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Abstract: Agile robotics presents a difficult challenge with robots moving at high
speeds requiring precise and low-latency sensing and control. Creating agile mo-
tion that accomplishes the task at hand while being safe to execute is a key require-
ment for agile robots to gain human trust. This requires designing new approaches
that are flexible and maintain knowledge over world constraints. In this paper, we
consider the problem of building a flexible and adaptive controller for a challeng-
ing agile mobile manipulation task of hitting ground strokes on a wheelchair tennis
robot. We propose and evaluate an extension to the work done on learning strik-
ing behaviors using a probabilistic movement primitive (ProMP) framework by
(1) demonstrating the safe execution of learned primitives on an agile mobile ma-
nipulator setup, and (2) proposing an online primitive refinement procedure that
utilizes evaluative feedback from humans on the executed trajectories.

Keywords: Learning from demonstrations and feedback, Movement primitives,
Agile Mobile manipulator

1 Introduction

Over the years, roboticists have sought to develop robots that can play various sports to demonstrate
and test the capabilities of their systems [1, 2, 3]. Sporting applications serve as a very natural
motivator for the development of autonomous systems, serving as a milestone in developing systems
that achieve human-level performance. Furthermore, to be effective at a sport, the system needs to
be able to reason about the state of the game, be agile in its response to changing observations,
and be safe by being mindful of objects in its vicinity. As autonomously learning effective robot
behavior is challenging for sports, prior work has sought to learn behaviors from experts.

Learning for Demonstrations (LfD) [4] is a framework for learning a policy from a set of demon-
strations provided by an expert. Prior work has shown how movement primitives obtained from
kinesthetic teaching can be used to teach robots to hit table tennis strokes [5, 6, 7, 8]. It has also
been shown that kinesthetic demonstrations can be used successfully to teach robots to play various
styles of strokes for table tennis [9, 10]. More recently, the problem of improving a policy learned
from expert demonstrations using reinforcement learning and inverse reinforcement learning has
also been explored [10, 11, 12]. However, most of these works are evaluated on either simulated
environments or on robot arms mounted on a stationary platform.

The need for algorithms that support learning robot behavior for versatile robot platforms is exacer-
bated in larger-scale racket sports, such as tennis. Tennis is a more challenging problem for robots
as it requires a responsive agile mobile base and higher racket head speeds than table tennis. In this
work, we demonstrate the first attempt to extend the ProMP framework to an agile mobile manip-
ulator to achieve successful tennis groundstrokes with a wheelchair tennis robot. We additionally,
describe an approach to refine the learned primitives from demonstrations online based on human
feedback.
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2 Preliminaries

In this section, we provide an overview of the Probabilistic Movement Primitive (ProMP) and the
notations we will use in the paper. Interested readers are encouraged to refer to [8] for more details.

The ProMP is a modeling technique that compactly represents a probability distribution over robot
trajectories [13]. Let qt represent the joint states of the robot at time t. The ProMP defines a set of
time-dependent basis functions (represented by Φt) and a weight vector, w, that compactly encodes
the robot trajectory, τ = {qt} by representing qt ∼ N (Φtw,Σy), where Σy models any white noise.

Given a dataset of demonstrations, the ProMP learns a distribution over weights, P (w |
{µw,Σw}) = N (µw,Σw)), that captures the common features across trajectories while factoring
in the variance that captures variations in demonstrations. The parameters, {µw,Σw,Σy}, of this
Hierarchical Bayesian Model (HBM) formulation can be computed from demonstrations by obtain-
ing Maximum Likelihood Estimates (MLE) via exact methods or Expectation-Maximization (EM)
procedures. A key property of ProMP that we leverage in this work is to condition it to pass through
desired end-effector waypoints. Since the ProMP representation is in the joint space, some form of
inverse kinematics (IK) is required to perform this conditioning operation.

3 Method

In Section 3.1, we provide a brief overview of our experiment setup: a wheelchair tennis robot. In
Section 3.2, we describe the details of the deployed stroke controller that safely executes the learned
primitives. In Section 3.3, we present our proposed method for improving motion primitives based
on human feedback.

3.1 System Overview

We mounted a 7-DOF high-speed Barrett WAM arm on a motorized Top End Pro Tennis Wheelchair
to build an agile mobile manipulator system [14]. The system is designed to emulate the athletic
gameplay of regulation wheelchair tennis, where players need to react quickly in the order of a few
hundred milliseconds.

To sense and track the movement of the tennis ball, we make use of a decentralized array of stereo
cameras that provides measurements from different perspectives. These estimates are fused by an
Extended Kalman Filter (EKF) [15] to output the ball’s estimated state which is propagated forward
in time to predict the ball’s future trajectory.

The problem of whole-body control of mobile manipulators is challenging – particularly in an agile
robotics setting – so we limit the scope of our study by constraining the wheelchair to move along
one dimension. We choose to allow the robot to move laterally, as human players exhibit lateral
movements only for the majority of the strokes [16]. We model the lateral movement as a prismatic
joint and obtain a kinematics model for the system (illustrated in Appendix A).

3.2 Stroke Controller

We build our stroke controller upon ProMP, which was originally proposed for table tennis in [7].
We make two key advances for our wheelchair tennis robot.

First, since the strokes executed often reach racket-head speeds ∼ 10m s−1, it is critical to ensure
that the conditioned joint space configuration at the time of impact is safe and achievable without
any self-collisions. Thus, we propose to perform a constrained IK starting from the unconditioned
trajectory mean to identify the joint configuration to condition on, and we explicitly restrict the
difference (qconditioned−qunconditioned) to be within specified lower and upper limits, doing so alleviates
the risk of getting bad but feasible IK solutions. When a ball is launched, the desired hit point for
conditioning is identified by computing where the predicted ball trajectory crosses a pre-specified
hit plane, and this point is then transformed into the frame of the mobile base. Iterative IK updates to
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the available Degrees of Freedom (DoFs) are performed to reach this desired hit point, and the total
updates are clipped to be within the specified limits. The pseudocode of this procedure is presented
in Appendix B.

Second, based on the observation from [14] that early positioning movement for tennis-playing
robots can improve the chances of a successful return, we allow the wheelchair to continuously
adjust its position during the conditioning process and execute the stroke independently based on
the anticipated ball arrival time. A flow chart explaining the state-machine of the stroke controller
is illustrated in Appendix B.

3.3 Refining primitives through human feedback

In [8], the parameters of ProMP are trained through a dataset of successful demonstrations obtained
through kinesthetic teaching or engineered controllers. While the ProMP model is initially trained to
recreate a demonstrated behavior (i.e., a robot arm trajectory that hits a ball), the result is suboptimal
due to both the suboptimality of the demonstration itself, out-of-distribution incoming flights of
the tennis ball, and the hardware-software system’s inability to perfectly execute a commanded
trajectory.

Nonetheless, the trained primitive does serve as an excellent starting point for exploring better tra-
jectories that can be executed on the hardware. Therefore, we propose to iteratively improve the
primitives by having a human evaluator assign scalar feedback indicative of the quality of the ex-
ecuted trajectory. We could collect human feedbacks {rn}Nn=1 from the evaluator for N executed
trajectories {{qnt}Tn

t=1}Nn=1. We then construct a dataset D which consists of trajectories and the
associated importance weight (αn, obtained as softmax over feedbacks), to optimize the weighted
log-likelihood objective:

WeightedLogLikelihood(D | θ) =
N∑
i=1

αn log(Likelihood( {qnt}Tn
t=1 | θ )) (1)

The parameters are optimized with the EM procedure outlined in [8]. In the M-step we compute the
weighted average of the estimates from the E-step as a consequence of the weighted log-likelihood
objective. This algorithm can be considered a part of the TAMER[17] class of algorithms, as we are
interactively shaping the distribution of executed trajectories using human feedback.

Algorithm 1 Iterative refinement of ProMP parameters

Require: ProMP parameters θ = (µw, Σw, Σy) trained from human demonstrations
repeat

Execute N trajectories {τn} from conditioned execution of θ and obtain human feedback {rn}
Compute importance weights over trajectories, {αn} ← SoftMaxNn=1({rn})
With dataset D = {(τn, αn)}, perform θ ← EM-WeightedLogLikelihood(D, θinit = θ)

until convergence

3.4 Experiment Setup

For our experiments, we evaluate the performance of the ProMP stroke controller in the lab setup
illustrated in Figure 1a. We initialize the ProMP parameters by training it on a dataset of success-
ful demonstration obtained from a manually engineered stroke (Figure 1b), this serves as our base
primitive. To evaluate the proposed fine-tuning algorithm (Section 3.3) we collect a dataset by run-
ning the base primitive. For each ball launched, we record the joint states to a ROS[18] bag file
and store the associated reward based on criteria listed in Table 1. We segment the trajectories from
the bag files by analyzing the maximum of all joint velocities to determine points of inflection, this
constitutes the start and end of the trajectory. The hit phase parameter is chosen based on where
the end-effector approximately crosses the pre-specified hit plane. Figure 2 illustrates the process of
trajectory extraction. We also evaluate the impact of the number of trajectories used for refining the
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(a) (b)

Figure 1: (a) Overview of the lab setup. (b) Wheelchair Tennis Robot executing a stroke.

Figure 2: Example of trajectory segmentation
from recorded joint states.

Table 1: Reward Criteria
criteria reward
miss by a large margin 0
miss but close (≤ 5 cm) 0.25
hit but not good enough 0.5
good hit (hit side pillar) 1
good hit (above net) 2

primitives by comparing the performance of the primitives trained on datasets of 20 and 50 trajecto-
ries. Performance measures hit rate, success rate (success corresponds to good hits), and the average
reward on a consecutive sequence of ball launches.

4 Results

We report the base primitive performance and the performance post-refinement in Table 2 based on
the setup described in Section 3.4. Performance is reported over a consecutive run of 10 balls.

# trajectories 0 (base primitive) 20 50
Hit Rate 60% 40% 50%

Success Rate 40% 40% 40%

Avg. Reward 0.75 0.85 0.85

Table 2: Performance over the number of trajectories used for refining the base primitive.

5 Conclusion

We have successfully demonstrated a safely executed ground strike primitive on a wheelchair tennis
robot. We proposed a formulation to fine-tune learned primitives online and conducted an evaluation.
While we do not observe significant improvements in terms of success rates with fine-tuning, we do
see a small increase in the average feedback rewarded to the primitives, so most balls have been
missed by small margins. Future work in this direction can consider different reward designs and
study how the choice of the reward impacts the learned primitive.

Future Work In future, we would like to explore methods to improve upon learned primitives to
1) ensure safe behavior and 2) increase task performance. Improving learned robot behavior has
relations across Active Learning with Human Feedback [4], Reinforcement Learning of robot skills
[19, 20], and Human-Robot Interaction. We would additionally like to consider several feedback
paradigms in improving robot motion including natural language, kinesthetic teaching, third-person
demonstration, etc.
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[3] D. Büchler, S. Guist, R. Calandra, V. Berenz, B. Schölkopf, and J. Peters. Learning to play
table tennis from scratch using muscular robots. IEEE Transactions on Robotics, 2022.

[4] B. D. Argall, S. Chernova, M. Veloso, and B. Browning. A survey of robot learning from
demonstration. Robotics and Autonomous Systems, 57(5):469–483, 2009. ISSN 0921-8890.
doi:https://doi.org/10.1016/j.robot.2008.10.024. URL https://www.sciencedirect.com/

science/article/pii/S0921889008001772.
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A Kinematic Model of the Robot

Figure 3: The kinematic model used for hit-point conditioning of primitive
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B Details of the stroke controller

Figure 4: Flowchart depicting the state-machine of the stroke controller

Algorithm 2 Constrained Inverse-Kinematics for conditioning of stroke primitives

Require:
• Desired hit point position xd in local mobile-base frame
• seed configuration qseed
• Forward kinematics model f : (r, q) → R3 and the corresponding manipulator jacobian
J(r, q), where r is the wheelchair position and q is the joint state
• lower (LL) and upper (UL) limits of allowed wheelchair and joint movements.

1: Let qc = qseed
2: Current end-effector position xc = f(qc, 0)
3: Let net dq = 0 and net dr = 0
4: repeat
5: ∆r,∆q ← J(net dr, qc)

†(xd − xc)
6: net dr , net dq← ClipedIncrement(net dr , net dq,∆r,∆q, LL, UL)
7: qc ← qseed + net dq
8: until iteration < N and !allclose(xc, xd, ϵ)

9: command wheelchair to move: net dr
10: condition stroke primitive to pass through: qseed + net dq
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