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Abstract—Sparsity is a key enabler for efficient inference
in large language models (LLMs). While a wide spectrum of
sparsification techniques—from unstructured to highly struc-
tured—have been explored to reduce computational overhead,
they often involve trade-offs between hardware efficiency and
model accuracy. Channel sparsity, in particular, is appealing
due to its hardware-friendly structure compared to alternatives
like structured N:M sparsity, but suffers from notable accuracy
degradation, especially when applied to activations. To bridge this
gap, we propose RECAP, a lightweight, training-free compensa-
tion method that mitigates the impact of channel pruning induced
errors. RECAP exploits the statistics of the pruned channel as
a representation of the sparsity-induced error and transfers it
to the corresponding weights to compensate for the removal of
the channel. Extensive experiments across diverse LLM families
and benchmarks demonstrate that RECAP outperforms existing
alternatives at all sparsity levels. On LLaMA3-8B, RECAP
achieves approximately a 34% improvement in 0-shot BoolQ
benchmark accuracy at a target sparsity ratio of 70%.

I. INTRODUCTION

Recently, large language models (LLMs) [3], [23] have
demonstrated exceptional performance across a wide range
of applications. However, their practical deployment re-
mains challenging due to the considerable model sizes and
high inference costs. To enable efficient deployment on
resource-constrained devices, post-training compression tech-
niques—including pruning and quantization—have been ac-
tively explored to reduce the computational and memory
demands of serving LLMs [2], [8], [12], [19].

Model pruning [2], [24] reduces memory footprint
by removing ineffectual model parameters, such as in-
dividual weights/activations (unstructured) or blocks of
weights/activations (structured), and storing sparse tensors
in a compressed format [7]. Most existing LLM pruning
techniques [2], [8], [20], [24] primarily focus on static weight
pruning. Activation sparsity, which enforces input-dependent
structure on the weight matrices by leveraging (or inducing)
sparsity in the input activations is relatively unexplored [12].
This can be attributed to the dynamic, input-dependent and
error-prone nature of activation sparsity. Furthermore, LLMs
lack non-linear functions that naturally induce sparsity unlike
traditional DNNs [4].

Among existing approaches exploring activation sparsity in
LLMs [11], [12], TEAL [12] proposes a simple training-free
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Fig. 1. Difference between (a) unstructured sparsity, (b) N:M sparsity with
N=2, M=4 and (c) channel sparsity for an 8× 8 representative tensor.

method that applies magnitude-based unstructured pruning
across activations to achieve high model-wide sparsity, while
CATS [11] targets sparsification primarily within MLP blocks
by leveraging activation sparsity through gating mechanisms,
but achieves lower overall sparsity due to partial layer cover-
age.

As demonstrated in prior work [19], [20], unstructured
sparsity offers limited hardware acceleration benefits com-
pared to more structured approaches such as N:M sparsity
and channel pruning. Among these structured alternatives,
channel pruning enables efficient hardware acceleration with
minimal implementation complexity [9]. However, it often
leads to higher compression-induced errors, posing challenges
for maintaining model accuracy.
Contributions. Motivated by this challenge, we propose
RECAP, a lightweight, training-free compensation method
designed to mitigate the accuracy degradation caused by
coarse-grained activation channel pruning. RECAP introduces
an effective compensation strategy that leverages the aver-
age magnitude of pruned activation channels to scale the
corresponding weight channels, thereby offsetting the error
introduced by channel removal. To further enhance error
correction in the presence of activation outliers—which can
skew the average magnitude—we incorporate a fine-grained
grouped channel strategy that captures localized activation
distributions, leading to improved recovery fidelity. Extensive
experiments across multiple LLM model families demonstrate
that RECAP achieves up to 34% improvement over existing
alternatives across a variety of benchmarks.

II. BACKGROUND

A. Sparsity in LLMs

In large language models (LLMs), sparsity primarily arises
from two sources: weights and activations. Weight sparsity
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Fig. 2. Overview of RECAP. (Left) Conventional channel pruning selects
channels based on magnitude, removing those with lower values. (Center)
Linear Layer’s GEMM operation is then reduced for efficiency. (Right)
RECAP compensates the pruning error by scaling the pruned weights using
the average magnitude of each channel and accumulating them based on the
sign of the corresponding activation.
is typically introduced by statically eliminating redundant or
ineffectual parameters, enabling model compression with min-
imal impact on accuracy [7], [19], [20]. In contrast, activation
sparsity emerges dynamically at runtime, either as a result
of non-linear operations such as ReLU [9] or by selectively
pruning the outputs of inactive or low-importance neurons.
The activation sparsity of a tensor A is characterized by the
fraction of its entries that are zero. This sparsity can influence
computation through two mechanisms [12]:

• Input sparsity: When evaluating O = AW with A ∈
Rn×d and W ∈ Rd×m, the rows W [i, :] associated with zero-
valued columns in A[:, i] are effectively unused.

• Output sparsity: Alternatively, when computing y = s⊙
(xW ), where s ∈ Rn×m is a binary mask, the rows W [i, :]
corresponding to entries s[i, :] = 0 are disregarded [10].

Following prior work [12], [20], we exploit input sparsity.

B. Sparsification Patterns

Unstructured Sparsity. As illustrated in Figure 1(a), unstruc-
tured sparsity [4] eliminates individual weights or activations
without adhering to any specific pattern. While it offers the
highest compression ratio and minimal accuracy degradation,
its irregular structure limits compatibility with hardware ac-
celerators, thereby offering limited practical speedups [20].
Structured N:M Sparsity. Fine-grained N:M sparsity imposes
a structured constraint by dividing weights into groups of
size M and retaining at most N non-zero elements within
each group (Figure 1(b)). While pruning remains unstructured
within each group, the global enforcement of this pattern
significantly improves hardware compatibility and enables
efficient acceleration. This structured regularity strikes a bal-
ance between compression benefits and hardware-friendliness,
making N:M sparsity a widely adopted strategy in modern
sparse deep learning [7].
Coarse-grained Channel Sparsity. Channel sparsity treats
an entire channel as an atomic unit during pruning, remov-
ing them entirely when deemed unimportant. This approach
produces highly regular sparse structures, often leading to
structured matrices that are well-suited for hardware acceler-
ation [22]. However, due to its coarse-grained nature, it leads
to higher accuracy degradation despite potential for superior
hardware acceleration. In this work, we aim to mitigate the

accuracy degradation typically associated with coarse-grained
channel sparsity, thereby achieving the best of both worlds:
high hardware efficiency and strong model performance.

III. RECAP FRAMEWORK

In this section, we introduce RECAP, a training-free acti-
vation compensation method for coarse channel pruning in
compressed large language models (LLMs). Building upon
conventional channel pruning, RECAP exploits the statistics
of the pruned channel as a representation of the sparsity-
induced error and transfers it to the corresponding weights to
compensate for the removal of the channel. Figure 2 provides
an overview of the RECAP pipeline.
Linear Layer GEMM Operation. For a Linear layer in
LLMs, the General Matrix Multiplication (GEMM) operation
can be expressed as:

O = AW (1)

with activation A ∈ Rn×d, weight W ∈ Rd×m and output
O ∈ Rn×m. Here, n denotes the number of tokens, d is
the hidden dimension and m is the output dimension. For
simplicity, we assume a batch size of 1.
Channel Pruning. To lower the computation cost of GEMM,
conventional channel pruning methods [5], [17] operates on
the activation matrix A by first computing the average of
the absolute values for each channel. A top-k selection is
then applied to retain only the most significant channels. This
process can be formally expressed as:

M =
1

n

n−1∑
i=0

|Ai,:| (2)

Is = TopK(M, s) (3)

where vector M ∈ Rd is the average of each channel’s
magnitude and Is is the indices of selected top s channels.
Once Is is obtained, its complement list IC

s is used to prune
the corresponding activation and weight channels as follows,

A′ = A:,Is
, W′ = WIs,: (4)

where A′ ∈ Rn×s and W′ ∈ Rs×m represent the pruned
activation and weight matrices, respectively, with s << d.
Reduced Linear GEMM Operation. After pruning, the
GEMM computation is approximated by using only the se-
lected top s channels. The resulting operation becomes:

O ≈ O′ = A′W′ = A:,IsWIs,: (5)

This reduces the computational complexity from O(n·d·m) to
O(n ·s ·m), since s << d, this significantly improves GEMM
efficiency.
Induced Error. Although activations pruning is performed
based on selecting the channels with highest average mag-
nitude, it inevitably introduces an error due to the removal of
channels. The reduced GEMM operation can be expressed in
relation to the original GEMM as follows:

AW = A′W′ + ε+ δ (6)
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where ε + δ denotes the total error resulting from channel
pruning. In this formulation, δ refers to the irrecoverable error,
while ε denotes the recoverable portion. The objective of
RECAP is to maximize compensation for the recoverable error
ε, thereby mitigating the impact of the irrecoverable error δ.
RECAP’s Compensation. RECAP compensates ε by lever-
aging the precomputed statistics of the pruned channel which
is the average of each channel’s magnitude, MIC

s
. With vector

MIC
s

, we scale the corresponding pruned rows of the weight
matrix through element-wise multiplication as:

Wscaled = MIC
s
⊙WIC

s ,: (7)

Here, ⊙ represents element-wise multiplication, with broad-
casting of the vector MIC

k
over to the rows of WIC

k ,:. Simul-
taneously, sign bits of the activation matrix A are extracted to
guide the compensation process. These sign values determine
whether each scaled weight is added or subtracted. It primarily
functions to prevent nullification of the compensation. The
compensated error ε is then computed by accumulating the
scaled weights accordingly:

S = sign(A) (8)

ε =

n−1∑
i=0

m−1∑
j=0

∑
k∈IC

s

Si,k ·W(k,j)
scaled (9)

where ε ∈ Rn×m is the compensation tensor and W
(k,j)
scaled

denotes the (k, j) element of the scaled weight matrix.
Fine-grained Compensation. To better approximate ε, we
propose a fine-grained grouped channel compensation strategy.
This approach improves the accuracy of restoration by com-
puting the average magnitude M at a finer granularity, thereby
enabling better approximation even under skewed channel
value distributions. This skewed channel distribution typically
arises from the varied distribution of inliers and outliers in
channels.

In this strategy, each channel to be compensated is divided
into groups of size Ng along the token dimension, and per-
group statistics are computed within the pruned channel subset.
The formulation is as follows:

ng = n/Ng (10)

Mg =
1

ng

ng·g+ng−1∑
i=ng·g

|Ai,:| (11)

where Mg denotes the average magnitude for group g within
the channels.

W
(g)
scaled = M

(g)

IC
s
⊙WIC

s ,: (12)

εg =

ng·g+ng−1∑
i=ng·g

m−1∑
j=0

∑
k∈IC

s

Si,k ·W(g,k,j)
scaled (13)

ε = concat(ε0, ε1, ..., εNg−1) (14)

TABLE I
COMPARISON OF UNIFORM PRUNING ON PERPLEXITY, ZERO SHOT

BOOLQ, 5 SHOT MMLU FOR LLAMA2-7B [23]/LLAMA3-8B
[3]/QWEN2.5-3B [18]. THE RECAP GROUP SIZE IS SET TO Ng = 8.

Model Sparsity Method PPL(↓) BoolQ(↑) MMLU(↑)

LLaMA2-7B [23]

Baseline - 5.47 77.74 45.81

30% Channel Pruning 57.95 62.29 25.42
RECAP (Ours) 9.80 72.72 32.07

50% Channel Pruning 1.65 · 104 48.10 23.87
RECAP (Ours) 16.69 69.94 26.82

70% Channel Pruning 9.25 · 103 43.70 23.72
RECAP (Ours) 72.30 67.09 25.17

LLaMA3-8B [3]

Baseline - 6.24 82.08 65.41

30% Channel Pruning 192.51 62.20 26.19
RECAP (Ours) 29.32 78.44 40.50

50% Channel Pruning 8.50 · 103 42.32 26.04
RECAP (Ours) 33.46 78.35 39.25

70% Channel Pruning 3.85 · 104 38.75 24.72
RECAP (Ours) 94.29 72.48 27.91

Qwen2.5-3B [18]

Baseline - 8.03 77.10 65.61

30% Channel Pruning 50.36 61.23 26.24
RECAP (Ours) 6.43 74.36 49.51

50% Channel Pruning 1.26 · 103 53.37 25.17
RECAP (Ours) 10.36 70.26 47.85

70% Channel Pruning 3.19 · 104 47.31 23.58
RECAP (Ours) 37.35 66.16 33.65

(50% Pruning Level, LLaMA2-7B)
Input Text : The largest animal
Baseline : is the blue whale.  It can grow to 30m in length and weigh over ..
Channel : is the elephant, which weighs up to 6 tons and can reach 25 feet..
RECAP  : is the blue whale, which can reach 30 meters (98 ft) in length and..

Input Text : A Large Language Model is
Baseline :  a type of deep learning model that has been trained on a ..
Channel :  a language that is used by a large number of people..
RECAP  :  a type of artificial intelligence (AI) model that is capable of..

Fig. 3. Text generation examples from LLaMA2-7B under 50% sparsity ratio.
Incorrect outputs and correct outputs are highlighted.

Here, W(g)
scaled represents the scaled weights for group g. The

term εg ∈ Rng×m corresponds to the compensation tensor for
group g, aggregated across spatial and channel dimensions.
Finally, the complete compensation tensor ε is formed by
concatenating the group-wise compensation tensors across all
Ng groups.

RECAP transfers the statistical information of pruned chan-
nels to their corresponding weights, transforming full ma-
trix multiplications into lightweight operations comprising
element-wise scaling and sign-guided accumulation. This de-
sign enables effective ε compensation with minimal computa-
tional overhead.

IV. EXPERIMENTAL EVALUATIONS

A. Experimental Setup

Models and Datasets. We evaluate RECAP on LLM families
LLaMA2-7B [23], LLaMA3-8B [3] and Qwen2.5-3B [18].
Each model’s perplexity is measured with WikiText2 [16]
dataset and benchmark accuracy on BoolQ [1], MMLU [6]
and HellaSwag [25] (ablations), under both conventional chan-
nel sparsity without compensation and the proposed RECAP
compensation.
Implementation Details. RECAP is implemented in PyTorch
and all experiments are conducted on a single NVIDIA GH200
GPU. We set the group size as Ng = 8, which is empirically
determined. RECAP is applied to activations in linear layers,
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Fig. 4. Effect of group size (Ng) on Wikitext perplexity for LLaMA2-7B
[23] at uniform sparsity of 50%.

TABLE II
NON-UNIFORM LAYER-WISE PRUNING COMPARISON BETWEEN

TEAL [12] AND RECAP FOR LLAMA3-8B [3] AT A TARGET SPARSITY
RATIO OF 60%.

Method BoolQ (↑) HellaSwag (↑) Average (↑)
Baseline 82.08 82.20 82.14

TEAL [12] 73.26 69.85 71.56
RECAP (Ours) 78.36 74.63 76.50

targeting query, key, value, attention output projections and
feed-forward layers inside the transformer block.

B. Perplexity Evaluation

In Table I, we compare the perplexity results of Wiki-
Text2 on LLaMA2-7B, LLaMA3-8B and Qwen2.5-3B across
30%/50%/70% uniform pruning. RECAP consistently achieves
substantially lower perplexity compared to channel pruning
across all sparsity ratio and models, demonstrating it’s effec-
tiveness in recovering the error ε. Notably, under 50% sparsity
ratio, RECAP reduces the perplexity by up to 3.84 · 104,
showing its robustness in maintaining model performance even
under aggressive pruning.

C. Downstream Task Evaluation

As presented in Table I, RECAP consistently recovers a
substantial portion of the lost accuracy from channel pruning
across BoolQ and MMLU benchmarks, highlighting its robust-
ness across a variety of tasks and architectures. Notably, RE-
CAP restores up to 34% accuracy on LLaMA3-8B for BoolQ
and 23% accuracy on Qwen2.5-3B for MMLU compared to
conventional channel pruning.

D. Text Generation

In Figure 3, we compare the generated sentences with
naive channel pruning and RECAP with Llama2-7B model
under 50% activation pruning. Compared to channel pruning
without compensation, RECAP significantly improves output
quality, effectively mitigating semantic distortions caused by
pruning. For instance, when asked about the largest animal,
channel pruning produces an incorrect output referring to
elephants, whereas RECAP correctly identifies the blue whale,
demonstrating its ability to accurately recover lost information.

E. Ablations and Discussions

Effect of group size Ng . We illustrate the impact of varying
Ng values on model perplexity in Figure 4. As observed,

increasing Ng consistently leads to lower perplexity, attributed
to improved error approximation at finer granularity, which
better captures skewed channel distributions caused by out-
liers. However, setting Ng too large degrades inference per-
formance due to increased computational overhead. To balance
accuracy and efficiency tradeoff, we select Ng = 8.
Non-uniform Layer-wise Pruning. Since TEAL [12] applies
non-uniform layer-wise pruning using a greedy optimization,
we employ FLOW [20] to determine optimal layerwise spar-
sity ratios for RECAP, ensuring a fair comparison at a target
sparsity of 60%. Both methods use a calibration set of 256
samples drawn from WikiText [16]. As shown in Table II,
RECAP achieves approximately 5% higher benchmark accu-
racy than TEAL, highlighting the effectiveness of RECAP’s
compensation for pruning-induced errors.
Future Directions. Our technique is orthogonal to existing
weight compression methods and can be integrated alongside
them to enable further model compression, which we plan to
investigate this integration in future work. Additionally, we
plan to theoretically validate our method and also develop a
formulation for the unrecoverable error component δ.

V. RELATED WORK

LLM Pruning. Recent advances in unstructured pruning,
such as SparseGPT [2], leveraged the inverse Hessian for
importance estimation, while Wanda [21] proposed a simple
criterion based on the product of weight magnitudes and
activations. Extensions of these techniques to structured N:M
sparsity have largely been restricted to applying a fixed N:M
pattern uniformly across all layers. However, works such
as [20], [24] emphasized the need for heterogeneous sparsity
budgets across different layers, advocating for a non-uniform,
layer-wise N:M sparsity assignment based on the presence
and distribution of outliers. In parallel, recent research [12]
explored magnitude pruning of LLM activations, motivated
by the observation that activation distributions are typically
zero-mean and unimodal.
Error Compensation. To compensate for the sparsity induced
errors, early techniques as [15] are not practical for large
LLMs due to the demand for significant compute resources
required for model finetuning. To overcome this challenge,
techniques such as [2] leverage the inverse Hessian to compen-
sate for sparsification errors, [14] explored parameter-efficient
finetuning for sparsified LLMs, [13] projects compression
errors into a low-rank space, and minimizes compression-
induced errors without requiring gradient-based training.

VI. CONCLUSION

We propose RECAP, a lightweight, training-free compen-
sation method to mitigate the impact of channel pruning
errors. Utilizing the statistics of pruned activation channels,
RECAP transfers the approximation to corresponding weights
and effectively compensates pruning induced errors. Exten-
sive experiments across various LLM families demonstrate
that RECAP achieve substantial error recovery, consistently
improving benchmark accuracy and perplexity. Our approach
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highlights the potential of RECAP to bridge the gap between
hardware efficiency and model performance in the context of
pruning, offering a promising future direction of exploration.
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