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ABSTRACT

Drug discovery is a complex and resource-intensive process requiring the design
of molecules that possess specific chemical and biological properties, such as high
binding affinity and drug-likeness. Fragment-based drug discovery (FBDD) has
gained prominence as a strategy for efficiently identifying lead compounds by de-
constructing molecules into smaller fragments. However, existing approaches face
challenges in fully leveraging the relationships between molecules and their con-
stituent fragments, especially in optimizing molecular properties. In this paper,
we introduce Molecule-Fragment Representation Alignment space for RL-based
Generation (M-FRAG), a novel framework that harmonizes molecule and frag-
ment embeddings in a shared, property-driven space. By aligning fragments with
their molecular context, M-FRAG ensures that fragment selection is optimized
both for chemical feasibility and the desired molecular properties. Using rein-
forcement learning, M-FRAG generates chemically realistic molecules optimized
for target properties while also providing interpretability for individual fragments
during the molecule generation process. Experimental results demonstrate that
M-FRAG outperforms existing methods in terms of optimization, diversity, and
chemical validity, positioning it as a powerful tool for the efficient and transparent
generation of drug-like molecules.

1 INTRODUCTION

Drug discovery is a complex and resource-intensive process that involves designing molecules with
desirable chemical and biological properties, such as high binding affinity, drug-likeness, and fa-
vorable pharmacokinetics. Given the vastness of chemical space, exhaustively exploring all poten-
tial candidates is infeasible, leading to increased interest in computational approaches for efficient
molecular design (Jin et al., 2018; Zhavoronkov et al., 2019; De Cao & Kipf, 2018).

Among computational methods, reinforcement learning (RL) (Kaelbling et al., 1996; Wiering &
Van Otterlo, 2012; Haarnoja et al., 2018) has emerged as a promising approach for automated molec-
ular generation guided by property optimization (Olivecrona et al., 2017; Zhou et al., 2019; Jeon &
Kim, 2020; Goel et al., 2021). While these approaches enhance molecular optimization, they of-
ten struggle to maintain chemical realism, leading to the generation of impractical or synthetically
infeasible molecules.

Fragments, as chemically meaningful substructures, offer a structured way to generate valid
molecules while preserving key chemical and biological characteristics. Thus, Fragment-based
Drug Discovery (FBDD) has emerged as a powerful strategy to ensure chemical realism by utilizing
fragments that inherently contain chemical structures, thereby simplifying the molecular generation
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Figure 1: Overview of M-FRAG. A. Labeling and molecule decomposition from ZINC250k dataset
(Irwin et al., 2012). B. Harmonized aligned embedding space construction. C. Molecule generation
via fragment-based reinforcement learning and evolutionary search.

process (Li, 2020; Jin et al., 2018; 2020a;b; Yang et al., 2021; Xie et al., 2021; Maziarz et al., 2021;
Kong et al., 2022; Geng et al., 2023; Lee et al., 2023b). However, these models treat fragments
independently, without a property-driven molecular space or understanding of their global context.

Understanding the relationship between fragments and molecular properties is crucial for optimiz-
ing molecular design (Jin et al., 2020a; Maziarz et al., 2021; Coley, 2021), yet challenging due to
the complex interplay between them. Details of the relationship between fragments and molecular
properties are described in Appendix A.

To address this challenge, we propose M-FRAG, which harmonizes molecule and fragment em-
beddings within a unified, property-driven space. Using metric learning, M-FRAG aligns fragments
with molecule embeddings, ensuring that fragment selection optimizes both chemical feasibility and
specific property constraints. Experimental results confirm that M-FRAG significantly outperforms
state-of-the-art methods in property optimization, demonstrating its effectiveness in drug discovery
tasks. By improving both molecular generation quality and interpretability, M-FRAG provides a
novel framework for designing high-quality molecules in a property-driven space.

2 METHOD

In this section, we introduce the details of M-FRAG for fragment-based molecule generation. As
shown in Figure 1, M-FRAG follows two steps: (1) constructing a harmonized embedding space for
molecules and fragments, where (2) we generate molecules via a fragment-based RL framework.

2.1 HARMONIZED EMBEDDING SPACE CONSTRUCTION

To effectively integrate molecule and fragment representations, our method constructs a harmonized
embedding space that captures their intrinsic relationships. By aligning these representations, we
aim to generate a structured space that accurately reflects molecular properties. First, we describe the
molecule property predictor for property-driven alignment in Sec. 2.1.1. Next, we outline the local
and global fragment-driven alignment in Sec. 2.1.2. Finally, we introduce the joint optimization
strategy for harmonizing the embedding space in Sec. 2.1.3.

2.1.1 MOLECULE PROPERTY PREDICTOR FOR PROPERTY-DRIVEN ALIGNMENT

To construct a harmonized embedding space where molecules and fragments are meaningfully inte-
grated, it is crucial to ensure that molecular properties are well-represented. However, identifying
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how individual fragments contribute to the overall molecular property remains challenging. Since
fragments can appear in various molecular contexts, their isolated impact on molecular properties
is not always straightforward. To guide the alignment process, we incorporate a molecular property
predictor, which provides a reference by estimating the whole molecule’s property.

Given a dataset D = {(Gi, Yi)}Ni=1, where each molecular graph Gi is associated with a property
value Yi ∈ R, we aim to align molecules and fragments within a shared space. Each molecular
graph Gi = (Xi, Vi, Ei) consists of a set of atoms (nodes) Vi, a set of chemical bonds (edges) Ei,
and a node feature matrix Xi ∈ R|Vi|×d that encodes atomic properties. Here, |Vi| represents the
number of atoms in Gi, and d denotes the feature dimension.

To effectively capture molecular properties while maintaining computational efficiency, we employ
a lightweight predictor gθ that predicts the molecular property Y from the molecular graph G. The
predictor consists of a Message Passing Neural Network (MPNN) (Gilmer et al., 2017) as an encoder
for extracting graph representations and a Multi-Layer Perceptron (MLP) for property prediction.
First, the MPNN processes the molecular graph Gi = (Xi, Vi, Ei) to compute node embeddings:
[z1, . . . , zl, . . . , z|Vi|]

⊤ = MPNNθ(Xi, Vi, Ei), where zl ∈ Rdh represents the hidden embedding
of node vl, and dh is the dimension of the node embedding vl.

Next, a readout function greadout aggregates the node embeddings to obtain a molecule embedding
embmol

i : embmol
i = greadout([z1, . . . , zl, . . . , z|Vi|]

⊤) ∈ Rdh , where greadout is a mean pooling operator,
and embmol

i ∈ Rdh denotes embedding of the molecule Gi.

The molecular embedding embmol
i is then passed through MLPθ to predict the molecular prop-

erty Ŷi ∈ R: Ŷi = gθ(Gi) = MLPθ(embmol
i ). The predictor gθ is trained by minimizing the

mean squared error (MSE) loss between the predicted and actual molecular property Yi: Lproperty =

1
N

∑N
i=1

(
Yi − Ŷi

)2

.

2.1.2 LOCAL AND GLOBAL FRAGMENT-DRIVEN ALIGNMENT

To effectively align molecules and fragments, it is essential to consider both local and global per-
spectives when structuring the embedding space (Kaya & Bilge, 2019; Chen et al., 2020; Wang et al.,
2022; Khosla et al., 2020). The local perspective aims to position fragments close to their parent
molecule, preserving structural and chemical coherence. Meanwhile, the global perspective arranges
fragment representations according to molecular property similarities, ensuring that fragments from
molecules with similar properties are positioned near each other, while those from molecules with
distinct properties remain farther apart. Given a molecule Gi = (Xi, Vi, Ei), we decompose it into
a set of m fragments, denoted as Fi = {Fj}mj=1, using BRICS (Degen et al., 2008). Each fragment
Fj = (Xj , Vj , Ej) consists of a subset of the molecular nodes and edges, i.e., Vj ⊂ Vi and Ej ⊂ Ei.

To obtain fragment representations embj ∈ Rdh , we apply the same MPNN encoder used in gθ:
embj = greadout(MPNNθ(Fj)), j = 1, . . . ,m. The pooled fragment representation embfrag

i for
molecule Gi is then computed as: embfrag

i = 1
m

∑m
j=1 embj , where embfrag

i ∈ Rdh .

Local Alignment Since both embmol
i and embfrag

i should encode similar molecular properties, we
enforce their consistency using a local alignment loss Llocal: Llocal =

∑N
i=1 ∥embmol

i − embfrag
i ∥22.

This objective ensures that the pooled fragment representation remains aligned with the molecular
representation, preserving the underlying molecular property distribution.

Global Alignment Fragments should be positioned in the embedding space based on molecular
property similarities. Each molecule Gi is associated with a ground-truth property value Yi, and
its corresponding pooled fragment representation embfrag

i inherits a similar property from its parent
molecule.

To enforce global contrastive alignment, we define positive and negative fragment pairs based
on a molecular property threshold δ. Let Ga and Gb be two molecules. A pair is assigned as:
Positive pair: P(a) = {embb | |Ya − Yb| < δ}, Negative pair: N (a) = {embb | |Ya − Yb| ≥ δ}.
where embb refers to either embmol

b or embmol
b .
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Table 1: Novel hit ratio (%) results. The results are the means and the standard deviations of 3
runs. The results for the baselines except for RationaleRL and PS-VAE are taken from Lee et al.
(2023b). The best results are highlighted in bold.

Target protein
parp1 fa7 5ht1b braf jak2

REINVENT (Olivecrona et al., 2017) 0.480 (± 0.344) 0.213 (± 0.081) 2.453 (± 0.561) 0.127 (± 0.088) 0.613 (± 0.167)
Graph GA (Jensen, 2019) 4.811 (± 1.661) 0.422 (± 0.193) 7.011 (± 2.732) 3.767 (± 1.498) 5.311 (± 1.667)
MORLD (Jeon & Kim, 2020) 0.047 (± 0.050) 0.007 (± 0.013) 0.880 (± 0.735) 0.047 (± 0.040) 0.227 (± 0.118)
HierVAE (Jin et al., 2020a) 0.553 (± 0.214) 0.007 (± 0.013) 0.507 (± 0.278) 0.207 (± 0.220) 0.227 (± 0.127)
RationaleRL (Jin et al., 2020b) 4.267 (± 0.450) 0.900 (± 0.098) 2.967 (± 0.307) 0.000 (± 0.000) 2.967 (± 0.196)
FREED (Yang et al., 2021) 4.627 (± 0.727) 1.332 (± 0.113) 16.767 (± 0.897) 2.940 (± 0.359) 5.800 (± 0.295)
PS-VAE (Kong et al., 2022) 1.644 (± 0.389) 0.478 (± 0.140) 12.622 (± 1.437) 0.367 (± 0.047) 4.178 (± 0.933)
MOOD (Lee et al., 2023a) 7.017 (± 0.428) 0.733 (± 0.141) 18.673 (± 0.423) 5.240 (± 0.285) 9.200 (± 0.524)
GEAM (Lee et al., 2023b) 40.567 (± 0.827) 20.711 (± 1.873) 38.489 (± 0.350) 27.900 (± 1.822) 42.950 (± 1.117)
M-FRAG (ours) 40.881 (± 0.115) 26.511 (± 1.433) 43.243 (± 0.294) 32.104 (± 3.255) 46.542 (± 1.320)

Using these positive and negative pairs, we apply supervised contrastive learning (Khosla et al.,
2020) to both representations. The contrastive loss function Lglobal is defined as: Lglobal =∑N

a=1 − log

∑
embp∈P(a) exp(sim(emba,embp)/τ)∑
embn∈N(a) exp(sim(emba,embn)/τ)

. where emba refers to either embmol
a or embmol

a . τ

is a temperature parameter. embp and embn represent positive and negative embeddings from P(a)
and N (a), respectively.

Final Alignment Loss The final alignment loss integrates both local and global alignment con-
straints, formulated as Lalignment = λlocalLlocal + λglobalLglobal, where λlocal and λglobal are hyperpa-
rameters controlling the relative importance of local and global alignment.

Through this dual-level optimization, fragments are embedded in a structured manner within the
molecular space, ensuring that they reflect both their intrinsic molecular relationships and broader
chemical property distributions.

2.1.3 JOINT OPTIMIZATION FOR HARMONIZING THE SPACE

Through joint optimization, we align fragments within a molecule’s property-driven embedding
space by accounting for both local and global interactions with the molecule. The final loss func-
tion integrates alignment constraints with property predictor, formulated as L = λpropertyLproperty +
λalignmentLalignment where λproperty and λalignment are hyperparameters that control the relative impor-
tance of property predictor and alignment.

2.2 MOLECULE GENERATION VIA FRAGMENT-BASED REINFORCEMENT LEARNING AND
EVOLUTIONARY SEARCH

To enable optimized molecule generation, we integrate a reinforcement learning (RL) framework for
fragment-based molecule assembly with an evolutionary strategy for dynamic vocabulary expansion.
This approach ensures that molecules are constructed in a structured and property-aligned manner
while also allowing for continuous adaptation to improve diversity and molecular properties. A
key component of this framework is the scoring function, which utilizes the harmonized embedding
space trained via gθ to evaluate fragment relevance with respect to molecular properties. Details
of molecule generation process via fragment-based RL and evolutionary search are described in
Appendix C.

3 EXPERIMENTS

To evaluate the effectiveness of our proposed method, M-FRAG, we conduct a series of experiments
on multi-objective molecule optimization tasks that closely resemble real-world drug discovery ap-
plications. The primary objective is to generate novel molecules that optimize multiple molecule
properties while maintaining diversity and synthesizability.

4



Published as a workshop paper at MLGenX 2025

3.1 OPTIMIZATION OF BINDING AFFINITY UNDER QED, SA, AND NOVELTY CONSTRAINTS

Datasets & Evaluation Metrics We evaluate M-FRAG on five docking score (DS) (Trott & Olson,
2010; Alhossary et al., 2015) optimization tasks (parp1, fa7, 5ht1b, braf, jak2) while ensuring that
generated molecules satisfy drug-likeness (QED) (Bickerton et al., 2012), synthetic accessibility
(SA) (Ertl & Schuffenhauer, 2009), and novelty constraints. The evaluation considers multiple
criteria, including the Novel Hit Ratio, Novel Top-5% DS, and Novelty. Detailed metric definitions,
computation methods and datasets are provided in the Appendix D.1.

Baselines. To validate the effectiveness of M-FRAG, we compare its performance against sev-
eral state-of-the-art molecule generation models: REINVENT (Olivecrona et al., 2017), GraphGA
(Jensen, 2019), MORLD (Jeon & Kim, 2020), HierVAE (Jin et al., 2020a), RationaleRL (Jin et al.,
2020b), FREED (Yang et al., 2021), PS-VAE (Kong et al., 2022), MOOD (Lee et al., 2023a), and
GEAM (Lee et al., 2023b). Details of baselines are described in Appendix D.2.

Results. Experimental results show that M-FRAG consistently outperforms all baselines across
multiple evaluation criteria. As shown in Table 1, M-FRAG achieves a significantly higher novel hit
ratio, demonstrating its ability to balance molecular optimization with novelty constraints. Addition-
ally, Table 3 confirms that M-FRAG maintains strong docking score performance, suggesting that
the molecule-fragment alignment space effectively guides molecular design while enabling broader
chemical space exploration.

Unlike conventional methods that often face a trade-off between optimization and diversity (Gao
et al., 2022), M-FRAG effectively mitigates this issue through its structured fragment alignment
mechanism. Also, our method efficiently generates acceptable molecules that meet the chemical
realism and pharmacochemical suitability required in drug design, while also demonstrating ex-
cellent performance in terms of Validity and Uniqueness. Details of baselines are described in
Appendix D.3.

3.2 ABLATION STUDY ON ALIGNMENT AND MODIFICATION

To analyze the contribution of each key component in M-FRAG, we conduct an ablation study focus-
ing on the role of molecule-fragment alignment in the embedding space and the impact of molecule
modification through genetic algorithms in Figure 3. Details of the experiment are described in
Appendix D.4

3.3 CASE STUDY: PROPERTY-DRIVEN MOLECULE GENERATION IN THE ALIGNED
EMBEDDING SPACE

To further illustrate the effectiveness of M-FRAG, we analyze a specific molecule generation process
within the aligned embedding space about jak2 target protein. As shown in Figure 4, the model
selects fragments in a structured manner to progressively refine molecule properties, leading to an
optimized final molecule. Details of the experiment are described in Appendix D.5

4 CONCLUSION

We have introduced M-FRAG, a novel framework for fragment-based molecule generation, guided
by reinforcement learning that utilizes a hamonized embedding space for molecules and fragments.
By aligning molecule and fragment embeddings within a property-driven space, M-FRAG improves
the exploration of fragment importance and enables the generation of molecules that are both chem-
ically realistic and optimized for desired properties. Our approach outperforms existing methods in
terms of optimization, diversity, and chemical validity, and it provides a more interpretable path for
understanding how fragment selection contributes to molecular property optimization.

In future work, we aim to extend M-FRAG to handle larger, more complex molecular datasets and
incorporate additional property constraints. This will further enhance the applicability of our method
to real-world drug discovery tasks, offering a more efficient and interpretable approach to generating
novel drug candidates.
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A FRAGMENT-MOLECULE RELATIONSHIP

Docking score: -6.5 Docking score: -11.1Docking score: -9.0

Docking score: -9.9Docking score: -6.5

A B

Figure 2: Fragment-Molecule Relationship
A. A single molecule has a specific prop-
erty, such as a docking score, but consists of
multiple fragments, making it unclear which
fragment contributes to it. B. A fragment
appears in multiple molecules with differ-
ent scores, complicating the attribution of
molecular properties to individual fragments.

A molecule consists of multiple fragments, making
it unclear which one influences a specific property
in Figure 2A. At the same time, a single fragment
can even appear in multiple molecules in Figure
2B. These many-to-many relationships complicate
the attribution of molecular properties to individual
fragments, as their collective influence remains dif-
ficult to model effectively.

B RELATED WORK

B.1 REINFORCEMENT
LEARNING IN MOLECULAR GENERATION

Reinforcement learning (RL) has been increasingly
applied to molecular generation, as it offers an ef-
fective way to explore the vast chemical space. In
RL-based models, molecules are generated by opti-
mizing a reward function that evaluates the chemi-
cal properties of the molecule. For instance, REIN-
VENT (Olivecrona et al., 2017) and MORLD (Jeon
& Kim, 2020) use RL to generate molecules optimized for certain properties. However, these meth-
ods often suffer from the challenge of reward sparsity, particularly when multiple property con-
straints are considered.

B.2 FRAGMENT-BASED DRUG DISCOVERY

Fragment-based drug discovery (FBDD) has been widely adopted in molecular generative models
to explore chemical space efficiently. RationaleRL (Jin et al., 2020b) proposes a method where
molecules are generated by assembling substructures, that are identified as key contributors to de-
sired properties. This approach allows for better interpretability and ensures that the generated
molecules are more likely to satisfy the target properties. Our method builds on the strengths of
RL and rationale-based generation by incorporating a unified alignment of molecule and fragment
embeddings, improving both the diversity and quality of the generated molecules while maintaining
property optimization. Many FBDD methods, such as PS-VAE (Kong et al., 2022) and FREED
(Yang et al., 2021), focus on the assembly of fragments to generate valid molecules. These mod-
els typically extract fragments from predefined libraries or via heuristic rules, without considering
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the target chemical properties during the extraction process. GEAM (Lee et al., 2023b) introduced
a more dynamic approach by updating fragment vocabularies during generation, but the lack of
alignment between molecules and fragments makes it difficult to precisely capture and interpret
the contribution of each fragment to the overall molecule properties. Unlike these methods, our
approach introduces a novel method for harmonizing molecule and fragment embeddings within a
shared space, allowing for more efficient and interpretable molecule generation.

C MOLECULE GENERATION PROCESS

C.1 FRAGMENT ASSEMBLY VIA SOFT ACTOR-CRITIC (SAC)

We model fragment assembly as a reinforcement learning problem, where an agent iteratively con-
structs a molecule graph by selecting and attaching fragments. The Soft Actor-Critic (SAC) al-
gorithm (Haarnoja et al., 2018) is employed to optimize the policy, balancing exploration and ex-
ploitation through entropy regularization. The RL agent models molecule generation as a Markov
decision process (MDP), At each time step t, the agent observes the molecule state st and selects an
action at, which includes: (1) Choosing an attachment site on the existing molecule structure. (2)
Selecting a fragment F from the vocabulary VOCAB. (3) Determining the attachment site on the
chosen fragment.

The molecule state st is encoded using a graph convolutional network (GCN) (Kipf & Welling,
2016). Ht = GCN(Gt) represents node embeddings of the partially constructed molecule Gt. The
overall molecule embedding is obtained via sum pooling hGt =

∑
Ht. he policy network πϕ

consists of three sub-networks responsible for different fragment selection steps:

pπ1(·|st) = πϕ,1(Z1), Z1 = f1(hGt , Hatt), (1)

pπ2
(·|a1, st) = πϕ,2(Z2), Z2 = f2(Z1,a1

,ECFP(VOCAB)), (2)

pπ3(·|a1:2, st) = πϕ,3(Z3), Z3 = f3(
∑

GCN(Fa2), Hatt,Fa2
), (3)

where Hatt represents node embeddings of attachment sites, and f1, f2, f3 employ multiplicative
interactions for efficient feature fusion (Jayakumar et al., 2020).

The SAC objective function is defined as:

J(π) =
∑
t

E(st,at)∼ρπ
[r(st, at) + αH(π(·|st))] , (4)

where r(st, at) is the reward function fevaluate evaluating molecule structural and property alignment,
and H(π(·|st)) is an entropy regularization term with a temperature parameter α. The reward func-
tion is designed to ensure optimization of target properties (Trott & Olson, 2010; Alhossary et al.,
2015), drug-likeness (QED) (Bickerton et al., 2012), synthetic accessibility (SA) (Ertl & Schuffen-
hauer, 2009).

C.2 MOLECULE MODIFICATION AND FRAGMENT EXPLORATION

While fragment assembly facilitates molecule construction from a predefined vocabulary, relying
solely on a fixed set of fragments may limit structural diversity. To address this, we integrate an
evolutionary strategy that dynamically modifies and expands the vocabulary.

A genetic algorithm (GA) (Jensen, 2019) is utilized to introduce novel fragments through muta-
tion and crossover operations. The GA iteratively selects parent molecules from the generated set
and produces offspring molecules containing new fragments. The process follows: (1) Selection:
Choose parent molecules based on molecule property scores. (2) Crossover: Combine molecule
fragments from two parents. (3) Mutation: Introduce structural variations in selected fragments.

Each newly generated fragment is assigned a score based on its alignment with molecule properties.
gθ represents the fragment score.

To ensure the fragment vocabulary remains optimized, we iteratively update VOCAB by adding
high-value fragments while filtering out underperforming ones:

VOCABt+1 = VOCABt ∪ {F | gθ(F ) > δ}, (5)

9



Published as a workshop paper at MLGenX 2025

where δ define the thresholds for inclusion and removal.

By integrating reinforcement learning for structured fragment assembly with an evolutionary ap-
proach for vocabulary expansion, our framework enables property-driven molecule generation that
continuously adapts to optimize desired properties.

D EXPERIMENTAL DETAILS

D.1 DATASETS & EVALUATION METRICS

ZINC250k, a widely used molecular dataset derived from the ZINC database, contains commer-
cially available drug-like molecules. ZINC250k consists of 249,455 molecular graphs, where each
molecule is represented as a graph with atoms as nodes and bonds as edges. The dataset statistics
are summarized in Table 2.

Table 2: Statistics of the ZINC250k dataset.
Statistic Value
Number of molecules 249455
Average number of nodes (atoms) 23.15
Average number of edges (bonds) 24.90
Average number of fragments per molecule 5.35

The dataset provides a diverse set of molecules, making it well-suited for evaluating fragment-based
molecular generation and optimization methods.

To comprehensively assess the performance of M-FRAG, we employ the following evaluation met-
rics:

Novel Hit Ratio (%) quantifies the percentage of generated molecules that satisfy all optimization
constraints, including docking score (DS), drug-likeness (QED), and synthetic accessibility (SA),
while maintaining novelty. Formally, it is defined as:

Novel Hit Ratio =
Nvalid

Ntotal
× 100, (6)

where Nvalid represents the number of molecules that meet all constraints, and Ntotal is the total
number of generated molecules.

Novel Top-5% DS (kcal/mol) measures the mean docking score of the top 5% of unique, novel
molecules. Given a set of generated molecules G, we first select those classified as novel and then
compute:

Top-5% DS =
1

|G5%|
∑

g∈G5%

DS(g), (7)

where G5% denotes the top 5% molecules with the lowest (most negative) docking scores.

Novelty (%) represents the fraction of generated molecules that are structurally distinct from the
training set. Novelty is determined based on the maximum Tanimoto similarity Smax(g) of each
generated molecule g to any molecule in the training dataset:

Novelty =
Nnovel

Ntotal
× 100, (8)

where Nnovel is the number of generated molecules satisfying Smax(g) < τ , and τ = 0.4 is used as
the novelty threshold following prior studies (Irwin et al., 2012).

These metrics ensure a comprehensive evaluation of M-FRAG’s ability to generate molecules that
not only optimize binding affinity but also maintain drug-like properties and structural diversity.

D.2 BASELINE MODELS

To provide a fair comparison, we evaluate M-FRAG against several state-of-the-art molecule gener-
ation models. Below, we briefly describe each baseline model:
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REINVENT (Olivecrona et al., 2017) is a reinforcement learning (RL) model that generates
molecules in SMILES format using a recurrent neural network (RNN) trained via policy gradient
methods.

Graph GA (Jensen, 2019) is a genetic algorithm-based approach that applies predefined crossover
and mutation rules to optimize molecular structures directly in graph form.

MORLD (Jeon & Kim, 2020) utilizes deep Q-learning to optimize molecular properties through
reinforcement learning, ensuring that generated molecules satisfy predefined objectives.

HierVAE (Jin et al., 2020a) is a hierarchical variational autoencoder (VAE) that learns a structured
latent space for molecule generation, capturing both molecular topology and fine-grained atomic
details.

RationaleRL (Jin et al., 2020b) applies reinforcement learning to extract key molecular substruc-
tures (rationales) and extend them to generate novel drug-like molecules.

FREED (Yang et al., 2021) is a fragment-based RL model that constructs molecules by iteratively
assembling fragments selected from a predefined vocabulary.

PS-VAE (Kong et al., 2022) integrates principal subgraph mining with variational autoencoding to
improve the structural diversity and chemical validity of generated molecules.

MOOD (Lee et al., 2023a) employs a diffusion-based generative model to generate molecules with
enhanced novelty while maintaining property constraints.

GEAM (Lee et al., 2023b) combines reinforcement learning and genetic algorithms to iteratively
refine molecular structures and update the fragment vocabulary.

These models serve as comparative baselines to evaluate the efficacy of M-FRAG in generating
high-quality molecules while optimizing molecular properties.

D.3 ADDITIONAL EXPERIMENTS ABOUT A TRADE-OFF BETWEEN OPTIMIZATION AND
DIVERSITY

The alignment mechanism enables M-FRAG to conduct extensive exploration without deviating
from molecule property constraints, ultimately leading to the discovery of a greater number of hit
molecules. The impact of exploration is particularly evident in Table 4, where M-FRAG demon-
strates a substantial improvement in molecule diversity.

By ensuring that fragments and molecules are meaningfully positioned within the embedding space,
M-FRAG not only enhances molecule diversity but also maintains optimization performance, allow-
ing for the generation of structurally diverse yet highly optimized molecules. These results validate
M-FRAG’s ability to achieve a more comprehensive exploration of chemical space while maintain-
ing property-driven molecule design.

Compared to GEAM (Lee et al., 2023b), which integrates reinforcement learning and genetic al-
gorithms, M-FRAG benefits from its embedding space alignment, where molecule fragments are
positioned according to their chemical relevance and contribution to molecule properties. This ap-
proach allows the model to maintain high docking scores while simultaneously enhancing QED and
synthetic accessibility. Additionally, unlike methods such as MORLD, which achieves high nov-
elty scores at the expense of optimization performance, M-FRAG demonstrates strong performance
across all key metrics including novelty. By effectively aligning molecule and fragment represen-
tations, M-FRAG offers a robust framework for generating novel, drug-like molecules with high
optimization potential, making it a promising approach for real-world drug discovery applications.

We also report three widely used pharmacochemical filter scores – Glaxo (Lane et al., 2006),
SureChEMBL (Papadatos et al., 2016), PAINS (Baell & Holloway, 2010) on Table 5 with the target
fa7 protein. These scores are defined as the ratio of accepted, valid molecules to total generated
molecules, with the filters rejecting compounds containing functional groups deemed inappropriate
for drugs (i.e., toxic or reactive groups). The higher the quality scores, the higher the likelihood the
molecule will be an acceptable drug. We also report the ratio of valid molecules to total generated
molecules (validity) and the ratio of unique molecules among valid generated molecules (unique-
ness).

11



Published as a workshop paper at MLGenX 2025

Table 3: Novel top 5% docking score (kcal/mol) results. The results are the means and the standard
deviations of 3 runs. The results for the baselines except for RationaleRL and PS-VAE are taken
from Lee et al. (2023b). The best results are highlighted in bold.

Target protein
parp1 fa7 5ht1b braf jak2

REINVENT (Olivecrona et al., 2017) -8.702 (± 0.523) -7.205 (± 0.264) -8.770 (± 0.316) -8.392 (± 0.400) -8.165 (± 0.277)
Graph GA (Jensen, 2019) -10.949 (± 0.532) -7.365 (± 0.326) -10.422 (± 0.670) -10.789 (± 0.341) -10.167 (± 0.576)
MORLD (Jeon & Kim, 2020) -7.532 (± 0.260) -6.263 (± 0.165) -7.869 (± 0.650) -8.040 (± 0.337) -7.816 (± 0.133)
HierVAE (Jin et al., 2020a) -9.487 (± 0.278) -6.812 (± 0.274) -8.081 (± 0.252) -8.978 (± 0.525) -8.285 (± 0.370)
RationaleRL (Jin et al., 2020b) -10.663 (± 0.086) -8.129 (± 0.048) -9.005 (± 0.155) No hit found -9.398 (± 0.076)
FREED (Yang et al., 2021) -10.579 (± 0.104) -8.378 (± 0.044) -10.714 (± 0.183) -10.561 (± 0.080) -9.735 (± 0.022)
PS-VAE (Kong et al., 2022) -9.978 (± 0.091) -8.028 (± 0.050) -9.887 (± 0.115) -9.637 (± 0.049) -9.464 (± 0.129)
MOOD (Lee et al., 2023a) -10.865 (± 0.113) -8.160 (± 0.071) -11.145 (± 0.042) -11.063 (± 0.034) -10.147 (± 0.060)
GEAM (Lee et al., 2023b) -12.891 (± 0.158) -9.890 (± 0.116) -12.374 (± 0.036) -12.342 (± 0.095) -11.816 (± 0.067)
M-FRAG (ours) -12.688 (± 0.115) -10.093 (± 1.433) -12.985 (± 0.294) -12.412 (± 3.255) -12.016 (± 1.320)

Table 4: Novelty (%) results. The results are the means and the standard deviations of 3 runs. The
results for the baselines except for RationaleRL and PS-VAE are taken from Lee et al. (2023b). The
best results are highlighted in bold.

Target protein
parp1 fa7 5ht1b braf jak2

REINVENT (Olivecrona et al., 2017) 9.894 (± 2.178) 10.731 (± 1.516) 11.605 (± 3.688) 8.715 (± 2.712) 11.456 (± 1.793)
MORLD (Jeon & Kim, 2020) 98.433 (± 1.189) 97.967 (± 1.764) 98.787 (± 0.743) 96.993 (± 2.787) 97.720 (± 0.995)
HierVAE (Jin et al., 2020a) 60.453 (± 17.165) 24.853 (± 15.416) 48.107 (± 1.988) 59.747 (± 16.403) 85.200 (± 14.262)
RationaleRL (Jin et al., 2020b) 9.300 (± 0.354) 9.802 (± 0.166) 7.133 (± 0.141) 0.000 (± 0.000) 7.389 (± 0.220)
FREED (Yang et al., 2021) 74.640 (± 2.953) 78.787 (± 2.132) 75.027 (± 5.194) 73.653 (± 4.312) 75.907 (± 5.916)
PS-VAE (Kong et al., 2022) 60.822 (± 2.251) 56.611 (± 1.892) 57.956 (± 2.181) 57.744 (± 2.710) 58.689 (± 2.307)
MOOD (Lee et al., 2023a) 84.180 (± 2.123) 83.180 (± 1.519) 84.613 (± 0.822) 87.413 (± 0.830) 83.273 (± 1.455)
GEAM (Lee et al., 2023b) 88.611 (± 3.107) 89.378 (± 2.619) 84.222 (± 2.968) 90.322 (± 3.467) 89.222 (± 1.824)
M-FRAG (ours) 92.990 (± 1.424) 92.610 (± 1.775) 88.067 (± 1.964) 92.763 (± 1.074) 90.127 (± 2.103)

Our method efficiently generates acceptable molecules that meet the chemical realism and phar-
macochemical suitability required in drug design, while also demonstrating excellent performance
in terms of Validity and Uniqueness. This proves that our model not only satisfies the qualitative
requirements for drug candidates but is also highly effective in discovering a diverse range of valid
molecules.

D.4 ABLATION STUDY ON ALIGNMENT AND MODIFICATION

To analyze the contribution of each key component in M-FRAG, we conduct an ablation study
focusing on the role of molecule-fragment alignment in the embedding space and the impact of
molecule modification through genetic algorithms. As shown in Figure 3, we evaluate four different
configurations of our model across five target proteins: (1) full M-FRAG with both alignment and
modification, (2) without modification, (3) without alignment, and (4) without both alignment and
modification. The target proteins used in this analysis include parp1, fa7, 5ht1b, braf, and jak2,
allowing us to assess the performance of each configuration across a diverse set of molecular prop-
erties.

Effect of Molecule-Fragment Alignment. When this alignment mechanism is removed, the per-
formance drops significantly, as observed in Figure 3. Without alignment, the reinforcement learn-
ing (RL) agent operates in an unstructured space, making it more difficult to identify high-quality
molecule fragments that contribute effectively to the desired molecule properties.

Interplay Between Alignment and Modification. In M-FRAG, the genetic algorithm is used for
fragment exploration and molecule modification. To isolate the effect of modification, we disable it
in an experiment while retaining fragment generation. With alignment, removing modification has
little impact and can even improve performance. However, without alignment, the model becomes
reliant on modification, and performance drops significantly when it is absent. These results high-
light that alignment enables M-FRAG to generate high-quality molecules without heavy reliance on
modification. As genetic algorithms inherently introduce randomness, alignment provides a more
property-driven approach, reinforcing its importance in interpretable and effective molecule design.
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Table 5: Quality Scores of the Models with the target fa7. Quality scores are defined as the ratio
of valid molecules to total generated molecules, with filters rejecting compounds containing toxic
or reactive groups. Higher quality scores indicate a higher likelihood of drug acceptability. We also
report the ratio of valid molecules (validity) and unique molecules among valid ones (uniqueness).

Glaxo SureChEMBL PAINS Validity Uniqueness
REINVENT (Olivecrona et al., 2017) 0.832 (± 0.034) 0.747 (± 0.040) 0.842 (± 0.034) 0.872 (± 0.028) 0.990 (± 0.007)
MORLD (Jeon & Kim, 2020) 0.578 (± 0.010) 0.145 (± 0.018) 0.816 (± 0.008) 1.000 (± 0.000) 1.000 (± 0.001)
HierVAE (Jin et al., 2020a) 0.975 (± 0.004) 0.795 (± 0.007) 0.893 (± 0.011) 1.000 (± 0.000) 0.131 (± 0.003)
FREED (Yang et al., 2021) 0.996 (± 0.001) 0.808 (± 0.049) 0.991 (± 0.002) 1.000 (± 0.000) 0.723 (± 0.135)
M-FRAG (ours) 0.931 (± 0.012) 0.832 (± 0.005) 0.992 (± 0.001) 1.000 (± 0.000) 0.962 (± 0.011)
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Figure 3: Ablation study on M-FRAG’s alignment and modification. The Y-axis represents
hit ratio (%) across five target proteins. The figure compares four settings: full M-FRAG, with-
out modification, without alignment, and without both. Removing alignment significantly reduces
performance, highlighting its key role in optimization. While modification aids in an unstructured
space, alignment reduces its necessity, enabling efficient molecule generation.

D.5 CASE STUDY: PROPERTY-DRIVEN MOLECULE GENERATION IN THE ALIGNED
EMBEDDING SPACE

To further illustrate the effectiveness of M-FRAG, we analyze a specific molecule generation process
within the aligned embedding space about jak2 target protein. As shown in Figure 4, the model
selects fragments in a structured manner to progressively refine molecule properties, leading to an
optimized final molecule.

Progressive Optimization of Molecule Properties. Initially, the molecule is positioned in a region
of the embedding space with low QED. As fragment selection progresses, it moves towards an
optimized region where Docking Score, QED, and SA are all high. This transformation is guided
by the molecule-fragment alignment, ensuring a systematic improvement in molecule properties.

Fragment-Based Interpretability in Embedding Space. By utilizing fragment-molecule inter-
actions, M-FRAG provides a framework where molecular generation is interpreted by the relative
positioning and movement of fragments and molecules in the embedding space. Each selected frag-
ment shifts the molecule toward regions with improved Docking Score, QED, and SA, allowing a
stepwise understanding of property refinement.
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Docking score: -9.3
QED: 0.7594
SA: 0.7839

Docking score: -10.3
QED: 0.5806
SA: 0.7658

Fragment 1 Fragment 2

Molecule step 1 Molecule step 2 Final molecule

High-value molecule
Fragment rank: 565/1571
Fragment score: 0.3847

QED: 0.5912
SA: 0.7199

Fragment rank: 605/1571
Fragment score: 0.3841

QED: 0.5935
SA: 0.7233

QED: 0.3788
SA: 0.9523

QED: 0.7615
SA: 0.8083

Docking score (DS) QED SA

High-value molecules (DS, QED, SA)

Generated molecules
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Figure 4: Visualization of M-FRAG’s molecule generation in embedding space. The scatter plot
shows molecule properties (docking score, QED, SA), with dataset molecules in gray and generated
ones in orange. Molecule steps (black) and selected fragments (red) guide construction toward the
final molecule (green). Below, actual structures illustrate the stepwise generation process.
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