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Abstract

Recent research suggests that predictions made by machine-learning models can1

amplify biases present in the training data. Mitigating such bias amplification2

requires a deep understanding of the mechanics in modern machine learning that3

give rise to that amplification. We perform the first systematic, controlled study4

into when and how bias amplification occurs. To enable this study, we design a5

simple image-classification problem in which we can tightly control (synthetic)6

biases. Our study of this problem reveals that the strength of bias amplification7

is correlated to measures such as model accuracy, model capacity, and amount8

of training data. We also find that bias amplification can vary greatly during9

training. Finally, we find that bias amplification may depend on the difficulty of10

the classification task relative to the difficulty of recognizing group membership:11

bias amplification appears to occur primarily when it is easier to recognize group12

membership than class membership. Our results suggest best practices for training13

machine-learning models that we hope will help pave the way for the development14

of better mitigation strategies.15

1 Introduction16

Several recent studies have presented results suggesting that, beyond reproducing biases present17

in the training data, machine-learning models can amplify such biases as well [11, 34, 38]. Bias18

amplification is concerning as it can foster the proliferation of undesired stereotypes [9, 32, 38, 37]19

or lead to unjustifiable differences in model accuracy between subgroups of users [5, 8].20

The existence of bias amplification suggests that machine-learning models are not always doing what21

we expect them to do: viz., make predictions according to the statistics present in their training data.22

Although several studies have proposed measures for the severity of bias amplification [11, 25, 34, 38],23

this question of when and why bias amplification occurs remains largely unanswered.24

We present a systematic, controlled study of bias amplification. We design a simple image-25

classification task that facilitates tight control of synthetic biases. In line with prior work [11, 34, 38],26

we find that models trained for this classification task, indeed, amplify biases present in their training27

data. We use the ability to control biases to study key research questions (RQs) that increase our28

understanding of bias amplification:29

• RQ1: How does bias amplification vary as the bias in the data varies?30

• RQ2: How does bias amplification vary as a function of model capacity?31

• RQ3: How does bias amplification vary during model training?32

• RQ4: How does bias amplification vary as a function of the relative difficulty of recognizing33

class membership versus recognizing group membership?34

We observe that bias amplification tends to increase with bias in the training set in many of our35

experiments. We find that bias amplification varies with model capacity: models with more parameters36
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and/or less regularization can amplify biases, but models with too few parameters and/or too much37

regularization can amplify biases even more. Bias amplification also greatly varies with training38

set size: models trained on very small or very large training sets appear to amplify biases less. We39

observe that the degree of bias amplification can vary greatly during model training. In many of40

our experiments, we find that the behavior of bias amplification depends on the difficulty of the41

classification task relative to the difficulty of group membership recognition.42

The results of our study provide intuitions for when bias amplification occurs and why. They suggest43

some best practices that may help reduce bias mitigation in real-world machine-learning models, such44

as careful cross-validation of hyperparameters related to model capacity, regularization, and training45

duration to substantially reduce bias amplification of the final model. Collecting more training data46

may reduce bias amplification as well. We hope that our study helps pave the way for the development47

and adoption of mitigation strategies for bias amplification in common computer vision tasks.48

2 Experiments49

We design an image-classification task in which each image has both a class and a group, and in50

which we can introduce synthetic biases by altering the group assignment of images.51

2.1 Experimental setup52

Classification task. We perform image-classification experiments on three image datasets: (1) the53

Fashion MNIST dataset [36], (2) the CIFAR-10 dataset [21], and (3) the CIFAR-100 dataset [21].54

Because our analyses are easier to perform with binary classification problems, we convert the datasets55

to have binary labels by randomly selecting half of the classes to be positive and the other half to56

be negative. All our models are residual networks [16] that we train according to the procedures57

discussed in Appendix A.1.1. To mitigate the effect of a particular random class assignment, we58

average the test accuracy and bias amplification values over 20 random assignments of the original59

classes to the binary classes and include 95% confidence intervals.60

Group membership. We consider a classification model to be biased if it predicts a particular class61

at a disproportionate rate for examples from a particular group. However, rather than using real-world62

groups we choose to establish synthetic groups for our experiments. This reduces the noise in our63

measurements and allows us to perform additional root-cause investigations of bias amplification that64

may pose ethical or technical challenges with real-world groups, such as determining the model’s65

ease of predicting the group in the image.66

Specifically, we create two groups in our image-classification problems by inverting some of the67

images in a dataset and not inverting others. Using image inversion to create groups has two main68

advantages over other synthetic methods like color changes or adding random noise: (1) it hardly69

introduces new visual features into the images that may alter the image-classification problem and (2)70

it is straightforward for image-recognition models to recognize whether or not an image is inverted.171

This allows us to tightly control the correlation between classes and groups without introducing72

causal relations between them. Figure 6 shows examples of inverted and non-inverted images.73

Controlling dataset bias. For all images corresponding to a single task in the input dataset, we74

randomly select positively labeled images with rate 1/2− ε and invert them, and we randomly invert75

negatively labeled images with rate 1/2 + ε (we choose ε ∈ [0, 1/2]). This leads to a bias of strength 2ε76

in the dataset: If ε = 0, image inversion (i.e., group membership) carries no information on whether77

the images has a positive or a negative label (i.e., class membership). By contrast, group membership78

uniquely defines class membership when ε = 1/2. Hence, ε = 0 corresponds to an unbiased dataset79

in which group membership does not carry information about class membership, ε = 1/2 corresponds80

the a fully biased setting in which group membership uniquely determines class membership, and81

values of ε ∈ (0, 1/2) correspond to partly biased datasets.82

1In preliminary experiments, we found that the test accuracy of a residual network trained to recognize image
inversion is 100% on Fashion MNIST images and 96% on CIFAR-100 images.
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Figure 1: Bias amplification, BiasAmpA→T , as a function of the degree of bias, ε, for (left) ResNet-
18 models trained on the Fashion MNIST dataset and (right) ResNet-110 models trained on the
CIFAR-100 dataset. Shaded regions indicate the 95% confidence intervals over 20 independent
experiments.

Bias amplification measure. We adopt the directional bias amplification measure BiasAmpA→T83

from [34]. This measure disambiguates different types of bias amplification and accounts for varying84

base rates of group membership.85

The value of BiasAmpA→T is 0 if the model predictions are exactly as biased as the labels in the86

dataset. If BiasAmpA→T is negative, the model predictions dampen the bias present in the dataset87

and a positive BiasAmpA→T value indicates that the model predictions amplify the bias in the dataset.88

Refer to Appendix A.1.2 for more details about the metric.89

2.2 Results90

We present the results of our experiments organized by research question (RQ). In accompanying91

materials, we also discuss the effect of training dataset size on bias amplification (Appendix A.3) and92

the relationship between overconfidence and bias amplification (Appendix A.4).93

RQ1: How does bias amplification vary as the bias in the data varies? We perform experiments94

in which we vary the amount of bias in the Fashion MNIST dataset by generating training and test95

sets with different levels of bias, i.e., by varying ε.96

The results from this experiment (left pane of Figure 1) show that when the training set is unbiased97

(ε = 0), no bias amplification occurs because no bias is present. No bias amplification occurs when98

the training set is fully biased (ε = 1/2), as it is impossible to amplify an already maximum bias.99

However, for intermediate ε values (i.e., in partially biased training sets), the trained models amplify100

the bias present in the training data. Bias amplification generally increases with the amount of bias in101

training data, until the bias in the data is nearly maximized (ε = 0.5).102

We repeat the same experiment on the CIFAR-100 dataset with ResNet-110 models. The results103

(in the right pane of Figure 1) show a similar pattern. A notable difference, however, is that bias104

amplification is negative when the CIFAR-100 dataset is maximally biased (ε = 1/2). We surmise105

that this happens because the group membership of CIFAR-100 images cannot always be recognized106

correctly by a model.To obtain zero bias amplification at ε = 1/2, a model needs to be a perfect107

predictor of group membership. Hence, when the model incorrectly recognizes the group membership108

of some of the images, a negative bias amplification (i.e., bias dampening) is obtained.109

RQ2: How does bias amplification vary as a function of model capacity? It is well-known that110

the capacity of machine-learning models influences their classification performance. To understand111

how model capacity impacts bias amplification, we perform experiments in which we measure bias112

amplification while adjusting the capacity of our models. We adjust model capacity in three ways: (1)113

via the depth of the model; (2) via the width of the model; and (3) via the regularization of the model.114

We focus on the CIFAR-100 dataset here because CIFAR-100 images are harder to classify than115

Fashion MNIST images: this makes it more likely that models with different capacities will produce116

substantially different predictions. We use the ResNet-110 model from our RQ1 experiments as our117
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Figure 2: Bias amplification (top) and test accuracy (bottom) on the CIFAR-100 dataset as a function
of three measures of model capacity. Each line represents a different amount of bias (ε) in the training
set. Shaded regions indicate the 95% confidence intervals across 20 models. Left: Results for varying
model depths. Middle: Results for varying model widths. Right: Results for varying weight decays.

base model. We experiment with depths that range between 8 and 110, widths ranging between 4 and118

64, and logarithmically spaced weight decay values between 10−5 to 10−2. As before, we vary the119

dataset bias, ε, between 0 and 1/2.The top row of Figure 2 shows the results of these experiments.120

Irrespective of whether we vary model depth, width, or weight decay, the results suggest that bias121

amplification follows a “v-shape”: it increases when model capacity increases beyond a certain level,122

but it also increases when model capacity is reduced below a certain level. We surmise there are123

different explanations for these two increases. When the capacity of a model is limited, it needs to124

rely on features that are easy to extract when making class predictions. When the dataset is biased125

(ε > 0), the model thus relies on image inversion, which is easy to recognize, in its class predictions.126

This explains why bias amplification is relatively large when the model has low capacity.2 In contrast,127

when the capacity of a model is large, bias amplification may increase because the model has the128

capacity to extract both features that indicate class membership and features that indicate group129

membership. This allows the model to use group membership features to increase the confidence of130

its predictions, which reduces the training loss.3131

The relation between model capacity and bias amplification resembles the well-known relation132

between model capacity and generalization error. Models with insufficient capacity have high133

generalization error because they cannot model the data distribution well, whereas high-capacity134

models may have high generalization error due to overfitting. Our results suggests that there exists a135

model-capacity “sweet spot” in which bias is minimally amplified, akin to model-capacity sweet spot136

that minimizes generalization error (for a given training set).137

To investigate whether the optimal model capacities for bias amplification and generalization error138

coincide, we plot the test accuracy of our models in the bottom row of Figure 2. Test accuracy139

increases monotonically with model depth and width, suggesting that the (overall) optimal model is140

larger than the range of models we experimented with. However, we do observe that a weight decay141

of 1.9 · 10−4 appears optimal for test accuracy. This weight-decay value is smaller than the value that142

minimizes bias amplification (5.2 · 10−4), which suggests that model designers may sometimes have143

to trade off bias amplification and accuracy when tuning hyperparameters.144

RQ3: How does bias amplification vary during model training? Thus far, we have only mea-145

sured bias amplification of models that were trained until convergence for 500 epochs. While it is146

2This explanation relies on the assumption that group membership features are relatively easy to extract and,
hence, that our observations may change had we not used image inversion to construct our synthetic groups. We
investigate how the difficulty of recognizing group membership influences bias amplification in RQ5.

3Indeed, we surmise the increase in bias amplification in very high-capacity models is related to the tendency
of such models to be overconfident [14]; we investigate this relation further in Appendix A.4.
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Figure 3: Left: Bias amplification and accuracy of ResNet-110 models during training on the CIFAR-
100 dataset with a bias of ε = 0.3. Right: Accuracy of the same models’ per class-group combination.
Shaded regions indicate the 95% confidence intervals across 50 models. Vertical dashed lines indicate
epochs at which the learning rate of the mini-batch SGD optimizer is decreased.

feasible to train models until convergence on small datasets, it may not be practical to do so on very147

large training sets. To evaluate thow much bias amplification of a model varies during training, we148

measure bias amplification during the training of ResNet-110 models on a version of the CIFAR-100149

dataset with bias ε = 0.3.150

The left pane of Figure 3 plots bias amplification and accuracy as a function of training epoch in this151

setting. The results in the figure show that bias amplification varies greatly during training; models152

amplify biases much more strongly in the early stages of training. Bias amplification gradually153

declines as training proceeds and the recognition accuracy of the model increases. However, the bias154

amplification increases again slightly in the final stages of training, in particular, after the learning155

rate is decreased to its smallest value. Notably, bias amplification appears to increase slightly every156

time the learning rate is decreased.157

To better understand what drives these changes in bias amplification during training, we disaggregate158

the model’s test accuracy into the four group-task combinations in the right pane of Figure 3. The159

model very quickly achieves high accuracy on examples for which the class label, {−1,+1}, matches160

the corresponding majority group, {inverted, not inverted}, per the bias in the dataset. By contrast,161

the accuracy on examples for which the class label does not match the majority group is very low in162

the initial stages of learning and increases much more gradually during training. We surmise this163

happens because group membership (image inversion) is easier to recognize than class membership164

(CIFAR-100 binary label). In the early stages of training, the model rapidly picks up on the easy-to-165

detect group membership signal as it provides the fastest way to reduce the model’s loss. In turn, this166

leads to bias amplification because the model makes predictions based on group membership signals167

whilst ignoring class membership signals. As training progresses, the group membership signal loses168

value because it is not a perfect predictor of class membership (note that ε = 0.3). Hence, the model169

starts to utilize more class membership signals as training progresses, which results in an increase in170

accuracy and a decrease in bias amplification.171

To test this hypothesis, we perform an experiment in which we swap the role of the group and the172

class: i.e., the class label now represents whether or not the image is inverted and the group label173

depends on the object depicted in the CIFAR-100 image. Indeed, we find that bias is dampened in the174

early stages of training as the model latches onto the easy-to-extract class membership signal first, but175

this largely disappears in the later stages of training as the model starts to utilize group membership176

signals for recognition as well. See Appendix A.2 for more.177

RQ4: How does bias amplification vary as a function of the relative difficulty of recognizing178

class membership versus recognizing group membership? Hitherto, we repeatedly observed179

that bias amplification may depend on the relative difficulty of recognizing class membership versus180

recognizing group membership: as the group signal is easier to extract in our setup, models amplify181

bias more in early stages of training and/or when they have lower capacity. We perform a more182

detailed study of this relationship.183
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Figure 4: Example of different amounts of overlay (η = 0.0, 0.2, 0.5, 0.8, 1.0) for an example
belonging to the “airplane" class and “bird" group. Only class information is visible when η = 0.0
(left); only group information is visible when η = 1.0 (right).

We alter our problem setup such that we can control the relative difficulty of class recognition and184

group recognition. We abandon our image-inversion setup and, instead, create datasets that contain a185

convex combination of two CIFAR-10 images: a “group image” and a “class image”. By changing the186

weight of the convex combination, we can make the group image or the class image more prominent187

in the resulting image, thereby altering the difficulty of recognizing the class and the group.188

We create the two groups, a and b, by randomly choosing two CIFAR-10 classes that we sample189

group images from. We also randomly choose two CIFAR-10 classes to form the binary classification190

task (i.e., one class is the positive class and the other the negative class). Next, we create an example191

by sampling a class image, Iclass, from one of the two classes and a corresponding group image,192

Igroup, from one of the two groups. We linearly mix these two images:193

I = ηIgroup + (1− η)Iclass, (1)

where η ∈ [0, 1] is a mixing parameter and the final example I is assigned the label of Iclass. Figure 4194

shows an example of the resulting examples for different η values. As before, we assign positive195

examples to group a with probability 0.5+ε or to group b with probability 0.5−ε. Negative examples196

are assigned group b with probability 0.5 + ε, and to group a with probability 0.5− ε.197

0.0 0.2 0.4 0.6 0.8 1.0
Overlay amount ( )

0.03
0.02
0.01
0.00
0.01
0.02
0.03
0.04

Bi
as

 a
m

pl
ifi

ca
ti

on

Dataset bias ( )
0.2
0.3
0.4

Figure 5: Bias amplification as a function of the
relative difficulty of predicting class and group
membership, η, for three different levels of bias, ε.
Recognizing class membership is easier for small
η values; recognizing group membership is easier
for large η values. Shaded regions indicate 95%
confidence intervals across 20 models.

When η = 0, this task reduces to classifying two198

classes from the standard CIFAR-10 images as199

the model cannot observe the group image at all.200

Conversely, directly recognizing class member-201

ship is impossible when η = 1 but recognizing202

group membership is easy in that setting. Hence,203

η provides a knob that facilitates varying the204

relative difficulty of recognizing group member-205

ship versus class membership. Additionally, this206

new combinatorial method provides insight into207

bias amplification when there are specific visual208

features associated with individual sub-groups.209

Figure 5 presents results of experiments in210

which we measure bias amplification as a func-211

tion of the trade-off parameter, η, for different212

degrees of bias, ε. It shows that bias is damp-213

ened when it is relatively difficult to recognize214

group membership (i.e., when η is low). When215

η increases past the point where group infor-216

mation is more visible than class information217

(η = 0.5), however, the bias amplification starts218

to progressively increase and becomes positive219

for larger η. This observation provides additional evidence for the hypothesis that bias amplification220

depends heavily on the relative difficulty of recognizing group membership versus class membership.221

3 Related work222

This study is one of many studies on fairness and bias amplification in machine-learning models.223
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Fairness. Prior work has introduced a large number of formulations of fairness, including equalized224

odds and equalized opportunity [15], fairness through awareness [10] or unawareness [13, 22],225

treatment equality [1], and demographic parity [10, 22]. Measures associated with these fairness226

formulations include differences in accuracy [1], differences in true or false positive rate [7, 15], and227

the average per-class accuracy across subgroups [5]. These measures differ from bias amplification228

measures in that they focus on correlations in the model predictions, whereas bias amplification229

focuses on differences between the correlations in the training data and those in the model predictions.230

In other words, bias-amplification measures discern between bias that is adopted from the training231

data and bias that is amplified by the model; fairness measures make no such distinction.232

Bias amplification. The study of bias amplification is of interest because it allows us to study how233

design choices in our models, training algorithms, etc. contribute to bias in machine-learning models234

beyond biases in the training data [17]. Prior work has measured bias amplification using generative235

adversarial networks [6, 18], by considering binary classifications without attributes [24], and by236

measuring correlations in model predictions [19, 38]. In our work, we use the BiasAmpA→T measure237

from [34], which addressed shortcomings in prior work [38], to measure bias amplification. Bias238

amplification has also been studied in the context of causal statistics [2, 26, 29, 30, 35], but that line239

of work has remained disparate from the study of bias amplification in machine learning. Despite240

the plethora of prior work on measuring bias amplification, little is known on when and how bias241

amplification arises in machine-learning models supporting vision tasks. Our study is among the first242

to shed some light on the context under which bias amplification occurs.243

4 Discussion244

The results of our experiments shed light on the conditions under which bias amplification can245

occur in machine-learning models for vision tasks. In particular, we find that bias amplification246

varies as a function of bias in the dataset, model capacity, training time, and the amount of training247

data. We also find that bias amplification depends on the relative difficulty of recognizing class248

membership and recognizing group membership. This creates a predicament as the Bayes error of249

those two recognition tasks are generally beyond the control of the model developer. Moreover, the250

model developer may not always be able to measure the difficulty of recognizing group membership251

empirically as doing so may involve developing a model that predicts sensitive attributes—something252

that model developers may want to avoid [20, 23, 31, 34].253

Although our study does not resolve this predicament, it may provide some useful best practices254

to mitigate bias amplification as much as possible during model development. Our result suggests255

that there is value in using cross-validation to carefully select a model architecture, regularizer, and256

training recipe that minimizes bias amplification. Model developers may reduce bias amplification257

using the same tuning process that they routinely use to minimize classification error. Our study258

provides intuitions for how key levers available to the model developer can affect bias amplification.259

However such tuning does require access to sensitive attribute values, viz. group-membership260

information, and our study does not provide a complete overview of how all relevant levers influence261

bias amplification. We intend to perform a more comprehensive investigation in future work.262

Limitations. While our study provides useful insights and suggests best practices, it also suffers263

from several key limitations. It is limited to binary classification tasks in the image-recognition264

domain and uses synthetic indicators of group membership. Further work is needed to understand265

how our findings apply to real world groups and biases, and how bias amplification manifests in266

different vision tasks and other modalities. We note that in recommendation tasks especially, bias267

amplification may arise in more complex ways because such systems generally have a human-in-the-268

loop influencing the behavior of the system [3].269

Another limitation of our study is that it only studies bias amplification, which requires tradeoffs270

between other fairness guarantees and performance measures. Eliminating undesired biases altogether271

and ensuring fair, optimal performance thus requires careful design of the entire pipeline from data272

collection to model deployment.273
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Figure 6: Left: Two examples of inversions performed on Fashion MNIST images. Right: Two
examples of inversions performed on CIFAR-100 images. For each pair, the original image is on the
left and the inverted image is on the right.

A Appendix360

A.1 Experimental set-up361

Here we discuss additional details in our experimental set-up.362

A.1.1 Model training.363

All our models are residual networks [16] that are trained to minimize the binary cross-entropy loss364

between the model prediction and the true (binary) class label. We follow the training procedures365

in [16] and train our models using mini-batch stochastic gradient descent (SGD) with a Nesterov366

momentum [28] of 0.9 for 500 epochs. The models are trained using weight decay (`2-regularization)367

with a decay parameter of 10−4. We warm up the training by setting the learning rate to 0.01 for one368

epoch as in [12]. Subsequently, the learning rate is set to 0.1 and decayed twice by a factor of 10 after369

250 and 375 epochs. We train on a single GPU using a batch size of 128.370

During training, we adopt the data augmentation procedure of [16] by: randomly cropping training371

images, flipping the resulting image horizontally with probability 1/2, and resizing the crops to size372

28 × 28 pixels (for Fashion MNIST) or 32 × 32 pixels (for CIFAR-10 and CIFAR-100). No data373

augmentation is used at test time. We normalize all images by subtracting a per-channel mean374

value and dividing by a per-channel standard deviation.When training models on CIFAR-10 and375

CIFAR-100, we follow [16] and pad the images with zeros.376

A.1.2 Directional bias amplification.377

We give a concise treatise of the measure here and refer the reader to [34] for further details.378

Suppose we have a set of classes, T , and a set of groups, A. In our setup, T = {−1,+1} and379

A = {inverted, not inverted}, where the binary labels t ∈ T were obtained by the random class380

assignment described above. The BiasAmpA→T measure defines bias as a difference in the prevalence381

of a class label t ∈ T between groups a ∈ A. For example, bias is present if inverted images are382

more likely to be positively labeled. Denote by Pr(Tt = 1) the probability that an example in the383

dataset has class label t, and by Pr(T̂t = 1) the probability that an example in the dataset is labeled384

as class t by the model. With these definitions, [34] defines bias amplification as the difference in385

bias between the labels in the dataset and the labels predicted by the model:386

BiasAmpA→T =
1

|A||T |
∑

a∈A,t∈T
yat∆at − (1− yat)∆at. (2)

∆at measures the difference between the bias in the dataset and in the model predictions:387

∆at = Pr(T̂t = 1|Aa = 1)− Pr(Tt = 1|Aa = 1). (3)

In the definition of BiasAmpA→T , yat alters the sign of the difference ∆at to correct for the fact that388

the bias can have two directions. Specifically, yat ∈ {0, 1} is a binary variable that indicates the389

direction of the bias:390

yat = [Pr(Tt = 1, Aa = 1) > Pr(Tt = 1)Pr(Aa = 1)] , (4)

where [. . .] are Iverson brackets. In all our experiments, we compute BiasAmpA→T by measuring391

both Pr(T̂t = 1) and Pr(Tt = 1) on the test set after training the model on the training set. The392

train and test datasets come from the same distribution.393
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Figure 7: Left: Bias amplification and accuracy of ResNet-110 models during training on the CIFAR-
100 dataset with a bias of ε = 0.3 in which the role of classes and groups is swapped compared to the
experiment in Figure 3: the class label indicates whether or not an image is inverted, and the group
label is determined based on the visual content of the image. Right: Accuracy of the models’ per
class-group combination. Shaded regions indicate the 95% confidence intervals across 50 models.
Vertical dashed lines indicate epochs at which the learning rate of the mini-batch SGD optimizer is
decreased.

A.2 Swapping group- and task-classes394

In RQ4, we hypothesize that the early-stage bias amplification is due to group membership being395

easier to recognize than class membership in our setup. To test this hypothesis, we perform an396

experiment in which we swap the role of the group and the class: i.e., the class label now represents397

whether or not the image is inverted and the group label depends on the object depicted in the CIFAR-398

100 image. We would expect the differences in accuracy between the majority / minority groups to399

disappear and bias amplification to actually be negative early on in training. As before, we measure400

bias amplification during training and plot the results in the left pane of Figure 7. The corresponding401

disaggregated accuracies are in the right pane of Figure 7. Indeed, we find that bias is dampened in402

the early stages of training as the model latches onto the easy-to-extract class membership signal403

first, but this largely disappears in the later stages of training as the model starts to utilize group404

membership signals for recognition as well.405

A.3 Effect of training size on bias amplification.406

It is well-established that the error of machine-learning models can be reduced by increasing the407

amount of training data (as it reduces the estimation error [4, 33]). This raises the obvious question408

if bias amplification varies with training set size as well. To answer this question, we perform409

experiments in which we train ResNet-110 models on stratified subsamples of the CIFAR-100410

training set. We vary the size of the subsamples to be a proportion, p ∈ [0.1, 1.0], of the original411

training set. We increase the number of training epochs by a factor of 1/p so that each model412

performs the same number of parameter updates during training. We do not alter any of the other413

hyperparameters.414

Figure 8 shows the results of our experiments. Whereas model accuracy increases monotonically415

with training set size, bias amplification varies in a more complex way. Beyond a certain training416

set size, bias amplification decreases with more training data. This is unsurprising: the additional417

training examples enable more accurate modeling of the data distribution, reducing bias amplification.418

However, bias amplification is also reduced when the training set becomes very small. We surmise419

this observation is due to overfitting: when trained on a small dataset, models tend to learn spurious420

correlations in that dataset rather than true statistical patterns such as the biases that exist in our421

training sets. The model cannot amplify bias if it is unable to capture that bias in the first place.422

A.4 Overconfidence and bias amplification423

Our observation that models with higher capacity amplify bias more is reminiscent of observations424

that higher-capacity models tend to be more miscalibrated [14]. If high-capacity models are not425

explicitly calibrated, they are often overconfident in the sense that the accuracy of predictions that426
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Figure 8: Bias amplification (left) and test accuracy (right) of ResNet-110 models on the CIFAR-100
dataset as a function of the proportion of the training set used for training the models. The number
of epochs for each model is scaled depending on the amount of training data used. Shaded regions
indicate the 95% confidence intervals across 20 models.
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Figure 9: Expected calibration error (ECE) of ResNet-110 models on the CIFAR-100 dataset as a
function of dataset bias, ε. Shaded regions indicate the 95% confidence intervals across 20 models.

they make with, say, 90% confidence is lower than 90%. We perform experiments to investigate if427

bias amplification is correlated to such model overconfidence.428

To do so, we measure the overconfidence of our models in terms of the expected calibration error429

(ECE) [27]. The ECE measures the expected value of the (absolute) difference between the model430

accuracy and the model confidence:431

ECE(P̂ ) = E
[
|Pr(Ŷ = y|Ĉ = c)− c|

]
, (5)

where Ŷ and Ĉ are random variables indicating the class label of an example and the model-432

prediction confidence for that same example, respectively, and the expectation is over all possible433

confidence values c ∈ [0, 1]. Because we only have access to a finite number of samples of the434

distribution p(Ĉ), we approximate the expected value by binning p(Ĉ) into 15 values and averaging435

those values, weighted by the number of examples per bin. A higher ECE value indicates a larger436

discrepancy between the prediction confidence values and the corresponding accuracies, i.e., a higher437

degree of model overconfidence.438

Figure 9 shows ECE as a function of the bias in the dataset, ε, for ResNet-110 models on CIFAR-100.439

We observe that model overconfidence decreases with bias in our experiment, because the task440

becomes easier as bias increases: if a task is very easy, a model is generally less overconfident as it441

correctly predicts nearly every example.442

Next, we study the relation between overconfidence and bias amplification by varying the capacity of443

the model. Figure 10 shows this relation for three levels of dataset bias, ε, and for three model-capacity444

measures: depth, width, and weight decay. Darker points in the figure correspond to higher-capacity445

models. The results show that bias amplification initially decreases as model overconfidence increases446
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Figure 10: Bias amplification and expected calibration error (ECE) of ResNet models of varying
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three values of the dataset bias, ε. Results are averaged over 20 runs.
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Figure 11: Bias amplification and expected calibration error (ECE) of ResNet models of varying
training dataset size on the CIFAR-100 dataset, for three values of the dataset bias, ε. Results are
averaged over 20 runs.

(for low-capacity models), but that bias amplification and overconfidence both increase for higher-447

capacity models.448

Finally, Figure 11 studies the relationship between bias amplification and overconfidence as the449

size of the training set changes. Darker points in the figure correspond to smaller training sets. As450

expected, reducing the number of training examples increases the model’s overconfidence (ECE).451

Bias amplification, however, initially increases as the training set size decreases but decreases again452

when the training set becomes very small.453
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