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Abstract

Machine Learning Interatomic Potentials (MLIPs) have successfully demonstrated
power-low scaling in their training performance, however, the emergence of novel
capabilities at scale remains unexplored. We have developed Edge-wise Emergent
Decomposition (E3D) framework to investigate how an MLIP develops the ability
to derive physically meaningful local representations of chemical bonds without
explicit supervision. Employing an E(3)-equivariant network (Allegro) trained
on molecular data (SPICE 2), we found that the model by itself has acquired the
knowledge of bond dissociation energy (BDE) for archetypal bond types. The
emergent BDE values quantitatively agree with literature and are found to be robust
across distinct organic and inorganic training sets. E3D employs a set of internal
representations, probability distribution, and associated information entropy to
enable visual inspection and quantitative assessment of various model training
scenarios. We apply E3D framework and discuss the synergetic effect of hybrid
training set along with its potential to overcome the scaling wall for transition state
energy prediction problem.

1 Introduction

Machine Learning Interatomic Potentials (MLIPs) have revolutionized computational simulation
by delivering near-quantum accuracy at substantially reduced computational cost [[1, 2, 3]. Recent
progress has been driven primarily by scaling—increasing model size and dataset diversity—leading
to predictable power-law improvements in accuracy [4,15]. This scaling success has enabled novel
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software frameworks [6} (7} 8} 19, [10L [11} [12} [13]], also large and diverse datasets including SPICE [14}
15, MPTxj [13]], Alexandria [16], TM23 [[17], OMat24 [18]], OMol25 [[19], and MatPES [20]. These
advances have produced increasingly generalizable MLIPs for applications ranging from battery
materials [21]], catalysts [22} 23], drug discovery [24} 25], and nanodevices [12, 26} 27, 28]].

While current trends of MLIP development follow “bigger and more diverse” strategy [4}, 15} 29], it
has become increasingly clear that the strategy faces challenges in the prediction of complex chemical
reactions [22].

Accurate prediction of chemical reactions is one of long-sought capabilities of MLIPs. Figures [Tja
and[Tp schematically present the potential energy surface (PES) and reaction pathway learned by an
MLIP. The mechanistic understanding of reaction pathways and energy barriers may substantially
accelerate the development and synthesis of novel materials. Therefore, great efforts have been made
to date, such as large-scale data generation initiatives, e.g. the Open Catalyst Project [22, 130} 23],
and active learning for reaction modeling including ANI potential [29]. A recent development in
“foundation model” has also demonstrated surprising predictability of chemical reactions. These
models have shown enhanced performance in chemical reaction prediction through training on a
hybrid dataset that combines organic and inorganic materials data [31} 32]].

Despite these advancements, the lack of our understanding of how a model acquires chemical
intuition during training remains a great barrier for scalable MLIPs to address the wide aspects of
chemical reactions. For example, Figure|lf illustrates a disparity in the scaling behavior of reaction
energy (AFE) and activation energy (F,) using Allegro [33]] models trained on SPICE 2 dataset [14]
and evaluated on Transition1x (T1x) dataset [34]. The accuracy of A E improves consistently with
increasing training data in all tensor sizes, thus demonstrating the scaling behavior previously reported.
In contrast, the predicted E, plateaus around the data size of 10°, hitting a "scaling wall" where
additional data provides little to no benefit. This disparity is observed consistently across larger
model sizes, suggesting limitations beyond the model capacity.
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Figure 1: Schematic of potential energy surface (PES) learning a. A contour plot of PES learned
by MLIP. Markers indicate sampled data points near the ground states (blue) and at the transition
state (red). b. An energy profile along reaction coordinate. AE and E, indicate the reaction energy
(the energy difference between initial and final states) and the activation barrier (the energy difference
between the initial state and the saddle point), respectively. ¢. Scaling behavior of prediction errors
for AE and E, on the Transitionlx dataset [34]. Mean Absolute Error (MAE) versus number of
SPICE 2 [14] training structures for Allegro models with tensor sizes 32 (diamonds), 64 (circles),
and 128 (squares). While AF accuracy improves consistently, E, predictions hit a “scaling wall.”

This observation of the scaling disparity has given rise to several scientific questions; Why does the
model successfully learn to predict A E while struggling with £,? Any underlying data representa-
tions that could explain the learning behaviors? Is there a robust metric to capture the mechanisms
behind these scaling disparities and help quantify chemical information that is internally learned by
an MLIP?

To address these questions, we propose Edge-wise Emergent Energy Decomposition (E3D) framework
that leverages the chemical bond and its associated Bond Dissociation Energy (BDE). Unlike the
conventional approach, where the total energy is defined as the sum of atomic energies, we consider
the total energy as the sum of the bond energies, which provides multiple advantages. Because the
bond energy does not explicitly appear in the loss function, it serves a rigorous check of whether a



model has learned the fundamental chemistry. The bond energy is also an experimentally measurable
quantity, therefore existing chemistry databases may be used for quantitative validation. Not only E3D
framework is capable to examine the bond energy by pair atom type (e.g., C-H, C-C etc) but also their
order (e.g. single, double, and triple bonds). This “bond type decomposition” approach substantially
improves the interpretability and explainability of model prediction validated by literature.

E3D further leverages a set of internal representations (IRs), i.e. the symmetric (D;;) and asymmetric
(A;;) terms given in Equation 7 in Method section. The two-dimensional probability distribution of
D;; vs. A;; and associated Shannon entropy H>p enable quantitative assessment of training progress
and a direct access to when and how an MLIP acquires the chemical intuition during training.

In this study, we employ the E(3)-equivariant Allegro architecture [33]] and demonstrate the capability
of E3D framework that uncovers rich chemistry learned by the model. We also apply E3D to "the
unreasonable effectiveness of hybrid data" [35]], in which the energy prediction of transition state
(TS) may be improved by hybridizing organic and inorganic material datasets [31}32]. We examine
the benefit by hybridizing seemingly incoherent datasets and discuss its potential to tackle the scaling
wall problem.

The key contributions and findings of this study are as follows.

* Discovery of emergent BDE: A scalable model trained on large materials dataset automat-
ically acquires chemical intuitions for various bond types, which is robust and observed
across material datasets.

* Probability distribution of the IRs and its information entropy as a novel analysis tool for
qualitative and quantitative evaluation in a variety of training scenarios.

» Synergetic effect of hybrid dataset to improve the accuracy of TS energy prediction. The
result suggests a novel approach to overcome the scaling wall during training.

2 Methods

N-body Interaction

The potential energy Egysiem 0f a system composed of N atoms can be described using a body-order
expansion that includes terms up to the N-body interaction:

Esystem = ZEZ(I) + ZEZ(JQ) + ZEZ(J?); + -+ (N—bOdy term). (])
( ij ijk

Since the computational cost of N-body interactions scales as O(N?), directly incorporating such
terms into MLIPs is not practical. Many of the current MLIPs allow the Egygtem to be expressed as a

sum of single-atom energies E‘fl) that include many-body effects:
Esystem = Z El(l) . (2)

To accomplish this, the existing MLIPs, such as Behler-Parrinello neural network potentials [[1]],
describe many-body interactions by combining two-body and three-body descriptors through non-
linear functions, such as activation functions used in neural networks. In particular, Atomic Cluster
Expansion (ACE) [9], which enables the construction of many-body descriptors in a computationally
efficient manner, has significantly improved the accuracy of the representation in Eq.[2]

However, it is not necessary to represent the total energy with the single-atom energy E~’i(1). Here, the
cohesive energy is defined as Fcon = Egystem — i Ei(l), and then Eq. becomes,

ijk

Beon =Y EZ + > ED) + -+ (N—body term). 3)
ij ijk

Econ is preferred to Egygtem for the training target of MLIPs, because it eliminates dependencies on
computational settings such as pseudopotentials in first-principles calculations, thereby providing an
unbiased energy reference.



Similar to that the representation from Eq.[I]to Eq. 2] was achieved, MLIPs should be able to expand
Econ in Eq. using two-body interactions ES ) that include many-body effects, as follows:

Eeon =Y B “
j

Since Esz) can be naturally interpreted as a quantitative measure of the attractive or repulsive
interatomic interactions, Eq. [] serves as a fundamental concept for evaluating interatomic bond
strengths using MLIPs themselves.

Model and Energy Decomposition Formulation

We employ the E(3)-equivariant Allegro architecture [33]] for our analysis due to its inherent energy
decomposability shown in Eq.[d] We trained Allegro models with internal tensor representation
sizes of 32, 64, and 128, spherical harmonics expansion /,,,x = 2, and radial cutoff r¢,; = 5.2 A.
For most analyses, we employed a tensor size of 64, prioritizing computational efficiency without
compromising accuracy. This specific size proved optimal: a smaller tensor (size 32) resulted in
lower accuracy due to its limited parameter count and thus reduced representational capacity, whereas
a larger tensor (size 128) demonstrated comparable performance to size 64.

Allegro decomposes total system energy Fgystem into per-node (atom) energies ¢; and per-edge
energies &;;[33:

N
Esystem = Z(UZiEi + MZi)a

i=1
€ = E 02;Z;€ij,

JEN(@)

&)

where 0z,, 0z, z, are learnable per-species scale parameters, (7, are learnable shift parameters for
atoms of species Z; and Z;, N is the total number of atoms, and N (i) represents atom ¢’s local
neighborhood. The Allegro model, which is based on the ACE formalism [9] and combined with
their connection via nonlinear functions, enables the expression of Fgygem in terms of the per-edge
energies &;;(33].

Therefore, in order to implement an architecture that satisfies Eq. [ within the Allegro model, we
standardize the normalization parameters by setting the shift parameters iz, = 0 and scale factors
0z, = 0z,z; = 1.0 in Eq.[5} Furthermore, instead of learning Eystem, the model is trained to predict
Econ. With these settings, Eq. [5|becomes a direct sum of edge energies ¢;:

N
Beon =Y Y &ij, (6)
i=1 jEN(3)
which is equivalent to Eq. 4
Importantly, €;; and €; are generally not the same (i.e., €;; # €;) reflecting the local environments
of ¢ and j atoms independently. Thus, these energy values differ based on which atom index to

be taken as the central atom. We define a set of metrics, i.e. the symmetric component D;; and
asymmetric component A;;, to capture the degree of the bond energy strength and its asymmetry:
Dij = €ij + €ji,
O (M)
ij = Eij — Eji-
Here, D;; represents total bond energy between ith and jth atoms. The summation of D;; for all
atomic pairs in the system, i.e., Ziv > JEN(i),j>i D;; is equal to E,). The asymmetric component
A;; quantifies energy imbalance arising from the difference in the local environment of the two atoms.
For example if ith and jth atoms are of the same element, A;; reflects the difference between the two
local environments.

We trained the Allegro models modified with unscaled ¢;; outputs using NequlP framework[10].
Detailed training procedure, hyperparameters and datasets are provided in Supplemental Material.



E3D Protocol

We assigned bond multiplicities (single, double, triple, aromatic) using General Amber Force Field
(GAFF) atom types from antechamber in AmberTools 23[36] with manual validation for ambiguous
cases. Reference BDE values from experimental measurements [37]] enable quantitative comparison
with learned D;; distributions, providing a direct assessment of the physical meaningfulness of the
learned representation.

In addition we define two key metrics, the BDE distribution shift Agpg and the BDE distribution
width ogpg, to enable a unified evaluation metric across different model training settings. Agpg and
oppg are computed from a single distribution combining the BDE distributions of all bond types,
each of which is shifted by their reference BDE value. See the inset in Figure 2 in main text.

To analyze correlations between the symmetric (D;;) and asymmetric (A;;) components of learned
bond energies, we generated 2.D histograms of D;; versus A;;. This analysis focused on C—C, C—H,
C-0, and C—N from T1x dataset structures, considering covalent bonds shorter than 2.2 A to ensure
chemical relevance. We constructed these histograms using uniform 0.1 eV energy bin widths for
both axes over their observed ranges.

Shannon entropy quantifies organization structure of representational spaces:

Hyp == prilog pu 8)
Kl
where py; is the normalized frequency in bin (k, [) of the 2D histogram. Lower entropy values indicate
more organized, well-defined internal representations, suggesting that the model has developed
structured chemical understanding. This metric provides a quantitative measure of how clearly the
model distinguishes different chemical environments and structure.

Table [T| summarizes the metrics employed in the E3D framework to characterize learned representa-
tions and their relationship to physical quantities.

Table 1: Key metrics in E3D framework.

Metric Symbol Description

Symmetric Bond Energy D;; Total interaction energy: €;; + €5;

Asymmetric Bond Energy Ajj Energy imbalance due to asymmetry:
€ij — Eji

BDE Distribution Shift ABDE Mean deviation from reference BDEs

BDE Distribution Width OBDE Standard deviation of D;; distributions

2D Map Information Entropy Hap Shannon entropy of the D;; vs. A;; map

3 Results

Emergent Bond Dissociation Energy

First, we demonstrate that Allegro model can acquire the knowledge of BDE without explicit
supervision. The constraints for Allegro were implemented to achieve output completion as described
in Eq. [l We trained the Allegro model using SPICE 2 [14] and evaluated the generalization
performance using T1x [34] dataset. Subsequently, we analyzed changes in IRs with increasing
amounts of training data and verified whether generalization monitoring functions appropriately.

Figure[Za compares D;; against BDEs from literature. The model generates a distribution that aligns
well with established chemical trends. Not only the order of bond energy of C—H, N-H, and O-H
are correctly predicted, but also the average of the bond energies shows a quantitative agreement
with the reference BDE. Surprisingly, the model appears to have learned the concept of bond order
correctly, for example single, double, and triple bonds for C—C, C—N, C-0O, and N—-N bonds,
despite the fact that the model was trained solely on the total system energy. We call the novel model
capability as ’emergent BDE.’

Our E3D framework enables analysis of how the quality of IR changes with dataset size, providing a
means to analyze the scaling wall. As shown in Figures and , the mean difference Agpg and
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Figure 2: Emergent BDE. a. Distributions of learned symmetric bond energies (D;;) from Allegro
model (tensor size 64) trained on SPICE 2 dataset [14], compared with reference BDE values
(star markers) [37] for the bond types commonly found in SPICE 2 and T1x datasets. The model
successfully predicts the value and order of chemical bonds. The numbers (1), (2), and (3) represent
single, double, and triplet bonds, respectively. The numbers (1.5) and (2.5) represent single and
double bonds, respectively, in aromatic rings. b. BDE distribution shift with training data size (Agpg):
MAE between learned D;; means and reference BDEs. ¢. BDE distribution width (ogpg): three
standard deviations of learned D;; distributions. While Agpg exceeded 104, the slope became smaller
and showed a tendency toward saturation. ogpg continued to show a monotonic decreasing trend.

variance oppg relative to reference BDEs show signs of convergence in energy error reduction trends
when training structure counts exceed 10*~5. This corresponds to the position where the scaling wall
in Fig.[I} suggesting that BDE emergence may be related to predictive capability for reaction tasks.

Figures2p and 2k also illustrates the effect from tensor size to the scaling wall. While increasing
the tensor size to 128 produces negligible changes in Agpg and ogpg, reducing it to 32 significantly
degrades oppg performance, suggesting an optimal tensor size of 64.

To further assess the dataset dependency of the emergent BDE, we have also applied E3D to an
Allegro model trained on MatPES dataset, majority of which consists of inorganic crystalline data.
Figure |§| shows the obtained D;; distribution, in which the model also acquires the chemical intuition,
i.e. bond type, multiplicity, BDE value, using MatPES.
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Figure 3: Emergent BDEs. Distributions of learned symmetric bond energies (D;;) from an Allegro
model (tensor size 128) trained on the MatPES dataset[38]], compared with reference BDE values
(stars markers). Distributions are qualitatively consistent with those from the SPICE 2-trained model

(Figure 2).
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Figure 4: Evolution of bond energy representations a. IR distributions for C—C, C—H, C-0, and
C—N bonds at varying training data volumes Ngat,. Here, we employ the structure of the test set,
which has been separated from the training set in SPICE 2. b. Hyp plot as a function of Nga,t,, in
which the entropy value at Nyat, = 920 as reference. As Ngat, increases more refined structures and
boundaries has developed that result in the consistent reduction of Hsp.

Distribution of Internal Representation and Shannon Entropy

Fig. EF) shows the distribution of the IRs, the symmetric D;; and asymmetric A;; terms given by Eq.
Using the Shannon entropy (Hsp), we also quantify the changes in the distribution during training
as a function of the training set size. We have examined the distributions over archetypal chemical
bond types (C—H, C-C, C—0, C—N) across varying training conditions. Here each training set with
different size is randomly sampled from the entire SPICE 2 dataset. The distribution function shows
progressive development and structural refinement that evolve into isolated peaks as training size
increase. This result indicates an increasing development of complex and multi-modal features inside
the model. Each island of the distribution corresponds to distinctive bond characteristics such as bond
order, therefore, the obtained IR distribution may be seen as a fingerprint of given atomic pair.

Figure @b shows consistent decreasing treads in Hop with respect to the size of training set. We
found that the BDE representations emerge even with relatively small size training set and converges
by the training data size reaches approximately 10%~°.

Effect of Hybrid Dataset on Transition State Energy Prediction

Lastly, we examine the effect of hybrid dataset on TS energy prediction. We trained the models on
either SPICE 2 alone, or a hybrid dataset consists of SPICE 2 + MatPES (labeled as Hybrid).



Table 2] summarizes the model performance using MAE of E, and AE. As previously reported, we
have also confirmed that the performance of TS energy prediction improves consistently using the
hybrid dataset regardless of the tensor size, for example, achieving a £, MAE of 0.44 eV (Hybrid)
compared to 0.58 eV (SPICE 2).
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Figure 5: Entropy change in IR distributions using models trained on SPICE 2 and Hybrid (SPICE 2
+ MatPES). The entropy is evaluated using T1x dataset, which is divided into two mutually exclusive
sets of atomic configurations; the reactant structure (T1x:r), transition state structures (T1x:ts), and
the product structures (T1x:pr). Four types of chemical bond (C—H, C-C, C-0, and C—N) are
examined here. Entropy increases in various chemical bonds. C—H bonds show this across all T1x
datasets. C—O and C—N bonds show especially high entropy increases in T1x:pr.

Figure 5] shows the breakdown of H>p by bond types tested on the T1x dataset. Here we divide T1x
into three groups, that is, the reactant structures (labeled T1x:r), transition state structures (labeled
T1x:ts), and the product structures (labeled T1x:pr). We found that entropy tended to increase across
various bond types, particularly in C—H bonds across all T1x groups.

Table 2: Performance improvements with hybrid dataset training on T1x reactive properties.
Dataset  Tensor size FE, MAE (eV) AFE MAE (eV)

64 0.61 031

SPICE 2 128 0.58 0.33
. 64 0.49 027
Hybrid 128 0.44 0.25

4 Discussion

E3D framework has revealed for the first time the internal development of BDE within MLIP. The
emergent BDE may explain the unprecedented generalizability of MLIP because it would be possible
to construct and stably simulate an extremely large protein molecule [3] if an MLIP understood the
basic building blocks of chemistry. Currently, most of MLIPs are trained on system energy, atomic
force, and system stress; therefore, other MLIPs that exhibit remarkable scalability [11} 12, [10] may
have acquired a similar IR.

The emergent BDE is achieved neither with loss function nor inductive bias, simply learned from data,
a great advantage of MLIPs that learn highly nonlinear interactions automatically without tweaking
fitting parameters. At the same time, it also leaves room for further improvement; one may come up
with a novel network design with an inductive bias suitable for learning BDE.

We found that the emergent BDE is observed with the two widely-used large-scale materials datasets,
SPICE 2 and MatPES. The result suggests that the emergent model capability is not specific to SPICE
2 dataset that predominantly consists of the bond types we examined, but rather a generic capability
of MLIPs that are equipped with sound scalability.



The IR distribution and information entropy provide novel insights of the MLIP development and
enable us to inspect the process from multiple aspects. By changing the data size, the distributions
exhibit the formation of domains that go through the refinement of their boundaries and the shrinkage
in size. In addition, such domains can split into further smaller clusters as the training set increases.
See Fig. [da. The result indicates that a better understanding of the local atomic environment and
bond energies has been developed inside the model.

The change in entropy with respect to the size of the training set provides great insight about model
training and highly correlates with the model scalability. It is particularly useful for comparing
several training scenarios, for example, SPICE 2 vs. MatPES or the size of training set.

A declining trend shown in Fig. b suggests that the IR distribution converges to narrower peaks with
a smaller variance. How many peaks (possible BDE values) exist depends on the training set, for
example, the C-C bond with different multiplicity. The value of entropy could remain the same when
the distribution barely changes (for example, C-H bond in Fig. ) or increases if more complex
structures emerge as model training proceeds.

We found that the hybrid dataset exceeds the scaling wall with the SPICE 2 dataset on the prediction
of TS energy, achieving a further reduction of the MAE loss by approximately 25% for £, and AFE.
The increased entropy suggests the formation of more complex multi-modal IR structures than the
one with SPICE 2 alone. Material datasets that consist of molecules or bulk systems usually have
very different characteristics due to their symmetries, boundary conditions, and underlying quantum
mechanics theory used to generate training set, therefore, a common practice is to train separate
MLIPs depending on target applications. E3D framework has shown a synergetic effect of the hybrid
dataset on TS energy prediction, i.e. an improved out-of-distribution performance using SPICE 2 and
MatPES.

In summary, we have developed the E3D framework that uncovers the underlying mechanisms for
the unprecedented generalization of universal MLIPs. Current MLIP advancements largely rely on
methodologies designed for generic Al models, therefore, a physically-inspired method such as E3D
has great potential to benefit MLIP research as well as to create a novel guideline to overcome the
scaling wall.
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