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Abstract
Adam has become one of the most favored optimizers in deep learning problems. Despite its
success in practice, numerous mysteries persist regarding its theoretical understanding. In this
paper, we study the implicit bias of Adam in linear logistic regression. Specifically, we show
that when the training data are linearly separable, Adam converges towards a linear classifier that
achieves the maximum ℓ∞-margin. Notably, for a general class of diminishing learning rates, this
convergence occurs within polynomial time. Our result shed light on the difference between Adam
and (stochastic) gradient descent from a theoretical perspective.

1. Introduction

Adam [24] is one of the most widely used optimization algorithms in deep learning. By entry-wisely
adjusting the learning rate based on the magnitude of historical gradients, Adam has proven to be
highly efficient in solving optimization tasks in machine learning. However, despite the remarkable
empirical success of Adam, current theoretical understandings of Adam cannot fully explain its
fundamental difference compared with other optimization algorithms.

It has been recently pointed out that the implicit bias [20, 31, 39] of an optimization algo-
rithm is essential in understanding the performance of the algorithm in machine learning. In
over-parameterized learning tasks where the training objective function may have infinitely many
solutions, the implicit bias of an optimization algorithm characterizes how the algorithm prioritizes
converging towards a specific optimum with particular structures and properties. Several recent works
studied the implicit bias of Adam and other adaptive gradient methods. Specifically, [34] studied the
implicit bias of AdaGrad, and showed that AdaGrad converges to a direction that can be characterized
as the solution of a quadratic optimization problem related to the limit of preconditioners. However,
their results cannot be extended to Adam. [44] showed that gradient descent with momentum (GDM)
and its adaptive variants have the same implicit bias with gradient descent. This result is extended
to the setting of training homogeneous models in [43]. However, the results in [43, 44] reply on
a nonnegligible stability constant – when the gradient entries are minimized below the stability
constant (which is by default 10−8 in Adam), adaptive gradient methods will essentially behave like
gradient descent. Therefore, it remains an open question how Adam will behave under the more
practical regime where stability constant is negligible. A more recent work [48] studied the implicit
bias of AdamW without considering such a stability constant. They showed that, if the iterates of
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AdamW converges, then the limiting point must be a KKT point of an optimization problem with ℓ∞
constraints. However, their result does not cover Adam, where the regularization parameter is zero.

In this paper, we investigate the implicit bias of Adam. Specifically, we consider using Adam
to train a linear model to minimize the empirical logistic loss or exponential loss, and demonstrate
that Adam has an implicit bias towards the maximum ℓ∞-margin solution. We summarize the major
contributions of this paper as follows:

• We demonstrate the implicit bias of Adam for solving linear classification problems with linearly
separable data. We prove that Adam has an implicit bias towards a maximum ℓ∞-margin solution.
Our result distinguishes Adam from (stochastic) gradient descent with/without momentum., whose
implicit bias is towards the maximum ℓ2-margin solution.

• Our analysis of Adam covers a broad range of diminishing learning rate schedules. For ηt = Θ(t−a)
with a ∈ (0, 1), our result demonstrates that the convergence towards the maximum ℓ∞-margin
occurs in polynomial time. This further differentiates Adam from (stochastic) gradient descent
with/without momentum in terms of the convergence speed.

• Our result focuses on a particularly challenging setting where we ignore the “stability constant ϵ”
in the Adam algorithm. In practice, the stability constant is by default set as ϵ = 10−8, which is
almost negligible throughout the optimization process. Therefore, by covering the setting without
the stability constant, our theory matches the practical setting better. We demonstrate by simulation
that our theory can also correctly characterize the implicit bias of Adam with the stability constant.

2. Problem Settings

Given n training data points {(xi, yi)}ni=1 where xi ∈ Rd and yi ∈ {+1,−1}, we aim to find a
coefficient vector w with Adam which minimizes the following empirical loss

R(w) =
1

n

n∑
i=1

ℓ(⟨w, yi · xi⟩), (2.1)

where ℓ(⟨w, yi · xi⟩) is the loss function value on the data point (xi, yi). In this paper, we consider
ℓ ∈ {ℓlog, ℓexp}, where ℓlog(z) = log(1 + e−z) is the logistic loss function and ℓexp(z) = e−z is the
exponential loss function. We consider using Adam to minimize (2.1). Denoting m−1 = v−1 = 0 ∈
Rd and starting with initialization w0, Adam applies the following iterative formulas:

mt = β1mt−1 + (1− β1) · ∇R(wt), (2.2)

vt = β2vt−1 + (1− β2) · ∇R(wt)
2, (2.3)

wt+1 = wt − ηt
mt√
vt

, (2.4)

where β1, β2 ∈ [0, 1) are the hyperparameters of Adam, and the square (·)2, square root (
√
·) and

division ( ·
· ) above all denote entry-wise calculations.

Note that in practice, it is common to consider the variant wt+1 = wt − ηt
mt√
vt+ϵ , where an

additional term ϵ ≈ 10−8 is added in (2.4) to improve stability. However, in our analysis, we do not
consider such a term ϵ. This is because in practice, one seldom run Adam until vt is around the same
level as ϵ. However, by the nature of implicit bias, the result needs to cover infinitely many iterations,
and the additional term ϵ will eventually significantly affect the result. In fact, a recent work [44]
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showed that when one considers such an additional ϵ term, Adam will be asymptotically equivalent
to gradient descent. In comparison, in this paper, we will show that when ignoring ϵ, Adam has a
unique implicit bias that is different from gradient descent.

3. Main Results

In this section, we present our main result on the implicit bias of Adam in linear classification
problems. We first introduce several assumptions.

Assumption 3.1 There exists w ∈ Rd such that ⟨w, yi · xi⟩ > 0 for all i ∈ [n].

Assumption 3.1 is a standard assumption in the study of implicit bias of linear models [15, 20, 22,
30, 39, 44, 46]. It can be easily satisfied in the over-parameterized setting where d ≥ n. With the
linear separability assumption, we can further define the maximum ℓ∞-margin:

γ = max
∥w∥∞≤1

min
i∈[n]

⟨w, yi · xi⟩. (3.1)

We also make the following assumption on the initialization w0.

Assumption 3.2 The initialization w0 of Adam satisfies that for all k ∈ [d], ∇R(w0)[k]
2 ≥ ρ.

Assumption 3.2 ensures that at every finite iteration, the entries of vt are strictly positive. We
remark that this is a mild assumption: if xi, i ∈ [n] are generated from a continuous, non-degenerate
distribution, then regardless of the choice of w0, ∇R(w0)[k] ̸= 0 with probability 1. Moreover,
ρ will only appear in our results in the form of log(1/ρ). Therefore, even if ρ is small, it will not
significantly hurt the convergence rates. A similar assumption was considered in [48].

Assumption 3.3 {ηt}∞t=1 are decreasing in t, and satisfy
∑∞

t=0 ηt = ∞, limt→∞ ηt = 0.

Assumption 3.3 is a mild and standard assumption of the learning rates {ηt}∞t=0 that is commonly
considered in the general optimization literature. It has also been considered in recent studies of
Adam and its variants [12, 18, 48].

Assumption 3.4 For all β ∈ (0, 1) and c1 > 0, there exist t1 ∈ N+ and c2 > 0 that only depend
on β, c1, such that

∑t
τ=0 β

τ
(
ec1

∑τ
τ ′=1 ηt−τ ′ − 1

)
≤ c2ηt for all t ≥ t1.

Although Assumption 3.4 seems non-trivial, we claim it is a fairly mild assumption. In fact, for
both small fixed learning rate ηt = η, and decay learning rate ηt = (t + 2)−a with a ∈ (0, 1],
Assumption 3.4 always hold. We formally prove this result in Lemma F.1 in the appendix.

Now, we state our main theorem about the implicit bias about Adam as follows.

Theorem 3.5 Let {wt}∞t=0 be the iterates of Adam in (2.2)-(2.4) with β1 ≤ β2. In addition, let γ
be defined in (3.1) and B := maxi∈[n] ∥xi∥1. Then under Assumptions 3.1, 3.2, 3.3 and 3.4, there
exists t0 = t0(n, d, β1, β2, γ, B, ρ,w0) such that
• If ℓ = ℓexp, then for all t ≥ t0,

R(wt) ≤
log 2

n
· e−

γ
2

∑t−1
τ=t0

ητ , and
∣∣∣∣min
i∈[n]

⟨wt, yi · xi⟩
∥wt∥∞

− γ

∣∣∣∣ ≤ O

(∑t0−1
τ=0 ητ + d

∑t−1
τ=t0

η
3
2
τ∑t−1

τ=0 ητ

)
.
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• If ℓ = ℓlog, then for all t ≥ t0,

R(wt) ≤
log 2

n
· e−

γ
4

∑t−1
τ=t0

ητ ,

and ∣∣∣∣min
i∈[n]

⟨wt, yi · xi⟩
∥wt∥∞

− γ

∣∣∣∣ ≤ O

(∑t0−1
τ=0 ητ + d

∑t−1
τ=t0

η
3
2
τ +

∑t−1
τ=t0

ητe
− γ

4

∑τ−1
τ ′=t0

ητ ′∑t−1
τ=0 ητ

)
,

where we use O(·) to omit factors that only depend on β1, β2, γ, B.

Theorem 3.5 implies that Adam can minimize the loss function to zero, and that the normalized
ℓ∞-margin achieved by Adam will eventually converge to the maximum ℓ∞-margin of the training
data set. To address general learning rate schedules, we do not specify a particular convergence
rate for either the loss or the margin, nor do we provide an exact formula for t0. However, it can be
easily verified that R(wt) ≤ O

(
e−γt1−a/4(1−a)

)
when ηt = (t+ 2)−a with a < 1. In addition, we

have t0 = poly[n, d, (1− β1)
−1, (1− β2)

−1, γ−1, B, log(1/ρ),R(w0)] when ηt = (t+ 2)−a with
a < 1, and we defer the derivation details to Appendix E.2. Regarding margin convergence, we will
give a set of detailed convergence rate results for different learning rate schedules in Corollary 3.7.

According to Theorem 3.5, the nature of Adam is vastly different from (stochastic) gradient
descent from the perspective of implicit bias: Adam maximizes the ℓ∞-margin, while existing
works have demonstrated that (stochastic) gradient descent maximizes the ℓ2-margin [20, 30, 39].
Compared with existing works on the implicit bias of adaptive gradient methods [34, 44, 48], our
result demonstrates a novel type of implicit bias with accurate convergence rates, which can not
been covered in the previous results. Notably, [44] showed that, if a stability constant ϵ is added,
i.e., (2.4) is replaced by wt+1 = wt − ηt

mt√
vt+ϵ , then Adam will eventually be equivalent to gradient

descent and will converge to the maximum ℓ2-margin solution. However, the analysis in [44] relies
on a positive ϵ: their proof is based the fact that after a large number of iterations, the entries of
vt will eventually be much smaller than ϵ, and the update of Adam will be similar to gradient
descent with momentum. In our analysis, we are able to cover the setting where ϵ = 0, and our
result demonstrates that studying the setting without ϵ is essential, as the implicit bias is completely
different. In Appendix B, we will demonstrate by experiments that our setting matches the practical
observations better.

Based on Theorem 3.5, we can immediately conclude the following simplified result by the
Stolz–Cesàro theorem (see Theorem F.8 in the appendix).

Corollary 3.6 Under the same conditions in Theorem 3.5, it holds that

lim
t→∞

min
i∈[n]

⟨wt, yi · xi⟩
∥wt∥∞

= max
∥w∥∞≤1

min
i∈[n]

⟨w, yi · xi⟩.

If there exists a unique maximum ℓ∞-margin solution w∗ = argmax∥w∥∞≤1mini∈[n]⟨w,xi⟩, then
we have limt→∞

wt
∥wt∥∞ = w∗.

We can also investigate the convergence rates of the ℓ∞-margin with specific learning rates. The
results are summarized in the following Corollary.
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Corollary 3.7 Consider ηt = (t + 2)−a with a ∈ (0, 1]. Denote by wexp
t and wlog

t the iterates
of Adam for ℓ = ℓexp and ℓ = ℓlog respectively. Suppose that β1 ≤ β2 and Adam starts with
initialization w0. Let B := maxi∈[n] ∥xi∥1. Then under Assumptions 3.1 and 3.2, there exists
t0 = t0(n, d, β1, β2, γ, B, ρ,w0) such that for all t ≥ t0, the following results hold:

• If a < 2
3 , ∣∣∣∣∣min

i∈[n]

⟨wexp
t , yi · xi⟩
∥wexp

t ∥∞
− γ

∣∣∣∣∣,
∣∣∣∣∣min
i∈[n]

⟨wlog
t , yi · xi⟩
∥wlog

t ∥∞
− γ

∣∣∣∣∣ ≤ O

(
d

ta/2

)
.

• If a = 2
3 ,∣∣∣∣∣min
i∈[n]

⟨wexp
t , yi · xi⟩
∥wexp

t ∥∞
− γ

∣∣∣∣∣ ≤ O

(
d · log t+ log n+ logR(w0) + [log(1/ρ)]1/3

t1/3

)
,∣∣∣∣∣min

i∈[n]

⟨wlog
t , yi · xi⟩
∥wlog

t ∥∞
− γ

∣∣∣∣∣ ≤ O

(
d · log t+ nd+ nR(w0) + [log(1/ρ)]1/3

t1/3

)
.

• If 2
3 < a < 1,∣∣∣∣∣min

i∈[n]

⟨wexp
t , yi · xi⟩
∥wexp

t ∥∞
− γ

∣∣∣∣∣ ≤ O

(
d+ log n+ logR(w0) + [log(1/ρ)]1−a

t1−a

)
,∣∣∣∣∣min

i∈[n]

⟨wlog
t , yi · xi⟩
∥wlog

t ∥∞
− γ

∣∣∣∣∣ ≤ O

(
d+ nd

2(1−a)
a + nR(w0) + [log(1/ρ)]1−a

t1−a

)
.

• If a = 1, ∣∣∣∣∣min
i∈[n]

⟨wexp
t , yi · xi⟩
∥wexp

t ∥∞
− γ

∣∣∣∣∣ ≤ O

(
d+ log n+ logR(w0) + log log(1/ρ)

log t

)
,∣∣∣∣∣min

i∈[n]

⟨wlog
t , yi · xi⟩
∥wlog

t ∥∞
− γ

∣∣∣∣∣ ≤ O

(
d+ n log d+ nR(w0) + log log(1/ρ)

log t

)
.

Corollary 3.7 comprehensively presents the convergence rate of the ℓ∞-margin for different learning
rates. It also indicates that the margin convergence rates for ℓexp and ℓlog are of the same order
of t. Notably, for a < 1, the normalized ℓ∞-margin converges in polynomial time. This clearly
distinguishes Adam from (stochastic) gradient descent with/without momentum, for which the
normalized ℓ2-margin converges at a speed O(log log t/ log t) [19, 39, 44]. For the scenario when
a = 0, i.e., the learning rate ηt is fixed as relatively small η, we have |mini∈[n]

⟨wt,yi·xi⟩
∥wt∥∞ − γ| ≤

O(d
√
η). We would also like to remark that, although Corollary 3.7 seemingly indicates that

ηt = (t+ 2)−2/3 is the learning rate schedule with the fastest convergence rate, it does not mean that
ηt = (t+ 2)−2/3 always converge faster than the other learning rate schedules in all learning tasks.
The bounds in Corollary 3.7 are derived under the worst cases, and in practice, we can frequently
observe that the margins all converge faster than the bounds in the corollary.
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4. Conclusion and Future Work

In this paper, we study the implicit bias of Adam under a challenging but insightful setting where the
"stability constant ϵ" is negligible and set to zero. We demonstrate that Adam has an implicit bias
converging towards the maximum ℓ∞-margin solution, and such convergence occurs in polynomials
of time for a general class of learning rates. This result further helps to understand the distinctions
between Adam and (stochastic) gradient descent with/without momentum, whose iterates will
eventually converge to the maximum ℓ2-margin solution with an O(log log t/ log t) convergence
rate. This finding aligns with the implicit bias of Adam observed in experiments, for both cases the
stability constant ϵ is zero and 10−8. We predict that similar result can be extended to homogeneous
neural networks, and we believe that this is a good future work direction. Moreover, since this
paper focuses on full-batch Adam, another feasible future work is to investigate the implicit bias of
stochastic Adam based on our results.
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Appendix A. Additional Related Work

Theoretical analyses of Adam and its variants. There has been a line of works studying the
properties of Adam and its variants from different aspects. [36] pointed out that there exists simple
convex objective functions which Adam may fail to minimize, and proposed a new variant of Adam,
the AMSGrad algorithm, which enjoys convergence guarantees in convex optimization. [10, 17,
32, 50] established optimization guarantees of Adam and its variants in non-convex optimization.
[18, 28] implemented variance reduction techniques in Adam and proposed new variants of Adam
accordingly. [45, 49, 51, 52] studied the generalization performance of Adam and compared it with
GD under different learning tasks. [3–6, 26] tried to explain the performance of Adam by studying
the connections between Adam and sign gradient descent.

Implicit bias. Classic results [20, 39] demonstrated the iterates of GD will converge to the
maximum ℓ2-margin solution in direction on linear logistic regression with linear separable datasets.
[30] extended this result under stochastic settings. [15] explored the implicit bias of a general
class of optimization methods, containing mirror descent and steepest descent. [22] proposed a
primal-dual analysis and derived a faster convergence rate with a larger learning rate compared
to [20, 39]. [46] explored the implicit bias of gradient descent at the ’edge of stability’ regime,
where the learning rate can be an arbitrarily large constant. [21, 29] showed that q-homogeneous
neural network trained by GD will converge to a KKT point of maximum ℓ2-margin optimization
problem. [8] established an implicit bias type result for the Lion [9] algorithm in its continuous-time
form. There also exist numerous works studying the implicit bias for different problem setting,
including matrix factorization models [2, 14, 27, 35], squared loss models [1, 23, 37], weight
normalization and batch normalization [7, 47], deep linear neural networks [16, 19], two-layer neural
networks [11, 13, 25, 33, 41, 42].

Appendix B. Experiments

In this section, we conduct numerical experiments to verify our theoretical conclusions. We set the
sample size n = 50, and dimension d = 50. Then the data set {(xi, yi)} are generated as follows:
1. xi, i ∈ [n] are independently generated from N(0, I).
2. yi, i ∈ [n] are independently generated from as +1 or −1 with equal probability.
Note that for data sets generated following the procedure above, Assumption 3.1 almost surely holds.
We can also apply standard convex optimization to calculate the maximum ℓ∞-margin γ. In order to
make a clearer comparison between Adam and GD, we generate 10 independent sets of data, and we
select the dataset with the most significant difference in the directions of the maximum ℓ2-margin
solution and maximum ℓ∞-margin solution. We then run the experiments on this selected data set.
Throughout our experiments, for gradient descent with momentum, we set the momentum parameter
as β1 = 0.9, and for Adam, we set β1 = 0.9, β2 = 0.99. All these hyper-parameter setups are
common in practice. All optimization algorithms are initialized with standard Gaussian distribution,
and are run for 106 iterations.

We first run GD, GDM, Adam without the stability constant, and Adam with stability constant
ϵ = 10−8 to train a linear model minimizing the logistic loss, and compare their normalized ℓ∞-
margin and normalized ℓ2-margin. The results are given in Figure 1. We can see that the normalized
ℓ∞-margins of Adam, both with and without ϵ, converge to the maximum ℓ∞-margin, whereas the
normalized ℓ∞-margins of GD and GDM do not. In contrast, the normalized ℓ2-margins of GD and
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GDM converge to the maximum ℓ2-margin, while the ℓ2-margins of Adam, both with and without ϵ,
do not. By comparing the curves of Adam with and without ϵ, we find that they behave similarly
and their convergence remains highly stable. This justifies our theoretical setting where we ignore
the stability constant in Adam, and demonstrate that our maximum ℓ∞-margin implicit bias result
derived without ϵ characterizes the practical behaviour of Adam more accurately compared with the
maximum ℓ2-margin result for Adam with ϵ in [44].

We also run a set of experiments to demonstrate the polynomial time convergence rate of the
ℓ∞-margin. We run experiments on Adam with learning rates ηt = Θ(t−a) for a ∈ {0.3, 0.5, 0.7, 1},
and report the log-log plots in Figure 2, where we perform the experiments for Adam with/without
the stability constant separately. In the log-log plot, we observe that after a certain number of
iterations, curves for a < 1 almost appear as straight lines, suggesting that the normalized ℓ∞-margin
converges in polynomial time for a < 1, while the curve for a = 1 exhibits logarithmic behavior,
indicating the normalized ℓ∞-margin converges logarithmically in t for a = 1. Similarly to the
previous observations, there is still no significant distinction between Adam with and without ϵ,
further demonstrating that our theoretical setting, which disregards ϵ, is reasonable. We also note that
in Figure 2, the margin achieved by Adam with ηt = Θ(t−0.3) converges the fastest. However, as we
have commented in Section 3, different learning rate schedules may perform differently on different
data sets, and it is not necessarily true that ηt = Θ(t−0.3) is always the best learning rate schedule.

(a) normalized ℓ∞-margin (b) normalized ℓ2-margin

Figure 1: Normalized ℓ∞-margins and ℓ2-margins achieved by GD, GDM, and Adam with/without
the stability constant ϵ during training. (a) gives the results of normalized ℓ∞-margins,
while (b) shows the results of normalized ℓ2-margins.

Appendix C. Proof Sketch for Theorem 3.5

In this section, we explain how we establish the convergence of the ℓ∞-margin of linear models
trained by Adam, and provide the sketch proof of Theorem 3.5. For simplicity, here we focus on the
case ℓ = ℓexp. The proof for ℓ = ℓlog is almost the same.

We first introduce several notations. Define

G(w) = − 1

n

n∑
i=1

ℓ′(⟨w, yi · xi⟩).
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(a) normalized ℓ∞-margin gap with ϵ (b) normalized ℓ∞-margin gap without ϵ

Figure 2: Log-log plots of the normalized ℓ∞-margin gaps |mini∈[n]⟨wt, yi ·xi⟩/∥wt∥∞−γ| versus
training iterations. (a) presents the results for Adam with the stability constant ϵ, and (b)
presents the results for Adam without the stability constant ϵ.

Then for ℓ ∈ {ℓexp, ℓlog}, it is clear that G(w) > 0 for all w ∈ Rd. In the following, we will show
that G(w) plays a key role in the convergence and implicit bias analysis.
Step 1. Accurate characterizations of the first and second moments. Adam algorithm is defined
based on the first and second moments mt and vt, which are calculated as exponential moving
averages of the historical gradients and squared gradients respectively. A key challenge in studying
Adam is to accurately characterize each entry of mt and vt throughout training. We present the
following lemma.

Lemma C.1 Under the same condition in Theorem 3.5, there exists t1 = t1(β1, β2, B) such that∣∣mt[k]− (1− βt+1
1 ) · ∇R(wt)[k]

∣∣ ≤ cmηtG(wt),∣∣∣√vt[k]−
√

1− βt+1
2 ·

∣∣∇R(wt)[k]
∣∣∣∣∣ ≤ cv

√
ηtG(wt)

for all t > t1 and k ∈ [d], where cm and cv are constants that only depend on β1, β2 and B.

Since ηt, βt+1
1 and βt+1

2 all decrease to zero as t increases, Lemma C.1 implies that after a sufficient
number of iterations, the entries of mt and vt will be close to the corresponding entries of ∇R(wt)
and |∇R(wt)| respectively. Notably, the term G(wt) also appears in the bounds. In fact, deriving
such bounds with the factor G(wt) is essential to enable our implicit bias analysis: when the algorithm
converges, by definition, G(wt) will also decrease to zero, which implies that the bounds with the
factor G(wt) are strictly tighter than the bounds without G(wt). Lemma C.1 is one of our key
technical contributions.
Step 2. R(wt) starts to decrease after a fixed number of iterations. Based on Lemma C.1, we can
analyze the convergence of R(wt). Specifically, we can show that, after a fixed number of iterations,
the training loss function will start to decrease. This result is summarized in the following lemma.

Lemma C.2 Under the same condition in Theorem 3.5, there exist t1 = t1(β1, β2, B) such that for
all t > t1, it holds that

R(wt+1) ≤ R(wt)− ηtγ ·
(
1− C1β

t/2
1 − C2d ·

(
η

1
2
t + ηt

))
· G(wt),
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where C1, C2 only depend on β1, β2, B.

Note that by definition, G(w) > 0 for all w ∈ Rd. Therefore, Lemma C.2 implies that R(wt) starts
to decrease after a fixed number of iterations, and gives a bound on the decreasing speed. We remark
that the proof of Lemma C.2 is highly non-trivial. Although we have related mt and vt to the loss
gradient ∇R(wt) in Lemma C.1, the fact that wt+1 is updated according to the entry-wise ratio
mt/

√
vt still introduces challenges: under our problem setting, it is entirely possible that at a certain

iteration, a certain entry of ∇R(wt) will exactly equal zero. In this case, the results in Lemma C.1
can not directly lead to any conclusions about the ratio mt/

√
vt. In our proof, we implement a

careful inequality that also takes the historical values of ∇R(wt) into consideration.
Step 3. Lower bound for un-normalized margin. The proof of the implicit bias towards maximum
ℓ∞-margin also relies on a tight analysis on the un-normalized margin mini∈[n]⟨wt, yi · xi⟩ during
training. We have the following lemma providing a lower bound on the un-normalized margin.

Lemma C.3 Under the same condition in Theorem 3.5, if there exists t0 such that R(wt) ≤ log 2
n

for all t ≥ t0, then it holds that

min
i∈[n]

⟨wt, yi · xi⟩ ≥ γ
t−1∑
τ=t0

ητ ·
G(wτ )

R(wτ )
− C3d

(
t−1∑
τ=t0

η
3
2
τ +

t−1∑
τ=t0

η2τ

)
− C4

for all t ≥ t0, where C3, C4 only depend on β1, β2, B.

Note that this lower bound contains a negative term −C3d
(∑t−1

τ=t0
η
3/2
τ +

∑t−1
τ=t0

η2τ
)
. Under

our (mild) assumptions on the learning rates, it is entirely possible that
∑∞

τ=t0
η
3/2
τ ,

∑∞
τ=t0

η2τ =
+∞ and thus the negative term in the lower bound may go to −∞. However, we can show that
limt→∞ G(wt)/R(wt) = 1 (in fact, for exponential loss, it is obvious that G(wt)/R(wt) = 1).
Therefore, after a fixed number of iterations, the positive term in the lower bound will dominate, and
Lemma C.3 gives a non-trivial bound. The strength of this lemma lies in its applicability to very
general learning rates {ηt}∞t=1.
Step 4. An upper bound of ∥wt∥∞.

In Lemma C.3, we have obtained a lower bound of the un-normalized margin. However, to show
the convergence of the ℓ∞-normalized margin, we also need to establish a tight upper bound of
∥wt∥∞. We present this result in the following lemma, which is inspired by Lemma 4.2 in [48].

Lemma C.4 Suppose that the same conditions in Theorem 3.5 hold. There exist C5, C6 that only
depend on β1, β2, B, such that the following result hold: if there exists t0 > log(1/ρ) such that
R(wt) ≤ 1√

B2+C5η0
for all t ≥ t0, then ∥wt∥∞ ≤

∑t−1
τ=t0

ητ + C6
∑t0−1

τ=0 ητ for all t > t0.

Lemma C.4 gives an upper bound of ∥wt∥∞ which mainly depends on
∑t−1

τ=t0
ητ . Note that

Lemma C.3 also gives a lower bound of the un-normalized margin which mainly depends on∑t−1
τ=t0

ητG(wτ )/R(wτ ). These two lemmas will be combined to derive the convergence of the
normalized margin.
Step 5. Finalizing the proof. Finally, based on the lemmas established in the previous steps, we can
prove Theorem 3.5. We also need the following utility lemma provided by [52].

Lemma C.5 (Lemma A.2 in [52]) For Adam iterations defined in (2.2)-(2.4) with β1 ≤ β2 and let
α =

√
β2(1−β1)2

(1−β2)(β2−β2
1)

, then mt[k] ≤ α ·
√

vt[k] for all k ∈ [d].
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We are now ready to prove Theorem 3.5 for the case ℓ = ℓexp.
Proof [Proof of Theorem 3.5] By Lemma C.2, there exists t2 = t2(d, β1, β2, γ, B) such that

R(wt+1) ≤ R(wt)−
γηt
2

G(wt) (C.1)

for all t ≥ t2. Note that for ℓ = ℓexp, by definition we have G(wt) =
1
n

∑n
i=1 exp(−⟨wt, yi · xi⟩) =

R(wt). Therefore, for all t > t2, (C.1) can be re-written as

R(wt+1) ≤
(
1− γηt

2

)
· R(wt) ≤ R(wt) · e−

γηt
2 ≤ R(wt2) · e−

γ
∑t

τ=t2
ητ

2 .

Although ℓexp is not Lipschitz continuous over R, we have R(wt2) ≤ R(w0) · eαB
∑t2−1

τ=0 ητ by
Lemma C.5 and triangle inequality. Letting R0 = min{ log 2

n , 1√
B2+C5η0

} and t0 = t0(n, d, β1, β2, γ, B, ρ,w0)

be the first time such that
∑t0−1

τ=t2
ητ ≥ 2αB

γ

∑t2−1
τ=0 ητ + 2 logR(w0)−2 logR0

γ and t0 ≥ − log ρ. By
such definition of t0, we can derive that for all t ≥ t0,

R(wt) ≤ R(wt2) · e−
γ
∑t

τ=t0
ητ

2 · e−
γ
∑t0−1

τ=t2
ητ

2 ≤ R0 · e−
γ
∑t

τ=t0
ητ

2 ,

which proves the bound on R(wt). Since t0 satisfies all the conditions in Lemmas C.3 and C.4, by
Lemmas C.3, C.4 and the fact that G(wτ ) = R(wτ ) for exponential loss, we have

⟨wt, yi · xi⟩
∥wt∥∞

≥
γ
∑t−1

τ=t0
ητ − C3d

(∑t−1
τ=t0

η
3
2
τ +

∑t−1
τ=t0

η2τ
)
− C4∑t−1

τ=t0
ητ + C6

∑t0−1
τ=0 ητ

for all i ∈ [n], where C3, C4 and C6 are constants solely depending on β1, β2 and B. Now by
definition, we have γ ≥ mini∈[n]⟨wt, yi · xi⟩/∥wt∥∞. Therefore, we have

∣∣∣∣∣min
i∈[n]

⟨wt, yi · xi⟩
∥wt∥∞

− γ

∣∣∣∣∣ ≤ γC6
∑t0−1

τ=0 ητ + C3d
(∑t−1

τ=t0
η

3
2
τ +

∑t−1
τ=t0

η2τ

)
+ C4∑t−1

τ=t0
ητ + C6

∑t0−1
τ=0 ητ

≤ O

(∑t0−1
τ=0 ητ + d

∑t−1
τ=t0

η
3
2
τ∑t−1

τ=0 ητ

)
,

where the second inequality follows by the assumption that ηt → 0. This finishes the proof.

Appendix D. Proof in Appendix C

D.1. Preliminary Lemma

It can be figured out that only the product yi ·xi is concerned in (2.1). Therefore, we define zi = yi ·xi,
then (2.1) could be re-written as

R(w) =
1

n

n∑
i=1

ℓ(⟨w, zi⟩).
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We also define Z = [z1, z2, · · · , zn]⊤ ∈ Rn×d to denote our sample with i−th row is z⊤i , and we will
use Z ∈ Rn×d to denote the data sample instead of {(xi, yi)}ni=1 in the following paragraphs. Then
G(w) = 1

n

∑n
i=1−ℓ′(⟨w, zi⟩), and we introduce L′(w) = [− 1

nℓ
′(⟨w, z1⟩),− 1

nℓ
′(⟨w, z2⟩), · · · ,− 1

nℓ
′(⟨w, zn⟩)]⊤,

which means G(w) = ∥L′(w)∥1. The following lemma reveals the relationship between the maxi-
mum margin γ and ∇R(wt) by duality.

Lemma D.1 For data sample Z under Assumption 3.1 and maximum ℓ∞-margin γ as defined in
(3.1), then

γ ≤ min
r∈∆n

∥Z⊤r∥1,

where ∆n = {r|r ∈ Rn,
∑n

i=1 ri = 1, ri ≥ 0} is the n dimensional simplex.

Remark D.2 Since L′(wt)
G(wt)

∈ ∆n, and ∇R(wt) = Z⊤L′(wt), we always have γG(wt) ≤ ∥∇R(wt)∥1,
which is the essence for proving the convergence direction of gradient-based algorithms. This result
was also proposed in [15, 20, 22, 38, 40].

Proof [Proof of Lemma D.1] Firstly, we introduce a definition of indicator function ι(·) as

ιE(z) =

{
0, if z ∈ E;

+∞, if z /∈ E,

where E is any set. Let f(r) = ι∆n(r) and g(z) = ∥z∥1, then we could derive that f∗(r∗) =
maxi∈[n]⟨ei, r∗⟩ is the dual function of f(r) and g∗(z∗) = ι∥z∗∥∞≤1 is the dual function of g(z).
Then by Fenchel-Young inequality, we have

min
r∈∆n

∥Z⊤r∥1 = min
r∈Rn

[
f(r) + g(Z⊤r)

]
≥ max

w∈Rd

[
− f∗(Zw)− g∗(−w)

]
= max

w∈Rd

[
−max

i∈[n]
e⊤i Zw − ι∥w∥∞≤1

]
= max

∥w∥∞≤1
min
i∈[n]

e⊤i Zw = γ.

D.2. Proof of Lemma C.5

We first introduce the proof of Lemma C.5 since it will be used for further proof of other lemmas.
Proof [Proof of Lemma C.5] By Cauchy-Schwartz inequality, we could derive an upper bound for
mt[k] as

∣∣mt[k]
∣∣ = ∣∣β1mt−1[k] + (1− β1) · ∇R(wt)[k]

∣∣ ≤ t∑
τ=0

βτ
1 (1− β1) ·

∣∣∇R(wt−τ )[k]
∣∣

=

t∑
τ=0

√
βτ
2 (1− β2)

βτ
1 (1− β1)√
βτ
2 (1− β2)

·
∣∣∇R(wt−τ )[k]

∣∣
≤
( t∑

τ=0

βτ
2 (1− β2) · ∇R(wt−τ )[k]

2
) 1

2
( t∑

τ=0

β2τ
1 (1− β1)

2

βτ
2 (1− β2)

) 1
2
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≤ α
√
vt[k].

The last inequality is from

vt[k] =
t∑

τ=0

βτ
2 (1− β2) · ∇R(wt−τ )[k]

2,

and

t∑
τ=0

β2τ
1 (1− β1)

2

βτ
2 (1− β2)

≤ (1− β1)
2

1− β2

∞∑
τ=0

(β2
1

β2

)τ
=

β2(1− β1)
2

(1− β2)(β2 − β2
1)

= α2.

This finishes the proof.

D.3. Proof of Lemma C.1

Proof [Proof of Lemma C.1] Let α =
√

β2(1−β1)2

(1−β2)(β2−β2
1)

be defined in Lemma C.5. For mt[k], it could
be rewritten as

mt[k] =
t∑

τ=0

βτ
1 (1− β1) · ∇R(wt−τ )[k]

= (1− βt+1
1 ) · ∇R(wt)[k] +

t∑
τ=0

(1− β1)β
τ
1 ·
(
∇R(wt−τ )[k]−∇R(wt)[k]

)
.

Therefore the difference between mt[k] and (1− βt+1
1 ) · ∇R(wt)[k] can be bounded as∣∣∣∣mt[k]− (1− βt+1

1 ) · ∇R(wt)[k]

∣∣∣∣ = ∣∣∣∣ t∑
τ=0

(1− β1)β
τ
1 ·
(
∇R(wt−τ )[k]−∇R(wt)[k]

)∣∣∣∣
=

∣∣∣∣ t∑
τ=0

(1− β1)β
τ
1

( 1
n

n∑
i=1

[
ℓ′(⟨wt−τ , zi⟩)− ℓ′(⟨wt, zi⟩)

]
· zi[k]

)∣∣∣∣
≤

t∑
τ=0

(1− β1)β
τ
1

( 1
n

n∑
i=1

∣∣ℓ′(⟨wt, zi⟩)
∣∣∣∣∣∣ℓ′(⟨wt−τ , zi⟩)

ℓ′(⟨wt, zi⟩)
− 1

∣∣∣∣∣∣zi[k]∣∣)
≤ (1− β1)B

t∑
τ=0

βτ
1

( 1
n

n∑
i=1

∣∣ℓ′(⟨wt, zi⟩)
∣∣)(eαB∑τ

τ ′=1 ηt−τ ′ − 1
)

≤ (1− β1)Bc2ηt · G(wt) = cmηt · G(wt).

The second inequality holds since |zi[k]| ≤ ∥zi∥1 ≤ B, and for both ℓ ∈ {ℓexp, ℓlog}, we have∣∣∣∣ℓ′(⟨wt−τ , zi⟩)
ℓ′(⟨wt, zi⟩)

− 1

∣∣∣∣ ≤ e|⟨wt−wt−τ ,zi⟩| − 1 ≤ e∥wt−wt−τ∥∞∥zi∥1 − 1 ≤ eαB
∑τ

τ ′=1 ηt−τ ′ − 1,

17
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by Lemma C.5 and Lemma F.5. The last inequality holds since
∑t

τ=0 β
τ
1

(
eαB

∑τ
τ ′=1 ηt−τ ′−1

)
≤ c2ηt

by our Assumption 3.4. Similarly for vt[k], we also have∣∣∣∣vt[k]− (1− βt+1
2 ) · ∇R(wt)[k]

2

∣∣∣∣
=

∣∣∣∣ t∑
τ=0

(1− β2)β
τ
2 ·
(
∇R(wt−τ )[k]

2 −∇R(wt)[k]
2
)∣∣∣∣

=

∣∣∣∣ t∑
τ=0

(1− β2)β
τ
2

( 1

n2

n∑
i,j=1

[
ℓ′(⟨wt−τ , zi⟩)ℓ′(⟨wt−τ , zj⟩)− ℓ′(⟨wt, zi⟩)ℓ′(⟨wt, zj⟩)

]
· zi[k]zj [k]

)∣∣∣∣
≤
∣∣∣∣ t∑
τ=0

(1− β2)β
τ
2

( 1

n2

n∑
i,j=1

∣∣ℓ′(⟨wt, zi⟩)
∣∣∣∣ℓ′(⟨wt, zj⟩)

∣∣∣∣∣∣ℓ′(⟨wt−τ , zi⟩)ℓ′(⟨wt−τ , zj⟩)
ℓ′(⟨wt, zi⟩)ℓ′(⟨wt, zj⟩)

− 1

∣∣∣∣∣∣zi[k]∣∣∣∣zj [k]∣∣)

≤ 3(1− β2)B
2

t∑
τ=0

βτ
2

( 1

n2

n∑
i,j=1

∣∣ℓ′(⟨wt, zi⟩)
∣∣∣∣ℓ′(⟨wt, zj⟩)

∣∣)(e2αB∑τ
τ ′=1 ηt−τ ′ − 1

)
≤ 3(1− β2)B

2c2ηt · G(wt)
2 = c2vηt · G(wt)

2.

Similarly, the second inequality holds since |zi[k]||zj [k]| ≤ ∥zi∥1∥zj∥1 ≤ B2, and for both ℓ ∈
{ℓexp, ℓlog}, we have∣∣∣∣ℓ′(⟨wt−τ , zi⟩)ℓ′(⟨wt−τ , zj⟩)

ℓ′(⟨wt, zi⟩)ℓ′(⟨wt, zj⟩)
− 1

∣∣∣∣
≤
(
e|⟨wt−wt−τ ,zi⟩| − 1

)
+
(
e|⟨wt−wt−τ ,zj⟩| − 1

)
+
(
e|⟨wt−wt−τ ,zi+zj⟩| − 1

)
≤
(
e∥wt−wt−τ∥∞∥zi∥1 − 1

)
+
(
e∥wt−wt−τ∥∞∥zj∥1 − 1

)
+
(
e∥wt−wt−τ∥∞∥zi+zj∥1 − 1

)
≤ 3
(
e2αB

∑τ
τ ′=1 ηt−τ ′ − 1

)
by Lemma C.5 and Lemma F.6. The last inequality holds since

∑t
τ=0 β

τ
2

(
e2αB

∑τ
τ ′=1 ηt−τ ′ − 1

)
≤

c2ηt by our Assumption 3.4. Now, it remains to show the upper bound for |
√
vt[k]−

√
1− βt+1

2 ·∣∣∇R(wt)[k]
∣∣. Notice that both vt[k] and (1− βt+1

2 ) · ∇R(wt)[k]
2 are positive and for two positive

numbers a and b, |a2 − b2| = |a− b||a+ b| ≥ |a− b|2, therefore we finally conclude that,∣∣∣√vt[k]−
√

1− βt+1
2 ·

∣∣∇R(wt)[k]
∣∣∣∣∣ ≤ cv

√
ηt · G(wt).

This finishes the proof.

D.4. Proof of Lemma C.2

Before we prove Lemma C.2, we first introduce and prove Lemma D.3, which will be used for
proving Lemma C.2.
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Lemma D.3 Under the same condition in Theorem 3.5, there exists t1 = t1(β1, β2, γ), such that
when t > t1, we have∣∣∣∣〈∇R(wt),

mt√
vt

〉
−
∥∥∥∇R(wt)

∥∥∥
1

∣∣∣∣ ≤ 4

√
βt+1
1

1− βt+1
2

·
∥∥∥∇R(wt)

∥∥∥
1

+
d√

1− β2

( 6cv√
1− βt+1

2

√
ηt + 3cmηt

)
· G(wt), (D.1)

where cm and cv are both constants which only depend on β1, β2 and B.

Proof [Proof of Lemma D.3] By Lemma C.1, we could re-write mt[k] and
√
vt[k] as

mt[k] = (1− βt+1
1 ) · ∇R(wt)[k] + cmηt · G(wt) · ϵt,m,k,

and √
vt[k] =

√
1− βt+1

2 ·
∣∣∇R(wt)[k]

∣∣+ cv
√
ηt · G(wt) · ϵt,v,k > 0,

where ϵt,m,k and ϵt,v,k are just some error terms with |ϵt,m,k|, |ϵt,v,k| ≤ 1. Then we can calculate the
inner-product ⟨∇R(wt),

mt√
vt
⟩ for each iteration as

〈
∇R(wt),

mt√
vt

〉
=
∥∥∥∇R(wt)

∥∥∥
1
+

d∑
k=1

∇R(wt)[k] ·
(

mt[k]√
vt[k]

− ∇R(wt)[k]

|∇R(wt)[k]|

)
︸ ︷︷ ︸

(∗)

.

Moreover, we let

ξt,k = ∇R(wt)[k] ·
(

mt[k]√
vt[k]

− ∇R(wt)[k]

|∇R(wt)[k]|

)
= ∇R(wt)[k] ·

(
(1− βt+1

1 ) · ∇R(wt)[k] + cmηt · G(wt) · ϵt,m,k√
1− βt+1

2 ·
∣∣∇R(wt)[k]

∣∣+ cv
√
ηt · G(wt) · ϵt,v,k

− ∇R(wt)[k]

|∇R(wt)[k]|

)
,

and consider to separate ξt,k into two complementary parts. The first part is ξt,k1At,k
, where

At,k =
{√

1− βt+1
2 ·

∣∣∇R(wt)[k]
∣∣ ≥ 2cv

√
ηt · G(wt) · |ϵt,v,k|

}
. While another part is ξt,k1Ac

t,k
,

where Ac
t,k =

{√
1− βt+1

2 ·
∣∣∇R(wt)[k]

∣∣ < 2cv
√
ηt · G(wt) · |ϵt,v,k|

}
. By such separation, we

have ∣∣(∗)∣∣ = ∣∣∣∣ d∑
k=1

ξt,k1At,k
+ ξt,k1Ac

t,k

∣∣∣∣ ≤ ∣∣∣∣ d∑
k=1

ξt,k1At,k

∣∣∣∣+ ∣∣∣∣ d∑
k=1

ξt,k1Ac
t,k

∣∣∣∣
We calculate it part by part. For the first part

∣∣∑d
k=1 ξt,k1At,k

∣∣, we have

∣∣∣∣ d∑
k=1

ξt,k1At,k

∣∣∣∣ ≤ d∑
k=1

∣∣∣1− βt+1 −
√

1− βt+1
2

∣∣∣ · ∣∣∇R(wt)[k]
∣∣3 + (cmηt + cv

√
ηt

)
· G(wt) ·

∣∣∇R(wt)[k]
∣∣2(√

1− βt+1
2 ·

∣∣∇R(wt)[k]
∣∣+ cv

√
ηt · G(wt) · ϵt,v,k

)
·
∣∣∇R(wt)[k]

∣∣ 1At,k
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≤
d∑

k=1

∣∣∣1− βt+1 −
√

1− βt+1
2

∣∣∣ · ∣∣∇R(wt)[k]
∣∣3 + (cmηt + cv

√
ηt

)
· G(wt) ·

∣∣∇R(wt)[k]
∣∣2

1
2

√
1− βt+1

2 ·
∣∣∇R(wt)[k]

∣∣2
≤ 4

√
βt+1
1

1− βt+1
2

·
∥∥∥∇R(wt)

∥∥∥
1
+

2d√
1− βt+1

2

(
cmηt + cv

√
ηt

)
· G(wt). (D.2)

The first inequality is derived by triangle inequality and |ϵt,m,k|, |ϵt,v,k| ≤ 1. The second inequality

holds since
√
1− βt+1

2 ·
∣∣∇R(wt)[k]

∣∣+ cv
√
ηt · G(wt) · ϵt,v,k > 1

2

√
1− βt+1

2 ·
∣∣∇R(wt)[k]

∣∣ when
1At,k

= 1. And the last inequality is simply due to an arithmetic result that∣∣∣1− βt+1
1 −

√
1− βt+1

2

∣∣∣ ≤ ∣∣∣1−√1− βt+1
2

∣∣∣+ βt+1
1 ≤

√
1− 1 + βt+1

2 + βt+1
1 ≤ 2β

t+1
2

1 .

Then for another part
∣∣∑d

k=1 ξt,k1Ac
t,k

∣∣, we use the property
√
vt[k] ≥

√
1− β2 ·

∣∣∇R(wt)[k]
∣∣ to

derive an upper bound as∣∣∣∣ d∑
k=1

ξt,k1Ac
t,k

∣∣∣∣ ≤ d∑
k=1

∣∣∇R(wt)[k]
∣∣ · (∣∣∇R(wt)[k]

∣∣+ cmηt · G(wt)√
1− β2 ·

∣∣∇R(wt)[k]
∣∣ + 1

)
1Ac

t,k

≤ d√
1− β2

( 4cv√
1− βt+1

2

√
ηt + cmηt

)
· R(wt). (D.3)

The first inequality is derived by triangle inequality and |ϵt,m,k| ≤ 1. The second inequality holds
since

∣∣∇R(wt)[k]
∣∣ ≤ 2cv√

1−βt+1
2

√
ηt · G(wt) when 1Ac

t,k
= 1. Combining the results of (D.2),(D.3)

and Lemma F.2, we finally prove finish the proof.

Now, we are ready to prove Lemma C.2.
Proof [Proof of Lemma C.2] We upper bound R(wt+1) for t > t1 by second-order Taylor expansion
as

R(wt+1) = R(wt) +
〈
∇R(wt),wt+1 −wt

〉
+

1

2

(
wt+1 −wt

)⊤∇2R
(
wt + ζ(wt+1 −wt)

)(
wt+1 −wt

)
= R(wt)−

〈
∇R(wt), ηt

mt√
vt

〉
+

1

2

(
ηt

mt√
vt

)⊤
∇2R

(
wt + ζ(wt+1 −wt)

)(
ηt

mt√
vt

)
≤ R(wt)− ηt

(
1− 4

√
βt+1
1

1− βt+1
2

)
·
∥∥∥∇R(wt)

∥∥∥
1

+ ηt
d√

1− β2

( 6cv√
1− βt+1

2

√
ηt + 3cmηt

)
· G(wt) +

η2tα
2B2

2
·max

{
G(wt),G(wt+1)

}

≤ R(wt)− ηtγ

(
1− 4

√
βt+1
1

1− βt+1
2

)
· G(wt) + η

3
2
t

6cvd√
(1− β2)(1− βt+1

2 )
· G(wt)

+ η2t

(α2B2eαBη0

2
+

3cmd√
1− β2

)
· G(wt).
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The first inequality is from Lemma D.3, and for the vector mt√
vt

,

( mt√
vt

)⊤
∇2R(w)

( mt√
vt

)
≤ 1

n

n∑
i=1

ℓ′′
(
⟨w, zi⟩

)∥∥∥ mt√
vt

∥∥∥2
∞

∥∥zi∥∥21 ≤ α2B2 · G(w)

by Lemma F.2 and Lemma C.5, and G
(
wt + ζ(wt+1 − wt)

)
≤ max

{
G(wt),G(wt+1)

}
from

convexity of G(w). The last inequality is from G(wt+1)
G(wt)

≤ eαBηt ≤ eαBη0 by Lemma F.5 and
γG(wt) ≤ ∥∇R(wt)∥1 by Lemma D.1.

D.5. Proof of Lemma C.3

Proof [Proof of Lemma C.3] By Lemma C.2 and Lemma F.2 , we have

R(wt+1) ≤ R(wt) ·
(
1− γηt ·

G(wt)

R(wt)
+
(
C1γηtβ

t/2
1 + η

3
2
t C2d+ η2tC2d

)
· G(wt)

R(wt)

)
≤ R(wt) · exp

(
−γηt ·

G(wt)

R(wt)
+ C1γηtβ

t/2
1 + C2d · (η

3
2
t + η2t )

)
≤ log 2

n
· exp

(
−γ

t∑
τ=t0

ητ ·
G(wτ )

R(wτ )
+ C2d

( t∑
τ=t0

η
3
2
τ +

t∑
τ=t0

η2τ

)
+

C1γηt0β
t0+1

2
1

1−
√
β1

)
.

(D.4)

for all t ≥ t0. By Lemma F.4, we can derive that ⟨wt, zi⟩ ≥ 0 for all i ∈ [n] and t ≥ t0. Then
we have e−mini∈[n]⟨wt,zi⟩ ≤ 1

log 2 maxi∈[n] ℓ(⟨wt, zi⟩) ≤ n
log 2R(wt) by Lemma F.3. Plugging this

result into (D.4) and taking log on both sides, we finish the proof for Lemma C.3.

D.6. Proof of Lemma C.4

Before we prove Lemma C.4, we first present and prove Lemma D.4 which will be used for proving
Lemma C.4.

Lemma D.4 For Adam iterations defined in (2.2)-(2.4) with β1 ≤ β2, for any t0 ∈ N+, t > t0, and
all k ∈ [d],

∣∣wt[k]−wt0 [k]
∣∣ ≤ ( t−1∑

τ=t0

ητ

)
·

(
1 +

β2 − β1
1− β2

∑t−1
τ=t0

βτ−t0
1 ητ∑t−1

τ=t0
ητ

+
(β2 − β1)(1− β1)

1− β2

t−1∑
τ=t0

ητ
1−β

τ−t0
1

1−β1
−
∑t−τ−1

τ ′=1 ητ+τ ′β
τ ′−1
1∑t−1

τ=t0
ητ

log(vτ [k])

) 1
2

.

(D.5)

Proof [Proof of Lemma D.4] If we consider implementing the Cauchy-Schwartz inequality on the
sum of the iterations, we can get,

∣∣wt[k]−wt0 [k]
∣∣ = ∣∣∣∣ t−1∑

τ=t0

ητ
mτ [k]√
vτ [k]

∣∣∣∣
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=

∣∣∣∣ t−1∑
τ=t0

ητ√
vτ [k]

(
βτ−t0+1
1 mt0−1[k] +

τ−t0∑
τ ′=0

βτ ′
1 (1− β1) · ∇R(wτ−τ ′)[k]

)∣∣∣∣
≤
[ t−1∑
τ=t0

ητ
vτ [k]

(
βτ−t0+1
1 mt0−1[k]

2 +

τ−t0∑
τ ′=0

βτ ′
1 (1− β1) · ∇R(wτ−τ ′)[k]

2
)] 1

2

·
[ t−1∑
τ=t0

ητ

(
βτ−t0+1
1 +

τ−t0∑
τ ′=0

βτ ′
1 (1− β1)

)] 1
2

=

[ t−1∑
τ=t0

( ητ
vτ [k]

βτ−t0+1
1 mt0−1[k]

2 +

τ−t0∑
τ ′=0

ητβ
τ ′
1

1− β1
1− β2

vτ−τ ′ [k]− β2vτ−τ ′−1[k]

vτ [k]

)
︸ ︷︷ ︸

(∗)

] 1
2
( t−1∑

τ=t0

ητ

) 1
2

.

(D.6)

The inequality is by Cauchy-Schwartz inequality and the second equality is from

(1− β2) · ∇R(wτ−τ ′)[k]
2 = vτ−τ ′ [k]− β2vτ−τ ′−1[k],

and
t−1∑
τ=t0

ητ

(
βτ−t0+1
1 +

τ−t0∑
τ ′=0

βτ ′
1 (1− β1)

)
=

t−1∑
τ=t0

ητ

(
βτ−t0+1
1 + 1− βτ−t0+1

1

)
=

t−1∑
τ=t0

ητ .

For the first part (∗) defined in (D.6), we could re-arrange it as,

(∗) =
t−1∑
τ=t0

ητ
vτ [k]

βτ−t0+1
1 mt0−1[k]

2

+

t−1∑
τ=t0

ητ (1− β1)
vτ [k]− β2β

τ−t0
1 vt0−1[k] + (β1 − β2)

∑τ−t0
τ ′=1 β

τ ′−1
1 vτ−τ ′ [k]

(1− β2)vτ [k]

≤
t−1∑
τ=t0

ητ
vτ [k]

βτ−t0
1

(
β1α

2 − β2(1− β1)

1− β2

)
vt0−1[k] +

1− β1
1− β2

t−1∑
τ=t0

ητ

+
(1− β1)(β1 − β2)

1− β2

t−1∑
τ=t0

τ−t0∑
τ ′=1

ητβ
τ ′−1
1

vτ−τ ′ [k]

vτ [k]

≤ 1− β1
1− β2

t−1∑
τ=t0

ητ +
(1− β1)(β1 − β2)

1− β2

t−1∑
τ=t0

τ−t0∑
τ ′=1

ητβ
τ ′−1
1

vτ−τ ′ [k]

vτ [k]

=

t−1∑
τ=t0

ητ +
β2 − β1
1− β2

t−1∑
τ=t0

ητ −
(1− β1)(β2 − β1)

1− β2

t−1∑
τ=t0

τ−t0∑
τ ′=1

ητβ
τ ′−1
1

vτ−τ ′ [k]

vτ [k]

=

t−1∑
τ=t0

ητ +
β2 − β1
1− β2

t−1∑
τ=t0

ητ

(
1− (1− β1)

τ−t0∑
τ ′=1

βτ ′−1
1

vτ−τ ′ [k]

vτ [k]

)

=

t−1∑
τ=t0

ητ +
β2 − β1
1− β2

t−1∑
τ=t0

ητ

(
βτ−t0
1 + (1− β1)

τ−t0∑
τ ′=1

βτ ′−1
1 − (1− β1)

τ−t0∑
τ ′=1

βτ ′−1
1

vτ−τ ′ [k]

vτ [k]

)
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=
t−1∑
τ=t0

ητ +
β2 − β1
1− β2

t−1∑
τ=t0

ητ

(
βτ−t0
1 + (1− β1)

τ−t0∑
τ ′=1

βτ ′−1
1

(
1− vτ−τ ′ [k]

vτ [k]

))

≤
t−1∑
τ=t0

ητ +
β2 − β1
1− β2

t−1∑
τ=t0

ητ

(
βτ−t0
1 + (1− β1)

τ−t0∑
τ ′=1

βτ ′−1
1 log

( vτ [k]

vτ−τ ′ [k]

))

=
t−1∑
τ=t0

ητ +
β2 − β1
1− β2

t−1∑
τ=t0

ητβ
τ−t0
1 +

(β2 − β1)(1− β1)

1− β2

t−1∑
τ=t0

ητ

τ−t0∑
τ ′=1

βτ ′−1
1

[
log(vτ [k])− log(vτ−τ ′ [k])

]
=

t−1∑
τ=t0

ητ +
β2 − β1
1− β2

t−1∑
τ=t0

ητβ
τ−t0
1

+
(β2 − β1)(1− β1)

1− β2

( t−1∑
τ=t0

ητ
1− βτ−t0

1

1− β1
log(vτ [k])−

t−1∑
τ=t0

ητ

τ−t0∑
τ ′=1

βτ ′−1
1 log(vτ−τ ′ [k])

)
τ∗=τ−τ ′
=======

t−1∑
τ=t0

ητ +
β2 − β1
1− β2

t−1∑
τ=t0

ητβ
τ−t0
1

+
(β2 − β1)(1− β1)

1− β2

( t−1∑
τ=t0

ητ
1− βτ−t0

1

1− β1
log(vτ [k])−

t−1∑
τ=t0

ητ

τ−1∑
τ∗=t0

βτ−τ∗−1
1 log(vτ∗ [k])

)

=
t−1∑
τ=t0

ητ +
β2 − β1
1− β2

t−1∑
τ=t0

ητβ
τ−t0
1

+
(β2 − β1)(1− β1)

1− β2

( t−1∑
τ=t0

ητ
1− βτ−t0

1

1− β1
log(vτ [k])−

t−1∑
τ∗=t0

log(vτ∗ [k])
t−1∑

τ=τ∗+1

ητβ
τ−τ∗−1
1

)

=
t−1∑
τ=t0

ητ +
β2 − β1
1− β2

t−1∑
τ=t0

ητβ
τ−t0
1

+
(β2 − β1)(1− β1)

1− β2

t−1∑
τ=t0

(
ητ

1− βτ−t0
1

1− β1
−

t−τ−1∑
τ ′=1

ητ+τ ′β
τ ′−1
1

)
log(vτ [k]). (D.7)

Plugging (D.7) into (D.6), then we derive the result of (D.5).

Now we are ready to prove Lemma C.4.
Proof [Proof of Lemma C.4] Considering the last two terms on the RHS of (D.7), for the second
term, we can upper-bound it as,

β2 − β1
1− β2

t−1∑
τ=t0

ητβ
τ−t0
1 ≤ ηt0(β2 − β1)

(1− β1)(1− β2)
,

since ηt is decreasing. Let C5 = c2v in statement of Lemma D.4. Then for the third term, by
Lemma C.1 and our condition R(wt) ≤ 1√

B2+C5η0
, we have

vt[k] ≤ ∇R(wt)[k]
2 + c2vηt · G(wt)

2 ≤ (B2 + C5η0) · R(wt)
2 ≤ 1
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for all k ∈ [d], which implies that log(vt[k]) < 0 for all t > t0. On the other hand,

log(vt[k]) ≥ log(βt
2(1− β2)∇R(w0)[k]

2) ≥ t log β2 + log(1− β2) + log ρ,

and

ητ
1− βτ−t0

1

1− β1
−

t−τ−1∑
τ ′=1

ητ+τ ′β
τ ′−1
1 ≥ ητ

(1− βτ−t0
1

1− β1
−

t−τ−1∑
τ ′=1

βτ ′−1
1

)
≥ −ητ

βτ−t0
1

1− β1
.

Combining these results, we can upper-bound the third term as,

(β2 − β1)(1− β1)

1− β2

t−1∑
τ=t0

(
ητ

1− βτ−t0
1

1− β1
−

t−τ−1∑
τ ′=1

ητ+τ ′β
τ ′−1
1

)
log(vτ [k])

≤ β2 − β1
1− β2

t−1∑
τ=t0

ητβ
τ−t0
1

(
− τ log β2 − log(1− β2)− log ρ

)
≤ ηt0(β2 − β1)

(1− β1)(1− β2)

[(
t0 +

1

1− β1

)
(− log β2)− log(1− β2)− log ρ

]
.

Plugging these results into (D.5) with Bernoulli inequality, we have,

|wt[k]| ≤ |wt0 [k]|+
t−1∑
τ=t0

ητ +
ηt0(β2 − β1)

2(1− β1)(1− β2)

[(
t0 +

1

1− β1

)
(− log β2)− log(1− β2)− log ρ+ 1

]

≤
t−1∑
τ=t0

ητ + α

t0−1∑
τ=0

ητ +
ηt0(β2 − β1)

2(1− β1)(1− β2)

[(
t0 +

1

1− β1

)
(− log β2)− log(1− β2)− log ρ+ 1

]

≤
t−1∑
τ=t0

ητ + α

t0−1∑
τ=0

ητ + C ′
6η0t0 ≤

t−1∑
τ=t0

ητ + C6

t0−1∑
τ=0

ητ ,

where C6 and C ′
6 are constants only depending on β1, β2 and B. The second inequality is from

triangle inequality of |wt0 [k]| and Lemma C.5. The third inequality is from our condition t0 >
− log ρ and the last inequality is because ηt is decreasing. Since the preceding result holds for all
k ∈ [d], it also holds for ∥wt∥∞, which finishes the proof.

Appendix E. Complete Proof for Theorem 3.5 and Calculation Details for
Corollary 3.7

E.1. Complete Proof for Theorem 3.5

Proof [Proof of Theorem 3.5] For C1, C2 defined in Lemma C.2, it’s trivial that when t is large
we have the following inequalities hold:(i).βt/2

1 ≤ 1
6C1

; (ii).ηt ≤ min
{ γ2

36C2
2d

2 ,
γ

6C2d

}
. We use

t2 = t2(d, β1, β2, γ, B) to denote the first time that all the preceding inequalities hold after t1 =
t1(β1, β2, B) in Assumption 3.4. Plugging all aforementioned inequality conditions into Lemma C.2,
we can derive that for all t ≥ t2,

R(wt+1) ≤ R(wt)−
ηtγ

2
G(wt). (E.1)
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Therefore we prove that R(wt+1) < R(wt) for all t ≥ t2. For further proof, we separately consider
ℓ = ℓexp and ℓ = ℓlog.

When ℓ = ℓexp, by definition we have G(wt) = R(wt). Therefore, for all t ≥ t2, (E.1) can be
re-written as

R(wt+1) ≤
(
1− γηt

2

)
· R(wt) ≤ R(wt) · e−

γηt
2 ≤ R(wt2) · e−

γ
∑t

τ=t2
ητ

2 .

Although ℓexp is not Lipschitz continuous over R, we have

R(wt2) ≤ R(w0) · exp
( 1
n

n∑
i=1

∥xi∥1∥wt2 −w0∥∞
)
≤ R(w0) · exp

(
αB

t2−1∑
τ=0

ητ

)
by Lemma C.5 and triangle inequality. Letting R0 = min{ log 2

n , 1√
B2+c2vη0

} and t0 = t0(n, d, β1, β2, γ, B, t1,w0)

be the first time be the first time such that
∑t0−1

τ=t2
ητ ≥ 2αB

γ

∑t2−1
τ=0 ητ + 2 logR(w0)−2 logR0

γ and
t0 ≥ − log ρ. By such definition of t0, we can derive that for all t ≥ t0,

R(wt) ≤ R(wt2) · e−
γ
∑t

τ=t0
ητ

2 · e−
γ
∑t0−1

τ=t2
ητ

2 ≤ R0 · e−
γ
∑t

τ=t0
ητ

2 .

Since t0 satisfies all the requirements in Lemma C.3 and Lemma C.4, we can finally derive that

∣∣∣∣min
i∈[n]

⟨wt, yi · xi⟩
∥wt∥∞

− γ

∣∣∣∣ ≤ γC6
∑t0−1

τ=0 ητ + C3d
(∑t−1

τ=t0
η

3
2
τ +

∑t−1
τ=t0

η2τ

)
+ C4∑t−1

τ=t0
ητ + C6

∑t0−1
τ=0 ητ

≤ O

(∑t0−1
τ=0 ητ + d

∑t−1
τ=t0

η
3
2
τ∑t−1

τ=0 ητ

)
,

since the decay learning rate ηt → 0 by Assumption 3.3, and C3, C4 and C6 are constants solely
depending on β1, β2 and B.

When ℓ = ℓlog, by taking a telescoping sum on the result of (E.1), we obtain γ
∑t

τ=t2
ητG(wt) ≤

2R(wt2) for any t ≥ t2. Since ℓlog is 1-Lipschitz continuous, we can derive that R(wt1) ≤
R(w0)+αB

∑t2−1
τ=0 ητ . Letting R0 = min{ log 2

n , 1√
B2+c2vη0

} and t0 = t0(n, d, β1, β2, γ, B, t1,w0)

be the first time such that
∑t0−1

τ=t2
ητ ≥ 4R(w0)+4αB

∑t2−1
τ=0 ητ

γR0
and t0 ≥ − log ρ, then we can conclude

that

min
τ∈[t2,t0]

G(wτ ) ≤
2R(wt2)

γ
∑t0−1

τ=t2
ητ

≤
2R(w0) + 2αB

∑t2−1
τ=0 ητ

γ
∑t0−1

τ=t2
ητ

≤ R0

2
.

Let τ ′ = argminτ∈[t2,t0] G(wτ ), then we obtain that ⟨zi,wτ ′⟩ ≥ 0 for all i ∈ [n] by Lemma F.4.
Moreover, by Lemma F.3 and the monotonicity of R(wt) derived in (E.1), we can conclude that
R(wt) < R(wτ ′) ≤ 2G(wτ ′) ≤ R0 for all t > t0. Similarly, the inequality R(wt) < R0 also
implies ⟨zi,wt⟩ ≥ 0 for all t > t0 by Lemma F.4, and correspondingly R(wt) ≤ 2G(wt) by
Lemma F.3. Then for all t ≥ t0, we can re-write (E.1) as

R(wt) ≤ R(wt−1)−
γηt−1

2
· G(wt) ≤

(
1− γηt−1

4

)
· R(wt−1)
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≤ R(wt−1) · e−
γηt−1

4 ≤ R(wt0) · e
− γ

4

∑t−1
τ=t0

ητ ≤ R0 · e−
γ
4

∑t−1
τ=t0

ητ .

By this result and Lemma F.7, we have

G(wt)

R(wt)
≥ 1− nR(wt)

2
≥ 1− nR0 · e−

γ
4

∑t−1
τ=t0

ητ

2
≥ 1− e

− γ
4

∑t−1
τ=t0

ητ . (E.2)

Since t0 satisfies all the requirements in Lemma C.3 and Lemma C.4, we can combine Lemma C.3,
Lemma C.4 and (E.2) and finally derive that

∣∣∣∣min
i∈[n]

⟨wt, yi · xi⟩
∥wt∥∞

− γ

∣∣∣∣ ≤ γC6
∑t0−1

τ=0 ητ + C3d
(∑t−1

τ=t0
η

3
2
τ +

∑t−1
τ=t0

η2τ

)
+ C4 +

∑t−1
τ=t0

ητe
− γ

4

∑τ−1
τ ′=t0

η′τ∑t−1
τ=t0

ητ + C6
∑t0−1

τ=0 ητ

≤ O

(∑t0−1
τ=0 ητ + d

∑t−1
τ=t0

η
3
2
τ +

∑t−1
τ=t0

ητe
− γ

4

∑τ−1
τ ′=t0

η′τ∑t−1
τ=0 ητ

)
,

since the decay learning rate ηt → 0 by Assumption 3.3, and C3, C4 and C6 are constants solely
depending on β1, β2 and B.

E.2. Calculation Details for Corollary 3.7

In this section, we use the notation C1, C2, C3, . . . to denote constants solely depending on β1, β2, γ
and B. While it may seem an abuse of notation as these symbols could be different from Section C
or denote distinct constants across different formulas, we assert that their exact values are immaterial
for our analysis. Therefore, we opt for this shorthand notation for the sake of brevity and clarity,
without concern for the precise numerical values of these constants in each instance.

For given ηt = (t + 2)−a with a ∈ (0, 1], recall the definition of t2 in Appendix E.1 to be the
first time such that (i).βt/2

1 ≤ 1
6C1

; (ii).ηt ≤ min
{ γ2

36C2
2d

2 ,
γ

6C2d

}
. We can derive that

t2 = max

{
− 2 log 6 + 2 logC1

log β1
,
(36C2

2d
2

γ2

) 1
a
,
(6C2d

γ

) 1
a

}
= C3d

2
a .

We consider the following four cases,
• If ℓ = ℓexp and a ∈ (0, 1), recall in Appendix E.1, the definition for t0 when ℓ = ℓexp is the

first time such that
∑t0−1

τ=t2
ητ ≥ 2αB

γ

∑t2−1
τ=0 ητ +

2 logR(w0)−2 logR0

γ and t0 ≥ − log ρ, by simple
approximation from integral of t−a, we can derive that,

t0 ≤ C1d
2
a + C2[log n]

1
1−a + C3[logR(w0)]

1
1−a + C4 log(1/ρ).

Similarly, we can also derive

t0−1∑
τ=0

ητ ≤ C1t
1−a
0 ≤ C2d

2(1−a)
a + C3 log n+ C4 logR(w0) + C5[log(1/ρ)]

1−a.
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When a > 2
3 ,
∑∞

τ=t0
η

3
2
τ is bounded by some constant,

∑t−1
τ=0 ητ = O(t1−a) and 2(1−a)

a < 1,
therefore we conclude that,∣∣∣∣min

i∈[n]

⟨wexp
t , zi⟩

∥wexp
t ∥∞

− γ

∣∣∣∣ ≤ O

(
d+ log n+ logR(w0) + [log(1/ρ)]1−a

t1−a

)
.

When a = 2
3 , similarly we have

∑t−1
τ=t0

η
3
2
τ = O(log t) and

∑t−1
τ=0 ητ = O(t1/3), then we conclude

that ∣∣∣∣min
i∈[n]

⟨wexp
t , zi⟩

∥wexp
t ∥∞

− γ

∣∣∣∣ ≤ O

(
d · log t+ log n+ logR(w0) + [log(1/ρ)]1/3

t1/3

)
.

When a < 2
3 , similarly we have

∑t−1
τ=t0

η
3
2
τ = O(t1−

3a
2 ) and

∑t−1
τ=0 ητ = O(t1−a). Under this

sub-case, we could always find a new t′0 ≥ t0 such that besides the preceding condition for t0, we

also have d · t′1−3a/2
0 > max{d

2(1−a)
a , log n, logR(w0), [log(1− ρ)]1−a}. Letting this new t′0 to

be the t0 in our statement of Corollary 3.7, then we conclude that,∣∣∣∣min
i∈[n]

⟨wexp
t , zi⟩

∥wexp
t ∥∞

− γ

∣∣∣∣ ≤O

(
d · t1−

3a
2 + d

2(1−a)
a + log n+ logR(w0) + [log(1/ρ)]1−a

t1−a

)
≤ O

(
d

ta/2

)
.

• If ℓ = ℓexp and a = 1, then by the definition of t0 and integral of t−1, we obtain that,

log t0 ≤ C1 log d+ C2 log n+ C3 logR(w0) + C4 log log(1/ρ).

Similarly, we can also derive

t0−1∑
τ=0

ητ ≤ C1 log d+ C2 log n+ C3 logR(w0) + C4 log log(1/ρ).

Since
∑t−1

τ=0 ητ = O(log t) and
∑t−1

τ=t0
η

3
2
τ is bounded, we obtain that,∣∣∣∣min

i∈[n]

⟨wexp
t , zi⟩

∥wexp
t ∥∞

− γ

∣∣∣∣ ≤ O

(
d+ log n+ logR(w0) + log log(1/ρ)

log t

)
.

• If ℓ = ℓlog and a ∈ (0, 1), firstly we upper bound the last term
∑t

τ=t0
ητe

− γ
4

∑τ−1
τ ′=t0

ητ ′ as

t−1∑
τ=t0

ητe
− γ

4

∑τ−1
τ ′=t0

ητ ′ ≤ e
γ(t0+1)1−a

4(1−a)

∞∑
τ=t0

1

(τ + 2)a
e
− γ(τ+1)1−a

4(1−a) ≤ 4

γ
e

γ
4(1−a) .

Therefore,
∑t

τ=t0
ητe

− γ
4

∑τ−1
τ ′=t0

ητ ′ is always bounded by a constant. The only difference between
ℓlog and ℓexp is how to determine the value of t0. For ℓlog, the formula for t0 is the first time such

that
∑t0−1

τ=t2
ητ ≥ 4R(w0)+4αB

∑t2−1
τ=0 ητ

γR0
and t ≥ log(1/ρ). Similar to the preceding process, we

could derive that

t0 ≤ C1n
1

1−ad
2
a + C2n

1
1−a [R(w0)]

1
1−a + C3 log(1/ρ).
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and

t0−1∑
τ=0

ητ ≤ C1nd
2(1−a)

a + C2nR(w0) + C3[log(1/ρ)]
1−a.

When a > 2
3 ,
∑∞

τ=t0
η

3
2
τ is bounded by some constant,

∑t−1
τ=0 ητ = O(t1−a) and 2(1−a)

a ≤ 1,
therefore we conclude that∣∣∣∣min

i∈[n]

⟨wlog
t , zi⟩

∥wlog
t ∥∞

− γ

∣∣∣∣ ≤ O

(
d+ nd

2(1−a)
a + nR(w0) + [log(1/ρ)]1−a

t1−a

)
.

When a = 2
3 , similarly we have

∑t−1
τ=t0

η
3
2
τ = O(log t) and

∑t−1
τ=0 ητ = O(t1/3), then we conclude

that ∣∣∣∣min
i∈[n]

⟨wlog
t , zi⟩

∥wlog
t ∥∞

− γ

∣∣∣∣ ≤ O

(
d · log t+ nd+ nR(w0) + [log(1/ρ)]1/3

t1/3

)
.

When a < 2
3 , similarly we have

∑t−1
τ=t0

η
3
2
τ = O(t1−

3a
2 ) and

∑t−1
τ=0 ητ = O(t1−a). Under this

setting, we could always find a new t′0 ≥ t0 such that besides the preceding condition for t0, we

also have d · t′1−3a/2
0 > max{nd

2(1−a)
a , n logR(w0), [log(1− ρ)]1−a}. Letting this new t′0 to be

the t0 in our statement of Corollary 3.7, then we conclude that,∣∣∣∣min
i∈[n]

⟨wlog
t , zi⟩

∥wlog
t ∥∞

− γ

∣∣∣∣ ≤O

(
d · t1−

3a
2 + nd

2(1−a)
a + nR(w0) + [log(1/ρ)]1−a

t1−a

)
≤ O

(
d

ta/2

)
.

• If ℓ = ℓlog and a = 1, firstly we upper bound the last term
∑t

τ=t0
ητe

− γ
4

∑τ−1
τ ′=t0

ητ ′ as

t−1∑
τ=t0

ητe
− γ

4

∑τ−1
τ ′=t0

ητ ′ ≤ (t0 + 1)γ/4
∞∑

τ=t0

1

(τ + 1)1+γ/4
≤ γ

4
2γ/4,

which implies
∑t

τ=t0
ητe

− γ
4

∑τ−1
τ ′=t0

ητ ′ is also a constant. Then by the definition of t0 and integral
of t−1, we obtain that

log t0 ≤ C1n log d+ C2nR(w0) + C3 log log(1/ρ).

and similarly

t0−1∑
τ=0

≤ C1n log d+ C2nR(w0) + C3 log log(1/ρ).

Since
∑t−1

τ=0 ητ = O(log t) and
∑t−1

τ=t0
η

3
2
τ is bounded, we obtain that∣∣∣∣min

i∈[n]

⟨wlog
t , zi⟩

∥wlog
t ∥∞

− γ

∣∣∣∣ ≤ O

(
d+ n log d+ nR(w0) + log log(1/ρ)

log t

)
.
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Appendix F. Technical Lemmas

F.1. Lemma for Assumption 3.4

Lemma F.1 Assumption 3.4 holds for both small fixed learning rate ηt = η ≤ 1−β
2c1

, and decay
learning rate ηt = (t+ 2)−a with a ∈ (0, 1].

Proof [Proof of Lemma F.1] Firstly, we prove it for learning rate ηt = η ≤ 1−β
2c1

, which is a small
fixed constant, then we have,

t∑
τ=0

βτ
(
ec1

∑τ
τ ′=1 ηt−τ ′ − 1

)
=

t∑
τ=0

βτ
(
ec1ητ − 1

)
=

t∑
τ=0

βτ
∞∑
k=1

(c1ητ)
k

k!

≤
∞∑
τ=0

βτ
∞∑
k=1

(c1ητ)
k

k!
=

∞∑
k=1

(c1η)
k

k!

∞∑
τ=0

βττk

≤ 1

1− β

∞∑
k=1

( c1η

1− β

)k
≤ 2c1

(1− β)2
η

The penultimate inequality holds because
∑∞

τ=0 β
ττk ≤

∫∞
0 βττkdτ = k!

[− log(β)]k+1 ≤ k!
(1−β)k+1 .

Therefore, we prove that Assumption 3.4 holds for t ∈ N+ when ηt = η ≤ 1−β
2c1

. Next, we consider
the case where decay learning rate ηt =

1
(t+2)a with a ∈ (0, 1), and similarly, we have,

τ∑
τ ′=1

ηt−τ ′ =
τ∑

τ ′=1

1

(t− τ ′ + 2)a
≤
∫ τ+1

1

1

(t− τ ′ + 2)a
dτ ′

=
1

1− a

(
(t+ 1)1−a − (t− τ + 1)1−a

)
=

1

1− a

τ + (t+ 1)1−a(t− τ + 1)a − (t+ 1)a(t− τ + 1)1−a

(t+ 1)a + (t− τ + 1)a

≤ 2

(1− a)

τ

(t+ 1)a

By this result, we can similarly obtain that for t ≥
(

4c1
(1−β)2(1−a)

) 1
a .

t∑
τ=0

βτ
(
ec1

∑τ
τ ′=1 ηt−τ ′ − 1

)
≤

t∑
τ=0

βτ
(
e

2c1τ
(1−a)(t+1)a − 1

)
=

t∑
τ=0

βτ
∞∑
k=1

( 2c1τ

(1− a)(t+ 1)a

)k 1

k!

≤
∞∑
τ=0

βτ
∞∑
k=1

( 2c1τ

(1− a)(t+ 1)a

)k 1

k!
=

∞∑
k=1

( 2c1
(1− a)(t+ 1)a

)k 1

k!

∞∑
τ=0

βττk

≤ 1

1− β

∞∑
k=1

( 2c1
(1− β)(1− a)(t+ 1)a

)k
≤ 4c1

(1− β)2(1− a)
· 1

(t+ 1)a
<

8c1
(1− β)2(1− a)

· ηt.
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Therefore, we prove that Assumption 3.4 holds for t ≥
(

4c1
(1−β)2(1−a)

) 1
a when ηt =

1
(t+2)a . Finally

we consider the case where the decay learning rate ηt =
1

t+2 , and similarly, we have
∑τ

τ ′=1 ηt−τ ′ =∑τ
τ ′=1

1
t−τ ′+2 ≤

∫ τ+1
1

1
t−τ ′+2dτ

′ = log(1 + τ
t−τ+1). By this result, we obtain that

t∑
τ=0

βτ
(
ec1

∑τ
τ ′=1 ηt−τ ′ − 1

)
≤

t∑
τ=0

βτ

((
1 +

τ

t− τ + 1

)⌈c1⌉
− 1

)

=
t∑

τ=0

βτ

⌈c1⌉∑
k=1

(
⌈c1⌉
k

)( τ

t− τ + 1

)k
. (F.1)

Because ⌈c1⌉ and
(⌈c1⌉

k

)
are both absolute constant, it suffices to show that

∑t
τ=0 β

τ
(

τ
t−τ+1

)k
≤ c2

t+2

for all t > t1 and k ≥ 1 where t1, c2 are both constants. Actually, we could split the summation of τ
into two parts as

t∑
τ=0

βτ
( τ

t− τ + 1

)k
=

⌊ t
2
⌋∑

τ=0

βτ
( τ

t− τ + 1

)k
+

t∑
τ=⌊ t

2
⌋+1

βτ
( τ

t− τ + 1

)k
.

For the first part, we have

⌊ t
2
⌋∑

τ=0

βτ
( τ

t− τ + 1

)k
≤
(2
t

)k ⌊ t
2
⌋∑

τ=0

βττk ≤ 2kk!

(1− β)k+1
· 1
t
.

For the second part, we could find a constant t1 = t1(c1, β) such that t⌈c1⌉+2 ≤
(

1
β

) t
2 for all t ≥ t1

since 1
β > 1. Then for all t ≥ t1, we can derive that

t∑
τ=⌊ t

2
⌋+1

βτ
( τ

t− τ + 1

)k
≤ β

t
2

t∑
τ=⌊ t

2
⌋+1

τk ≤ β
t
2 tk+1 ≤ 1

t
.

The last inequality is by our condition t ≥ t1 and k ≤ ⌈c1⌉. Combining these two results and
plugging it into (F.1), we finally get

t∑
τ=0

βτ
(
ec1

∑τ
τ ′=1 ηt−τ ′ − 1

)
≤ ⌈c1⌉ · max

k∈[⌈c1⌉]

(
⌈c1⌉
k

)
·
(

2⌈c1⌉⌈c1⌉!
(1− β)⌈c1⌉+1

+ 1

)
· 1
t

≤ 2⌈c1⌉ · max
k∈[⌈c1⌉]

(
⌈c1⌉
k

)
·
(

2⌈c1⌉⌈c1⌉!
(1− β)⌈c1⌉+1

+ 1

)
· ηt

for all t ≥ t1, which completes the proof.
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F.2. Properties for Logistic and Exponential Loss Function

Lemma F.2 For ℓ ∈ {ℓexp, ℓlog} and any z ∈ R, ℓ′′(z) ≤ |ℓ′(z)| ≤ ℓ(z). For any z ≥ 0,
ℓlog(z) ≤ 2|ℓ′log(z)|.

Proof [Proof of Lemma F.2] For ℓ = ℓexp, |ℓ′exp(z)| = ℓ′′exp(z) = ℓexp(z) = e−z . For ℓ = ℓlog, we
calculate the derivatives as ℓ′log(z) = − 1

1+ez and ℓ′′log(z) =
ez

(1+ez)2
. Notice that

lim
z→+∞

ℓlog(z) = lim
z→+∞

|ℓ′log(z)| = 0,

and

ℓ′log(z) = − 1

1 + ez
≤ − 1

2 + ez + e−z
= −ℓ′′log(z) =

(
|ℓ′log(z)|

)′
.

Therefore we derive that ℓ′′log(z) ≤ |ℓ′log(z)| ≤ ℓlog(z).

Lemma F.3 For any z ≥ 0,
|ℓ′log(z)|
ℓlog(z)

,
|ℓ′log(z)|
ℓexp(z)

≥ 1
2 and ℓlog(z)

ℓexp(z)
≥ log 2.

Proof [Proof of Lemma F.3] For z ≥ 0, it holds that

ℓlog(z) ≤ ℓexp(z) =
2

2ez
≤ 2

1 + ez
= 2|ℓ′log(z)|.

The second result holds because ℓlog(z)
ℓexp(z)

= log(1+e−z)
e−z is an decreasing function for e−z and e−z ∈

(0, 1] for z ≥ 0.

Lemma F.4 For ℓ ∈ {ℓexp, ℓlog}, either G(w) ≤ 1
2n or R(w) ≤ log 2

n implies ⟨w, zi⟩ ≥ 0 for all
i ∈ [n].

Proof [Proof of Lemma F.4] If G(w) ≤ 1
2n , we have

∣∣ℓ′(⟨w, zi⟩)
∣∣ ≤ nG(w) ≤ 1

2 . Then by
monotonicity of |ℓ′(·)| we have ⟨w, zi⟩ ≥ 0. Similarly if R(w) ≤ log 2

n , we also have ℓ(⟨w, zi⟩) ≤
nR(w) ≤ log 2. Then by monotonicity of ℓ(·) we have ⟨w, zi⟩ ≥ 0.

Lemma F.5 For ℓ ∈ {ℓexp, ℓlog} and any z1, z2 ∈ R, we have∣∣∣∣ℓ′(z1)ℓ′(z2)
− 1

∣∣∣∣ ≤ e|z1−z2| − 1 (F.2)

Proof [Proof of Lemma F.5] For ℓ = ℓexp,∣∣∣∣ℓ′exp(z1)ℓ′exp(z2)
− 1

∣∣∣∣ = ∣∣∣ez2−z1 − 1
∣∣∣ ≤ e|z2−z1| − 1

the inequality is from |ex − 1| ≤ e|x| − 1. For ℓ = ℓlog,∣∣∣∣ℓ′log(z1)ℓ′log(z2)
− 1

∣∣∣∣ = ∣∣∣1 + ez2

1 + ez1
− 1
∣∣∣ = ∣∣∣ez2 − ez1

1 + ez1

∣∣∣ ≤ ∣∣∣ez2 − ez1

ez1

∣∣∣ ≤ e|z2−z1| − 1
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Lemma F.6 For ℓ ∈ {ℓexp, ℓlog} and any z1, z2, z3, z4 ∈ R, we have∣∣∣∣ℓ′(z1)ℓ′(z3)ℓ′(z2)ℓ′(z4)
− 1

∣∣∣∣ ≤ (e|z1−z2| − 1
)
+
(
e|z3−z4| − 1

)
+
(
e|z1+z3−z2−z4| − 1

)
(F.3)

Proof [Proof of Lemma F.6] For ℓ = ℓexp,∣∣∣∣ℓ′exp(z1)ℓ′exp(z3)ℓ′exp(z2)ℓ
′
exp(z4)

− 1

∣∣∣∣ = ∣∣∣ez2+z4−z1−z3 − 1
∣∣∣ ≤ (e|z1+z3−z2−z4| − 1

)
the inequality is from |ex − 1| ≤ e|x| − 1. For ℓ = ℓlog,∣∣∣∣ℓ′log(z1)ℓ′log(z3)ℓ′log(z2)ℓ

′
log(z4)

− 1

∣∣∣∣ = ∣∣∣∣(1 + ez2)(1 + ez4)

(1 + ez1)(1 + ez3)
− 1

∣∣∣∣ = ∣∣∣∣ez2 + ez4 + ez2+z4 − ez1 − ez3 − ez1+z3

1 + ez1 + ez3 + ez1+z3

∣∣∣∣
≤
∣∣∣∣ez2 − ez1

ez1

∣∣∣∣+ ∣∣∣∣ez4 − ez3

ez3

∣∣∣∣+ ∣∣∣∣ez2+z4 − ez1+z3

ez1+z3

∣∣∣∣
≤
(
e|z1−z2| − 1

)
+
(
e|z3−z4| − 1

)
+
(
e|z1+z3−z2−z4| − 1

)

Lemma F.7 For ℓ = ℓlog, and any w ∈ Rd, we have

G(wt)

R(w)
≥ 1− nR(w)

2

Proof [Proof of Lemma F.7] Let ri = ℓlog(⟨w, zi⟩) = log(1 + e−⟨w,zi⟩) and f(z) = 1− e−z , then
|ℓ′log(⟨w, zi⟩)| = e−⟨w,zi⟩

1+e−⟨w,zi⟩
= eri−1

eri = f(zi). Therefore for any given R(w), finding minG(wt)
equals to the following optimization problem,

min
1

n

n∑
i=1

f(ri) s.t.
n∑

i=1

ri = nR(w), ri ≥ 0 for all i ∈ [n]

Since f(z) is an increasing function and the increasing rate would be slow as z increase since
f ′′(z) < 0, we can easily derive that the aforementioned optimization problem will take the minimum
at ri = nR(w) for some i ∈ [n] and rj = 0 for all j ̸= i. Therefore, we can derive that,

G(wt)

R(w)
≥ 1− e−nR(w)

nR(w)
≥ 1− nR(w)

2

by Taylor’s expansion.
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F.3. Auxiliary Results

The following result is the classic Stolz–Cesàro theorem.

Theorem F.8 (Stolz–Cesàro theorem) Let {an}n≥1, {bn}n≥1 be two sequences of real numbers.
Assume that {bn}n≥1 is a strictly monotone and divergent sequence (i.e. strictly increasing and
approaching +∞, or strictly decreasing and approaching −∞) and the following limit exists:

lim
n→∞

an+1 − an
bn+1 − bn

= l.

Then it holds that

lim
n→∞

an
bn

= l.
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