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Abstract

The practical application of Al tools for specific computer vision tasks relies on
the “small-data regime” of hundreds to thousands of labeled samples. This small-
data regime is vital for applications requiring expensive expert annotations, such
as ecological monitoring, medical diagnostics or industrial quality control. We
find, however, that computer vision research has ignored the small data regime as
evaluations increasingly focus on zero- and few-shot learning. We use the Natural
World Tasks (NeWT) benchmark to compare multi-modal large language models
(MLLMs) and vision-only methods across varying training set sizes. MLLMs
exhibit early performance plateaus, while vision-only methods improve throughout
the small-data regime, with performance gaps widening beyond 10 training exam-
ples. We provide the first comprehensive comparison between these approaches in
small-data contexts and advocate for explicit small-data evaluations in Al research
to better bridge theoretical advances with practical deployments.

1 Introduction

Al research has increasingly favored evaluating new methods primarily through zero-shot and few-shot
benchmarks [7, 9, 19, 32, 46]. This evaluation approach is driven by the compelling promise of strong
generalization with minimal examples. However, this focus on zero—and few-shot learning neglects
a pervasive and essential scenario: the small-data regime, characterized by datasets containing
roughly dozens to a few thousand labeled samples (see Fig. 1a). This regime is critical for numerous
real-world applications where extensive labeled data collection remains costly and challenging, such
as ecological monitoring [5, 41], medical diagnostics [14], and industrial quality control [43]. Our
community’s decreased attention to rigorous small-data evaluations is a significant oversight. By
optimizing primarily for zero-shot and few-shot performance, we risk developing methods ill-suited
for practical scenarios where moderate data availability is typical. To address this gap, evaluations of
new methods should explicitly include small-data assessments.

To systematically evaluate the small-data regime, we use the Natural World Tasks [NeWT; 42]
benchmark, which is specifically designed for challenging fine-grained ecological classification tasks
requiring expert annotation. Using this benchmark, we compare multimodal large language models
(MLLMs) and vison-only methods across varying training set sizes. Using ecological classification
tasks as representative test cases, we analyze model performance and scaling behavior. Our findings
highlight significant limitations of current MLLMs, notably early performance plateaus, in contrast
to sustained performance improvements observed in vision-only methods as dataset sizes increase
within the small-data regime (see Fig. 1b). While our study utilizes ecological tasks as a convenient
testbed due to the availability of the NeWT benchmark in the small-data regime, our argued position
extends beyond ecology to the broader field of computer vision applications where limited labeled
data is a common constraint. In this work, we:
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Figure 1: Left: Unique evaluation tasks used in recent language and vision research [1, 2, 4, 10, 16,
18, 25, 27, 28, 30, 32, 40, 47] summarized by the number of training samples per task. Note how
few evaluations use between 10 and 1,000 labeled training samples. We collect this data manually.
Right: Mean NeWT task performance as a function of number of labeled examples for multimodal
large language models (MLLMs) and vision-only models combined with support vector machines
(SVMs). MLLMs leverage labeled examples by including additional labeled examples in the prompt
(few-shot prompting). Vision models leverage training examples by fitting an SVM to frozen image
embeddings. Vision models with SVMs improve with additional training data and consistently
outperform MLLMs with 10 or more labeled samples. Note the log scale for training data. Shaded
areas indicate bootstrapped 95% confidence intervals.

1. Emphasize the critical-but-neglected small-data regime and advocate for its inclusion in Al
research benchmarks.

2. Conduct the first comparison of foundation models versus vision-only methods within the
small-data regime.

This work profiles performance patterns across model types and data scales. While our findings
can inform new research directions, we avoid model selection advice as optimal approaches depend
on application-specific constraints. We aim to present empirical evidence highlighting the need for
small-data evaluations in Al research.

2 Background & Related Work

We highlight a gap in evaluation practices, discuss trends and visually summarize the small-data gap
in Fig. la.

Evaluation Trends in AI Research. Recent computer vision methods [30, 32], and (multimodal)
large language models [(M)LLMSs; 2, 3, 11, 29] primarily evaluate performance using zero-shot
or few-shot benchmarks [19, 38, 46]. These benchmarks emphasize generalization with extremely
limited examples, reflecting a trend toward model robustness with minimal fine-tuning.

Evaluation Trends in Ecological Computer Vision. While ecological computer vision has begun
adopting multimodal and foundation models for tasks such as species identification [41, 42], the
evaluations still frequently rely on fixed data splits or zero/few-shot scenarios. For instance, ecological
benchmarks such as iNat2021 [42] or iWildCam [6, 23] evaluate systems on 10K+ labeled examples
without systematically exploring performance scaling within moderate-sized training sets. Recent
specialized foundation models [17, 33, 34] demonstrate interest in domain-specific representations,
yet small-data evaluations remain uncommon.

Small-Data Gap Despite the practical importance of evaluating methods with tens to thousands
of labeled examples, a regime typical in real-world ecological, medical, and industrial applications
[8, 24], current methods research neglect systematic evaluation at these scales (see Fig. 1a). This
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Figure 2: Performance scaling across NeWT’s [42] eight task clusters as a function of number
of labeled examples. Each panel corresponds to one task cluster (species, attributes, health, ages,
gestalt, context, counting, behavior; clusters contain more than one task). Lines depict representative
multimodal large language models (MLLMs: Gemini Flash 2.0, Qwen2.5-VL 72B) and vision
encoders (CLIP ViT-L/14, DINOv2 ViT-g/14, SigLIP ViT-SO400M/14). Shaded regions represent
95% bootstrapped confidence intervals. MLLMs exhibit early performance plateaus compared to
sustained improvements seen in vision encoders combined with SVMs as the number of labeled
examples. We cannot fit SVMs without at least one labeled example per class; we simulate random
chance for 0 and 1 labeled examples.

oversight is significant: models optimized solely for zero- or few-shot benchmarks risk poor alignment
with realistic deployments where moderate labeled datasets are both common and crucial.

Our work addresses this critical gap, systematically comparing foundation models (MLLMs) with
vision-only methods, explicitly highlighting performance characteristics in the neglected small-data
regime.

3 Methodology

To highlight the overlooked small-data regime in Al research, we introduce a rigorous experimental
framework comparing MLLMs and vision-only models combined with traditional machine learn-
ing approaches specifically within this scenario. Unlike widely-studied zero-shot and few-shot
benchmarks, our experiments explicitly target moderate data scales, ranging from tens to thousands
of samples, to uncover non-obvious scaling behaviors and limitations of state-of-the-art methods.
By providing detailed methodological guidance, we encourage researchers to adopt similar small-
data evaluations, facilitating meaningful insights and practical recommendations for future method
development.

We evaluate MLLMs and vision-only models with support vector machines (SVMs) as representative
paradigms, as both have demonstrated strong performance across diverse visual tasks yet remain
insufficiently characterized within the small-data regime. MLLMs have primarily been evaluated on
zero-shot or few-shot benchmarks, leaving their performance unclear when moderate quantities of
labeled data are available. Conversely, traditional vision encoder-based methods, which explicitly
leverage fine-tuning or transfer learning, might exhibit fundamentally different scaling behaviors.
Our methodology thus aims to elucidate previously unobserved contrasts and limitations by directly
comparing these approaches within this under-explored setting.

Specifically, we evaluate multiple state-of-the-art MLLMs (e.g., Gemini Flash, Qwen2.5-VL) along-
side vision encoders (e.g., DINOv2, CLIP variants) paired with SVM-based classifiers on diverse
ecological datasets from the NeWT benchmark. We systematically vary the number of labeled
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examples and apply standard prompting and parsing procedures to rigorously characterize model
behaviors and scaling trends. Section 3 contain our prompts and pseudo-code for parsing responses.

Tasks We evaluate models on the NeWT benchmark [42]. NeWT contains 164 ecologically-
motivated binary classification tasks, each with 200 to 400 labeled examples. Tasks are grouped into
eight clusters: species, attributes, health, ages, gestalt, contexts, counting and behavior. See both
Appendix B and the original text for additional details.

Multimodal Large Language Models (MLLMs): We evaluate Gemini Flash 2.0, Gemini Flash 1.5
8B, Qwen2-VL 7B and Qwen2.5-VL 72B.

Vision Encoders with SVMs: We extract features from DINOv2, CLIP, and SigLIP. We test ViT-B,
ViT-L, and ViT-H variants. Per NeWT’s original methodology, we exclusively use SVMs as our
binary classifier on top of dense vision model features; SVM hyperparameters are tuned using
scikit-learn’s cross-validation grid search [31].

Labeled Examples To analyze performance scaling, we train models on different amounts of labeled
examples. We define subsets with sample sizes of 0, 1, 3, 10, 30, 100, 300, and all examples. Labeled
examples are sampled uniformly and we ensure that there is at least one example per class when there
are two or more examples.

Evaluation For all tasks, we compute bootstrapped confidence intervals by resampling test sets
1,000 times with replacement and reporting the 95% confidence interval. MLLM responses are
parsed using deterministic regex-based extraction. If multiple species are listed, we take the first
species mentioned.

4 Results

Our experiments reveal distinct performance characteristics between MLLMs and vision-only meth-
ods across the small-data spectrum. Specific to ecological computer vision tasks, several notable
patterns emerge that challenge conventional assumptions.

4.1 Scaling Data

As shown in Fig. 2, MLLMs and vision-only methods exhibit fundamentally different scaling
behaviors as the number of labeled examples increases. MLLMs demonstrate rapid initial gains
with very few examples (1-3) but consistently reach performance plateaus after 10-30 examples
across most task clusters. In contrast, leveraging SVMs with vision transformers [ViTs; 13] show
continuous, near-logarithmic improvement throughout the entire small-data regime, with no evidence
of plateauing. This scaling disparity results in a widening performance gap as dataset size increases.

4.2 Scaling Models

Adding parameters to large language models demonstrates consistent improvement [20, 22, 45].
Our analysis reveals a different pattern for vision models in ecological tasks. As Fig. 3a illustrates,
increasing computational resources yields diminishing returns compared to simply adding more
labeled examples. Even as we scale SigL.IP models across model and image sizes from 45 to 700+
GFLOPs, accuracy improvements remain modest, with a 10X increase in labeled samples consistently
outperforming a 10X increase in computational capacity. This challenges the dominant “bigger is
better” paradigm in recent Al research [26, 44].

Several factors could explain this difference from language model scaling properties. The emergence
threshold for vision models might occur at parameter counts beyond our experimental range [12,
15, 36, 37]. Pretraining methodology differences are significant—vision models employ diverse
objectives (contrastive, self-supervised, supervised) compared to the converged next-token prediction
approach in language. Our findings indicate that for ecological computer vision tasks within the
small-data regime, prioritizing data collection provides more reliable performance improvements
than scaling computational resources alone.



133

134
135
136

137
138
139
140
141
142

143
144
145
146

147
148
149

150

151
152
153
154
155
156
157
158

1.04

—e— n=100
—e— n=30
0.91 n=10 10-
n=3 ’ J Bl Vision Only  //, Language Supervision
2 0.8 —_ 0.9
e K ] )/
3 7,
g 3 0.8 1 2 & %
= 0.7 S J/ Z 7 A
8 8 7z %
= < 0.7 % 7
c / /
0.6 3 ] Z
= 0.6 4
0.51 0‘5:

T T T T T T T
100 200 300 400 500 600 700
GFLOPs

Tasks

Figure 3: Left: Vision model performance with respect to inference FLOPs and number of labeled
examples (n). SigLIP [47] released eight different pre-trained transformers with varying model sizes
(ViT-B/16, ViT-L/16 and ViT-SO400M/14) and image sizes (224 x 224, 256 x 256, 384 x 384,
and 512 x 512); we unify these axes with FLOPs/image. We find that increasing the number of
labeled examples is more effective than increasing the model size; a 10x increase in labeled examples
outperforms a 10x increase in FLOPs. Right: Comparing vision model pre-training on performance
across the eight task clusters in NeWT for 30 labeled examples with ViT-L models. Black error bars
indicate bootstrapped 95% confidence intervals. Vision-only pre-training [DINOv2; 30] outperforms
language-supervised pre-training [CLIP and SigLIP; 32, 47] on ‘Species’ and *Age’ tasks, both
of which are fine-grained classification tasks. We observe that language supervision leads to large
improvements on ‘Gestalt’ and ‘Behavior’ tasks, both of which require semantic reasoning. These
conclusions hold for other numbers of labeled examples; see Appendix C for additional results.

4.3 Pre-Training Supervision

We use these results to reveal distinct performance patterns between vision-only and language-
supervised pre-training approaches across ecological task clusters (Fig. 3b). These differences
underscore how pre-training objectives fundamentally influence a model’s capabilities.

Vision-only pre-training (DINOv2) significantly outperforms language-supervised approaches (CLIP,
SigLIP) on fine-grained visual discrimination tasks, specifically ‘Species’ and ‘Age’ classification.
This advantage likely stems from DINOv2’s self-supervised training objective, which builds rich
hierarchical representations through local-to-global correspondence without language constraints.
Such representations excel at capturing subtle morphological differences crucial for taxonomic
identification and age determination tasks.

Conversely, language-supervised pre-training demonstrates substantial advantages in tasks requiring
semantic understanding and contextual reasoning, notably in ‘Gestalt’, ‘Context’, and ‘Behavior’
clusters, where models must recognize abstract visual concepts like image quality or animal activities.
This suggests that image-text learning provides semantic grounding that pure vision models lack.

These observed differences between pre-training methods are consistent across training set sizes
(Appendix C), suggesting fundamental differences in learned representations, which is theoretically
supported by recent work in interpreting vision models [35, 39].

5 Conclusion & Future Work

Our systematic evaluation of the small-data regime reveals distinct performance patterns: vision-
only systems exhibit sustained improvement while MLLMs demonstrate early performance plateaus
beyond 10-30 labeled examples, suggesting that prompting struggles to learn nuanced patterns beyond
a critical threshold of examples [21, 48]. Our findings underscore the critical importance of evaluating
Al methods explicitly within the small-data regime, an evaluation practice largely overlooked in
current work despite its relevance to real applications. By highlighting this evaluation gap, we hope
to encourage more comprehensive benchmarking practices that better reflect the diverse data contexts
encountered in practice.
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Appendices

1. Appendix A: Methodology details for Section 3.
2. Appendix B: NeWT details for Section 3.

3. Appendix C: Additional results for Section 4.3.
4. Appendix D: All raw results.

A Methodology Details

We evaluate two families of models: (1) multimodal large language models (MLLMs) and (2) vision
encoders with machine learning classifiers.

MLLMs: We test the following models via API access: Gemini Flash 2.0, Gemini Flash 1.5 8B,
Qwen2-VL 7B and Qwen2.5-VL 72B.

Vision Encoders: We extract image embeddings from DINOv2, CLIP, and SigLIP and include
ViT-B, ViT-L, and ViT-H variants.

Image Preprocessing: All images are resized so that the smaller side is 224 pixels, then center
cropped to 224 x 224. We normalize images using the ImageNet mean and standard deviation for all
models. No additional augmentations (e.g., cropping, flipping) are applied for inference. Images are
not modified before being sent to MLLM:s.

Sampling: Subsets of labeled examples are sampled uniformly from the full training split with the
following sample sizes: 0, 1, 3, 10, 30, 100, and 300 where applicable.

Prompting and Parsing: All the tasks in NeWT are binary classification tasks. We use the fol-
lowing template: “What is this a picture of, ’{a}’ or ’{b}’? Respond with your
answer in bold.” where {a} and {b} are replaced with the two classes, with a random order.
MLLM responses are parsed using regex-based extraction, using character-based distance to pick the
classname closest to whatever bold text is first found in the response.

Classifier Hyperparameters We perform a search over the following hyperparameter distribution:

* C: log-uniform distribution from 10~2 to 10!.
» Kernel: one of RBF, linear, sigmoid or cubic
* Kernel coefficient: log-uniform distribution from 10~ to 10~3. Ignored for linear kernel.

We sample 100 models and evaluate with 5-fold cross-validation over the training set.

Bootstrapped Confidence Intervals For all evaluation metrics, we report bootstrapped confidence
intervals:

* We resample the test set 1,000 times with replacement.
* The mean accuracy is computed for each resampled test set.
* The 95% confidence interval is reported.

Compute Infrastructure: ViT-based inference is batched on NVIDIA A6000 GPUs to maximize
GPU memory efficiency. API-based MLLM inference is conducted on cloud platforms.

B Background on NeWT

Natural World Tasks [NeWT; 42] is a collection of 164 binary classification tasks that go beyond
species classification. The tasks are manually curated with a uniform distribution of positive and
negative examples (so accuracy is an appropriate metric).
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Figure 4: Comparing vision model pre-training on performance across the eight task clusters in
NeWT for 3, 10, 30, and 100 training samples with ViT-L models.

C Pre-Training Supervision

Fig. 4 contains results for 3, 10, 30, and 100 training samples, summarized by the ViT’s pre-training
objective. Vision-only pre-training outperforms vision-language pre-training on ‘Species’ and ‘Age’

tasks, while vision-language pre-training outperforms vision-only pre-training on more semantic
tasks (‘Gestalt’, ‘Context’, and ‘Behavior’).

D All Results

We include all results in Tables 1 to 18. These results will also be made available in a machine-readable
format.
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Task Cluster ~ Task Subcluster Model Train Mean Confidence Interval
Appearance  Species Gemini Flash 2.0 0 0.49 [0.48,0.50]
Appearance  Species Gemini Flash 1.5 8B 0 0.50 0.49,0.51
Appearance  Species Qwen2.5-VL 72B 0 0.49 0.48,0.50
Appearance  Species Qwen2-VL 7B 0 0.50 0.49,0.51
Appearance  Attribute Gemini Flash 2.0 0 0.54 0.51,0.59
Appearance  Attribute Gemini Flash 1.5 8B 0 0.60 0.56,0.64
Appearance  Attribute Qwen2.5-VL 72B 0 0.57 0.53,0.61
Appearance  Attribute Qwen2-VL 7B 0 0.48 0.44,0.52
Appearance  Health Gemini Flash 2.0 0 0.67 0.64,0.70
Appearance  Health Gemini Flash 1.5 8B 0 0.69 0.66,0.72
Appearance  Health Qwen2.5-VL 72B 0 0.65 0.61,0.68
Appearance  Health Qwen2-VL 7B 0 0.61 0.58,0.64
Appearance  Age Gemini Flash 2.0 0 0.55 0.52,0.57
Appearance  Age Gemini Flash 1.5 8B 0 0.50 0.47,0.52
Appearance  Age Qwen2.5-VL 72B 0 0.51 0.49,0.54
Appearance  Age Qwen2-VL 7B 0 0.54 0.52,0.57
Gestalt - Gemini Flash 2.0 0 0.39 0.36,0.43
Gestalt - Gemini Flash 1.5 8B 0 0.45 0.41,0.49
Gestalt - Qwen2.5-VL 72B 0 0.33 0.29,0.37
Gestalt - Qwen2-VL 7B 0 0.40 0.36,0.44
Context - Gemini Flash 2.0 0 0.47 0.43,0.50
Context - Gemini Flash 1.5 8B 0 0.49 0.46,0.53
Context - Qwen2.5-VL 72B 0 0.52 0.48,0.55
Context - Qwen2-VL 7B 0 0.53 0.50,0.57
Counting - Gemini Flash 2.0 0 0.68 0.61,0.74
Counting - Gemini Flash 1.5 8B 0 0.59 0.53,0.67
Counting - Qwen2.5-VL 72B 0 0.48 0.41,0.54
Counting - Qwen2-VL 7B 0 0.64 0.56,0.70
Behavior - Gemini Flash 2.0 0 0.47 0.45,0.50
Behavior - Gemini Flash 1.5 8B 0 0.49 0.46,0.51
Behavior - Qwen2.5-VL 72B 0 0.46 0.44,0.49
Behavior - Qwen2-VL 7B 0 0.46 0.43,0.48

Table 1: All results for O training samples.
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Task Cluster ~ Task Subcluster Model Train Mean Confidence Interval
Appearance  Species Gemini Flash 2.0 1 0.52 [0.52,0.53]
Appearance  Species Gemini Flash 1.5 8B 1 0.54 0.53,0.55
Appearance  Species Qwen2.5-VL 72B 1 0.50 0.49,0.51
Appearance  Species Qwen2-VL 7B 1 0.50 0.49,0.51
Appearance  Attribute Gemini Flash 2.0 1 0.65 0.61,0.69
Appearance  Attribute Gemini Flash 1.5 8B 1 0.68 0.64,0.71
Appearance  Attribute Qwen2.5-VL 72B 1 0.48 0.44,0.52
Appearance  Attribute Qwen2-VL 7B 1 0.49 0.45,0.53
Appearance  Health Gemini Flash 2.0 1 0.71 0.68,0.74
Appearance  Health Gemini Flash 1.5 8B 1 0.70 0.67,0.73
Appearance  Health Qwen2.5-VL 72B 1 0.47 0.44,0.51
Appearance  Health Qwen2-VL 7B 1 0.53 0.49,0.56
Appearance  Age Gemini Flash 2.0 1 0.55 0.52,0.57
Appearance  Age Gemini Flash 1.5 8B 1 0.52 0.50,0.55
Appearance  Age Qwen2.5-VL 72B 1 0.51 0.48,0.53
Appearance  Age Qwen2-VL 7B 1 0.50 0.47,0.53
Gestalt - Gemini Flash 2.0 1 0.38 0.34,0.41
Gestalt - Gemini Flash 1.5 8B 1 0.42 0.38,0.46
Gestalt - Qwen2.5-VL 72B 1 0.49 0.46,0.53
Gestalt - Qwen2-VL 7B 1 0.51 0.47,0.55
Context - Gemini Flash 2.0 1 0.67 0.63,0.70
Context - Gemini Flash 1.5 8B 1 0.60 0.57,0.63
Context - Qwen2.5-VL 72B 1 0.51 0.48,0.55
Context - Qwen2-VL 7B 1 0.52 0.49,0.56
Counting - Gemini Flash 2.0 1 0.58 0.52,0.66
Counting - Gemini Flash 1.5 8B 1 0.62 0.56,0.69
Counting - Qwen2.5-VL 72B 1 0.50 0.43,0.57
Counting - Qwen2-VL 7B 1 0.51 0.44,0.57
Behavior - Gemini Flash 2.0 1 0.63 0.60,0.65
Behavior - Gemini Flash 1.5 8B 1 0.49 0.46,0.51
Behavior - Qwen2.5-VL 72B 1 0.50 0.47,0.52
Behavior - Qwen2-VL 7B 1 0.46 0.43,0.48

Table 2: All results for 1 training sample.
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Task Cluster  Task Subcluster  Model Train Mean Confidence Interval
Appearance  Species Gemini Flash 2.0 3 0.57 0.56,0.58
Appearance  Species Gemini Flash 1.5 8B 3 0.53 0.52,0.54
Appearance  Species SigLIP ViT-B/16 (512px) 3 0.56 0.55,0.57
Appearance  Species SigLIP ViT-L/16 (256px) 3 0.56 0.55,0.57
Appearance  Species SigLIP ViT-L/16 (384px) 3 0.57 0.56,0.58
Appearance  Species SigLIP ViT-SO400M/14 3 0.56 0.55,0.57
Appearance  Species SigLIP ViT-SO400M/14 (384px) 3 0.56 0.56,0.57
Appearance  Species DINOvV2 ViT-B/14 3 0.58 0.57,0.59
Appearance  Species DINOv2 ViT-L/14 3 0.59 0.58,0.60
Appearance  Species DINOvV2 ViT-S/14 3 0.59 0.58,0.59
Appearance  Species DINOv2 ViT-g/14 3 0.62 0.61,0.63
Appearance  Species BioCLIP ViT-B/16 3 0.58 0.57,0.59
Appearance  Species Qwen2.5-VL 72B 3 0.50 0.49,0.51
Appearance  Species Qwen2-VL 7B 3 0.50 0.49,0.51
Appearance  Species CLIP ViT-B/16 3 0.54 0.53,0.55
Appearance  Species CLIP ViT-L/14 3 0.55 0.54,0.56
Appearance  Species CLIP ViT-L/14 (336px) 3 0.55 0.54,0.56
Appearance  Species SigLIP ViT-B/16 3 0.54 0.53,0.55
Appearance  Species SigLIP ViT-B/16 (256px) 3 0.55 0.54,0.56
Appearance  Species SigLIP ViT-B/16 (384px) 3 0.55 0.54,0.56
Appearance  Attribute Gemini Flash 2.0 3 0.64 0.60, 0.68
Appearance  Attribute Gemini Flash 1.5 8B 3 0.58 0.54,0.62
Appearance  Attribute SigLIP ViT-B/16 (512px) 3 0.46 0.42,0.50
Appearance  Attribute SigLIP ViT-L/16 (256px) 3 0.50 0.46,0.54
Appearance  Attribute SigLIP ViT-L/16 (384px) 3 0.51 0.48,0.55
Appearance  Attribute SigLIP ViT-SO400M/14 3 0.48 0.43,0.52
Appearance  Attribute SigLIP ViT-SO400M/14 (384px) 3 0.49 0.45,0.53
Appearance  Attribute DINOvV2 ViT-B/14 3 0.50 0.47,0.54
Appearance  Attribute DINOv2 ViT-L/14 3 0.54 0.50,0.58
Appearance  Attribute DINOv2 ViT-S/14 3 0.50 0.46,0.54
Appearance  Attribute DINOv2 ViT-g/14 3 0.47 0.43,0.51
Appearance  Attribute BioCLIP ViT-B/16 3 0.52 0.49,0.57
Appearance  Attribute Qwen2.5-VL 72B 3 0.52 0.47,0.56
Appearance  Attribute Qwen2-VL 7B 3 0.53 0.48,0.57
Appearance  Attribute CLIP ViT-B/16 3 0.50 0.46,0.54
Appearance  Attribute CLIP ViT-L/14 3 0.52 0.48,0.56
Appearance  Attribute CLIP ViT-L/14 (336px) 3 0.48 0.44,0.52
Appearance  Attribute SigLIP ViT-B/16 3 0.47 0.43,0.50
Appearance  Attribute SigLIP ViT-B/16 (256px) 3 0.47 0.43,0.51
Appearance  Attribute SigLIP ViT-B/16 (384px) 3 048 0.44,0.53

Table 3: All results for 3 training samples for ‘Species’ and ‘Attribute’ tasks.
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Task Cluster ~ Task Subcluster ~ Model Train Mean Confidence Interval
Appearance  Health Gemini Flash 2.0 3 0.69 0.66,0.72
Appearance  Health Gemini Flash 1.5 8B 3 0.71 0.68,0.74
Appearance  Health SigLIP ViT-B/16 (512px) 3 0.59 0.56,0.62
Appearance  Health SigLIP ViT-L/16 (256px) 3 0.64 0.61,0.67
Appearance  Health SigLIP ViT-L/16 (384px) 3 0.69 0.66,0.72
Appearance  Health SigLIP ViT-SO400M/14 3 0.69 0.67,0.72
Appearance  Health SigLIP ViT-SO400M/14 (384px) 3 0.73 0.70,0.76
Appearance  Health DINOvV2 ViT-B/14 3 0.64 0.62,0.67
Appearance  Health DINOv2 ViT-L/14 3 0.62 0.59, 0.65
Appearance  Health DINOvV2 ViT-S/14 3 0.57 0.54,0.60
Appearance  Health DINOv2 ViT-g/14 3 0.64 0.61,0.67
Appearance  Health BioCLIP ViT-B/16 3 0.62 0.59,0.65
Appearance  Health Qwen2.5-VL 72B 3 0.49 0.46,0.52
Appearance  Health Qwen2-VL 7B 3 0.47 0.44,0.51
Appearance  Health CLIP ViT-B/16 3 0.61 0.58,0.64
Appearance  Health CLIP ViT-L/14 3 0.64 0.61,0.67
Appearance  Health CLIP ViT-L/14 (336px) 3 0.57 0.55,0.60
Appearance  Health SigLIP ViT-B/16 3 0.58 0.55,0.61
Appearance  Health SigLIP ViT-B/16 (256px) 3 0.58 0.55,0.61
Appearance  Health SigLIP ViT-B/16 (384px) 3 0.62 0.59, 0.65
Appearance  Age Gemini Flash 2.0 3 0.57 0.54,0.59
Appearance  Age Gemini Flash 1.5 8B 3 0.50 0.47,0.52
Appearance  Age SigLIP ViT-B/16 (512px) 3 0.54 0.52,0.57
Appearance  Age SigLIP ViT-L/16 (256px) 3 0.55 0.53,0.58
Appearance  Age SigLIP ViT-L/16 (384px) 3 0.57 0.54,0.59
Appearance  Age SigLIP ViT-SO400M/14 3 0.56 0.53,0.58
Appearance  Age SigLIP ViT-SO400M/14 (384px) 3 0.57 0.55,0.59
Appearance  Age DINOvV2 ViT-B/14 3 0.58 0.55,0.60
Appearance  Age DINOv2 ViT-L/14 3 0.59 0.56,0.61
Appearance  Age DINOv2 ViT-S/14 3 0.63 0.60, 0.65
Appearance  Age DINOv2 ViT-g/14 3 0.60 0.58,0.63
Appearance  Age BioCLIP ViT-B/16 3 0.53 0.50, 0.55
Appearance  Age Qwen2.5-VL 72B 3 0.51 0.48,0.54
Appearance  Age Qwen2-VL 7B 3 0.50 0.47,0.52
Appearance  Age CLIP ViT-B/16 3 0.53 0.51,0.56
Appearance  Age CLIP ViT-L/14 3 0.53 0.51,0.55
Appearance  Age CLIP ViT-L/14 (336px) 3 0.53 0.51,0.55
Appearance  Age SigLIP ViT-B/16 3 0.53 0.51,0.56
Appearance  Age SigLIP ViT-B/16 (256px) 3 0.56 0.53,0.58
Appearance  Age SigLIP ViT-B/16 (384px) 3 0.55 0.53,0.57

Table 4: All results for 3 training samples for ‘Health’ and ‘Age’ tasks.
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Task Cluster  Task Subcluster Model Train Mean Confidence Interval
Gestalt - Gemini Flash 2.0 3 0.33 0.29,0.37
Gestalt - Gemini Flash 1.5 8B 3 0.45 0.41,0.49
Gestalt - SigLIP ViT-B/16 (512px) 3 0.61 0.59,0.63
Gestalt - SigLIP ViT-L/16 (256px) 3 0.57 0.55,0.59
Gestalt - SigLIP ViT-L/16 (384px) 3 0.56 0.54,0.58
Gestalt - SigLIP ViT-SO400M/14 3 0.57 0.55,0.59
Gestalt - SigLIP ViT-SO400M/14 (384px) 3 0.57 0.54,0.59
Gestalt - DINOvV2 ViT-B/14 3 0.51 0.49,0.53
Gestalt - DINOv2 ViT-L/14 3 0.52 0.50,0.54
Gestalt - DINOvV2 ViT-S/14 3 0.51 0.49,0.53
Gestalt - DINOV2 ViT-g/14 3 0.51 0.49,0.53
Gestalt - BioCLIP ViT-B/16 3 0.51 0.49,0.53
Gestalt - Qwen2.5-VL 72B 3 0.48 0.44,0.52
Gestalt - Qwen2-VL 7B 3 0.51 0.47,0.55
Gestalt - CLIP ViT-B/16 3 0.57 0.55,0.59
Gestalt - CLIP ViT-L/14 3 0.59 0.57,0.61
Gestalt - CLIP ViT-L/14 (336px) 3 0.53 0.51,0.56
Gestalt - SigLIP ViT-B/16 3 0.58 0.56,0.60
Gestalt - SigLIP ViT-B/16 (256px) 3 0.59 0.57,0.61
Gestalt - SigLIP ViT-B/16 (384px) 3 0.59 0.57,0.61
Context - Gemini Flash 2.0 3 0.61 0.58,0.65
Context - Gemini Flash 1.5 8B 3 0.53 0.50,0.57
Context - SigLIP ViT-B/16 (512px) 3 0.57 0.54,0.60
Context - SigLIP ViT-L/16 (256px) 3 0.58 0.54,0.61
Context - SigLIP ViT-L/16 (384px) 3 0.56 0.52,0.59
Context - SigLIP ViT-SO400M/14 3 0.57 0.54,0.60
Context - SigLIP ViT-SO400M/14 (384px) 3 0.55 0.52,0.59
Context - DINOvV2 ViT-B/14 3 0.61 0.58,0.64
Context - DINOv2 ViT-L/14 3 0.57 0.53,0.60
Context - DINOvV2 ViT-S/14 3 0.54 0.50,0.57
Context - DINOv2 ViT-g/14 3 0.60 0.57,0.64
Context - BioCLIP ViT-B/16 3 0.52 0.48,0.55
Context - Qwen2.5-VL 72B 3 0.50 0.46,0.53
Context - Qwen2-VL 7B 3 0.48 0.45,0.52
Context - CLIP ViT-B/16 3 0.55 0.51,0.58
Context - CLIP ViT-L/14 3 0.52 0.49,0.56
Context - CLIP ViT-L/14 (336px) 3 0.54 0.50,0.57
Context - SigLIP ViT-B/16 3 0.58 0.55,0.62
Context - SigLIP ViT-B/16 (256px) 3 0.60 0.56,0.63
Context - SigLIP ViT-B/16 (384px) 3 0.58 0.55,0.61

Table 5: All results for 3 training samples for ‘Gestalt’ and ‘Context’ tasks.
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Task Cluster  Task Subcluster Model Train Mean Confidence Interval
Counting - Gemini Flash 2.0 3 0.56 0.50,0.63
Counting - Gemini Flash 1.5 8B 3 0.61 0.54,0.68
Counting - SigLIP ViT-B/16 (512px) 3 0.49 0.42,0.56
Counting - SigLIP ViT-L/16 (256px) 3 0.50 0.43,0.57
Counting - SigLIP ViT-L/16 (384px) 3 0.50 0.43,0.56
Counting - SigLIP ViT-SO400M/14 3 0.52 0.45,0.59
Counting - SigLIP ViT-SO400M/14 (384px) 3 0.52 0.45,0.59
Counting - DINOV2 ViT-B/14 3 0.52 0.45,0.58
Counting - DINOV2 ViT-L/14 3 0.51 0.44,0.57
Counting - DINOv2 ViT-S/14 3 0.53 0.46, 0.60
Counting - DINOV2 ViT-g/14 3 0.51 0.44,0.57
Counting - BioCLIP ViT-B/16 3 0.49 0.42,0.56
Counting - Qwen2.5-VL 72B 3 0.48 0.41,0.56
Counting - Qwen2-VL 7B 3 0.52 0.44,0.59
Counting - CLIP ViT-B/16 3 051 0.45,0.58
Counting - CLIP ViT-L/14 3 0.56 0.50,0.64
Counting - CLIP ViT-L/14 (336px) 3 0.48 0.41,0.55
Counting - SigLIP ViT-B/16 3 0.50 0.43,0.57
Counting - SigLIP ViT-B/16 (256px) 3 0.49 0.42,0.56
Counting - SigLIP ViT-B/16 (384px) 3 0.49 0.43,0.56
Behavior - Gemini Flash 2.0 3 0.60 0.57,0.62
Behavior - Gemini Flash 1.5 8B 3 0.51 0.49,0.54
Behavior - SigLIP ViT-B/16 (512px) 3 0.51 0.48,0.54
Behavior - SigLIP ViT-L/16 (256px) 3 0.51 0.48,0.54
Behavior - SigLIP ViT-L/16 (384px) 3 0.51 0.49,0.54
Behavior - SigLIP ViT-SO400M/14 3 0.51 0.48,0.53
Behavior - SigLIP ViT-SO400M/14 (384px) 3 0.52 0.50,0.55
Behavior - DINOV2 ViT-B/14 3 0.47 0.44,0.49
Behavior - DINOV2 ViT-L/14 3 0.47 0.44,0.50
Behavior - DINOv2 ViT-S/14 3 0.50 0.48,0.53
Behavior - DINOv2 ViT-g/14 3 0.49 0.46,0.51
Behavior - BioCLIP ViT-B/16 3 0.50 0.48,0.53
Behavior - Qwen2.5-VL 72B 3 0.50 0.47,0.53
Behavior - Qwen2-VL 7B 3 0.52 0.49,0.54
Behavior - CLIP ViT-B/16 3 0.50 0.47,0.52
Behavior - CLIP ViT-L/14 3 0.52 0.49,0.54
Behavior - CLIP ViT-L/14 (336px) 3 0.51 0.49,0.54
Behavior - SigLIP ViT-B/16 3 0.48 0.46,0.51
Behavior - SigLIP ViT-B/16 (256px) 3 0.49 0.47,0.52
Behavior - SigLIP ViT-B/16 (384px) 3 0.51 0.48,0.53

Table 6: All results for 3 training samples for ‘Counting’ and ‘Behavior’ tasks.
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Task Cluster  Task Subcluster  Model Train Mean Confidence Interval
Appearance  Species Gemini Flash 2.0 10 0.53 0.53,0.54
Appearance  Species Gemini Flash 1.5 8B 10 0.50 0.49,0.52
Appearance  Species SigLIP ViT-B/16 (512px) 10 0.69 0.68,0.70
Appearance  Species SigLIP ViT-L/16 (256px) 10 0.68 0.67,0.69
Appearance  Species SigLIP ViT-L/16 (384px) 10 0.70 0.69,0.70
Appearance  Species SigLIP ViT-SO400M/14 10 0.69 0.68,0.70
Appearance  Species SigLIP ViT-SO400M/14 (384px) 10 0.70 0.69,0.71
Appearance  Species DINOvV2 ViT-B/14 10 0.66 0.65,0.67
Appearance  Species DINOv2 ViT-L/14 10 0.66 0.66,0.67
Appearance  Species DINOvV2 ViT-S/14 10 0.68 0.67,0.69
Appearance  Species DINOv2 ViT-g/14 10 0.70 0.69,0.70
Appearance  Species BioCLIP ViT-B/16 10 0.69 0.68,0.70
Appearance  Species Qwen2.5-VL 72B 10 0.50 0.49,0.51
Appearance  Species Qwen2-VL 7B 10 0.50 0.49,0.51
Appearance  Species CLIP ViT-B/16 10 0.59 0.58,0.60
Appearance  Species CLIP ViT-L/14 10 0.62 0.61,0.63
Appearance  Species CLIP ViT-L/14 (336px) 10 0.62 0.61,0.63
Appearance  Species SigLIP ViT-B/16 10 0.67 0.66, 0.68
Appearance  Species SigLIP ViT-B/16 (256px) 10 0.67 0.66,0.68
Appearance  Species SigLIP ViT-B/16 (384px) 10 0.69 0.68,0.70
Appearance  Attribute Gemini Flash 2.0 10 0.58 0.54,0.62
Appearance  Attribute Gemini Flash 1.5 8B 10 0.54 0.50,0.58
Appearance  Attribute SigLIP ViT-B/16 (512px) 10 0.63 0.59, 0.66
Appearance  Attribute SigLIP ViT-L/16 (256px) 10 0.66 0.62,0.69
Appearance  Attribute SigLIP ViT-L/16 (384px) 10 0.67 0.64,0.70
Appearance  Attribute SigLIP ViT-SO400M/14 10 0.66 0.62,0.69
Appearance  Attribute SigLIP ViT-SO400M/14 (384px) 10 0.69 0.66,0.73
Appearance  Attribute DINOvV2 ViT-B/14 10 0.64 0.60, 0.68
Appearance  Attribute DINOv2 ViT-L/14 10  0.64 0.60,0.67
Appearance  Attribute DINOvV2 ViT-S/14 10  0.65 0.61,0.69
Appearance  Attribute DINOv2 ViT-g/14 10 0.65 0.61,0.68
Appearance  Attribute BioCLIP ViT-B/16 10 0.67 0.64,0.71
Appearance  Attribute Qwen2.5-VL 72B 10 0.50 0.46,0.55
Appearance  Attribute Qwen2-VL 7B 10 0.52 0.48,0.56
Appearance  Attribute CLIP ViT-B/16 10 0.58 0.54,0.62
Appearance  Attribute CLIP ViT-L/14 10 0.64 0.60,0.67
Appearance  Attribute CLIP ViT-L/14 (336px) 10 0.67 0.64,0.71
Appearance  Attribute SigLIP ViT-B/16 10 0.64 0.60,0.67
Appearance  Attribute SigLIP ViT-B/16 (256px) 10 0.63 0.59,0.67
Appearance  Attribute SigLIP ViT-B/16 (384px) 10 0.61 0.57,0.65

Table 7: All results for 10 training samples for ‘Species’ and ‘Attribute’ tasks.
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Task Cluster ~ Task Subcluster ~ Model Train Mean Confidence Interval
Appearance  Health Gemini Flash 2.0 10 0.70 0.66,0.73
Appearance  Health Gemini Flash 1.5 8B 10 0.55 0.52,0.59
Appearance  Health SigLIP ViT-B/16 (512px) 10 0.81 0.79,0.84
Appearance  Health SigLIP ViT-L/16 (256px) 10 0.80 0.77,0.82
Appearance  Health SigLIP ViT-L/16 (384px) 10 0.83 0.81,0.85
Appearance  Health SigLIP ViT-SO400M/14 10 0.82 0.80,0.85
Appearance  Health SigLIP ViT-SO400M/14 (384px) 10 0.87 0.85,0.89
Appearance  Health DINOvV2 ViT-B/14 10 0.68 0.65,0.71
Appearance  Health DINOv2 ViT-L/14 10 0.65 0.63,0.68
Appearance  Health DINOvV2 ViT-S/14 10 0.73 0.70,0.75
Appearance  Health DINOv2 ViT-g/14 10  0.70 0.67,0.73
Appearance  Health BioCLIP ViT-B/16 10 0.69 0.66,0.72
Appearance  Health Qwen2.5-VL 72B 10  0.51 0.47,0.54
Appearance  Health Qwen2-VL 7B 10 0.52 0.49, 0.56
Appearance  Health CLIP ViT-B/16 10 0.74 0.71,0.77
Appearance  Health CLIP ViT-L/14 10 0.76 0.73,0.79
Appearance  Health CLIP ViT-L/14 (336px) 10 0.65 0.62,0.68
Appearance  Health SigLIP ViT-B/16 10 0.78 0.75,0.80
Appearance  Health SigLIP ViT-B/16 (256px) 10 0.79 0.76,0.81
Appearance  Health SigLIP ViT-B/16 (384px) 10 0.82 0.80,0.85
Appearance  Age Gemini Flash 2.0 10 0.55 0.52,0.57
Appearance  Age Gemini Flash 1.5 8B 10 0.49 0.46,0.52
Appearance  Age SigLIP ViT-B/16 (512px) 10 0.66 0.64,0.68
Appearance  Age SigLIP ViT-L/16 (256px) 10 0.64 0.62,0.66
Appearance  Age SigLIP ViT-L/16 (384px) 10 0.66 0.64,0.68
Appearance  Age SigLIP ViT-SO400M/14 10 0.64 0.61,0.66
Appearance  Age SigLIP ViT-SO400M/14 (384px) 10 0.68 0.65,0.70
Appearance  Age DINOvV2 ViT-B/14 10 0.69 0.67,0.71
Appearance  Age DINOv2 ViT-L/14 10  0.70 0.68,0.73
Appearance  Age DINOv2 ViT-S/14 10 0.73 0.71,0.75
Appearance  Age DINOv2 ViT-g/14 10 0.71 0.69,0.73
Appearance  Age BioCLIP ViT-B/16 10 0.62 0.60, 0.64
Appearance  Age Qwen2.5-VL 72B 10 0.51 0.48,0.53
Appearance  Age Qwen2-VL 7B 10 0.51 0.48,0.53
Appearance  Age CLIP ViT-B/16 10 0.59 0.56,0.61
Appearance  Age CLIP ViT-L/14 10 0.62 0.60, 0.65
Appearance  Age CLIP ViT-L/14 (336px) 10 0.63 0.61,0.65
Appearance  Age SigLIP ViT-B/16 10 0.62 0.60, 0.65
Appearance  Age SigLIP ViT-B/16 (256px) 10 0.63 0.60, 0.65
Appearance  Age SigLIP ViT-B/16 (384px) 10  0.67 0.64,0.69

Table 8: All results for 10 training samples for ‘Health’ and ‘Age’ tasks.
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Task Cluster  Task Subcluster Model Train Mean Confidence Interval
Gestalt - Gemini Flash 2.0 10 0.43 0.40,0.48
Gestalt - Gemini Flash 1.5 8B 10 0.49 0.45,0.53
Gestalt - SigLIP ViT-B/16 (512px) 10 0.71 0.69,0.73
Gestalt - SigLIP ViT-L/16 (256px) 10 0.66 0.64,0.69
Gestalt - SigLIP ViT-L/16 (384px) 10 0.69 0.67,0.71
Gestalt - SigLIP ViT-SO400M/14 10 0.69 0.67,0.71
Gestalt - SigLIP ViT-SO400M/14 (384px) 10 0.70 0.68,0.72
Gestalt - DINOvV2 ViT-B/14 10 0.51 0.48,0.53
Gestalt - DINOv2 ViT-L/14 10 0.53 0.51,0.55
Gestalt - DINOvV2 ViT-S/14 10 0.62 0.60,0.64
Gestalt - DINOV2 ViT-g/14 10 0.51 0.49,0.53
Gestalt - BioCLIP ViT-B/16 10 0.54 0.52,0.57
Gestalt - Qwen2.5-VL 72B 10 0.48 0.44,0.52
Gestalt - Qwen2-VL 7B 10 0.48 0.44,0.52
Gestalt - CLIP ViT-B/16 10 0.79 0.77,0.80
Gestalt - CLIP ViT-L/14 10 0.61 0.59,0.64
Gestalt - CLIP ViT-L/14 (336px) 10 0.71 0.69,0.73
Gestalt - SigLIP ViT-B/16 10 0.71 0.69,0.73
Gestalt - SigLIP ViT-B/16 (256px) 10 0.67 0.65,0.68
Gestalt - SigLIP ViT-B/16 (384px) 10 0.73 0.71,0.75
Context - Gemini Flash 2.0 10 0.59 0.55,0.63
Context - Gemini Flash 1.5 8B 10 0.56 0.53,0.60
Context - SigLIP ViT-B/16 (512px) 10 0.78 0.75,0.81
Context - SigLIP ViT-L/16 (256px) 10 0.80 0.77,0.82
Context - SigLIP ViT-L/16 (384px) 10 0.75 0.73,0.78
Context - SigLIP ViT-SO400M/14 10 0.78 0.75,0.81
Context - SigLIP ViT-SO400M/14 (384px) 10 0.77 0.74,0.80
Context - DINOvV2 ViT-B/14 10 0.60 0.57,0.63
Context - DINOv2 ViT-L/14 10 0.63 0.59, 0.66
Context - DINOvV2 ViT-S/14 10 0.56 0.52,0.59
Context - DINOv2 ViT-g/14 10 0.65 0.61,0.68
Context - BioCLIP ViT-B/16 10 0.57 0.53,0.60
Context - Qwen2.5-VL 72B 10 0.51 0.48,0.54
Context - Qwen2-VL 7B 10 0.49 0.46,0.53
Context - CLIP ViT-B/16 10 0.67 0.64,0.70
Context - CLIP ViT-L/14 10 0.65 0.61,0.68
Context - CLIP ViT-L/14 (336px) 10 0.71 0.68,0.74
Context - SigLIP ViT-B/16 10 0.75 0.72,0.78
Context - SigLIP ViT-B/16 (256px) 10 0.78 0.75,0.81
Context - SigLIP ViT-B/16 (384px) 10 0.80 0.77,0.82

Table 9: All results for 10 training samples for ‘Gestalt’ and ‘Context’ tasks.
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Task Cluster  Task Subcluster Model Train Mean Confidence Interval
Counting - Gemini Flash 2.0 10 0.60 0.53,0.68
Counting - Gemini Flash 1.5 8B 10 0.51 0.44,0.57
Counting - SigLIP ViT-B/16 (512px) 10 0.56 0.49,0.62
Counting - SigLIP ViT-L/16 (256px) 10 0.61 0.55,0.68
Counting - SigLIP ViT-L/16 (384px) 10 0.66 0.58,0.71
Counting - SigLIP ViT-SO400M/14 10 0.68 0.61,0.74
Counting - SigLIP ViT-SO400M/14 (384px) 10 0.69 0.61,0.74
Counting - DINOV2 ViT-B/14 10 0.49 0.44,0.54
Counting - DINOV2 ViT-L/14 10 0.54 0.49,0.59
Counting - DINOv2 ViT-S/14 10 0.50 0.45,0.55
Counting - DINOv2 ViT-g/14 10  0.51 0.46,0.56
Counting - BioCLIP ViT-B/16 10 0.56 0.51,0.60
Counting - Qwen2.5-VL 72B 10 0.48 0.41,0.56
Counting - Qwen2-VL 7B 10 0.52 0.45,0.59
Counting - CLIP ViT-B/16 10  0.53 0.47,0.57
Counting - CLIP ViT-L/14 10 0.59 0.54,0.64
Counting - CLIP ViT-L/14 (336px) 10 0.53 0.48,0.58
Counting - SigLIP ViT-B/16 10 0.60 0.54,0.67
Counting - SigLIP ViT-B/16 (256px) 10 0.61 0.55,0.68
Counting - SigLIP ViT-B/16 (384px) 10 0.64 0.56,0.70
Behavior - Gemini Flash 2.0 10 0.60 0.57,0.63
Behavior - Gemini Flash 1.5 8B 10 0.46 0.44,0.49
Behavior - SigLIP ViT-B/16 (512px) 10 0.71 0.69,0.74
Behavior - SigLIP ViT-L/16 (256px) 10 0.70 0.68,0.72
Behavior - SigLIP ViT-L/16 (384px) 10 0.79 0.77,0.81
Behavior - SigLIP ViT-SO400M/14 10 0.71 0.69,0.74
Behavior - SigLIP ViT-SO400M/14 (384px) 10 0.76 0.73,0.78
Behavior - DINOV2 ViT-B/14 10 0.56 0.54,0.58
Behavior - DINOV2 ViT-L/14 10 0.53 0.51,0.55
Behavior - DINOv2 ViT-S/14 10 0.57 0.56,0.59
Behavior - DINOv2 ViT-g/14 10 0.58 0.56, 0.60
Behavior - BioCLIP ViT-B/16 10 0.55 0.54,0.57
Behavior - Qwen2.5-VL 72B 10 0.47 0.44,0.49
Behavior - Qwen2-VL 7B 10 0.52 0.49,0.54
Behavior - CLIP ViT-B/16 10 0.58 0.56,0.59
Behavior - CLIP ViT-L/14 10 0.66 0.64,0.68
Behavior - CLIP ViT-L/14 (336px) 10 0.66 0.64,0.68
Behavior - SigLIP ViT-B/16 10  0.66 0.63,0.68
Behavior - SigLIP ViT-B/16 (256px) 10 0.65 0.62,0.67
Behavior - SigLIP ViT-B/16 (384px) 10 0.71 0.69,0.74

Table 10: All results for 10 training samples for ‘Counting’ and ‘Behavior’ tasks.
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Task Cluster  Task Subcluster  Model Train Mean Confidence Interval
Appearance  Species Gemini Flash 2.0 30 0.50 0.49,0.51
Appearance  Species Gemini Flash 1.5 8B 30 0.50 0.49,0.51
Appearance  Species SigLIP ViT-B/16 (512px) 30 0.74 0.73,0.75
Appearance  Species SigLIP ViT-L/16 (256px) 30 0.73 0.72,0.74
Appearance  Species SigLIP ViT-L/16 (384px) 30 0.76 0.75,0.76
Appearance  Species SigLIP ViT-SO400M/14 30 0.75 0.74,0.76
Appearance  Species SigLIP ViT-SO400M/14 (384px) 30 0.77 0.76,0.78
Appearance  Species DINOvV2 ViT-B/14 30 0.78 0.78,0.79
Appearance  Species DINOv2 ViT-L/14 30 0.77 0.76,0.78
Appearance  Species DINOvV2 ViT-S/14 30 0.77 0.76,0.78
Appearance  Species DINOv2 ViT-g/14 30 0.81 0.80,0.82
Appearance  Species BioCLIP ViT-B/16 30 0.79 0.78,0.80
Appearance  Species Qwen2.5-VL 72B 30 0.50 0.49,0.51
Appearance  Species Qwen2-VL 7B 30 0.50 0.49,0.51
Appearance  Species CLIP ViT-B/16 30 0.70 0.69,0.71
Appearance  Species CLIP ViT-L/14 30 0.72 0.71,0.73
Appearance  Species CLIP ViT-L/14 (336px) 30 0.72 0.71,0.73
Appearance  Species SigLIP ViT-B/16 30 0.73 0.72,0.73
Appearance  Species SigLIP ViT-B/16 (256px) 30 0.72 0.71,0.73
Appearance  Species SigLIP ViT-B/16 (384px) 30 0.74 0.73,0.74
Appearance  Attribute Gemini Flash 2.0 30 0.52 0.48,0.56
Appearance  Attribute Gemini Flash 1.5 8B 30 0.51 0.47,0.55
Appearance  Attribute SigLIP ViT-B/16 (512px) 30 0.83 0.80, 0.86
Appearance  Attribute SigLIP ViT-L/16 (256px) 30 0.81 0.78,0.84
Appearance  Attribute SigLIP ViT-L/16 (384px) 30 0.83 0.80,0.85
Appearance  Attribute SigLIP ViT-SO400M/14 30 0.85 0.82,0.88
Appearance  Attribute SigLIP ViT-SO400M/14 (384px) 30 0.82 0.79,0.85
Appearance  Attribute DINOvV2 ViT-B/14 30 0.80 0.77,0.83
Appearance  Attribute DINOv2 ViT-L/14 30 0.73 0.69,0.76
Appearance  Attribute DINOvV2 ViT-S/14 30 0.80 0.76,0.83
Appearance  Attribute DINOv2 ViT-g/14 30  0.76 0.73,0.79
Appearance  Attribute BioCLIP ViT-B/16 30 0.78 0.75,0.81
Appearance  Attribute Qwen2.5-VL 72B 30 0.52 0.49,0.56
Appearance  Attribute Qwen2-VL 7B 30 0.51 0.47,0.55
Appearance  Attribute CLIP ViT-B/16 30 0.81 0.78,0.84
Appearance  Attribute CLIP ViT-L/14 30 0.76 0.72,0.79
Appearance  Attribute CLIP ViT-L/14 (336px) 30 0.82 0.79,0.85
Appearance  Attribute SigLIP ViT-B/16 30 0.82 0.79,0.85
Appearance  Attribute SigLIP ViT-B/16 (256px) 30 0.81 0.78,0.84
Appearance  Attribute SigLIP ViT-B/16 (384px) 30 0.80 0.77,0.83

Table 11: All results for 30 training samples for ‘Species’ and ‘Attribute’ tasks.
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Task Cluster ~ Task Subcluster ~ Model Train Mean Confidence Interval
Appearance  Health Gemini Flash 2.0 30 0.59 0.56,0.63
Appearance  Health Gemini Flash 1.5 8B 30 0.54 0.50,0.57
Appearance  Health SigLIP ViT-B/16 (512px) 30 0.85 0.83,0.87
Appearance  Health SigLIP ViT-L/16 (256px) 30 0.84 0.82,0.86
Appearance  Health SigLIP ViT-L/16 (384px) 30 0.87 0.86,0.89
Appearance  Health SigLIP ViT-SO400M/14 30 0.87 0.85,0.89
Appearance  Health SigLIP ViT-SO400M/14 (384px) 30 0.89 0.87,0.91
Appearance  Health DINOvV2 ViT-B/14 30 0.83 0.81,0.85
Appearance  Health DINOv2 ViT-L/14 30 0.83 0.81,0.86
Appearance  Health DINOvV2 ViT-S/14 30 0.82 0.79,0.84
Appearance  Health DINOv2 ViT-g/14 30 0.83 0.81,0.86
Appearance  Health BioCLIP ViT-B/16 30 0.81 0.78,0.83
Appearance  Health Qwen2.5-VL 72B 30 049 0.46,0.53
Appearance  Health Qwen2-VL 7B 30 0.49 0.46,0.52
Appearance  Health CLIP ViT-B/16 30 0.85 0.83,0.88
Appearance  Health CLIP ViT-L/14 30 0.86 0.84,0.88
Appearance  Health CLIP ViT-L/14 (336px) 30 0.87 0.85,0.89
Appearance  Health SigLIP ViT-B/16 30 0.84 0.82,0.86
Appearance  Health SigLIP ViT-B/16 (256px) 30 0.86 0.84,0.88
Appearance  Health SigLIP ViT-B/16 (384px) 30 0.86 0.83,0.88
Appearance  Age Gemini Flash 2.0 30 0.51 0.48,0.54
Appearance  Age Gemini Flash 1.5 8B 30 0.50 0.47,0.52
Appearance  Age SigLIP ViT-B/16 (512px) 30 0.77 0.75,0.79
Appearance  Age SigLIP ViT-L/16 (256px) 30 0.77 0.75,0.79
Appearance  Age SigLIP ViT-L/16 (384px) 30 0.79 0.78,0.80
Appearance  Age SigLIP ViT-SO400M/14 30 0.76 0.74,0.78
Appearance  Age SigLIP ViT-SO400M/14 (384px) 30 0.78 0.76,0.80
Appearance  Age DINOvV2 ViT-B/14 30 0.84 0.82,0.86
Appearance  Age DINOv2 ViT-L/14 30 0.82 0.80,0.84
Appearance  Age DINOv2 ViT-S/14 30 0.83 0.81,0.85
Appearance  Age DINOv2 ViT-g/14 30 0.82 0.80,0.84
Appearance  Age BioCLIP ViT-B/16 30 0.75 0.73,0.77
Appearance  Age Qwen2.5-VL 72B 30 0.51 0.49,0.54
Appearance  Age Qwen2-VL 7B 30 0.50 0.47,0.53
Appearance  Age CLIP ViT-B/16 30 0.74 0.72,0.76
Appearance  Age CLIP ViT-L/14 30 0.74 0.72,0.76
Appearance  Age CLIP ViT-L/14 (336px) 30 0.75 0.73,0.77
Appearance  Age SigLIP ViT-B/16 30 0.75 0.72,0.77
Appearance  Age SigLIP ViT-B/16 (256px) 30 0.76 0.74,0.78
Appearance  Age SigLIP ViT-B/16 (384px) 30 0.78 0.76,0.80

Table 12: All results for 30 training samples for ‘Health’ and ‘Age’ tasks.
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Task Cluster  Task Subcluster Model Train Mean Confidence Interval
Gestalt - Gemini Flash 2.0 30 0.36 0.32,0.40
Gestalt - Gemini Flash 1.5 8B 30 0.50 0.46,0.54
Gestalt - SigLIP ViT-B/16 (512px) 30 0.84 0.82,0.85
Gestalt - SigLIP ViT-L/16 (256px) 30 0.81 0.80,0.83
Gestalt - SigLIP ViT-L/16 (384px) 30 0.86 0.85,0.87
Gestalt - SigLIP ViT-SO400M/14 30 0.82 0.81,0.84
Gestalt - SigLIP ViT-SO400M/14 (384px) 30 0.85 0.84,0.87
Gestalt - DINOvV2 ViT-B/14 30 0.71 0.69,0.73
Gestalt - DINOv2 ViT-L/14 30 0.60 0.58,0.62
Gestalt - DINOvV2 ViT-S/14 30 0.68 0.66,0.70
Gestalt - DINOV2 ViT-g/14 30 0.70 0.68,0.72
Gestalt - BioCLIP ViT-B/16 30 0.65 0.63,0.67
Gestalt - Qwen2.5-VL 72B 30 0.49 0.45,0.53
Gestalt - Qwen2-VL 7B 30 0.51 0.47,0.56
Gestalt - CLIP ViT-B/16 30 0.82 0.80,0.83
Gestalt - CLIP ViT-L/14 30 0.84 0.82,0.86
Gestalt - CLIP ViT-L/14 (336px) 30 0.82 0.81,0.84
Gestalt - SigLIP ViT-B/16 30 0.82 0.81,0.84
Gestalt - SigLIP ViT-B/16 (256px) 30 0.82 0.80,0.83
Gestalt - SigLIP ViT-B/16 (384px) 30 0.85 0.84,0.87
Context - Gemini Flash 2.0 30 0.55 0.51,0.58
Context - Gemini Flash 1.5 8B 30 0.49 0.46,0.53
Context - SigLIP ViT-B/16 (512px) 30 0.88 0.85,0.90
Context - SigLIP ViT-L/16 (256px) 30 0.87 0.85,0.89
Context - SigLIP ViT-L/16 (384px) 30 0.89 0.87,0.90
Context - SigLIP ViT-SO400M/14 30 0.90 0.87,0.91
Context - SigLIP ViT-SO400M/14 (384px) 30 0.91 0.89,0.93
Context - DINOvV2 ViT-B/14 30 0.79 0.76,0.82
Context - DINOv2 ViT-L/14 30 0.73 0.70,0.76
Context - DINOvV2 ViT-S/14 30 0.74 0.71,0.77
Context - DINOv2 ViT-g/14 30 0.74 0.71,0.77
Context - BioCLIP ViT-B/16 30 0.69 0.66,0.73
Context - Qwen2.5-VL 72B 30 0.50 0.47,0.54
Context - Qwen2-VL 7B 30 0.48 0.45,0.52
Context - CLIP ViT-B/16 30 0.82 0.79,0.84
Context - CLIP ViT-L/14 30 0.84 0.81,0.86
Context - CLIP ViT-L/14 (336px) 30 0.87 0.85,0.89
Context - SigLIP ViT-B/16 30 0.84 0.82,0.87
Context - SigLIP ViT-B/16 (256px) 30 0.84 0.82,0.86
Context - SigLIP ViT-B/16 (384px) 30 0.87 0.85,0.89

Table 13: All results for 30 training samples for ‘Gestalt’ and ‘Context’ tasks.
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Task Cluster  Task Subcluster Model Train Mean Confidence Interval
Counting - Gemini Flash 2.0 30 0.49 0.43,0.56
Counting - Gemini Flash 1.5 8B 30 0.48 0.41,0.55
Counting - SigLIP ViT-B/16 (512px) 30 0.64 0.56,0.70
Counting - SigLIP ViT-L/16 (256px) 30 0.67 0.60,0.73
Counting - SigLIP ViT-L/16 (384px) 30 0.62 0.57,0.67
Counting - SigLIP ViT-SO400M/14 30 0.64 0.57,0.70
Counting - SigLIP ViT-SO400M/14 (384px) 30 0.61 0.55,0.69
Counting - DINOV2 ViT-B/14 30 0.69 0.64,0.74
Counting - DINOv2 ViT-L/14 30 0.67 0.62,0.71
Counting - DINOv2 ViT-S/14 30 0.62 0.57,0.67
Counting - DINOV2 ViT-g/14 30 0.64 0.59,0.69
Counting - BioCLIP ViT-B/16 30 0.58 0.54,0.63
Counting - Qwen2.5-VL 72B 30 0.47 0.41,0.55
Counting - Qwen2-VL 7B 30 0.48 0.41,0.56
Counting - CLIP ViT-B/16 30 0.63 0.59,0.68
Counting - CLIP ViT-L/14 30 0.64 0.60, 0.69
Counting - CLIP ViT-L/14 (336px) 30 0.67 0.62,0.71
Counting - SigLIP ViT-B/16 30 0.62 0.56,0.68
Counting - SigLIP ViT-B/16 (256px) 30 0.61 0.55,0.68
Counting - SigLIP ViT-B/16 (384px) 30 0.64 0.57,0.70
Behavior - Gemini Flash 2.0 30 0.52 0.50,0.55
Behavior - Gemini Flash 1.5 8B 30 0.49 0.46,0.51
Behavior - SigLIP ViT-B/16 (512px) 30 0.79 0.77,0.82
Behavior - SigLIP ViT-L/16 (256px) 30 0.78 0.76,0.80
Behavior - SigLIP ViT-L/16 (384px) 30 0.83 0.82,0.84
Behavior - SigLIP ViT-SO400M/14 30 0.79 0.77,0.81
Behavior - SigLIP ViT-SO400M/14 (384px) 30 0.85 0.83,0.86
Behavior - DINOv2 ViT-B/14 30 0.66 0.64,0.68
Behavior - DINOv2 ViT-L/14 30 0.63 0.62,0.65
Behavior - DINOv2 ViT-S/14 30 0.68 0.66,0.70
Behavior - DINOv2 ViT-g/14 30 0.66 0.64,0.67
Behavior - BioCLIP ViT-B/16 30 0.65 0.63,0.67
Behavior - Qwen2.5-VL 72B 30 0.49 0.46,0.52
Behavior - Qwen2-VL 7B 30 0.53 0.50,0.56
Behavior - CLIP ViT-B/16 30 0.68 0.66,0.70
Behavior - CLIP ViT-L/14 30 0.77 0.75,0.78
Behavior - CLIP ViT-L/14 (336px) 30 0.81 0.79,0.82
Behavior - SigLIP ViT-B/16 30 0.73 0.71,0.75
Behavior - SigLIP ViT-B/16 (256px) 30 0.76 0.73,0.78
Behavior - SigLIP ViT-B/16 (384px) 30 0.78 0.76,0.80

Table 14: All results for 30 training samples for ‘Counting’ and ‘Behavior’ tasks.
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Task Cluster  Task Subcluster  Model Train Mean Confidence Interval
Appearance  Species Gemini Flash 2.0 100 0.48 0.48,0.49
Appearance  Species Gemini Flash 1.5 8B 100 0.50 0.49,0.51
Appearance  Species SigLIP ViT-B/16 (512px) 100 0.80 0.79,0.80
Appearance  Species SigLIP ViT-L/16 (256px) 100 0.79 0.79,0.80
Appearance  Species SigLIP ViT-L/16 (384px) 100 0.81 0.81,0.82
Appearance  Species SigLIP ViT-SO400M/14 100 0.81 0.80,0.81
Appearance  Species SigLIP ViT-SO400M/14 (384px) 100 0.82 0.82,0.83
Appearance  Species DINOvV2 ViT-B/14 100 0.84 0.83,0.84
Appearance  Species DINOv2 ViT-L/14 100 0.84 0.83,0.84
Appearance  Species DINOvV2 ViT-S/14 100 0.81 0.80,0.81
Appearance  Species DINOv2 ViT-g/14 100 0.86 0.86,0.87
Appearance  Species BioCLIP ViT-B/16 100 0.83 0.82,0.83
Appearance  Species Qwen2.5-VL 72B 100 0.49 0.48,0.50
Appearance  Species Qwen2-VL 7B 100 0.50 0.50,0.51
Appearance  Species CLIP ViT-B/16 100  0.76 0.75,0.76
Appearance  Species CLIP ViT-L/14 100 0.78 0.78,0.79
Appearance  Species CLIP ViT-L/14 (336px) 100  0.79 0.78,0.79
Appearance  Species SigLIP ViT-B/16 100 0.78 0.77,0.78
Appearance  Species SigLIP ViT-B/16 (256px) 100  0.78 0.78,0.79
Appearance  Species SigLIP ViT-B/16 (384px) 100 0.79 0.79,0.80
Appearance  Attribute Gemini Flash 2.0 100 0.52 0.49, 0.56
Appearance  Attribute Gemini Flash 1.5 8B 100 0.50 0.46,0.54
Appearance  Attribute SigLIP ViT-B/16 (512px) 100 0.90 0.89,0.92
Appearance  Attribute SigLIP ViT-L/16 (256px) 100 0.89 0.88,0.91
Appearance  Attribute SigLIP ViT-L/16 (384px) 100 0.89 0.88,0.90
Appearance  Attribute SigLIP ViT-SO400M/14 100  0.89 0.87,0.90
Appearance  Attribute SigLIP ViT-SO400M/14 (384px) 100 0.90 0.88,0.91
Appearance  Attribute DINOvV2 ViT-B/14 100 0.86 0.85,0.88
Appearance  Attribute DINOv2 ViT-L/14 100 0.82 0.80,0.84
Appearance  Attribute DINOv2 ViT-S/14 100 0.88 0.86,0.89
Appearance  Attribute DINOv2 ViT-g/14 100 0.85 0.83,0.87
Appearance  Attribute BioCLIP ViT-B/16 100 0.86 0.85,0.88
Appearance  Attribute Qwen2.5-VL 72B 100 0.49 0.45,0.53
Appearance  Attribute Qwen2-VL 7B 100 0.49 0.47,0.51
Appearance  Attribute CLIP ViT-B/16 100 0.88 0.86,0.89
Appearance  Attribute CLIP ViT-L/14 100 0.87 0.85,0.89
Appearance  Attribute CLIP ViT-L/14 (336px) 100 0.91 0.89,0.92
Appearance  Attribute SigLIP ViT-B/16 100 0.86 0.84,0.87
Appearance  Attribute SigLIP ViT-B/16 (256px) 100 0.85 0.84,0.87
Appearance  Attribute SigLIP ViT-B/16 (384px) 100  0.88 0.87,0.89

Table 15: All results for 100 training samples for ‘Species’ and ‘Attribute’ tasks.
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Task Cluster ~ Task Subcluster ~ Model Train Mean Confidence Interval
Appearance  Health Gemini Flash 2.0 100 0.46 0.43,0.50
Appearance  Health Gemini Flash 1.5 8B 100 0.54 0.51,0.58
Appearance  Health SigLIP ViT-B/16 (512px) 100 0.88 0.87,0.89
Appearance  Health SigLIP ViT-L/16 (256px) 100 0.88 0.87,0.89
Appearance  Health SigLIP ViT-L/16 (384px) 100 0.90 0.89,0.90
Appearance  Health SigLIP ViT-SO400M/14 100  0.89 0.87,0.90
Appearance  Health SigLIP ViT-SO400M/14 (384px) 100 0.90 0.89,0.91
Appearance  Health DINOvV2 ViT-B/14 100 0.90 0.89,0.91
Appearance  Health DINOv2 ViT-L/14 100 0.88 0.87,0.89
Appearance  Health DINOvV2 ViT-S/14 100 0.88 0.87,0.89
Appearance  Health DINOv2 ViT-g/14 100 0.89 0.88,0.90
Appearance  Health BioCLIP ViT-B/16 100 0.85 0.84,0.87
Appearance  Health Qwen2.5-VL 72B 100  0.49 0.46,0.52
Appearance  Health Qwen2-VL 7B 100 0.50 0.48,0.52
Appearance  Health CLIP ViT-B/16 100  0.86 0.85,0.88
Appearance  Health CLIP ViT-L/14 100 0.88 0.87,0.90
Appearance  Health CLIP ViT-L/14 (336px) 100 0.92 0.90,0.93
Appearance  Health SigLIP ViT-B/16 100 0.86 0.85,0.88
Appearance  Health SigLIP ViT-B/16 (256px) 100 0.87 0.86,0.88
Appearance  Health SigLIP ViT-B/16 (384px) 100  0.88 0.87,0.90
Appearance  Age Gemini Flash 2.0 100 0.48 0.45,0.50
Appearance  Age Gemini Flash 1.5 8B 100 0.51 0.48,0.53
Appearance  Age SigLIP ViT-B/16 (512px) 100 0.89 0.88,0.90
Appearance  Age SigLIP ViT-L/16 (256px) 100  0.86 0.85,0.87
Appearance  Age SigLIP ViT-L/16 (384px) 100 0.87 0.86,0.88
Appearance  Age SigLIP ViT-SO400M/14 100  0.85 0.84,0.86
Appearance  Age SigLIP ViT-SO400M/14 (384px) 100 0.89 0.88,0.90
Appearance  Age DINOvV2 ViT-B/14 100 0.92 0.91,0.93
Appearance  Age DINOv2 ViT-L/14 100 0.93 0.92,0.94
Appearance  Age DINOv2 ViT-S/14 100 0.92 0.92,0.93
Appearance  Age DINOv2 ViT-g/14 100 0.93 0.93,0.94
Appearance  Age BioCLIP ViT-B/16 100 0.87 0.86,0.88
Appearance  Age Qwen2.5-VL 72B 100 0.48 0.46,0.51
Appearance  Age Qwen2-VL 7B 100 0.49 0.48,0.51
Appearance  Age CLIP ViT-B/16 100 0.83 0.82,0.85
Appearance  Age CLIP ViT-L/14 100 0.84 0.83,0.85
Appearance  Age CLIP ViT-L/14 (336px) 100 0.87 0.86,0.88
Appearance  Age SigLIP ViT-B/16 100 0.85 0.84,0.86
Appearance  Age SigLIP ViT-B/16 (256px) 100 0.85 0.84,0.87
Appearance  Age SigLIP ViT-B/16 (384px) 100  0.88 0.87,0.89

Table 16: All results for 100 training samples for ‘Health’ and ‘Age’ tasks.
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Task Cluster  Task Subcluster Model Train Mean Confidence Interval
Gestalt - Gemini Flash 2.0 100 0.45 0.41,0.49
Gestalt - Gemini Flash 1.5 8B 100 0.50 0.46,0.54
Gestalt - SigLIP ViT-B/16 (512px) 100 0.88 0.87,0.89
Gestalt - SigLIP ViT-L/16 (256px) 100 0.87 0.86,0.89
Gestalt - SigLIP ViT-L/16 (384px) 100 0.89 0.89,0.90
Gestalt - SigLIP ViT-SO400M/14 100 0.87 0.86,0.89
Gestalt - SigLIP ViT-SO400M/14 (384px) 100 0.89 0.88,0.90
Gestalt - DINOvV2 ViT-B/14 100 0.81 0.80,0.83
Gestalt - DINOv2 ViT-L/14 100 0.77 0.75,0.79
Gestalt - DINOvV2 ViT-S/14 100 0.84 0.83,0.86
Gestalt - DINOV2 ViT-g/14 100 0.74 0.72,0.76
Gestalt - BioCLIP ViT-B/16 100 0.77 0.75,0.79
Gestalt - Qwen2.5-VL 72B 100 0.53 0.49,0.57
Gestalt - Qwen2-VL 7B 100 0.54 0.51,0.56
Gestalt - CLIP ViT-B/16 100 0.88 0.87,0.90
Gestalt - CLIP ViT-L/14 100 0.88 0.86,0.89
Gestalt - CLIP ViT-L/14 (336px) 100 0.90 0.89,0.91
Gestalt - SigLIP ViT-B/16 100 0.89 0.88,0.90
Gestalt - SigLIP ViT-B/16 (256px) 100 0.88 0.86,0.89
Gestalt - SigLIP ViT-B/16 (384px) 100 0.89 0.88,0.90
Context - Gemini Flash 2.0 100 0.51 0.47,0.54
Context - Gemini Flash 1.5 8B 100 0.51 0.47,0.54
Context - SigLIP ViT-B/16 (512px) 100 0.93 0.92,0.94
Context - SigLIP ViT-L/16 (256px) 100 0.93 0.92,0.94
Context - SigLIP ViT-L/16 (384px) 100 0.93 0.92,0.94
Context - SigLIP ViT-SO400M/14 100 0.94 0.93,0.95
Context - SigLIP ViT-SO400M/14 (384px) 100 0.95 0.94,0.96
Context - DINOvV2 ViT-B/14 100 0.80 0.78,0.81
Context - DINOv2 ViT-L/14 100 0.79 0.78,0.81
Context - DINOvV2 ViT-S/14 100 0.83 0.81,0.84
Context - DINOv2 ViT-g/14 100 0.79 0.78,0.81
Context - BioCLIP ViT-B/16 100 0.76 0.74,0.78
Context - Qwen2.5-VL 72B 100 0.48 0.45,0.52
Context - Qwen2-VL 7B 100 0.49 0.47,0.51
Context - CLIP ViT-B/16 100 0.88 0.87,0.89
Context - CLIP ViT-L/14 100 0.92 0.91,0.93
Context - CLIP ViT-L/14 (336px) 100 0.93 0.92,0.94
Context - SigLIP ViT-B/16 100 0.91 0.90,0.92
Context - SigLIP ViT-B/16 (256px) 100 0.92 0.91,0.93
Context - SigLIP ViT-B/16 (384px) 100 0.93 0.92,0.94

Table 17: All results for 100 training samples for ‘Gestalt’ and ‘Context’ tasks.
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Task Cluster  Task Subcluster Model Train Mean Confidence Interval
Counting - Gemini Flash 2.0 100 0.52 0.45,0.58
Counting - Gemini Flash 1.5 8B 100 0.45 0.38,0.52
Counting - SigLIP ViT-B/16 (512px) 100 0.80 0.77,0.83
Counting - SigLIP ViT-L/16 (256px) 100 0.80 0.76,0.83
Counting - SigLIP ViT-L/16 (384px) 100 0.85 0.83,0.88
Counting - SigLIP ViT-SO400M/14 100 0.81 0.78,0.84
Counting - SigLIP ViT-SO400M/14 (384px) 100 0.84 0.81,0.87
Counting - DINOvV2 ViT-B/14 100 0.73 0.70,0.75
Counting - DINOv2 ViT-L/14 100 0.77 0.74,0.79
Counting - DINOv2 ViT-S/14 100 0.69 0.66,0.71
Counting - DINOV2 ViT-g/14 100 0.72 0.70,0.75
Counting - BioCLIP ViT-B/16 100 0.60 0.58,0.63
Counting - Qwen2.5-VL 72B 100 0.51 0.43,0.57
Counting - Qwen2-VL 7B 100 0.51 0.47,0.55
Counting - CLIP ViT-B/16 100 0.61 0.59,0.64
Counting - CLIP ViT-L/14 100 0.72 0.70,0.75
Counting - CLIP ViT-L/14 (336px) 100 0.75 0.73,0.77
Counting - SigLIP ViT-B/16 100 0.76 0.72,0.79
Counting - SigLIP ViT-B/16 (256px) 100  0.77 0.73,0.80
Counting - SigLIP ViT-B/16 (384px) 100 0.73 0.69,0.77
Behavior - Gemini Flash 2.0 100 0.46 0.43,0.48
Behavior - Gemini Flash 1.5 8B 100 0.52 0.49,0.55
Behavior - SigLIP ViT-B/16 (512px) 100 0.86 0.85,0.87
Behavior - SigLIP ViT-L/16 (256px) 100 0.86 0.85,0.87
Behavior - SigLIP ViT-L/16 (384px) 100 0.89 0.88,0.90
Behavior - SigLIP ViT-SO400M/14 100 0.86 0.85,0.87
Behavior - SigLIP ViT-SO400M/14 (384px) 100 0.88 0.87,0.89
Behavior - DINOv2 ViT-B/14 100 0.78 0.77,0.79
Behavior - DINOv2 ViT-L/14 100 0.72 0.71,0.73
Behavior - DINOv2 ViT-S/14 100 0.76 0.75,0.77
Behavior - DINOv2 ViT-g/14 100 0.74 0.74,0.75
Behavior - BioCLIP ViT-B/16 100 0.74 0.74,0.75
Behavior - Qwen2.5-VL 72B 100 0.49 0.47,0.52
Behavior - Qwen2-VL 7B 100 0.52 0.50,0.53
Behavior - CLIP ViT-B/16 100 0.77 0.76,0.78
Behavior - CLIP ViT-L/14 100 0.86 0.85,0.86
Behavior - CLIP ViT-L/14 (336px) 100 0.86 0.86,0.87
Behavior - SigLIP ViT-B/16 100  0.80 0.79,0.81
Behavior - SigLIP ViT-B/16 (256px) 100 0.82 0.81,0.83
Behavior - SigLIP ViT-B/16 (384px) 100 0.85 0.84,0.86

Table 18: All results for 100 training samples for ‘Counting’ and ‘Behavior’ tasks.
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