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Abstract

World models play a crucial role in model-based reinforcement learning (RL) by
providing predictive representations of an agent in an environment and enabling the
agent to reason about the future and make more informed decisions. However, there
are still two main problems limiting the applications of world models. First, current
methods typically train the world models using only massive domain-specific data,
making it challenging to generalize to unseen scenarios or adapt to changes in the
environments. Second, it is difficult to define the actions when world models are
trained using in the wild videos. In this work, we tackle these two problems by
learning a general purpose world model from a diverse and large scale real world
video dataset with extracted latent actions. Specifically, our approach leverages
a pre-trained vision encoder to project the images of two adjacent frames into
states; then, extracts the latent actions into a low dimensional space based on
vector quantization; finally, a dynamic function is learned using latent actions.
Results show that the proposed generic world model can successfully extract
latent actions of arbitrary neighboring frames when testing on in the wild video
dataset. Furthermore, fine-tuning on only a small amount of in-domain data can
significantly improve the accuracy of the generic world model when adapting to
unseen environments.

1 Introduction

Reinforcement learning (RL) has shown remarkable success in various domains, but its application to
real-world problems is often limited by the high sample complexity and lack of stability. Model-based
RL seeks to address these limitations by incorporating powerful world modelsHa and Schmidhuber
[2018]. World models offer significant advantages by providing predictive representations of the
environment’s dynamics. These models enable agents to simulate possible trajectories and make
informed decisions, leading to improved sample efficiency, risk-free exploration, and enhanced
planning capabilities. Inspired by the great success of pre-training in Computer Vision(CV)Chen
et al. [2020] and Natural Language Processing(NLP)Brown et al. [2020], large models can learn rich
and generic representations from diverse and large-scale datasets. In addition, the pre-trained models
also enjoy strong abilities of generalization, fast adaptation, and even Zero-shot learningRadford et al.
[2021]. Therefore, we could naturally ask the question: can we obtain a robust and generalizable
world model via pre-training on large scale and diverse datasets?

However, training world models using large scale daily videos is quite challenging, due to the
absence of actions. Currently, world models are usually trained by a large amount of domain-specific
observation and action pairsHafner et al. [2020]. Actions describe the transition between two adjacent
observations and serve as essential information in training dynamic functions. While, this action-
required training paradigm generally restricts the available data scale, because most of the video data
are observation-only and it is also extremely hard to define abstract and accurate actions in daily

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



Figure 1: We pre-train the world model using large scale in the wild data and then fine-tune with a
small amount of action conditioned in-domain data.

videos. So, how to extract actions from in the wild videos and leverage the abundant internet-scale
data has become a promising and valuable topic. Furthermore, data-hungry and poor generalization
are other shortcomings in current world models. To learn an accurate and powerful world model, a
mass of in-domain data is required, which is usually generated by a specific simulation environment
for a long time. Additionally, a well-trained world model commonly surfers from environmental
changes, which will lead a significant performance degradation. Unfortunately, the only solution
is to generate new data and retrain the world model, which is really a time-consuming and tedious
procedure.

In this paper, we present a universal world model, summarized in Figure 1, which is learned from
large scale out-of-domain action-free videos and can quickly adapt to unseen environments in a
sample efficient manner. The key idea of the proposed universal world model is learning to extract
the latent actions from two nearby frames in any daily videos instead of utilizing a pre-defined
action space. Then, the extracted latent actions enable learning the dynamic function and predicting
the future. Moreover, once the universal world model is well trained, it can adapt to any specific
environment effectively when fine-tuned on a small amount of in-domain data. Specifically, an action
adapter is designed to align the learned latent actions and pre-defined actions in the environment,
enabling accurate planning and efficient decision making in world models. Our contributions are
summarized as follows:

• We demonstrate an effective learning based approach that can extract latent actions from two
nearby frames in any video. Then, a dynamic function is followed to reconstruct the future
frame condition on latent actions and past observations. This action extraction method offers
a novel path to allow world models to be pre-trained on large scale in the wild videos.

• We show that the pre-trained world models can efficiently adapt to unseen environments
when fine-tuned on a handful of domain specific-data. We design an action adapter to neatly
align latent actions and pre-defined actions in a specific environment. Results show that
this adapter is able to efficiently eliminate the gap between learned actions and pre-defined
actions, making it available for planning and self-exploration in the environment.

2 Related works

Self-supervised pre-training in CV and NLP Self-supervised learning(SSL) has emerged as
a powerful paradigm in both Computer Vision (CV) and Natural Language Processing (NLP). It
leverages unsupervised learning techniques to learn rich representations without the need for manually
annotated labelsMisra and Maaten [2020], Liu et al. [2021]. In CV, self-supervised learning has
gained momentum for a variety of tasks, including image classificationZhou et al. [2021], object
detectionXie et al. [2021], semantic segmentationWang et al. [2021], and depth estimationPillai et al.
[2019]. Approaches like contrastive learningChen et al. [2020], where the models learn to maximize
the similarity between augmented views of the same image while minimizing similarity with negative
samples, have shown promising results in learning robust visual representations. Recently, masked
image modeling (MIM)He et al. [2022], Xie et al. [2022], Bao et al. [2021] has shown great potential
in self-supervised training. MIM learns strong representations efficiently without complex data
augmentations. In particular, He et al. proposes a masked autoencoderHe et al. [2022] trained by
reconstructing the masked pixels. In NLP, self-supervised learning has revolutionized language
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understanding and generation tasks. Methods like masked language modeling, where words are
masked in a sentence, and the models learn to predict the masked words from the context, have been
highly successful. Pre-trained language models, such as BERTDevlin et al. [2018] and GPTBrown
et al. [2020], serve as powerful tools for transfer learning and have been fine-tuned on various
downstream tasks, achieving state-of-the-art performance.

Foundation models for visual motor control Foundation models(FM) are usually large models
trained with diverse and large scale data. Thanks to the strong generalization capacity, foundation
models are used for visual motor control tasksNair et al. [2022], Xiao et al. [2022], Jiang et al. [2022].
Foundation models can offer a general purpose representation and enable sample efficient policy
learning. R3mNair et al. [2022] learns transferable features from a large vision language dataset
through contrastive learning methods. In addition, value or reward functions can also be extracted
from videos and enable model-based RL. VIPMa et al. [2022] can not only serve as a representation
module but also as a generic value function. Furthermore, based on the strong generative capacity of
vision models and the powerful planning ability of large language models, foundation models also
serve as a robust data augmentation method. ROSIEYu et al. [2023] generates a mass of realistic and
task-relevant vision observations to enhance generalization ability. Recent breakthroughs in large
language models enable planning for long horizons and complex tasks. Text2motionLin et al. [2023]
proposes a language-based planning framework to solve sequential manipulation tasks that require
long-horizon reasoning. VoxposerHuang et al. [2023] utilizes large language models collaborating
with vision-language models to manipulate in the real world without a training process.

World models World models in model-based reinforcement learning (RL) refer to the learned models
that simulate the dynamics of the environment in which an RL agent operates. Inspired by the great
potential of pre-training, the world models can also be pre-trained. While, previous worksHafner
et al. [2020], Seo et al. [2023, 2022a] usually learn a domain-specific world model and the training
data is generated by a certain environment. This training paradigm can only work well in the specific
domain and lead to poor generalization ability. FICCYe et al. [2022] builds a world model through
a discrete autoencoder to play Atari games. Recently, some works have tried to explore training
the world models using cross-domain or in the wild data. ContextWMWu et al. [2023] trains an
action-free video prediction module from in the wild data by decoupling context and dynamics. Next,
ContextWM is fine-tuned with action conditioned data in a certain domain similar to APVSeo et al.
[2022b]. SWIMMendonca et al. [2023] learns a structured world model from human-centric videos.
However, the action space of SWIM is complexly designed with human hand motion extraction.
In this work, we propose an end-to-end approach to extract low dimension latent actions from two
nearby frames. The latent actions can efficiently adapt to a pre-defined action space of a certain
environment by fine-tuning with a handful of in-domain data.

3 Preliminaries

Problem formulation World models describe the dynamics of different states and preserve temporal
information of environments. The compact states are extracted from vision observations, which are
relatively low dimension and efficient for predicting and planning. Dynamic function models the
transition between states in latent space. A decoder is attached to reconstruct the vision observation
of the corresponding state. These components are represented as follows:

encoder : st ∼ encϕ (st | ot) , dynamics : st+1 ∼ p (st+1 | st, at) , decoder : ot ∼ p (ot | st) ,
(1)

where ot means the vision observation and st is a compact state learned from image ot though the
encoder, parameterized by ϕ. The dynamic function takes the previous state and action as inputs,
represented as st and at respectively, and predicts future state st+1.

Masked autoencoder Masked autoencoderHe et al. [2022] is a self-supervised representation method
which learns strong representations from raw images without complex data augmentation approaches.
The images ot ∈ RH×W×C are broken down to a sequence of small patches pt ∈ RN×(P 2C). N is
the total number of patches in an image defined by N = HW

P 2 , where P means patch size. Moreover,
the sequence of patches is randomly masked with a large portion m. The unmasked patches are
represented as pmt ∈ RM×(P 2C), where M means the number of unmasked patches,
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patchify : pt ∼ fpatch(pt | ot), masking : pmt ∼ fmask(pmt | pt,m). (2)

The unmasked patches are projected to D-dimensional vectors through a linear layer and fed into
a ViT encoder with additional positional embeddings. Then, the encoded unmasked embeddings
combined with learnable tokens are fed into a lightweight ViT decoder to reconstruct pixel values of
the masked patches,

V iT encoder : hm
t ∼ pϕ (h

m
t | pmt ) , V iT decoder : ot ∼ pϕ(ot | hm

t ). (3)

The encoder and decoder are jointly trained via Mean Square Error(MSE) calculated on masked
patches.

Vector Quantised Variational AutoEncoder(VQ-VAE) In VQ-VAEVan Den Oord et al. [2017], the
encoder network outputs discrete latent codes, which differs from VAE. The codes are determined by
the nearest neighbor calculated between the encoder output and a codebook. Besides, the codebook
is updated. The codebook is defined as e ∈ RK×D, where K is the number of codes in a codebook
and D means the dimension of every code. First, the image ot goes through an encoder to obtain
a representation ze(ot). Then, the discrete latent variable z is determined by the nearest neighbor
look-up using the shared embedding space e as shown below,

q(z = k | ot) =
{
1 for k = argminj ∥ze(ot)− ej∥2
0 otherwise

. (4)

Therefore, the input of decoder becomes ek. Next, a decoder is attached to reconstruct the input
image ot. The complete set of parameters for the model are from the encoder, decoder, and the
embedding space e. The parameters of the model are jointly optimized by the following equation,

Lvq = log p (ot | zq(ot)) + ∥sg [ze(ot)]− e∥22 + β ∥ze(ot)− sg[e]∥22 , (5)

where sg[ ] means stopping gradient and β is a hyperparameter to balance these loss terms.

Forward-Inverse Cycle Consistency (FICC) FICCYe et al. [2022] proposes to leverage action-
free videos from Atari games to train a specific world model via cycle consistency loss. Besides
cycle consistency, the loss function also includes reconstruction trems of visual observations ot and
difference of observations ot − ot+1. The visual observations are projected to latent space via a CNN
network R. Then a VQVAE module is followed to generate one discrete code z as a latent action.
Next, ŝt+1 is predicted by dynamic function D based on st and z. The cycle consistency loss function
is shown below,

Lcc =

cycle consistency︷ ︸︸ ︷
− cos(ŝt+1, st+1)︸ ︷︷ ︸

similarity

− ln p(ot+1 − ot|st, zq)︸ ︷︷ ︸
difference reconstruction

− ln p(ot|st)︸ ︷︷ ︸
reconstruction

, (6)

where st = R(ot), st+1 = R(ot+1), zq = inverse(st, st+1), ŝt+1 = D(st, zq). The total loss
function is a combination of cycle consistency loss and VQVAE loss, represented as L = Lcc +
αLvq, α = 1.

4 Method

In this section, we introduce a generic world model, a framework for extracting latent actions from
two adjacent visual observations and adapting the learned latent actions to a pre-defined action space
of an environment. The flow chart of the proposed method is shown in Figure 2. Our method consists
of: (1) learning a generalized dynamic function from in the wild videos (see Section 4.1), (2) adapting
pre-trained world models to the specific domain using only a handful of in-domain data and aligning
latent actions with pre-defined environment-specific actions by fine-tuning on a small amount of
action-conditioned data (see Section 4.2).
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Figure 2: The general framework of training the proposed world models. Up: pre-training by large
scale video dataset. Down: fine-tuning by actions conditioned in-domian data.

4.1 World models learned from in the wild videos

In the wild video data enjoys rich sequential dynamic frames collected from diverse scenes, making it
possible to optimize a generic world model which can learn the dynamics of the complex real world.
However, because daily videos are visually complex, it is difficult to optimize visual representations
and dynamics simultaneously. To address this issue, unlike FICC, which optimizes representation
network and dynamics together, we leverage a powerful visual encoder, pre-trained on a large dataset,
to capture visual information and only the dynamic function is optimized. We propose a universal
world model, trained from in the wild video data, to learn dynamic functions for all environments. To
begin with, two nearby frames Ot and Ot+1 are sampled from a randomly selected video and fed to a
pre-trained visual encoder to obtain visual features, represented as St and St+1, respectively,

V isual encoder : St ∼ pϕ(Ot), St+1 ∼ pϕ(Ot+1). (7)

Next, these two representations are concatenated and put into an action extractor module, several
transformer layers, to extract compact latent actions AL represented the dynamic transition between
St and St+1,

Action extractor : AL ∼ pϕ(Ot, Ot+1). (8)

Then, the extracted latent actions AL are compressed to several discrete latent codes AD via a
codebook, denoted as e ∈ RK×D, to reduce the information of the latent actions. Due to the naturally
complexity of in the wild videos, VQVAE output multiple discrete latent codes to represent the
actions in the videos. The discrete process is designed as an information bottleneck to avoid serious
model collapse. The reason that latent actions must be compact is to prevent shortcut learning which
means the latent actions AL directly copy St+1 and makes the action extractor effectless. Therefore,
the information capacity of AL should be relatively low to encode only the transition between St and
St+1 instead of the whole state St+1. The codebook helps to further restrict the information flow and
result in a discrete and abstract action AD,

AD = ek, where k = argminj ∥aL − ej∥2 . (9)

In addition, the discrete actions AD are combined with St to predict the next state, denoted as Ŝt+1,
through a dynamics network,

Dynamics : Ŝt+1 ∼ pϕ(St, AD). (10)
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The predicted state Ŝt+1 is fed to a pre-trained decoder, which is jointly optimized with the pre-trained
encoder, to reconstruct the input observation Ot+1, represented as Ôt+1,

V isual decoder : Ôt+1 ∼ pϕ(Ŝt+1). (11)

In the end, the training objective is much simpler than FICC which designs a relatively complex loss
function including cycle consistency and difference reconstruction. Our loss function can be divided
into two parts. The first term is to minimize MSE loss between ground true state St+1 and predicted
state Ŝt+1. The second term is to minimize VQVAE loss. The loss function can be expressed as
follows:

L = log p (Ot | zq(Ot)) + ∥sg [ze(Ot)]− e∥22 + β ∥ze(Ot)− sg[e]∥22 +
∥∥∥St+1 − Ŝt+1

∥∥∥2
2
, (12)

where the hyperparameter β is set as 0.25 in our experiment.

4.2 Finetune with in-domain data

The accuracy of transition dynamics is essential for model-based reinforcement learning. The generic
world model is trained by plenty of in the wild and diverse video data. Although they enjoy excellent
generalization ability, they are still not optimal for a specific environment. Hence, a natural method is
proposed to fine-tune the generic world model with a small bunch of domain-specific data.

The main purpose of world models is to enable planning in a specific environment with real actions.
In the previous step, the universal world model has been pre-trained by large scale and diverse in
the wild video data and fine-tuned with a small amount of in-domain data. However, the world
model can only use learned latent actions, which are inconsistent with ground truth actions of the
environment, to predict the next frame. Therefore, the goal of fine-tuning with action conditioned
data is to establish an efficient map between latent actions and ground truth actions. First, sample a
pair of visual observations accompanied by its corresponding actions, noted as Ot, Ot+1, and AGT .
Next, two observations are fed into a pre-trained encoder, which is the one used in the pre-training
phase, to obtain latent representations St and St+1. Then, an action adapter is designed to build a
map between ground true actions and learned actions. In detail, the action adapter takes St combined
with ground true actions AGT as inputs to fit the latent actions produced by the action extractor in the
pre-training phase. The simple objective can be formulated as:

Ladapter = ∥AL − pϕ(St, AGT )∥22 (13)

The following processes are identical to the pre-training stage, including discretizing by VQVAE,
predicting the next state, and decoding. In addition, the codebook does not need to be fine-tuned and
the only trainable module is the action adapter. After finetuning with action conditioned data, the
world model can efficiently obtain the dynamic function of this environment and accurately predict
the next frame.

5 Experiment

We evaluate the proposed generic world model on reconstructing various video datasets and simulation
environments, including Ego4DGrauman et al. [2022], something-something V2Goyal et al. [2017],
and Robosuite benchmarksZhu et al. [2020]. Specifically, we aim to investigate the following
questions:

• Can the generic world model reconstruct the next frame of any in the wild video with high
quality?

• Can fine-tuning with domain-specific data improve the reconstruction performance of this
environment?

• Can the generic world model accurately predict the next visual observations with ground
truth actions by fine-tuning with action conditioned data?
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Figure 3: The visualization results of the pre-trained world model from Something-Something-v2
and EGO4D datasets. Ot, Rt, Ot+1, and Rt+1 mean two observations and their corresponding
reconstructions. Predict represents the predicted future frames through the world model.

Table 1: The LPIPS scores between the predicted frame and two observations in SSv2 and EGO4D
datasets.

SSv2 (1) (2) (3) (4) (5)
Ot 0.280 0.437 0.350 0.323 0.416
Ot+1 0.193 0.240 0.224 0.201 0.153
EGO4D (6) (7) (8) (9) (10)
Ot 0.470 0.378 0.540 0.427 0.397
Ot+1 0.370 0.247 0.385 0.232 0.284

5.1 Experimental setup

Pre-training datasets We select Something-Something-v2 (SSv2) and EGO4D as our pre-training
datatsets. The Something-Something-v2 dataset is a collection of 220,847 labeled video clips of
humans performing pre-defined, basic actions with everyday objects, such as putting something on a
surface, Moving something up, and Pushing something from left to right. These videos are defined to
finish some relatively specific tasks and include most of our daily motions. Furthermore, EGO4D is a
massive-scale and egocentric dataset collected across 74 worldwide locations and 9 countries, with
over 3,670 hours of daily-life activity video. The EGO4D dataset is pretty challenging for the reason
that it is collected purely in the wild and does not represent a specific motion, even with frequent
view shifting.

Visual dynamic environment We examine the visual dynamic function of the world model in a
robot control environment. Robosuite is a simulation framework powered by the MuJoCo physics
engineTodorov et al. [2012] for robot learning. It also offers a suite of benchmark environments for
reproducible research. It contains seven robot models, eight gripper models, six controller modes,
and nine standardized tasks. We randomly sample a video clip with actions from Robosuite and
predict the next visual observation with past observations and actions.

Implementation details In pre-training, an image sequence is sampled from a video clip with a
time interval of 0.2 seconds. The size of input image is 224 × 224 × 3 by randomly cropping
from raw observations. The pre-trained encoder and lightweight decoder are taken from MAE, a
self-supervised framework trained by reconstructing masked patches. The structure of the action
extractor and dynamics network are a 4-layer ViT and a 2-layer ViT, respectively. The discretization
module is a VQVAE, with a codebook of 1024 individual codes with 64 dimensions. We use the
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random restart methodDhariwal et al. [2020] to train and update the codebook, which dramatically
smooths the training process and improves the sample efficiency. The parameters of the pre-trained
encoder and decoder are frozen during the training process. The other parameters including action
extractor, VQVAE, and dynamics are jointly optimized by the AdamW optimizer with a learning
rate of 1 × 10−4. Additionally, the learning rate is warmed up and cosine scheduling decayed to
ensure better convergence. In addition, other parts of the network consisting of the encoder, decoder,
and VQVAE, share the parameters with the ones in the pre-training process, which means the action
adapter is the only module to be trained. The parameters of the action adapter is optimized by Adam
with a learning rate of 3× 10−4.

Reconstruction evaluation metrics We select the LPIPS scoreZhang et al. [2018] to measure the
similarity between ground truth visual observations and predicted images by the world model. Unlike
traditional metrics such as Mean Squared Error (MSE) and Structure Similarity Index (SSIM), which
tend to focus on pixel level difference, LPIPS takes into account perceptual features extracted from
deep neural networks, making it more aligned with human visual perception. It is based on the idea
that features learned by deep convolutional neural networks (CNNs) such as AlexNetKrizhevsky
et al. [2012] or VGGSimonyan and Zisserman [2014], particularly those pre-trained on large image
datasets, capture meaningful information about image content and structure. The key insight behind
LPIPS is that image patches with similar high-level features are likely to appear visually similar to
humans. The LPIPS score is calculated as the Euclidean distance between the feature representations
of two images. A lower LPIPS score indicates higher perceptual similarity between the images.

Figure 4: The visualization comparison of the predicted frames between the world model pre-trained
by diverse data, in-domain data from scratch, and fine-tuned by in-domain data after pre-training,
denoted by Wpre, Wtfs, and Wft respectively.

5.2 Experimental results

Dynamics for in the wild data Figure 3 shows some examples of the evaluation of dynamic functions
trained from in the wild video data. To verify the generalization ability of the world model, we evaluate
our method on Something-Something-v2 and EGO4D datasets, which are known as commonplace
and diverse datasets. The transition dynamics of real world is quite complex, including new object
appearing or disappearing, view shifting, and object pose variation. The visualization results show
that the proposed world model trained on diverse datasets can effectively predict the future frame
based on the current frame and latent actions. The slight blur of the reconstructed and predicted
frames comes from the pre-trained MAE decoder. To quantitively analyze the results, we calculate
the LPIPS score between the predicted frame and two observations. To make a fair evaluation, these
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Figure 5: The visualization results of action conditioned adaptation, with enlarged gripper section.
RLA and RGT mean reconstruction by latent actions and reconstruction by ground truth actions.

two observations are equally blurred because our purpose is to measure semantic similarity instead of
fine-grained details. The quantitive results are reported in Table 1. The LPIPS scores show that the
predicted frame are more resemble to the future observation indicating the world model effectively
learn the dynamics of in the wild video instead of copying the current observation.

Fine-tuning with in-domain data In the pre-training process, the models are trained by in the
wild data. Therefore, it might not be optimal for a specific environment. Fine-tuning serves as a
promising way to address this sub-optimal problem. Figure 4 shows the results of future frames
predicted by the world model trained by complete diverse data, fine-tuned with a hand of in-domain
data, and entire in-domain data. The results indicate that the pre-trained world model obviously
suffers from sub-optimal issue and results in a degraded observation. However, after fine-tuning
with a small amount of data, only 2k paired frames, the image quality of predicted observations is
significantly enhanced, even matching the performance of the model trained totally by in-domain
data. consequently, pre-trained by large scale and diverse in the wild data and fine-tuned with a small
group of domain-specific data is an efficient configuration to train the world model.

Fine-tuning with action conditioned data To enable planning in the world model, the learned
latent actions should align with real actions, which are defined by the simulation environment. So,
we design a simple action adapter to learn the map between latent actions and real actions. The
results are shown in Figure 5. For elaborately comparing the differences, which are usually tiny
between two adjacent frames, we additionally fine-tuned the parameters of the decoder to obtain
better reconstruction performance. After fine-tuning with action conditioned data, the learned world
model can successfully predict future frames based on real actions.

6 Discussion

In this paper, we propose a general purpose world model trained by a large scale and diverse video
dataset, which can learn latent actions from two observations and predict the future frame in a
large range of diverse video. Then, when fine-tuned with a handful of in-domain data and action
conditioned data, the latent actions can be strictly aligned to real actions and accurately predict the
future frame. For limitations, currently, the generic dynamic function of the proposed world model is
only examined by visualization and quantitive analysis. It also should be tested by a model-based RL
algorithm in simulation environments and we will accomplish this part in future works.
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