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Abstract— In order to assist a humans’ ability to make
decisions in uncertain and high-stakes scenarios, e.g., disaster
relief, we aim to provide an interactive and “smart” visual
model of an environment that a human can explore and query.
We contribute a method for photorealistic 3D reconstruction of
a scene from 2D images using improvements to 3D Gaussian
Splatting (3DGS) methods. We showcase our process using a
synthetic scene and showing a high level of fidelity between
the ground truth synthetic scene and the reconstruction. We
visualize the 3D reconstruction through a proof-of-concept web
interface with robot ego-centric and exo-centric views, as well
as semantic labels of objects within the scene, through which
a human can interact. We discuss our ongoing design of one
such human-robot collaborative task using this interface.

I. INTRODUCTION

Robots have been increasingly deployed as assistants in
disaster relief or robot rescue tasks with human partners, yet
the hazardous nature of these environments often necessitates
that human operators remain in safe yet remote locations
while the robot navigates the dangerous areas [1]–[4]. This
physical separation introduces unique challenges for effec-
tive human-robot interaction (HRI), including low-bandwidth
communication and insufficient operator situational aware-
ness. Under these circumstances, common ground must be
established and maintained across the remote communication
[5]. Shared visuals of the remote environment have been an
effective tool in this, e.g., [6], [7], however, we posit that a
“smart” visual model of the remote environment may provide
novel ways for the human to query and explore in order to
support their information gathering and decision making.

To design this “smart” visual model, we rely on a repre-
sentation that 1) is underlying compatible with interactivity
to support human-robot teaming, and 2) is an accurate
reconstruction of a real-world environment. While many
platforms, systems, and frameworks exist to develop virtual
environments for interactive robots, e.g., [8]–[13], they may
not effectively model the complex and unexpected conditions
that may arise in disaster relief. Game engines or graphics
suites may enable the creation of accurate real-world environ-
ments, but they are limited by hardware constraints to view
these environments in real-time. Thus, we seek a simulation
method that can rely on 3D reconstruction from images,
either in real-world or virtual environments, that preserves
the environment’s fidelity and complexity.

In this paper, we leverage recent advancements in 3D
Gaussian Splatting (3DGS) [15] for 3D scene reconstruction
in order to create a semantically rich and interactive rep-
resentation of an environment that can render novel views
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Fig. 1: A robot explores our outdoor 3D reconstructed
environment in the human-robot interaction platform, RIVR
[14]

in real-time. 3DGS has proven effective in generating high-
quality 3D scene reconstructions from 2D image sequences,
a crucial capability for bridging the gap between simulation
and real-world robot perception. Furthermore, the real-time
rendering capabilities of 3DGS serves as an ideal backbone
for our envisioned interactive user interface: a web-based
system where the human operator can not only visualize the
robot’s surroundings in 3D but also actively interact with the
scene, querying the robot about specific objects using natural
language, and receiving text responses about the scene. This
approach would not only enhance situational awareness and
maintain common ground, but also facilitate more intuitive
and efficient communication between the human and the
robot, which may ultimately improve the effectiveness of
disaster response operations. Models created with 3DGS
do not need a complete representation of the underlying
world, and instead infer novel views from a small collection
of images from the environment. This has advantages over
game engines or simulation platforms in terms of real-time
rendering as a human explores the reconstructed scene.

The contributions of this paper are as follows:
• A method for photorealistic 3D reconstruction from

images that enables a understanding through semantic
segmentation and querying of an environment for both
robotic systems and human operators.

• A proof-of-concept web interface with robot ego-centric
and exo-centric views that can be used for testing
human-robot interactions in 3D interactive scenes.

Figure 1 shows a robot in a 3D reconstructed environment
following our method. To our knowledge, this is the first
time the 3DGS approach for scene reconstruction has been



Fig. 2: 3D Reconstruction Workflow

utilized for human-robot teaming with multiple views and
semantic understanding.

In Section II we discuss related works that we build
upon or take inspiration from or contrast in developing our
approach. In Section III we describe our method for creating
and optimizing 3D reconstructions and integrating them into
a platform for human-robot teaming. We discuss how we
envision this framework being used in an anomaly detection
task as well as extend to others more broadly in Section IV,
and we conclude in Section V by summarizing the feasibility
and impactfulness of our proposed approach.

II. RELATED WORK

A. Sim-to-Real Transfer

The sim-to-real paradigm in robotics involves training be-
havior policies or learning models in simulated environments
and transferring them to physical robots. Numerous sim-to-
real datasets have been developed to facilitate the transfer
of robotic skills from simulated environments to the real
world [16]–[24]. These and other large-scale datasets are
commonly used to evaluate autonomous robotic systems in
tasks such as exploration, manipulation, and perception [25],
[26]. However, an inherent sim-to-real gap persists due to
the fundamental differences in visual appearance between
simulated and real-world environments. To address this gap,
the “real-to-sim” paradigm aims to inform and refine the
simulation environment using real-world data [27], [28]. We
adopt this approach using RGB images to fully reconstruct
the geometry and appearance of 3D scenes.

B. 3D Scene Reconstruction

3D scene reconstruction is a fundamental task in HRI,
enabling shared perception and understanding of an environ-
ment in three dimensions. Recent advancements in this area,
including neural radiance fields (NeRFs) [29] and 3D Gaus-
sian Splatting (3DGS) [15], have opened up new possibilities
for creating immersive and interactive 3D representations of
scenes. While both methods have demonstrated state-of-the-
art results in appearance, the dependency on neural networks
makes NeRFs resource-intensive to train and render. In con-
trast, 3D Gaussians can be rendered in real-time, are memory
efficient, and can be directly embedded with language fea-
tures [30]. This enables text-guided scene editing and scene
object manipulation [31]–[34]. Additionally, 3DGS has been
leveraged in recent works for autonomous navigation [35],
[36] and can potentially be used for simultaneous localization
and mapping (SLAM) [37]–[39]. We build off of 3DGS for

its real-time visualization capabilities and discrete geometry
representation, which we augment for potential real-time
interactive applications (see [40] for a survey).

C. HRI Interfaces for Robot Operation

We focus our discussion of HRI as it pertains to sharing
visuals for robot operation and collaboration. To this end, the
vision of human-robot interactivity in this work is most sim-
ilar to Walker et al. [6] who display robot-egocentric views
(via onboard video streams) and robot-exocentric views (via
remote environment reconstruction) for teleoperation. Their
construction of the environment uses LiDAR-based point
cloud to complete a complex inspection task in an unseen
environment. Our approach similarly seeks to evaluate the
performance of a human operator in remote control of a
robot, but our 3D representation can handle highly detailed
textures and geometry to be rendered using only an RGB
sensor.

To allow a human to interact with our shared visual,
we make use of the Robot Interaction in Virtual Reality
(RIVR) platform [14]. RIVR supports environments in Unity
with built-in compatibility with the Robot Operating System
(ROS). It has been shown to be effective for a range of
human-robot tasks including sim-to-real transfer and multi-
modal tasks such as collaborative assembly of small-scale
building exercises [41], using head-pose for object selection
tasks [14], and using natural language instructions to navigate
a robot [42]. We utilize the RIVR framework once our 3D
representation has been created.

III. METHOD

Our work focuses on creating interactive 3D scenes from a
small set of readily available RGB images. We demonstrate
this process with a synthetic scene, then transfer the recon-
struction to near-photoreal images in the sim-to-real transfer
process and ensure that the resulting 3D scene representation
is highly interpretable, as every 3D element can be directly
traced back to the original 2D input (see Figure 2 for the
workflow). Our reason for not using a real-world scene in
this work is two-fold. First, we aim to have full control
over the environment including the design of the space and
placement of objects, in order to conduct a human-robot
cooperative task in detecting anomalies and seeking objects
of interest. This does not preclude the use of our approach
on real-world scenes, however, as the 3DGS method was
originally designed to create scenes from real-world images.
The second reason to design the environment in simulation is
to demonstrate how high-quality 3D recreations of synthetic



Fig. 3: Scene creation in Blender showing the synthetic
environment

scenes can be effective in training and testing in human-
robot teaming. We discussed these factors in more detail in
Section IV.

In the remainder of this section, we describe our method
for generating the synthetic scenes, reconstructing the 3D
environment, and integrating it into a platform for interactive
human-robot teaming.

A. Scene Creation and Data Generation

Our scene layout is created with Blender [43], a free and
open-source graphics tool, and consists of 3D assets from
Polyhaven [44]. The navigable area spans approximately 374
sq. meters in an outdoor setting (see Figure 3 for a full dome-
view of the scene). We distribute several objects of interest
around the scene as targets for the anomaly detection task.
These objects include potential hazards such as a chemical
container, a fire extinguisher, and a box of electronics. We
render 100 images sampled within the navigable area of the
scene as the ground truth to use in our 3DGS reconstruction
pipeline. Figure 4a is one of these ground truth images.

B. 3D Gaussian Splatting Reconstruction

Our 3D reconstruction pipeline leverages the 3DGS ap-
proach first introduced in Kerbl et al., [15]. We incorporate
key optimizations from recent works to enhance its per-
formance, efficiency, and semantic capabilities. We begin
by processing the rendered images from the Blender scene
using COLMAP [45], an open-source Structure-from-Motion
(SfM) library, to obtain camera poses and a sparse 3D point
cloud. This point cloud serves as the basis for our 3DGS
representation. Following the approach of Girish et al. [46],
we adopt a coarse-to-fine training strategy and quantized
embeddings to significantly reduce per-point memory stor-
age requirements, enabling faster training and rendering for
real-time interaction. See references for full implementation
details. Figure 4b shows near-photoreal images from our sim-
to-real 3D reconstruction process from the same perspective
as the ground truth in Figure 4a to show the visual fidelity.

Our reconstructed 3D scene is stored in point cloud format,
with each 3D Gaussian represented by its mean position,

(a) Ground truth scene in Blender

(b) 3D Gaussian Splat of Blender scene

Fig. 4: Warehouse yard in simulation showing the high
preservation of visual fidelity of the 3D reconstruction (bot-
tom) to the synthetic environment (top)

color, opacity, and covariance matrix. To enable semantic
understanding of the scene, we follow Cen et al. [47] and
incorporate semantic feature fields obtained from Segment
Anything Model (SAM) [48]. This extends our model with-
out changing the base appearance of the 3D reconstruction,
and can be easily rendered in Unity [49] or web browsers
[50], [51].

C. Integration

We integrate the Unity conversion of our scene into RIVR
as the base environment for a simulated robot. A simulated
Clearpath Husky, equipped with an onboard RGB camera,
provides a first-person, ego-centric view for the operator to
view from a web browser (shown in Figure 4b), as well as
an exo-centric view (shown in Figure 1). The compatibility
between our 3D reconstruction workflow and RIVR allows
for many unique environments to be represented and tested
under different human-robot experimental stimuli. Within
RIVR, a user may view the environment via both the ego-
centric and exo-centric views, as well as the semantic view
of the scene. With RIVR’s native support for ROS, the user
may collaborate seamlessly with a robot through different
methods of interactivity.

IV. DISCUSSION

We envision our framework for 3D scene recreation and
interactivity as a versatile tool with dual applications: it
can serve as an effective training platform for remote robot
operations in disaster response scenarios, and it also holds the
potential to be deployed as a near real-time decision support
tool during active and ongoing incidents.



We consider both these applications in the context of a
specific task: anomaly detection. While this task has been
studied at the pixel-level, e.g., detecting a tear in a piece of
fabric [52]–[54], it has only recently expanded to the scene-
level where a human or robot seeks to visually analyze a
room and identify anomalies, e.g., [55]–[57]. We posit that
a human with the ability to actively explore the environment
from multiple perspectives (i.e., robot ego-centric and exo-
centric) as well as query the environment via natural lan-
guage that can isolate and highlight objects (i.e., a “smart”
environment that conveys crucial information from the se-
mantic segmentation features) will excel at identifying out of
place or hazardous objects within a large-scale environment.

In a training capacity, our platform can allow operators
to familiarize themselves with the robot’s capabilities and
practice collaborative tasks in a safe, simulated space with
a high level of realism to synthetic or real-world envi-
ronments. The human’s input can function as feedback to
the robot’s decision-making process. This interactive loop
lays the foundation for future human-robot dialogue systems
that can seamlessly integrate human expertise with robotic
capabilities. Moreover, the immersive 3D environment and
natural language interface provide a realistic and intuitive
experience, enabling operators to develop the skills and
strategies necessary for effective robot control.

Furthermore, our framework’s real-time 3D reconstruction
capabilities open up the possibility of utilizing it as a valuable
tool during active disaster response efforts. By rapidly gen-
erating 3D representations of the affected environment from
the robot’s onboard camera feed, our platform may provide
remote operators with crucial situational awareness, enabling
them to make informed decisions and guide the robot’s
actions more effectively. This real-time feedback loop may
significantly enhance the speed and accuracy of response
efforts, potentially saving lives and minimizing damage.

V. CONCLUSION AND FUTURE WORK

This paper presents a method for 3D reconstruction from
images using 3D Gaussian Splatting, and a pipeline for
enabling human-robot interaction with these environments.
We plan to conduct user studies to evaluate the effectiveness
of our interface for remote robot operation on an anomaly
detection task, placing particular focus on the utility of
the semantic masks and the exo-centric views. We will
investigate its potential for generating multi-modal grounded
language datasets, focusing on metrics such as task com-
pletion time, accuracy, and subjective measures of visual
quality and situational awareness for our anomaly detection
task. To further enhance the real-time capabilities of our
system, we will explore recent works that leverage 3DGS for
visual SLAM [38], [39]. This would enable more responsive
interactions between the operator and the robot, for example
in highly dynamic environments.

We envision our platform as a versatile tool for accelerat-
ing research and development in HRI for complex, human-
centeric domains such as disaster response. By providing
operators with a more intuitive, immersive, and interactive

interface, they may be empowered to communicate more
effectively with robots and ultimately save more lives.
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