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Abstract
A priori estimation of molecular properties has long been of immense interest to
the pharmaceutical sciences for molecular generation and optimization. While
neural network-based models have achieved high predictive accuracy, they still find
limited utility in molecular design. High-dimensional molecular representations
are difficult to optimize especially in small data regimes, and neural network-
based models lack mechanisms to explicitly incorporate domain knowledge from
experts and prior knowledge from existing data. Herein, we introduce a causal
machine learning framework built on the Chemprop and DAGMA architectures for
molecular property prediction called Causal-Chemprop. To our knowledge, this is
the first application of causal machine learning to molecular property prediction and
optimization. Via intervention-based inference, Causal-Chemprop demonstrates
strong predictive performances on IC50 from the Kinase Knowledgebase and logS
of aqueous solutions from BigSolDB and SolProp. Counterfactual-based inference
offers support for human-in-the-loop optimization of molecular structure, which
we demonstrate by accurately extrapolating the IC50 of out-of-distribution kinase
inhibitors and logS of a quinolinyltriazole series of MIF inhibitors given a seed
structure. Finally, we integrate Causal-Chemprop with the molecular optimization
algorithm EvoMol to perform inverse molecular design, yielding soluble analogs
of the quinolinyltriazole MIF inhibitor.

1 Introduction
In pharmaceutical development, accurate prediction of physicochemical and biological properties is
essential for hit generation and optimization. Graph neural networks (GNN) models like Chemprop
have achieved state-of-the-art performance on a variety of property prediction tasks including solubil-
ity [1], absorption, distribution, metabolism, and excretion [5]. Despite their success on benchmark
datasets, GNN models find limited utility in molecular optimization.

High-dimensional GNN molecular representations tend to overfit and learn spurious correlations on
small datasets, limiting their extrapolative accuracy on out-of-distribution (OOD) molecules [17].
Further, GNN models lack explicit mechanisms to incorporate expert domain knowledge, which
could otherwise help uncover relationships buried in noise or model the noise itself. GNN models
also lack explicit mechanisms to incorporate prior knowledge from existing experimental evidence,
which could otherwise help make more accurate predictions.

Here, we propose a causal machine learning framework built on the Chemprop [7] and DAGMA
[3] architectures for molecular property prediction called Causal-Chemprop. Figure 1 (a) illustrates
the Causal-Chemprop model architecture. Instead of passing learned molecular representations to a
feed-forward network for property prediction, we pass it into a structural causal model (SCM) on
which we perform intervention- and counterfactual- based inferences. To our knowledge, this is the
first application of causal machine learning to molecular property prediction and optimization, and
we believe this approach can be generalizable to other representation-based models.
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The SCM facilitates targeted do-interventions on features of the molecular representation, as illus-
trated in Figure 1 (b). We propose that estimating the target property under these interventional effects
reduces the impact of spurious correlations found in high-dimensional representations. Further, the
SCM offers a pathway beyond naive black-box property predictions through counterfactual reasoning,
as illustrated in Figure 1 (c). By observing a molecule or a molecular cluster and its properties, we
can isolate noise variables associated with it, then use this prior knowledge to estimate counterfactual
outcomes of the target property under interventional effects. This enables more reliable property
prediction around the observed chemical space.

Figure 1: (a) Causal-Chemprop is a structural causal model built on top of Chemprop; (b) do-
interventions gives accurate predictions of target properties; (c) counterfactual reasoning makes use
of prior evidences to get better predictions, enabling human-in-the-loop molecular optimization.

We compare the performances of Chemprop and Causal-Chemprop on 3 tasks:

1. Single-component tasks: We train Causal-Chemprop on an AURKA inhibitor dataset (containing
810 datapoints) and an ABL1 inhibitor dataset (containing 615 datapoints) taken from the Kinase
Knowledgebase [15], then apply intervention-based inference for model testing. To test OOD
extrapolation, we then perform counterfactual-based inference on the pretrained model to predict
the IC50 values of AURKA inhibitors (Figure 11) conceptualized by Bavetsias, et al. [2] and
ABL1 inhibitors (Figure 12) conceptualized by Huang, et al. [9]

2. Multi-component tasks: We train Causal-Chemprop on an aqueous solution dataset curated
from BigSolDB [11] and SolProp [16], containing 3630 datapoints and 423 solutes, then apply
intervention-based inference for model testing. To test OOD extrapolation, we then perform
counterfactual-based inference on the pretrained model to predict the logS of the molecular
derivatives of a quinolinyltriazole MIF inhibitor (Figure 10) conceptualized by Cisneros, et al. [4].

3. Molecular optimization: We use an evolutionary algorithm, EvoMol [12], to optimize the
quinolinyltriazole MIF inhibitor seed structure and maximize its aqueous solubility. As the scoring
function for EvoMol, we compared both Chemprop and counterfactual-based inference with the
Causal-Chemprop model pretrained for the logS task.

2 Results and Discussion
2.1 Single-component tasks
Figure 2 shows the parity plots comparing Chemprop and Causal-Chemprop on ABL1 and AURKA
inhibitors from the Kinase Knowledgebase. While Chemprop was unable to correctly rank order the
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IC50 values of both kinase inhibitors, Causal-Chemprop demonstrated substantial improvements in
predictive accuracy using the same molecular embedding via intervention-based inference, particularly
for the Causal-Chemprop model with histogram gradient boosting regressor trees. By isolating the
feature space to the parent nodes of IC50, we obtain improved separation of molecular clusters as
corroborated by the t-SNE plots (Figure 8).

Figure 2: IC50 predictions for AURKA (top) and ABL1 (bottom) inhibitors using (a) Chemprop;
(b) intervention-based inference on Causal-Chemprop with linear regressors; (c) intervention-based
inference on Causal-Chemprop with histogram gradient boosting regressor trees

We use the pretrained models to extrapolate the IC50 values of AURKA inhibitors conceptualized by
Bavetsias, et al., and ABL1 inhibitors conceptualized by Huang, et al. Figure 3 shows the parity plots
comparing the performances of Chemprop and Causal-Chemprop. Counterfactual-based inference
with both Causal-Chemprop models outperformed Chemprop for OOD predictions on both AURKA
and ABL1 tasks, as indicated by the improvements in RMSE, Pearson, and Spearman correlation
scores. We suspect that intervening only features of the molecular representation that are intrinsic
causal contributors to IC50 eliminates the effect of spurious correlations.

Figure 3: IC50 predictions for AURKA (top) and ABL1 (bottom) inhibitors using (a) Chemprop; (b)
counterfactual-based inference on Causal-Chemprop with linear regressors; (c) counterfactual-based
inference on Causal-Chemprop with histogram gradient boosting regressor trees
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2.2 Multi-component tasks
The aqueous solubility dataset provides a challenge due to experimental noise. Figure 4 compares the
parity plots of Chemprop and Causal-Chemprop. Unlike Chemprop, both Causal-Chemprop models
successfully captured the temperature dependence of solubility via a causal edge, and intervention-
based inference with the Causal-Chemprop model showed a particularly significant improvement
in rank-ordering of the solutes, particularly with histogram gradient boosting regressor trees. These
improvements are corroborated by t-SNE plots across the aqueous solubility dataset (Figure 9);
utilizing only the features of the molecular representation that are intrinsic causal contributors to
logS leads to better separation of chemotypes.

Figure 4: logS predictions on a combined aqueous dataset comprised of BigSolDB and SolProp
using (a) Chemprop; (b) intervention-based inference on Causal-Chemprop with linear regressors; (c)
intervention-based inference on Causal-Chemprop with histogram gradient boosting regressor trees

The sparsity of the aqueous solubility dataset and differences in solvation mechanisms makes it a
challenging task to extrapolate the aqueous solubility of OOD small molecules. Here, we predict the
aqueous solubility of the derivatives of a quinolinyltriazole MIF inhibitor seed structure. Figure 5
shows the parity plots comparing the performances of Chemprop and Causal-Chemprop. By observing
a quinolinyltriazole seed structure, counterfactual reasoning allows both Causal-Chemprop models to
more accurately predict the aqeuous solubility of the quinolinyltriazole molecular derivatives. We
suspect that abducting exogenous noise associated with the quinolinyltriazole seed structure allowed
Causal-Chemprop to bias its predictions towards the observed chemical space.

Figure 5: logS predictions on the molecular derivative of a quinolinyltriazole MIF inhibitor seed
structure using (a) Chemprop; (b) counterfactual-based inference on Causal-Chemprop with linear
regressors; (c) counterfactual-based inference on Causal-Chemprop with histogram gradient boosting
regressor trees

2.3 Molecular optimization
This advancement beyond naive black-box prediction with counterfactual reasoning enables rational
molecular optimization, which we show with an evolutionary algorithm. When Chemprop is deployed
as a scoring function for EvoMol, the algorithm frequently perturbs the seed structure, driving unstable
optimization and yielding unrealistic molecular structures. In contrast, integrating Causal-Chemprop’s
counterfactual-based inference as the scoring function yields stable evolutionary trajectories, resulting
in soluble analogs of the quinolinyltriazole seed structure that parallel those reported by Cisneros et
al. The evolution trajectories are shown in Figure 6.
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Figure 6: (a) EvoMol trajectory optimizing a quinolinyltriazole MIF inhibitor seed structure over 50
steps using Chemprop as a scoring function and; (b) using counterfactual-based inference on a linear
Causal-Chemprop model as a scoring function

3 Causal-Chemprop
3.1 Chemprop
Chemprop consists of a local features encoding function, a directed message passing neural network to
learn atomic embeddings from the local features, an aggregation function to join atomic embeddings
into molecular embeddings, and a standard feed-forward neural network for the transformation
of molecular embeddings to target properties. Here, the sole purpose of Chemprop is to generate
molecular representations, which we use to learn a structural causal model and perform causal
inferences on to predict molecular properties.

3.2 Structural causal models
Following the framework by Pearl [13], a structural causal model, M , consists of two sets of variables,
X = (X1, . . . , Xd) and Z = (Z1, . . . , Zd), and a set of non-parameterized structural equations,
F = (f1, . . . , fd), that assigns the value xi to each variable Xi ∈ X in response to the current values
of X and Z:

xi = fi(x, z), ∀i ∈ [d] (1)

Here, the variables in X correspond to the Chemprop embedding, molecular properties, and experi-
mental conditions. The variables in Z are considered "exogenous" and correspond to unobserved
noise for which no mechanism is encoded in M . The family of structural equations F induces a
causal graph G(F ) that defines a joint distribution P(X) over the observed data. Here, we assume a
set of linear structural equations, which we solve for using DAGMA.

3.2.1 Learning the causal graph
The DAGMA algorithm frames the combinatorial problem of learning causal graphs from observed
data as a continuous optimization problem. It solves for the set of structural equations F in equation
(1) that minimizes a loss function Q(F ;X), which measures the quality of a candidate causal graph
G(F ) against the observed data X = [x1, . . . , xd]:

min
f∈F

Q(F ;X) = min
f∈F

d∑
i=1

loss(xi, fi(x)) s.t. G(F ) ∈ DAGs (2)
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The causal graph G(F ) is represented as a weighted adjacency matrix W (F ) ∈ Rd×d with elements
Wi,j = ∥∂jfi∥L2 , where ∂jfi is the partial derivative of fi w.r.t. xj . DAGMA defines the log-
determinant characterization for acyclicity hs

ldet as follows:

hs
ldet = − log det(sI −W ◦W ) + d log s = 0 ⇐⇒ W ∈ DAGs (3)

W (θ(0)) ∈ Ws =
{
W ∈ Rd×d

∣∣ s > ρ(W ◦W )
}

(4)

DAGMA reformulates the objective function in equation (2) as an unconstrained problem in which
hs
ldet acts as a non-negative regularizer that we seek to minimize along with the loss function.

3.2.2 Learning the causal mechanisms
We then assign and fit causal mechanisms for each node in the causal graph G(F ), replacing the
set of non-parametrized structural equations fi in equation (1). Here, root nodes are assigned an
empirical distribution that allows us to randomly sample from the provided data. Non-root nodes are
assigned an Additive Noise Model [8], which assigns the value xi to the node Xi following:

xi = fi(pai) + zi (5)

Here, fi is either a linear regressor or a histogram-based gradient boosting regressor tree, which takes
as input the values pai for the parents PAi of Xi. We assume the exogenous noise variables Zi are
random variables independent of PAi and are thus root nodes that we also model with an empirical
distribution.

3.3 Causal inference
We can now perform causal inferences on the SCM following methods proposed by Pearl [14]. Here,
we use intervention-based inference to predict the IC50 of AURKA and ABL1 kinase inhibitors,
and the aqueous logS of small molecules. We then use counterfactual-based inference to predict the
solubility of the molecular derivatives of a quinolinyltriazole MIF inhibitor seed structure, and apply
it as the scoring function of an evolutionary algorithm to optimize the seed structure.

3.3.1 Intervention-based inference
An intervention tells us that: “Y would be y if X is x,” denoted by Ydo(x) = y. We can estimate the
target property under interventional effects as follows:

1. Action: Generate the Chemprop embedding then identify the parents PAi of IC50 or logS.
Perform the atomic intervention PAi = do(xi) for each parent, where xi is its corresponding
value in the Chemprop embedding. By performing the do-intervention, we set the values pai = xi

in equation (5) and remove any causal influences on PAi, resulting in the submodel Mx;

2. Prediction: The solution for IC50 or logS in the submodel Mx gives us Ydo(x); assume zi = 0
for the noise variables then predict the value xi for IC50 or logS.

3.3.2 Counterfactual-based inference
A counterfactual sentence tells us that: “Y would be y had X been x in the event U = u,” denoted
by Yx(u) = y. Given any propositional evidence e observed from the event u, we can compute the
target property in a counterfactual scenario using a three-step process as follows:

1. Abduction: Generate and observe the Chemprop embedding, temperature, and logS of the MIF
seed structure. Then update the event U = u in light of the propositional evidence e; for each
node in the SCM, assign the observed value of its parent nodes pai = xe, the observed value of
itself xi = ye, then retrieve the event noise of zi for the node following:

z(u) = ye − f(xe); (6)

2. Action: Generate the Chemprop embedding of the MIF molecular derivative. Identify which
features of the Chemprop embedding are intrinsic causal contributors of logS, then perform the
intervention X = do(x), where X are the causal contributors and x is their corresponding value in
the Chemprop embedding. This again replaces any causal influences on X with the hypothetical
antecedent X = x, yielding a modified SCM Mx;

3. Prediction: Estimate logS of the MIF molecular derivative from the submodel Mx, which gives
us the solution Yx(u) based on our updated understanding of event u and the do-interventions:

Yx(u) = f(do(x)) + z(u) (7)
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The accuracy of counterfactual-based inference with Causal-Chemprop depends on the similarity
between the chosen seed structure and the evaluated target structures. Here, we investigate this
relationship for the AURKA IC50, ABL1 IC50, and aqueous logS extrapolative tasks by plotting
the prediction RMSE against the Tanimoto similarity between the seed and target structures. This
relationship is illustrated in Figure 7.

Figure 7: Error in counterfactual-based inference using Causal-Chemprop with linear regressors on
the following extrapolative tasks: (a) AURKA inhibitor IC50, (b) ABL1 inhibitor IC50, (c) MIF
inhibitor logS

4 Methods
4.1 Single-component tasks
Datasets: We trained single-component Chemprop models on AURKA and ABL1 inhibitor datasets
from the Kinase Knowledgebase. For both tasks, the datasets were randomly split into training (80%)
and validation (20%) sets. We do not provide the validation set to Causal-Chemprop when learning
the SCM. We test intervention-based inference with Causal-Chemprop and compare it to Chemprop
by predicting the IC50 values on the validation set. We then test counterfactual-based inference and
compare it to Chemprop by extrapolating the IC50 values of AURKA inhibitors conceptualized by
Bavetsias, et al. and ABL1 inhibitors conceptualized by Huang, et al.

Chemprop: We used bond message passing layers with a hidden size of 800, depth of 3, and dropout
rate of 0.50. We used a mean aggregation function to join the atomic embeddings. We used a
feed-forward network with 4 layers, a hidden size of 200, and a dropout rate of 0.50. We enabled
batch normalization. We set the optimization initial learning rate to 1E − 5, maximum learning rate
to 1E − 4, and final learning rate to 1E − 5. The training batch size was 32, and the validation batch
size was 16. Models were trained for up to 200 epochs, with early stopping after 10 validation epochs.

Causal-Chemprop: We ran DAGMA with linear structural equations to learn the weighted adjacency
matrix for the SCM. We used 5 DAGMA iterations (T), an L1 regularization of 0.002, a weight
threshold of 0.3, a learning rate of 0.005, 700 warm-up iterations, and 7000 maximum iterations. We
then created a causal graph from the weighted adjacency matrix using NetworkX [6], instantiated
an invertible causal model using the causal graph, then fit its causal mechanisms using either Scikit-
Learn’s histogram-based gradient boosting regressor trees or linear regressors.

4.2 Multi-component tasks
Datasets: We trained a multi-component Chemprop model on a combination of aqueous solutions
from BigSolDB by Krasnov, et al. and SolProp by Vermeire, et al. The dataset was randomly split into
training (85%) and validation (15%) sets. We do not provide the validation set to Causal-Chemprop
when learning the SCM. We test intervention-based inference with Causal-Chemprop and compare it
to Chemprop by predicting the logS values on the validation set. We then test counterfactual-based
inference by extrapolating the logS values of MIF inhibitors conceptualized by Cisneros, et al.

Chemprop: We trained a multi-component Chemprop model using the same parameters as the
single-component Chemprop model for the IC50 task, except using a larger batch size of 256 for
training and 64 for validation.

Causal-Chemprop: We learned a weighted adjacency matrix using the same DAGMA parameters as
the IC50 task. When constructing the causal graph, we forced temperature to be a root node, then
instantiated an invertible causal model and fit its causal mechanisms like before.
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4.3 Molecular optimization
EvoMol is an evolutionary algorithm that sequentially builds molecular graphs independent of starting
data. EvoMol uses a set of 7 generic mutations close to the atomic level in order to search a large part
of the chemical space [12]. EvoMol aims to optimize an objective function, which in our case is to
maximize the molecular property predicted by Chemprop or Causal-Chemprop. We run EvoMol with
only one objective: to maximize solubility. We added a constraint that disables the algorithm from
breaking and creating bonds. We penalize the algorithm if it generates a molecule without the MIF
seed structure. We run the EvoMol algorithm for 50 steps.

5 Conclusions
We introduced Causal-Chemprop, a causal machine learning framework for molecular property
prediction and optimization. Causal-Chemprop addresses key limitations of GNN models like
Chemprop, particularly with generalizing to OOD molecules when trained on small datasets.

Through intervention-based inference, Causal-Chemprop demonstrated strong predictive performance
on IC50 values from the Kinase Knowledgebase. By intervening directly on the parents of IC50,
Causal-Chemprop was able to correctly rank-order the AURKA and ABL1 inhibitors. Causal-
Chemprop also demonstrated strong predictive performance on logS values from the aqueous
solubility dataset, successfully capturing temperature gradients as per domain knowledge.

Through counterfactual-based inference, Causal-Chemprop showed strong extrapolative performance
in predicting solubility across derivatives of a quinolinyltriazole MIF inhibitor seed structure. By
observing the seed structure and intervening on intrinsic causal contributors, Causal-Chemprop
accurately captured the contribution of decorators on the quinolinyltriazol scaffold. Integration with
the molecular optimization algorithm EvoMol as a scoring function unlocked robust inverse molecular
design, yielding realistic and highly soluble analogs of the quinolinyltriazol seed structure.

5.1 Future work
Since we do not have access to the ground-truth causal model, we cannot guarantee that the SCM
and its causal mechanisms encode real causal relations between variables. Future work is to develop
methods to evaluate the causal sufficiency of our SCM for any hidden confounders, then back-
propagate these evaluation metrics to Chemprop to learn a more causal molecular representation.

It is also worth experimenting with other causal mechanisms to model non-root nodes, like Post-
Nonlinear Causal Models [18] and Causal Location-Scale Noise Models [10]. These could be better
methods of incorporating noise into the causal mechanisms, allowing better causal identifiability
than the additive noise model. Finally, we could introduce molecular descriptors and fingerprints to
Causal-Chemprop as confounding variables in the SCM, which could help capture noise and further
improve generalization ability to OOD molecules.
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A Technical Appendices and Supplementary Material

A.1 Representation space t-SNE plots

A.1.1 AURKA and ABL1

Figure 8: t-SNE visualization of the AURKA dataset (top) and ABL1 dataset (bottom) using the
Chemprop embedding (left) and the Causal-Chemprop features (right)

10



A.1.2 logS

Figure 9: t-SNE visualization of the combined aqueous dataset using the full Chemprop embedding
(left) and the Causal-Chemprop features (right)
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A.2 Molecular structures for counterfactual inference
A.2.1 Quinolinyltriazole MIF inhibitor

Figure 10: Molecular derivatives of the quinolinyltriazole MIF inhibitor seed structure
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A.2.2 AURKA kinase inhibitor

Figure 11: Molecular structures of AURKA inhibitors used for counterfactual-based inference
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A.2.3 ABL1 kinase inhibitor

Figure 12: Molecular structures of ABL1 inhibitors used for counterfactual-based inference

14



A.3 Compute resources
Training and inferencing were all conducted on an Apple M2 chip and 16GB of memory, signifying
the computational viability of both Chemprop and Causal-Chemprop models. Training Chemprop
took approximately 2 minutes for both IC50 task and logS tasks. The time complexity of DAGMA
is dominated by the computing the log determinant acyclicity constraint, which takes O(n3) time
and scales with the number of nodes in the causal graph. This then scales linearly with the number
of DAGMA iterations. Learning the causal graph with DAGMA over a 200-dimension Chemprop
representation with 7000 total iterations took 30 seconds for both IC50 and logS tasks, and fitting
the causal mechanisms to each node takes 1 minute for both tasks. Performing intervention-based
inferences with Causal-Chemprop is trivial to compute, though counterfactual-based inferences take
approximately 1 second to compute per sample.
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