-loopmechanism
that efficiently decomposes and executes tasks via PlanAgent, from
coarse-grained conceptual planning to fine-grained task execution,
leveraging a healthcare tool bank and the code generation and exe-
cution capabilities of ToolAgent and CodeAgent. The ReviewAgent
ensures the safety and quality of code through iterative feedback
and refinement. EHRFlow offers a user-friendly solution for physi-
cians’ customized needs while preserving sensitive data’s privacy
by executing code operations locally. Demonstrated through case
studies, EHRFlow showcases its ability to coordinate agents in resolv-
ing complex medical data analysis tasks, highlighting its flexibility,
scalability, and efficiency. The code for EHRFlow is publicly released
at https://github.com/PKU-AICare/EHRFlow.

1 INTRODUCTION
Electronic health records (EHRs) are comprehensive digital reposi-
tories of health information [1, 6, 12]. Leveraging machine learning
and deep learning approaches, valuable knowledge can be mined
from EHR data to aid physicians in analyzing patients’ health condi-
tions. These approaches support healthcare in various ways, includ-
ing personalized treatments, disease prediction, clinical research,
public health surveillance, and resource allocation [5, 23, 24]. De-
spite the potential benefits, the development of AI models and the
analysis of health data are typically conducted by health data scien-
tists with a computer science background. Physicians, on the other
hand, often have limited skills in complex EHR data analysis. Con-
sequently, effective EHR data analysis requires close collaboration
∗Equal contribution.
†Corresponding author.
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Figure 1: Illustration of plan and task decomposition and
execution pipeline in the loop.

and frequent communication between physicians and AI experts.
Physicians have expressed significant interest in analyzing their
specific domain EHR data to enhance their clinical decision-making
processes [11]. However, the skill gap between physicians and data
scientists presents a challenge.

This gap motivates us to develop a platform that allows physi-
cians to enter their data analysis requirements in natural language.
We envision that this platform could interpret these requirements
and execute the corresponding data analysis tasks automatically,
without human intervention. As indicated in [4], physicians expect
the digital agents to integrate into their clinical workflows through
interactive conversations, expecting these AI tools to enhance their
work efficiency and effectiveness.

https://github.com/PKU-AICare/EHRFlow
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The recent advent of large language models (LLMs) [14] with
their instruction-following, reasoning, and function-calling capaci-
ties, has made implementing such a platform possible. Specifically,
building upon the LLM’s capacities, the LLM agent could form an au-
tonomous proxy system that integrates other tools and technologies
to enhance model performance and execute tasks efficiently[19].
For example, AutoGPT [7] showcases its capability in calling func-
tions and executing code to achieve users’ software development
use cases, such as building a front-end website. However, such
LLM agent systems cannot be directly applied in the medical do-
main where physicians have much more customized needs and
privacy concerns. The challenges include: (1) For customized and
professional use cases, LLM cannot understand the inherent pro-
cesses without prompting the LLMwith domain-specific knowledge.
(2) Healthcare tasks are sometimes quite complicated and require
precise and rigorous execution results, while conventional agent
systems are prone to collapse. (3) Privacy matters in healthcare
data, posing challenges in designing a privacy-preserved approach
so that no patient data is uploaded when calling LLM’s online APIs.

Aiming to address these challenges, we introduce EHRFlow, an
iterative multi-agent system supported by LLMs, designed to serve
for physicians’ diverse EHR analysis requirements in their clinical
workflows. The web interface is demonstrated in Figure 5. As illus-
trated in Figure 2, EHRFlow consists of four main agents: PlanAgent,
ToolAgent, CodeAgent, and ReviewAgent. Inspired by XAgent [17],
we refine the dual-loop mechanism of task decomposition and
dynamic execution in the healthcare domain. The outer loop con-
ceptualizes complex tasks into plans, and each plan is further split
into lower-level tasks by the PlanAgent one by one. The inner loop
refines and executes the task using tools retrieved from the health-
care tool bank, leveraging ToolAgent’s reasoning and CodeAgent’s
code generation and execution capabilities. After finishing the task,
PlanAgent continues to reason for the next task, as demonstrated
in Figure 1. Meanwhile, the ReviewAgent examines the execution
results and provides reflection and feedback to the PlanAgent and
ToolAgent. Moreover, EHRFlow protects patients’ privacy by only
providing data schema, and all sensitive data-related operations are
executed locally.

EHRFlow’s contributions can be summarized as follows:
(1) We develop and deploy EHRFlow to assist physicians’ data anal-

ysis requirements through simple natural language interactions,
lowering the threshold with no need to write code. EHRFlow
has a user-friendly interface, meets the needs of professional
clinical use cases, and is scalable for more customized use cases
by registering tool APIs in the tool bank and providing usage
illustrations.

(2) EHRFlow tailors a multi-agent dual-loop mechanism of coarse-
grained and fine-grained task decomposition specifically de-
signed for the healthcare domain. This mechanism ensures
effective management and optimization of complex medical
tasks with privacy protection through the concept decomposi-
tion and sub-plan generation of both loops, as well as reviewing,
reflection, and feedback correction within the each loop.

(3) Code for the tool banks and EHRFlow has been publicly released,
offering transparent and reliable resources for the health data
science community.

2 RELATEDWORK
2.1 Healthcare Data Analytics Toolkits
Open-source projects like PyHealth [20] and AutoPrognosis [10] are
two Python toolkits specifically designed for EHR data, simplifies
deep learning integration for healthcare data analysis, supporting
various data modalities and models. PyHealth focuses on clinical
predictive modeling, mainly designed for both ML researchers and
medical practitioners, while AutoPrognosis additionally offers more
customized model explanations and cohort analysis features.

However, the gap remains between physicians and code-based
data analysis workflow, a seamless data analysis and physician-
driven data decisions require further development, a lower-threshold
workflow is still to be implemented [4].

2.2 LLM-Driven Agent-Based Data Analytics
As Large Language Models (LLMs) have demonstrated significant
intelligence, leveraging them as planning modules for autonomous
agents has gained increased attention [9]. This paradigm involves
generating both reasoning traces and task-specific actions in an
interleaved manner, allowing for greater synergy between the two.
Reasoning traces help the model induce, track, and update action
plans as well as handle exceptions, while actions enable it to inter-
face with external sources, such as knowledge bases or environ-
ments, to gather additional information [21].

Building on this foundation, multiple agents in a collaborative en-
vironment, each with distinct attributes and roles, can handle larger-
scale and more complex tasks [16]. For example, TaskWeaver [13]
introduces stateful execution and code verification to validate gen-
erated code before execution, thereby preventing potential issues.
Similarly, XAgent incorporates reflection to provide feedback to
other agents, which is useful for identifying bugs and making re-
finements [17].

In the healthcare domain, EHRAgent [15] automates EHR mul-
titable inference tasks from natural language instructions, sim-
plifying interactions for healthcare workers with EHR systems.
Additionally, Cui et al. [2] explore the feasibility of LLMs in few-
shot EHR disease prediction, proposing frameworks with predictive
and critical agents for narrative generation and error feedback to
improve accuracy. However, existing LLM agent work in EHR data
has limitations, particularly in tool usage, as it primarily relies on
the LLM’s own reasoning capabilities.

3 METHODOLOGY
Figure 2 illustrates the overall framework of EHRFlow, showcasing
its hierarchical dual-loop processes. The outer loop is responsible
for coarse-grained planning, while the inner loop focuses on fine-
grained task execution.

3.1 Conceptual Decomposition-Centric
Reasoning, Planning and Code Execution

User requirements typically involve multiple interrelated entities
and concepts, forming a complex semantic concept network. Al-
though large language models have high capabilities in understand-
ing intent and reasoning, they still face challenges in dealing with
these complex coupled conceptual systems. At the understanding
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Figure 2: Overall framework of EHRFlow. EHRFlow accepts user’s natural language queries, and consists of the hierarchical
dual-loop processes: the outer loop for coarse-grained planning and the inner loop mainly for fine-grained task executing.

level, the complexity of coupled concepts may make it difficult for
the model to quickly identify relationships and meanings between
entities, especially when the requirements are unclear or the con-
cept boundaries are fuzzy. At the execution level, transforming
abstract concepts into concrete solutions is a challenge, especially
in scenarios requiring the integration of cross-domain knowledge
and multi-step logical reasoning.

Inspired by the Chain of Thought (CoT) [18] and Rephrase and
Refine (RaR) [3] prompt strategies, targeted prompts are designed to
guide the model in presenting its reasoning overview. This process
includes steps such as question restatement, key concept identifi-
cation, conceptual decomposition, reflection, deep thinking, rea-
soning, and action planning. EHRFlow adapts the decomposition of
medical tasks into dual granularity levels from coarse in the outer
loop to fine in the inner loop. As shown in Figure 1, the PlanAgent
decomposes the user query instruction into multiple coarse-grained
plans in the outer loop. Within the inner loop of each plan, the Plan-
Agent further decomposes into the fine-grained executable task,
where ToolAgent reasons for choosing required tool APIs from the
tool bank and the CodeAgent generates glue code and executes the
code given the function calling of healthcare tool interfaces. After
completing code execution, ReviewAgent checks the current status,
reflects, and provides feedback to PlanAgent. If everything is on
track, then PlanAgent continues to reason for the next task towards
the target of the current plan.

During the above process, the prompt for each component also
follows the strategy of concept identification and decomposition,
reflection, reasoning, etc., and is adjusted appropriately based on
the complexity of the tasks to support customized diverse medical
task decomposition and arrangement. Our elaborately designed
prompts ensure that the system can flexibly handle tasks of various
complexities, optimizing the entire decision-making process from
macro planning to micro execution.

Note that during the execution of tasks, the CodeAgent continu-
ously maintains the code execution status throughout the dialogue
process, similar to the programmingmode in Jupyter Notebook [13],
ensuring the coherence and consistency of code execution.

Furthermore, due to the sensitive nature of healthcare data, dur-
ing the agent reasoning process, the context only includes the data
descriptions, i.e., the column names indicating all features, and
the data recorded format. The large language model has the abil-
ity to generate the correct code with these data descriptions as
background for data analysis operations.

3.2 Reflection and Feedback-Based Dynamic
Execution Mechanism

To address the challenges posed by the complexity of the envi-
ronment and the potential issues of safety, harmlessness, and exe-
cutability in the code generated by large language models for EHR
data analysis, EHRFlow introduces a ReviewAgent to establish a
reflection and feedback phase. This mechanism is designed to mon-
itor each step’s execution results and dynamically adjust based on
the differences between actual and expected outcomes.

Speficically, the PlanAgent in the outer loop acts as a project
manager, reviewing the execution results of sub-tasks and adjusting
planned steps based on feedback. This aims to address issues and
anomalies during execution, avoid fault loops, and seek alterna-
tive solutions, thereby facilitating the smooth progress of tasks.
Additionally, the ReviewAgent conducts a comprehensive review
after code generation, screening for harmful information, verify-
ing the code’s executability, evaluating its alignment with user
requirements, reviewing code structure and style, and checking for
exception handling and error handling mechanisms.

In the event that the code fails the review, the ReviewAgent
provides clear review results and feedback to the large language
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model, initiating a new cycle of code generation and review. This
iterative process continues until the code fully meets the required
standards, aiming to improve code quality, enhance trustworthiness,
and provide doctors with a more reliable data analysis tool.

By obtaining perceptual information through real-time interac-
tion and combining it with actual trial results, EHRFlow’s feedback
loop is designed to enable the workflow to quickly self-correct
when facing inefficient planning or continuous errors. This tran-
sition from relying on preset perceptual information to real-time
dynamic adjustment seeks to enhance the comprehensiveness and
effectiveness of planning, strengthen adaptability and robustness
in dynamic environments, and ultimately enable large language
models to make more effective decisions and responses for new
complex tasks.

3.3 Retrieval-Enhanced Healthcare Analysis
Tool Bank Design

In the process of using EHR datasets to assist medical decision-
making, we face challenges due to the inherent complexity of the
data and the need for in-depth analysis. Therefore, meticulous and
customized preprocessing of EHR data is essential to ensure that the
data quality meets the standards for advanced analysis. Although
EHR data is commonly stored in CSV file format, basic processing
of CSV data alone is insufficient to meet the requirements of com-
plex analysis. This approach can lead to misunderstandings and
misjudgments of the information. Hence, a series of steps including
data cleaning, transformation, integration, and advanced analysis
are necessary to accurately extract and present the key information
in EHR data. Additionally, existing large language models show
limitations in handling EHR data. While these models can handle
some basic algorithms, they currently do not provide sufficient
support for the complex predictive analysis required for EHR data.

To address the challenges of medical data analysis, we have
adopted a functional decoupling strategy, separating the key func-
tions of EHR data analysis from the system and designing the API
standard within the tool bank specifically for the core steps and
requirements of EHR data analysis with built-in basic data analysis
knowledge and functions. On this basis, we build the specialized
agent ToolAgent to understand which tools in the tool bank are
helpful for targeted solutions. CodeAgent calls these functions with
glue code to smoothly execute them.

In addition, to meet professional physicians’ customized ad-
vanced EHR data analysis requirements, besides various built-in
medical data analysis tools and APIs in the tool bank, it is also easy
to register customized use cases into the tool bank by providing
related code and instructions for their usage.

4 CASE STUDIES
We provide two case studies: Figure 3 showcases how EHRFlow suc-
cessfully calculates the male and female ratio in a specific dataset.
Figure 4 illustrates a more advanced scenario that plots the his-
togram of patient feature importance, which includes the training
of a complex deep learning model. These two cases demonstrate
EHRFlow’s superior task-solving ability in complicated tasks, while
only natural language is input to EHRFlow. The detailed version of
the case studies is provided in the Appendix.

5 FUTUREWORK
This study provides a preliminary exploration of the application of
large language models in the analysis of structured medical data,
focusing on EHR data and prognostic prediction tasks of interest
to doctors, and systematically designs and implements relevant
technologies. The research not only provides a new perspective for
the field of medical data analysis but also demonstrates the poten-
tial of large language models in processing medical data. However,
given the complexity of the field and the continuous advancement
of technology, future research needs to delve deeper into and refine
aspects such as application-oriented process decomposition, user
interaction experience optimization, security and privacy protec-
tion, and multimodal data processing. This includes clarifying the
boundaries of technical capabilities, expanding system functions,
optimizing user engagement processes, innovating user interface de-
sign, strengthening data security and privacy protection measures,
and developing algorithms and models that integrate multimodal
data to enhance the overall performance and clinical application
value of the system.

6 CONCLUSIONS
This study develops a user-friendly electronic health record (EHR)
data analysis platform powered by a large language model. With
only natural language interaction, physicians could conduct com-
plex data analysis tasks in code-free manner. EHRFlow applies a
multi-agent collaborative mechanism, achieving fine-grained task
decomposition and dynamic execution based on user needs, as
well as deep customization and optimization of EHR data. The sys-
tem design is user-oriented, allowing users to express personalized
needs through natural language interaction and provide users with
an intuitive and flexible data analysis experience. EHRFlow show-
cases the application potential and practical value of large language
models in the field of medical data analysis.

7 DISCUSSION ON ALIGNING EHRFLOW
WITH AIDSHWORKSHOP SCOPE

The "Artificial Intelligence andData Science forHealthcare (AIDSH)"
workshop is at the forefront of exploring the integration of AI and
DS within the healthcare sector, with a particular focus on bridg-
ing the gap between data-centric AI and people-centric healthcare
(PCHC). The workshop is dedicated to fostering innovative applica-
tions of AI and DS that not only advance healthcare practices but
also actively engage individuals in managing their health data.

Our paper, EHRFlow, aligns with the AIDSH workshop’s research
scope in several ways:
• Enhancing Clinical Decision-Making: EHRFlow is designed to

empower physicians with an intuitive platform that enables them
to harness the power of AI through natural language interac-
tions. By facilitating the analysis of EHR data, EHRFlow supports
personalized treatments, disease prediction, and clinical research,
which are in line with the workshop’s goals of driving healthcare
innovation with AI and data science.

• Advancing People-Centric Healthcare (PCHC): EHRFlow
embodies the PCHC philosophy by integrating digital agents
into clinical workflows through interactive conversations. It ad-
dresses the skill gap between physicians and data scientists by
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🤖:Hello, I am EHRFlow, an intelligent assistant proficient in processing structured medical data. 🥳 After submitting the EHR data, you can freely ask me any 
questions or processing requirements about EHR medical data, and I will help you process the data according to your needs and return the corresponding results 
to assist you in better medical data analysis. Is there anything I can help you with now? 
👨:What is the male-to-female ratio in the raw_events_data.csv dataset? 

Outer Loop PlanAgent

1.Use the 'AnalyseCSV' tool to analyze the 
'./datasets/raw_events_data.csv' file, extract 
gender data, and calculate the number of records 
for males and females. 

2. Based on the obtained gender record counts, 
calculate the male-to-female ratio. 

3.In light of the above steps, please answer the 
user's original question: What is the male-to-
female ratio in the 'raw_events_data.csv' dataset?

Inner Loop PlanAgent

Plan:
• Execute the AnalyseCSV tool to analyze the 
'./datasets/raw_events_data.csv' file.
• Select 'data analysis' as the analysis type.
• The file path is known to be 
'./datasets/raw_events_data.csv'.
• The analysis content is to extract the Value 
column and calculate the number of values equal to 1 
and 0.
Code:
#!/usr/bin/env python
import pandas as pd
# Read data
df = pd.read_csv('./datasets/raw_events_data.csv')
# Calculate the number of values 0 and 1 
# in the Value column
female_count = (df['Value'] == 0).sum()
male_count = (df['Value'] == 1).sum()
# Output results
print(f"Number of females: {female_count}")
print(f"Number of males: {male_count}")

Inner Loop PlanAgent

Plan:
- Use the "FINISH" command to end the task.

Inner Loop PlanAgent

Plan:
- First, calculate the total number: 224 (number of 
males) + 151 (number of females) = 375 (total 
number).
- Then, calculate the male ratio: 224 / 375.
- Next, calculate the female ratio: 151 / 375.
- Finally, output the results of the male and female 
ratios.

Male ratio = 224 / 375 ≈ 0.5973 (rounded to four 
decimal places)
Female ratio = 151 / 375 ≈ 0.4027 (rounded to four 
decimal places)

Task completed. FINISH

Plan 1

Feedback

Outer Loop PlanAgent

1.Use the 'AnalyseCSV' tool to analyze the 
'./datasets/raw_events_data.csv' file, extract 
gender data, and calculate the number of records 
for males and females. 

2. Based on the obtained gender record counts, 
calculate the male-to-female ratio. 

3.In light of the above steps, please answer the 
user's original question: What is the male-to-
female ratio in the 'raw_events_data.csv' dataset?

Refine Plan

Plan 2

Feedback

Finish

Final Answer

The ratio of males to females is approximately
1.483:1. This means that in this dataset, for every
approximately 1.483 males, there is 1 female. This
is the final answer

Figure 3: EHRFlow successfully calculates the male and female ratio in a specific dataset.

🤖:Hello, I am EHRFlow, an intelligent assistant proficient in processing structured medical data. 🥳 After submitting the EHR data, you can freely ask me any questions or processing requirements 
about EHR medical data, and I will help you process the data according to your needs and return the corresponding results to assist you in better medical data analysis. Is there anything I can help 
you with now? 
👨:Please create a histogram of patient Feature Importance.

Outer Loop PlanAgent

1.Use the one-click data preprocessing function of 
the ehrflow_api package to preprocess 
'./datasets/raw_events_data.csv', 
'./datasets/raw_labtest_data.csv', and 
'./datasets/raw_target_data.csv’. 

2.Use the feature extraction and importance 
assessment functions of the ehrflow_api package to 
extract features from the preprocessed data and 
assess their importance. 

3.Use the data visualization function of the 
ehrflow_api package to draw a histogram based on 
the feature importance assessment results and save 
it to the local file system. 

4.In light of the above steps, please answer the 
user's original question: Please create a 
histogram of patient characteristic importance for 
analysis.

Inner Loop PlanAgent

Plan:
- Use the AnalyseCSV tool to call the one-
click data preprocessing feature of the 
ehrflow_api package.
- Ensure that the files for preprocessing 
include './datasets/raw_events_data.csv', 
'./datasets/raw_labtest_data.csv', and 
'./datasets/raw_target_data.csv'.
- Use default parameters for preprocessing
Code:
#!/usr/bin/env python
from pathlib import Path
import pandas as pd
from ehrflow_api.data import DataHandler

# Read data
labtest_data =
pd.read_csv('./datasets/raw_labtest_data.csv')
events_data =
pd.read_csv('./datasets/raw_events_data.csv')
target_data =
pd.read_csv('./datasets/raw_target_data.csv')

Inner Loop PlanAgent

Plan:
- Use the "FINISH" command to end the task.

Inner Loop PlanAgent

Plan:
- I will use the AnalyseCSV tool to call the
model prediction feature of the ehrflow_api
package.
- I will ensure that the input is the
preprocessed data, i.e., the data in the
'./datasets' directory.
- I will describe in detail the type of 
analysis to be performed (model prediction) and 
the content of the analysis (feature extraction 
and importance assessment).
Code:
#!/usr/bin/env python
import pandas as pd
from ehrflow_api.pipeline import Pipeline
from ehrflow_api.analysis import DataAnalyzer
from ehrflow_api.plot import
plot_feature_importance

# Train and predict using the Concare model
pl = Pipeline(model='ConCare')
pl.execute()

# Then proceed with the corresponding analysis
data_analyzer = DataAnalyzer(pl.config, 
pl.model_path)

Plan 1

Feedback

Outer Loop PlanAgent

1.Use the one-click data preprocessing function of 
the ehrflow_api package to preprocess 
'./datasets/raw_events_data.csv', 
'./datasets/raw_labtest_data.csv', and 
'./datasets/raw_target_data.csv’. 

2.Use the feature extraction and importance 
assessment functions of the ehrflow_api package to 
extract features from the preprocessed data and 
assess their importance. 

3.Use the data visualization function of the 
ehrflow_api package to draw a histogram based on 
the feature importance assessment results and save 
it to the local file system. 

4.In light of the above steps, please answer the 
user's original question: Please create a 
histogram of patient characteristic importance for 
analysis.

Refine Plan

Plan 2

Feedback

Finish

Final Answer

The model was indeed trained and saved, the
feature importance assessment has been completed,
and a histogram was drawn and saved to the local
file system. The histogram is saved in the
'./output' directory and can be reviewed.

# Create a DataHandler instance
data_handler = DataHandler(
labtest_data=labtest_data,
events_data=events_data,
target_data=target_data,
data_path=Path('./datasets')
)

# Use the execute method of DataHandler
for one-click data preprocessing
data_handler.execute()

print("Data preprocessing has been 
completed.")

train_raw =
pd.read_csv('./datasets/train_raw.csv')

train_x =
pd.read_pickle('./datasets/train_x.pkl')

# Assuming the analysis is for the first 
patient in the dataset (index 0)
patient_index = 0
result = data_analyzer.feature_importance(
df=train_raw,
x=train_x,
patient_index=patient_index
)

# After obtaining the analysis results, 
proceed with the corresponding 
visualization
plot_feature_importance(result, 
save_path='./output/')

print("Feature extraction and importance 
assessment have been completed.")

Inner Loop PlanAgent

Plan:
- Use the "FINISH" command to end the task.

Outer Loop PlanAgent

1.Use the one-click data preprocessing function of 
the ehrflow_api package to preprocess 
'./datasets/raw_events_data.csv', 
'./datasets/raw_labtest_data.csv', and 
'./datasets/raw_target_data.csv’. 

2.Use the feature extraction and importance 
assessment functions of the ehrflow_api package to 
extract features from the preprocessed data and 
assess their importance. 

3.Use the data visualization function of the 
ehrflow_api package to draw a histogram based on 
the feature importance assessment results and save 
it to the local file system. 

4.In light of the above steps, please answer the 
user's original question: Please create a 
histogram of patient characteristic importance for 
analysis.

Refine Plan

Plan 3

Feedback

Inner Loop PlanAgent

Plan:
- According to the historical record, using the
model prediction feature of the ehrflow_api package
for feature extraction and importance assessment has
been completed, and histograms have been drawn and
saved to the local file system.
- Use the "FINISH" command to end the task.

FINISH

Figure 4: EHRFlow successfully plots the histogram of patient feature importance.
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providing a platform that requires no coding knowledge. This
user-friendly interface encourages collaboration by enabling
physicians to specify their data analysis needs directly, thereby
promoting active participation in the clinical process.

• Education Support: By making the code for the tool banks and
EHRFlow publicly available, we provide transparent and reliable
resources used for educational purposes. This aligns with the
workshop’s emphasis on data education and support, empower-
ing healthcare professionals to leverage AI and data science in
practices.

• Privacy Protection: EHRFlow’s approach to privacy protection,
where only data schema are provided and all sensitive operations
are executed locally, aligns with the growing concern for data
security in healthcare. This commitment to privacy is a critical
aspect of the workshop’s focus on responsible AI applications.
In summary, EHRFlow not only contributes to the advancement of

EHR data analysis but also fits seamlessly within the research scope
of the AIDSH workshop. It represents a significant step towards
realizing the vision of data-centric AI that is also people-centric,
providing a powerful, accessible, and privacy-conscious tool to
enhance clinical workflows and decision-making.
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A WEB INTERFACE OF EHRFLOW
The web interface of EHRFlow is designed to be intuitive and user-
friendly, allowing users to seamlessly interact with the model. It
features a straightforward data upload mechanism and an input
box where users can specify their requirements, offering a user
experience akin to GPT-4 (see Figure 5).

B DETAILED VERSION OF CASE STUDIES
We provide a comprehensive version of case studies using EHRFlow.
These detailed and complete versions delve deeper into the EHRFlow’s
inner loop and outer loop process, offering a richer understanding
of EHRFlow (see Figures 6 and 7).

C DETAILS OF THE TOOL BANK
C.1 Development of EHRFlowAPI
We first designed the EHRFlowAPI, a set of customized interfaces
tailored to the specific needs and processes of medical data analysis,
aimed at providing bespoke solutions for EHR data processing and
analysis. The modular design of EHRFlowAPI allows each module
to focus on specific tasks within the data processing and analy-
sis workflow, covering the entire process from data preprocessing,
feature extraction, model training and prediction, to data analysis
interpretation and result visualization [8, 22]. The development of
EHRFlowAPI emphasizes simplifying the process of invoking com-
plex models, particularly to meet the needs of core user groups such
as frontline doctors who typically lack professional data analysis
and programming knowledge. Therefore, ease of use is a key focus
in the API design, with default values set for interface parameters
to ensure smooth operation even if users do not provide detailed
data analysis parameters. Additionally, the careful design and in-
tegration of the interfaces ensure continuity in the data analysis
process, allowing users to complete the entire workflow smoothly
even with incomplete parameters.

To further enhance operational convenience, we have developed
a one-click execution interface that allows users to automatically
complete a series of fundamental steps, including data preprocess-
ing and analysis, with a single operation. This greatly lowers the
technical barrier and improves the efficiency of data analysis. These
design philosophies collectively ensure that users without a techni-
cal background can easily use the system for data analysis, while
reducing the workload on the model during interface calls, signifi-
cantly enhancing the user experience.

Through EHRFlowAPI, the role of ToolAgent shifts from gen-
erating complete analysis and prediction code to invoking these
interfaces. This transition not only reduces the complexity of tasks
handled by the large model but also improves the efficiency and
executability of code generation, thereby optimizing the overall
data analysis process.

C.2 Construction of the ToolAgent
After developing APIs that cater to the needs of medical data anal-
ysis and the characteristics of EHR data, we faced the challenge
of enabling large language models to effectively understand and
utilize these APIs. Directly inputting code into the model not only
occupies a substantial amount of token space but also risks intro-
ducing unnecessary redundant information, hindering effective
API invocation. To address this issue, we adopted an innovative
approach: using natural language to describe the functionality, pa-
rameter requirements, and expected return results of the API in
detail, instead of directly providing code. Utilizing the GPT-4 model,
we generated natural language descriptions of the APIs, emphasiz-
ing clearly defining the role and parameter options of each method
to ensure that the large language model accurately understands the
purpose and operation of the code. Furthermore, we introduced a
manual review process to verify the accuracy of the natural lan-
guage descriptions, eliminating ambiguities and ensuring the model
can precisely invoke the API interfaces, thereby enhancing the sys-
tem’s accuracy, reliability, applicability, and safety.

The EHRFlowAPI is designed to meet the core needs of EHR
analysis and offers a rich set of interfaces. Despite the exhaustive
natural language descriptions of these interfaces, the volume of
textual information remains substantial. To manage this, after de-
veloping the EHRFlowAPI functionality prompt library based on
GPT-4 generation and manual review, we implemented a filtering
strategy, providing the model only with descriptions directly rele-
vant to the current task. This ensures that the model efficiently and
accurately processes the necessary information. In constructing the
EHRFlow system, we established a standardized data analysis work-
flow: "data preprocessing—model prediction—data analysis—result
visualization" to ensure effective API invocation and data process-
ing accuracy. We also built a case library of medical data analysis,
containing validated typical cases that cover various aspects of
medical data analysis, ensuring the standardization and complete-
ness of the code. ToolAgent can retrieve and integrate professional
medical information based on user requirements, execute case and
API information, and generate corresponding code solutions, en-
hancing the coherence of the analysis and execution process and
the accuracy of code generation.

Addressing the limitations of large language models in handling
long texts and maintaining contextual coherence, we developed a
Python code interpreter tool integrated with Jupyter Notebook’s
interactive design. This tool supports seamless linkage and effec-
tive reuse of data and intermediate variables across steps while
maintaining context history, significantly improving the precision
and efficiency of analysis results. Through these comprehensive
measures, we leverage the advantages of large language models
in natural language processing while ensuring their efficiency and
robustness in practical applications.
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Figure 5: Web interface of EHRFlow. Users first upload the data to be analyzed, then can type their requirements in the input box
with a user experience similar to GPT-4.
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🤖:Hello, I am EHRFlow, an intelligent assistant proficient in processing structured medical data. 🥳 After submitting the EHR data, you can freely ask me any questions or 
processing requirements about EHR medical data, and I will help you process the data according to your needs and return the corresponding results to assist you in better 
medical data analysis. Is there anything I can help you with now? 
👨:What is the male-to-female ratio in the raw_events_data.csv dataset? 

Outer Loop：Planner

> Entering new EHRFlow chain...
Problem restatement: The user needs to know the male-to-female ratio in the 'raw_events_data.csv' dataset. This means we need to calculate the number of records with male and female genders in the dataset and calculate
their ratio.

Key concepts:
- Male-to-female ratio: The ratio of the number of records with male gender to the number of records with female gender.

Concept breakdown:
- Male-to-female ratio
- Number of records with male gender
- Number of records with female gender

Reflection:
- We already know that we need to find gender-related records from the 'raw_events_data.csv' file.
- We have not yet obtained the number of records with male and female genders.
- From the current information, we cannot get the specific male-to-female ratio.

Thinking:
- First, we need to extract gender data from the 'raw_events_data.csv' file.
- Then, we need to calculate the number of records with male and female genders.
- Finally, we will divide these two numbers to get the male-to-female ratio.

Reasoning:
- We can use the 'AnalyseCSV' tool to analyze the 'raw_events_data.csv' file, extract gender data, and calculate the number of male and female records.
- Based on these numbers, we can calculate the male-to-female ratio.

&Plan&
1. Use the 'AnalyseCSV' tool to analyze the './datasets/raw_events_data.csv' file, extract gender data, and calculate the number of records with male and female genders.
2. Based on the obtained gender record numbers, calculate the male-to-female ratio.
3. In view of the above steps, please answer the user's original question: What is the male-to-female ratio in the 'raw_events_data.csv' dataset?

The current plan is set as follows:
1. Use the 'AnalyseCSV' tool to analyze the './datasets/raw_events_data.csv' file, extract gender data, and calculate the number of records for males and females. 
2. Based on the obtained gender record counts, calculate the male-to-female ratio. 
3. In light of the above steps, please answer the user's original question: What is the male-to-female ratio in the 'raw_events_data.csv' dataset?

Inner Loop：Planner

Now I will proceed to solve this step: Use the 'AnalyseCSV' tool to analyze the './datasets/raw_events_data.csv' file, extract gender data, and calculate the number of records with male and female genders.
>>>>Round: 0<<<<

### Thinking process

Current task: Use the 'AnalyseCSV' tool to analyze the './datasets/raw_events_data.csv' file, extract gender data, and calculate the number of records with male and female genders.

Key concepts:
- Gender data: In the './datasets/raw_events_data.csv' file, gender data is represented by the Value column, where male is 1 and female is 0.

Concept breakdown:
- Gender data
- Extract data from the Value column
- Calculate the number of values equal to 1 (number of males)
- Calculate the number of values equal to 0 (number of females)

Reflection:
- From the historical record information, it is already known that the './datasets/raw_events_data.csv' file contains gender data, and gender data is stored in the Value column.
- The task requires calculating the number of records with male and female genders, which means counting the data in the Value column.
- The specific number of gender data has not yet been obtained.
- The AnalyseCSV tool needs to be used to analyze and calculate the gender data.

Thinking:
- Need to first extract the data from the Value column, then calculate the number of males and females based on the values.
- The extraction and calculation tasks can be completed in one step, without the need to separate them.
- The AnalyseCSV tool can accomplish this task, specifying the analysis type as 'data analysis'.
- There is no need to assume the distribution of gender data, just get the actual values directly from the data file.

Reasoning:
- Use the AnalyseCSV tool, specify the analysis type as 'data analysis', the file path as './datasets/raw_events_data.csv', and the analysis content as extracting theValue column and calculating the number of males and
females.

Plan:
- Execute the AnalyseCSV tool to analyze the './datasets/raw_events_data.csv' file.
- Select 'data analysis' as the analysis type.
- The file path is known to be './datasets/raw_events_data.csv'.
- The analysis content is to extract the Value column and calculate the number of values equal to 1 and 0.

```json
{
"name": "AnalyseCSV",
"args": {
"inputs": {
"type": "data analysis",
"files": ["./datasets/raw_events_data.csv"],
"content": "Extract data from the Value column, calculate the number of values equal to 1 (number of males) and the number of values equal to 0 
(number of females)."
}
}
}
```AnalyseCSV

#!/usr/bin/env python
import pandas as pd
# Read data
df = pd.read_csv('./datasets/raw_events_data.csv')
# Calculate the number of values 0 and 1 
# in the Value column
female_count = (df['Value'] == 0).sum()
male_count = (df['Value'] == 1).sum()
# Output results
print(f"Number of females: {female_count}")
print(f"Number of males: {male_count}")

type=True content='Code review passed. The code structure is clear and meets the specification requirements. Variable naming is standardized and comments are sufficient. The code correctly implements the user's
requirements and can calculate and output the number of males and females. Exception and error handling are not reflected in the code snippet, but according to the provided code, there is no obvious need for exception
handling. The code can be run and no syntax errors or dependency issues have been found.’

Number of males: 224
Number of females: 151

Execute action

CodeReviewer

Execute Result

Inner Loop：Planner

> > > > Round: 1 < < < <
The thought process

Current task: Use the'AnalyseCSV 'tool to analyze the'./datasets/raw_events_data 'file, extract gender data, and calculate the number of records with gender male and gender female.

Key concepts:
- Gender data: In the './datasets/raw_events_data' file, gender data is represented by the Value table, where males are 1 and females are0.

Concept teardown:
- Gender data
- Extract data from the Value column
- Calculate the number of values of 1 in the Value column (number of males)
- Calculate the number of values of 0 in the Value column (number of women)

Reflection:
- From the history information, it is known that the './datasets/raw_events_data' file contains gender data and that gender data is stored in the Value column.
The task needs to count the number of records whose gender is male and female, which means that the data in the Value column needs to be counted.
According to the previous execution results, the number of records with male gender and female gender has been 224, and the number of records with female gender is 151.
The current task has been completed and should be completed using the "FINISH" command.

Think:
No further thought is required because the task has been completed.

Reasoning:
No further reasoning is required because the task has been completed.

Plan:
- Use the "FINISH" command to end the task.

"json
{
"Name": "FINISH"
}
"FINISH

----
FINISH

Execute action

Execute Result

Inner Loop：Planner

>>>>Round: 0<<<<

### Thinking Process

#### Current Task:
The task that needs to be addressed currently is to calculate the ratio of the number of males to the number of females.

#### Key Concepts:
- Number of males: In the previous task, it was determined that there are 224 males.
- Number of females: In the previous task, it was determined that there are 151 females.

#### Concept Breakdown:
- Ratio Calculation:
- Male ratio = Number of males / Total number
- Female ratio = Number of females / Total number
- Total number = Number of males + Number of females

#### Reflection:
- The values for the number of males and females have been obtained from historical records and do not need to be recalculated.
- The total number can be obtained through simple addition.
- Ratio calculation is a straightforward mathematical problem that can be directly calculated.

#### Consideration:
- The total number must be calculated first before the ratios of males and females can be determined.
- Since the number of males and females is known, direct calculation can be performed without querying the data source.
- Calculating the ratio is a simple mathematical operation that does not require the use of complex tools or commands.

#### Reasoning:
- Based on the known number of males and females, the total number can be directly calculated.
- With the total number, the ratios for males and females can be determined.

#### Plan:
- First, calculate the total number: 224 (number of males) + 151 (number of females) = 375 (total number).
- Then, calculate the male ratio: 224 / 375.
- Next, calculate the female ratio: 151 / 375.
- Finally, output the results of the male and female ratios.

```json
{
"name": "FINISH",
"args": {}
}
```

Since the current task is to calculate the ratio, which is a simple mathematical calculation, no tools or commands are needed. Therefore, I will directly provide the calculation results and end the task using the "FINISH" command.

Male ratio = 224 / 375 ≈ 0.5973 (rounded to four decimal places)
Female ratio = 151 / 375 ≈ 0.4027 (rounded to four decimal places)

Task completed. FINISH

----
FINISH
*****

Execute action

Execute Result

Outer Loop：Planner

Step: value='Calculate the ratio of the number of males to the number of females.'

Response: Based on the information provided in the previous task, the number of males is 224 and the number of females is 151. To calculate the ratio of the number of males to the number of females, we can divide the number
of males by the number of females.

Ratio of males to females = Number of males / Number of females
Ratio = 224 / 151

Upon calculating this ratio, we get:

Ratio ≈ 1.483

So, the ratio of males to females is approximately 1.483:1. This means that in this dataset, for every approximately 1.483 males, there is 1 female. Based on the information provided in the previous task, the number of males is
224 and the number of females is 151. To calculate the ratio of the number of males to the number of females, we can divide the number of males by the number of females.

Ratio of males to females = Number of males / Number of females
Ratio = 224 / 151

Upon calculating this ratio, we get:

Ratio ≈ 1.483

So, the ratio of males to females is approximately 1.483:1. This means that in this dataset, for every approximately 1.483 males, there is 1 female. This is the final answer.

Reflection

Final Answer

🤖:{'input': 'What is the male-to-female ratio in the raw_events_data.csv dataset?', 'output': 'Based on the information provided in the previous task, the number of males is 224 and the number of females is 151. To calculate the
ratio of the number of males to the number of females, we can divide the number of males by the number of females.

Ratio of males to females = Number of males / Number of females
Ratio = 224 / 151

Upon calculating this ratio, we get:

Ratio ≈ 1.483

So, the ratio of males to females is approximately 1.483:1. This means that in this dataset, for every approximately 1.483 males, there is 1 female. This is the final answer.'}

Outer Loop：Planner

Step: value = "Use the'AnalyseCSV 'tool to analyze the'./datasets/raw_events_data 'file to extract gender data and calculate the number of records with male and female gender."

Response: Based on the information provided above and the code executed, the final answer is:

Number of men: 224
Number of women: 151

This means that in the './datasets/raw_events_data .csv' file, there are 224 records of gender as male and 151 records of gender as female. Based on the information provided above and the code executed, the final answer is:

Number of men: 224
Number of women: 151

This means that in the './datasets/raw_events_data .csv' file, there are 224 records of gender as male and 151 records of gender as female.

The current plan is set to:
1. Use the'AnalyseCSV 'tool to analyze'./datasets/raw_events_data 'file, extract gender data and calculate the number of records with gender as male and gender as female. - > 2. Calculate the ratio of the number of males to
the number of females. - > 3. Given the above steps, please answer the user's initial question: What is the ratio of males to females in the 'raw_events_data .csv' dataset?

Reflection

Refine Plan

Figure 6: EHRFlow successfully calculates the male and female ratio in a specific dataset. (Complete version)
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🤖:Hello, I am EHRFlow, an intelligent assistant proficient in processing structured medical data. 🥳 After submitting the EHR data, you can freely ask me any questions or processing requirements about EHR medical data, and I will help you process the data 
according to your needs and return the corresponding results to assist you in better medical data analysis. Is there anything I can help you with now? 
👨:Please create a histogram of patient Feature Importance.

Outer Loop：Planner

> Entering new EHRFlow chain...
Restatement of the problem: The user needs to create a histogram of patient feature importance for analysis. This means we need to extract the feature importance from the data and visualize it as a histogram.

Key concepts:
- Histogram of patient characteristic importance: It requires extracting feature importance from the data and drawing ahistogram.

Concept breakdown:
- Patient characteristic importance
- Data preprocessing
- Feature extraction
- Feature importance assessment
- Histogram drawing
- Selection of data visualization tools
- Setting chart parameters

Reflection:
- We already know the file paths and basic structure that need to be processed.
- We have not yet extracted feature importance, nor have we performed any data preprocessing.
- We have not used any data visualization tools so far.

Consideration:
- We need to preprocess the data first to ensure data quality.
- Feature extraction and importance assessment are usually conducted after data preprocessing.
- Data visualization is carried out after feature importance assessment.

Reasoning:
- Use the ehrflow_api package for data preprocessing and feature importance assessment.
- Use the ehrflow_api package or other data visualization tools for drawing the histogram.

Plan:
1. Use the data preprocessing function of the ehrflow_api package to preprocess the raw datasets.
2. Use the feature extraction and importance assessment functions of the ehrflow_api package to assess the importance of patient characteristics.
3. Use the data visualization function of the ehrflow_api package to draw a histogram of feature importance based on the assessment results, and save the drawn histogram to the local file system for user review.
4. In light of the above steps, please answer the user's original question.

The current plan is set as follows:
1.Use the one-click data preprocessing function of the ehrflow_api package to preprocess './datasets/raw_events_data.csv', './datasets/raw_labtest_data.csv', and './datasets/raw_target_data.csv'. -> 2. 
Use the feature extraction and importance assessment functions of the ehrflow_api package to extract features from the preprocessed data and assess their importance. -> 3. Use the data visualization 
function of the ehrflow_api package to draw a histogram based on the feature importance assessment results and save it to the local file system. -> 4. In light of the above steps, please answer the user's 
original question: Please create a histogram of patient characteristic importance for analysis.

Inner Loop：Planner

Now we will proceed to solve this step: Use the one-cli ck data preprocessing feature of the ehrflow_api package to preprocess './datasets/raw_events_data.csv', './datasets/raw_labtest_data.csv', and
'./datasets/raw_target_data.csv'.

>>>>Round :0<<<<

Current task: Use the one-click data preprocessing feature of the ehrflow_api package to preprocess './datasets/raw_events_data.csv', './datasets/raw_labtest_data.csv', and './datasets/raw_target_data.csv'.

Key concepts:
- Data preprocessing: Converting raw data into a format that is more suitable for analysis, including data cleaning, feature extraction, dataset splitting, data normalization, and forward filling.

Concept breakdown:
- Data preprocessing
- Data cleaning
- Feature extraction
- Dataset splitting
- Data normalization
- Forward filling

Reflection:
- The task requires the use of the one-click data preprocessing feature of the ehrflow_api package, which means that individual steps such as data cleaning and feature extraction are not needed.
- There is no mention of data preprocessing steps in the previous history, so it can be assumed that this is the first time this task is being executed.
- There is no mention of specific parameter settings for preprocessing in the current information, but according to the task requirements, default or common preprocessing settings should be used.

Consideration:
- The ehrflow_api package provides a one-click data preprocessing feature, which may mean that all preprocessing steps can be completed at once without executing them step by step.
- Since there are no specific preprocessing parameters specified in the task, the default settings of the ehrflow_api package can be considered.
- It needs to be confirmed whether the ehrflow_api package has been installed, if not, it needs to be installed first.

Reasoning:
- According to the task requirements, preprocessing needs to be performed on three CSV files, and the one-click data preprocessing feature of the ehrflow_api package can be used.
- Since there are no specific parameter settings required, preprocessing can be carried out using default parameters.

Plan:
- Use the AnalyseCSV tool to call the one-click data preprocessing featureof the ehrflow_api package.
- Ensure that the files for preprocessing include './datasets/raw_events_data.csv', './datasets/raw_labtest_data.csv', and './datasets/raw_target_data.csv'.
- Use default parameters for preprocessing.

```
{
"name": "AnalyseCSV",
"args": {
"inputs": {
"type": "Data preprocessing",
"files": [
"./datasets/raw_events_data.csv",
"./datasets/raw_labtest_data.csv",
"./datasets/raw_target_data.csv"
],
"content": "Use the default one-click data preprocessing feature of the ehrflow_api package"
}
}
}
```AnalyseCSV

#!/usr/bin/env python
from pathlib import Path
import pandas as pd
from ehrflow_api.data import DataHandler

# Read data
labtest_data = pd.read_csv('./datasets/raw_labtest_data.csv')
events_data = pd.read_csv('./datasets/raw_events_data.csv')
target_data = pd.read_csv('./datasets/raw_target_data.csv')

# Create a DataHandler instance
data_handler = DataHandler(
labtest_data=labtest_data,
events_data=events_data,
target_data=target_data,
data_path=Path('./datasets')
)

# Use the execute method of DataHandler for one-click data preprocessing
data_handler.execute()

print("Data preprocessing has been completed.")

type=True content='Code review passed. The code correctly uses the DataHandler class of the ehrflow_api package to perform one-click data preprocessing, meeting the user's needs. The code structure is clear, the style is
standard, and exception and error handling are not shown in the code snippet, but it does not affect the use of the one-click data preprocessing function.'

Data preprocessing has been completed.

----
Resulting code:
from pathlib import Path
import pandas as pd
from ehrflow_api.data import DataHandler

# Read data
labtest_data = pd.read_csv('./datasets/raw_labtest_data.csv')
events_data = pd.read_csv('./datasets/raw_events_data.csv')
target_data = pd.read_csv('./datasets/raw_target_data.csv')

# Create a DataHandler instance
data_handler = DataHandler(
labtest_data=labtest_data,
events_data=events_data,
target_data=target_data,
data_path=Path('./datasets')

)

# Use the execute method of DataHandler for one-click data preprocessing
data_handler.execute()

print("Data preprocessing has been completed.")
Code execution result:
Data preprocessing has been completed.

Execute action

CodeReviewer

Execute Result

Inner Loop：Planner

>>>>Round :1<<<<

Current task: Use the one-click data preprocessing feature of the ehrflow_api package to preprocess './datasets/raw_events_data.csv', './datasets/raw_labtest_data.csv', and './datasets/raw_target_data.csv'.

Key concepts:
- Data preprocessing: Known, involves steps such as data cleaning, feature extraction, dataset splitting, data normalization, and forward filling.

Concept breakdown:
- Data preprocessing
- Data cleaning
- Feature extraction
- Dataset splitting
- Data normalization
- Forward filling

Reflection:
- The task requires the use of the one-click data preprocessing feature of the ehrflow_api package, which means that individual steps such as data cleaning and feature extraction are not needed.
- There is no mention of data preprocessing steps in the previous historical record information, so it can be considered that this is the first execution of this task.
- There is no mention of specific parameter settings for preprocessing in the current information, but according to task requirements, default or common preprocessing settings should be used.
- Data preprocessing has already been executed once, and the result "Data preprocessing has been completed" has been output.

Consideration:
- Since data preprocessing has already been executed once and there is no information about errors or failures, it can be considered that the task has been completed.
- According to the historical record information, there is no need to repeat data preprocessing.
- The FINISH instruction should be used to end the task.

Reasoning:
- According to the historical record information, the one-click data preprocessing feature of the ehrflow_api package has already been called using the AnalyseCSV tool, and data preprocessing has been successfully executed.
- Since there is no information about errors or the need for improvement, there is no need to re-plan or perform other actions.

Plan:
- Use the FINISH instruction to mark the task as completed.

Execution action/tool:
`` j̀son
{
"name": "FINISH",
"args": {}
}
```FINISH

----
FINISH

Execute action

Execute Result

Inner Loop：Planner

Now we will proceed to solve this step: Use the model prediction feature of the ehrflow_api package to extract features and assess importance from the preprocessed data.
>>>>Round :0<<<<

Current task: Use the model prediction feature of the ehrflow_api package to extract features and assess importance from the preprocessed data.

Key concepts:
- Feature extraction and importance assessment: Achieved through the model prediction feature of the ehrflow_api package.

Concept breakdown:
- Feature extraction: Extract information from the data that helps with model prediction.
- Data source: Preprocessed data.
- Method: Using the functionality of the ehrflow_api package.
- Importance assessment: Evaluate the influence of each feature on the model's prediction results.
- Data source: Preprocessed data.
- Method: Using the functionality of the ehrflow_api package.

Reflection:
- I already know that I need to use the ehrflow_api package for feature extraction and importance assessment.
- I already know that the data source is the preprocessed data.
- I have not yet performed the specific operations for feature extraction and importance assessment.
- I need to ensure that I am using the preprocessed data, not the rawdata.

Consideration:
- I need to make sure that the data I am using is the preprocessed data.
- I need to call the model prediction feature of the ehrflow_api package for feature extraction and importance assessment.
- I need to consider whether all necessary preprocessing steps have been completed to ensure that the data is ready.
- I need to consider how to use the ehrflow_api package to perform these tasks.

Reasoning:
- According to the historical record, the preprocessing steps have been completed.
- I need to use the model prediction feature of the ehrflow_api package for feature extraction and importance assessment.
- I need to make sure that I am calling the correct ehrflow_api package functionality and that the input is the preprocessed data.

Plan:
- I will use the AnalyseCSV tool to call the model prediction feature of the ehrflow_api package.
- I will ensure that the input is the preprocessed data, i.e., the data in the './datasets' directory.
- I will describe in detail the type of analysis to be performed (model prediction) and the content of the analysis (feature extraction and importance assessment).

```json
{
"name": "AnalyseCSV",
"args": {
"inputs": {
"type": "Model Prediction",
"files": "./datasets",
"content": "Use the ehrflow_api package to perform feature extraction and importance assessment on the preprocessed data."
}
}
}
```AnalyseCSV

#!/usr/bin/env python
import pandas as pd
from ehrflow_api.pipeline import Pipeline
from ehrflow_api.analysis import DataAnalyzer
from ehrflow_api.plot import plot_feature_importance

# Train and predict using the Concare model
pl = Pipeline(model='ConCare')
pl.execute()

# Then proceed with the corresponding analysis
data_analyzer = DataAnalyzer(pl.config, pl.model_path)
train_raw = pd.read_csv('./datasets/train_raw.csv')
train_x = pd.read_pickle('./datasets/train_x.pkl')

# Assuming the analysis is for the first patient in the dataset (index 0)
patient_index = 0
result = data_analyzer.feature_importance(
df=train_raw,
x=train_x,
patient_index=patient_index
)

# After obtaining the analysis results, proceed with the corresponding visualization
plot_feature_importance(result, save_path='./output/')

print("Feature extraction and importance assessment have been completed.")

type=True content='Code review passed. The code structure is reasonable and meets the user's needs for feature extraction and importance assessment. No harmful information is found in the code, the syntax is correct,
dependencies are correctly imported, and function method calls are correct. The code style and structure are standardized, and the situation of exception and error handling is not reflected in the code snippet, but it does not
affect the review.’

Global seed set to 42
GPU available: False, used: False
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs

| Name | Type | Params
----------------------------------------------
0 | ehr_encoder | ConCare | 296 K
1 | head | MultitaskHead | 66
----------------------------------------------
296 K Trainable params
0 Non-trainable params
296 K Total params
1.187 Total estimated model params size (MB)
Validation: 0it [00:00, ?it/s]
Validation: 0%| | 0/1 [00:00<?, ?it/s]
Validation DataLoader 0: 0%| | 0/1 [00:00<?, ?it/s]
Epoch 14: 100%|██████████| 4/4 [00:13<00:00, 3.32s/it]
Epoch 15: 100%|██████████| 4/4 [00:13<00:00, 3.35s/it]
Validation: 0it [00:00, ?it/s]
Validation: 0%| | 0/1 [00:00<?, ?it/s]
Validation DataLoader 0: 0%| | 0/1 [00:00<?, ?it/s]
Epoch 15: 100%|██████████| 4/4 [00:13<00:00, 3.49s/it]
Epoch 15: 100%|██████████| 4/4 [00:13<00:00, 3.49s/it]
GPU available: False, used: False
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs
Restoring states from the checkpoint path at ./checkpoints/multitask/ConCare-seed42/best-v3.ckpt
Loaded model weights from the checkpoint at ./checkpoints/multitask/ConCare-seed42/best-v3.ckpt
Testing DataLoader 0: 100%|██████████| 2/2 [00:00<00:00, 2.18it/s]
特征提取和重要性评估已完成。

Global seed set to 42
GPU available: False, used: False
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs

| Name | Type | Params
----------------------------------------------
0 | ehr_encoder | ConCare | 296 K
1 | head | MultitaskHead | 66
----------------------------------------------
296 K Trainable params
0 Non-trainable params
296 K Total params
1.187 Total estimated model params size (MB)

Execute action

CodeReviewer

Outer Loop：Planner

Step: value='Use the model prediction feature of the ehrflow_api package to extract features and assess importance from the preprocessed data.'

Response: Based on the historical record and executed actions, the task of training the model with the preprocessed data has been completed. The preprocessed data has been used to train the model, and the trained model has
been saved. The feature importance assessment has been completed. Therefore, the current task has been successfully executed, and no further actions are required. The final answer is: Model training has been completed and
saved, and feature importance assessment has been completed.

The current plan is set as:
1. Use the one-click data preprocessing feature of the ehrflow_api pa ckage to preprocess './datasets/raw_events_data.csv', './datasets/raw_labtest_data.csv', and './datasets/raw_target_data.csv'. -> 2. Use the feature extraction
and importance assessment feature of the ehrflow_api package to extract features from the preprocessed data and assess their importance. -> 3. Use the data visualization feature of the ehrflow_api package to draw a histogram
based on the results of the feature importance assessment, and save it to the local file system. -> 4. In light of the above steps, please answer the user's original question: Please create a histogram of patient characteristic
importance for analysis.

Reflection

Final Answer

🤖:{'input': 'Please draw a histogram of patient feature importance', 'output': 'The model was indeed trained and saved, the feature importance assessment has been completed, and a histogram was drawn and saved to the local
file system. The histogram is saved in the './output' directory and can be reviewed.}

Outer Loop：Planner

Step: value="Use the one-click data preprocessing feature of the ehrflow_api package to preprocess './datasets/raw_events_data.csv', './datasets/raw_labtest_data.csv', and './datasets/raw_target_data.csv'."

Response: My final answer is:

The one-click data preprocessing feature of the ehrflow_api package has been used to preprocess the three CSV files. The specific steps are asfollows:

1. The data files './datasets/raw_events_data.csv', './datasets/raw_labtest_data.csv', and './datasets/raw_target_data.csv'were read.

2. A DataHandler instance was created, and the read data files werepassed as parametersto DataHandler.

3. The execute method of the DataHandler instance was called to perform one-click data preprocessing.

4. After the data preprocessing was completed, the message "Data preprocessing has been completed" was outputted.

No speci fic preprocessing parameters were specified in this process, so the default settings of the ehr flow_api package were used to complete the data preprocessing. The preprocessed data can be used for subsequent data
analysis or machine learning model training. My final answer is:

The one-click data preprocessing feature of the ehrflow_api package has been used to preprocess the three CSV files. The specific steps are asfollows:

1. The data files './datasets/raw_events_data.csv', './datasets/raw_labtest_data.csv', and './datasets/raw_target_data.csv'were read.

2. A DataHandler instance was created, and the read data files werepassed as parametersto DataHandler.

3. The execute method of the DataHandler instance was called to perform one-click data preprocessing.

4. After the data preprocessing was completed, the message "Data preprocessing has been completed" was outputted.

No speci fic preprocessing parameters were specified in this process, so the default settings of the ehr flow_api package were used to complete the data preprocessing. The preprocessed data can be used for subsequent data
analysis or machine learning model training.

The current plan is set as:
1. Use the one-click data preprocessing feature of the ehrflow_api package to preprocess './datasets/raw_events_data.csv', './datasets/raw_labtest_data.csv', and './datasets/raw_target_data.csv'. -> 2. Use the model
prediction feature of the ehrflow_api package to perform feature extraction and importance assessment on the preprocessed data. -> 3. Use the data visualization featureof the ehrflow_api package to draw a histogram based
on the feature importance assessment results and save it to the local file system. -> 4. In light of the above steps, please answer the user's original question: Please create a histogram of patient characteristic importance for
analysis.

Reflection

Refine Plan

Execute Result

Inner Loop：Planner

>>>>Round :1<<<<

Current task: Use the model prediction feature of the ehrflow_api package to extract features and assess importance from the preprocessed data.

Key concepts:
- Feature extraction and importance assessment: Achieved through the model prediction feature of the ehrflow_api package.

Concept breakdown:
- Feature extraction: Extract information from the data that aids in model prediction.
- Data source: Preprocessed data.
- Method: Utilizing the functionality of the ehrflow_api package.
- Importance assessment: Evaluate the influence of each feature on the model's predictive outcomes.
- Data source: Preprocessed data.
- Method: Utilizing the functionality of the ehrflow_api package.

Reflection:
- According to the historical record, data preprocessing has been completed, so there is no need to perform data preprocessing again.
- It is necessary to confirm whether the preprocessed data has been saved in the designated working directory.
- It is necessary to determine which model to use for training and the configuration of the model's parameters.
- It is necessary to consider how to execute the model training process.
- It is necessary to consider how to save the model after training is completed.
- I already know that I need to use the ehrflow_api package for feature extraction and importance assessment.
- Based on the historical record, I have already performed the specifi c operations for feature extraction and importance assessment, and the execution result indicates that feature extraction and importance assessment have
been completed, so the current task should have already been completed.

Consideration:
- I need to ensure that the data I am using is the preprocessed data.
- I need to call the model prediction feature of the ehrflow_api package for feature extraction and importance assessment.
- I need to consider whether all necessary preprocessing steps have been completed to ensure that the data is ready.
- I need to consider how to use the ehrflow_api package to execute these tasks.

Reasoning:
- According to the historical record, the preprocessing steps have been completed.
- Based on the historical record, using the model prediction feature of the ehrflow_api package for feature extraction and importance assessment has been completed.
- I need to call the FINISH tool to end this task execution.

Reasoning:
- Based on the historical record information, the one-click data preprocessing function of the ehrflow_api package has been called using the AnalyseCSV tool, and data preprocessing has been successfully executed.
- According to the historical record, model training has been completed and saved, and feature importance assessment has been completed, so the current task has been completed.

Plan:
- Use the 'FINISH' action to end the task.

```json
{
"name": "FINISH",
"args": {}
}
```FINISH

----
FINISH

Execute action

Execute Result

Refine Plan

Inner Loop：Planner

Now we will proceed to solve this step: Use the data visualization feature of the ehrflow_api package to draw ahistogram based on the results of the feature importance assessment, and save it to the local file system.
Here is the translation into English:

>>>>Round :0<<<<

Key concept:
- Drawing histograms and saving to the local file system: Achieved through the plotting functionality of the ehrflow_api package.

Concept breakdown:
- Drawing histograms: Draw the corresponding feature histograms based on the data after predictive assessment.
- Data source: Data after model predictive assessment.
- Method: Utilizing the functionality of the ehrflow_api package.
- Saving to the local file system: The corresponding feature histograms are saved locally.
- Data source: The drawn feature histograms.
- Method: Utilizing the functionality of the ehrflow_api package.

Reflection:
- I already know that I need to use the ehrflow_api package for feature extraction and importance assessment.
- According to the historical record, model training has been completed and saved, and feature importance assessment has been completed, so there is no need to performmodel training and assessment again.
- According to the historical record, the code execution for drawing histograms and saving to the local file system was successful, so the current task should have been completed, and no further execution is required.

Consideration:
- I need to call the model prediction feature of the ehrflow_api package for feature extraction and importance assessment.
- I need to call the plotting functionality of the ehrflow_api package to drawhistograms and save them locally.
- I need to consider using the ehrflow_api package to execute these tasks and ensure the results of the task execution.

Reasoning:
- According to the historical record, using the model prediction feature of the ehrflow_api pa ckage for feature extraction and importance assessment has been completed, and histograms have been drawn and saved to the local
file system.
- I need to call the FINISH tool to end this task execution.

Reasoning:
- Based on the historical record information, model training and feature importance assessment have been completed, and histograms have been drawn and saved to the local file system, with the corresponding API default
parameters indicating that the histograms are saved in the './output' directory, so the task has been completed.
- The current task execution is concluded.

Plan:
- Use the 'FINISH' action to end the task.

```json
{
"name": "FINISH",
"args": {}
}
```FINISH

----
FINISH

Execute action

Execute Result

Outer Loop：Planner

Step: value='Use the model prediction feature of the ehrflow_api package to extract features and assess importance from the preprocessed data.'

Response: Based on the historical record and executed actions, the task of training the model with the preprocessed data has been completed. The preprocessed data has been used to train the model, and the trained model has
been saved. The feature importance assessment has been completed. Therefore, the current task has been successfully executed, and no further actions are required. The final answer is: Model training has been completed and
saved, and feature importance assessment has been completed.

Reflection

Figure 7: EHRFlow successfully plots the histogram of patient feature importance. (Complete version)
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