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Abstract

Availability attacks, or unlearnable examples, are defensive techniques that allow1

data owners to modify their datasets in ways that prevent unauthorized machine2

learning models from learning effectively while maintaining the data’s intended3

functionality. It has led to the release of popular black-box tools (e.g., APIs) for4

users to upload personal data and receive protected counterparts. In this work,5

we show that such black-box protections can be substantially compromised if a6

small set of unprotected in-distribution data is available. Specifically, we propose7

a novel threat model of protection leakage, where an adversary can (1) easily ac-8

quire (unprotected, protected) pairs by querying the black-box protections with a9

small unprotected dataset; and (2) train a diffusion bridge model to build a map-10

ping between unprotected and protected data. This mapping, termed BridgePure,11

can effectively remove the protection from any previously unseen data within the12

same distribution. BridgePure demonstrates superior purification performance on13

classification and style mimicry tasks, exposing critical vulnerabilities in black-14

box data protection. We suggest that practitioners implement multi-level counter-15

measures to mitigate such risks.16

1 Introduction17

The widespread adoption of machine learning (ML) models has raised significant concerns about18

data privacy, copyright, and unauthorized use of personal information. Specifically, machine learn-19

ing developers usually rely on crawling web data to create their training sets, which can result in data20

being trained on without the owners’ consent. This has significant potential for misuse. For exam-21

ple, trained models may be used in sensitive applications such as facial recognition [20], resulting in22

individual re-identification or serious privacy breaches. Another example is training on copyrighted23

images created by artists. The downstream models could be used for style mimicry and potentially24

result in direct copyright infringement in cases where a generative model exactly replicates the same25

art style as the training data.26

Such unauthorized data usage has served as an impetus for broad pushback against the use of ML27

models. One particular demographic, artists, has been searching for solutions that prevent non-28

consensual use of their artwork for training ML models. Their desires are somewhat at odds with29

each other: they would like their artwork to have low value in training an ML model, while simul-30

taneously ensuring that the artwork is of high fidelity to preserve the quality of their original work.31

This has given rise to a style of availability attack known as “unlearnable examples” [13, 14, 24, 58],32

wherein imperceptible changes are made to training data points, which nonetheless render them low33

value for use in ML model training. It has even led to the release of popular tools that serve this or a34

similar purpose (e.g., Glaze [56], Nightshade [57], and Mist [32]). These offer public APIs (denoted35

as P) that allow a data owner to input their dataset D and receive a protected version D′ = P(D).36
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We demonstrate that such black-box protection may be susceptible to an attack wherein an adversary37

can potentially render the protection ineffective. Specifically, given access to a small set Da of38

unprotected in-distribution data (e.g., data collected before protection is deployed; photos taken by39

others at a party; pictures of art taken at a gallery) and a public protection API P , an adversary can40

easily acquire (Da,P(Da)) pairs by querying the black-box service. We call such a risk protection41

leakage. In this paper, we aim to answer an intriguing question:42

How can protection leakage sabotage data protection? And to what extent?43

Indeed, with a small number of pairs, we show that an adversary can easily train a diffusion denoising44

bridge model (DDBM, [76]) that learns an inverse mapping P−1 such that P−1(P(x)) ≈ x for45

x ∈ Da. Moreover, the learned bridge model generalizes to unseen data from the same distribution46

and can purify a large amount of protected data, D′. We call this approach BridgePure. We show47

that, with the reasonable assumption of access to a small amount of unprotected in-distribution data,48

BridgePure gives far better results than prior work [9, 25, 42, 72], without requiring pre-training49

or fine-tuning a large diffusion model with a lot of data from a similar distribution. Specifically,50

BridgePure can almost fully restore the dataset availability by using a limited amount of protection51

leakage, e.g., bringing the accuracy of a trained model back to the level before protection. Moreover,52

compared to other purification methods based on “noise-adding and denoising” diffusion models,53

BridgePure avoids detail blurring, artificial distortions or artifacts, and preserves the brushstrokes in54

the artwork. This demonstrates a critical vulnerability of black-box data protection. Furthermore,55

we discuss possible mitigation strategies in Appendix D.1 and advocate for considering this type of56

risk when developing data protection applications.57

In summary, our contributions are three-fold:58

• We reveal the possible threat of protection leakage against black-box data protection methods;59

• We propose BridgePure by utilizing DDBM as a powerful purification algorithm that is able to60

exploit a small amount of protection leakage;61

• We conduct comprehensive experiments on purifying existing data protection methods for both62

classification and generation tasks, where BridgePure consistently outperforms baseline methods.63

2 Background and Related Work64

In this section, we (1) introduce the goals and existing works of data protection on classification65

models and generative models; (2) outline existing countermeasures that may render the protections66

ineffective; (3) introduce diffusion bridge models, the key technique we will build on.67

2.1 Data Protection68

Data protection in machine learning aims to achieve two goals: (1) Modify a raw dataset such69

that it has low value to machine learning algorithms; (2) Maintain usability for humans, such as70

publication purposes. We focus on data protection for images.71

Formally, we denote the original dataset or pre-protection dataset as D, and the protected dataset72

as D′. We refer to the mapping from D to D′ as data protection mechanism P (e.g., an algorithm),73

where P is applied to every entry in the dataset:74

P : D → D′,x 7→ x′.

To preserve the visual semantics (thus preserving usability for humans), the mechanism P usually75

prevents modification from excessively degrading image quality, often relying on an Lp-norm con-76

straint on the modification: ∥x′ − x∥p ≤ ε, for some small perturbation budget ε > 0.77

Let M be a training algorithm for a target task and M(D′) be a model trained using the protected78

dataset D′. The protection mechanism P is successful if M(D′) has degraded performance for79

the target task. In this paper, we consider two tasks: classification and style mimicry, and their80

corresponding protection.81
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Availability attacks. Availability attacks1 can be regarded as a special case of data poisoning82

attacks. In the context of classification tasks, availability attacks subtly modify the original data,83

rendering the resulting model M unusable by reducing its test accuracy to an unacceptable level.84

Thus, the protected data are often referred to as “unlearnable examples” [e.g., 24].85

Over the past few years, this field has advanced rapidly, demonstrating three key trends: (1) Im-86

proved performance. Recent techniques can reduce model availability to levels even lower than87

random guessing [5, 14]. (2) Enhanced resilience. Availability attacks can be effective against both88

supervised and contrastive learning [19, 48, 65]. Furthermore, robust unlearnable examples have89

been introduced to counteract weakened protections caused by adversarial training [12, 15, 66]. (3)90

Transferable protection. Recent methods leverage image concepts and semantics to generate pro-91

tective perturbations, enabling cross-dataset protection [4, 74]. This remarkable progress highlights92

the potential of availability attacks as a practical data protection strategy in real-world applications.93

Style mimicry protections. Consider an artist with artwork D in a distinctive style S. Latent94

diffusion models (LDMs) [50] can readily fine-tune on D to generate new images mimicking style95

S from text prompts. To prevent such unauthorized style replication, data protection mechanisms P96

modify the latent representation of D to align with a different public dataset, making style extraction97

through LDM fine-tuning ineffective. Our analysis focuses on two recent methods: Glaze [56] and98

Mist [32], which prevent mimicry by applying imperceptible protective modifications to paintings.99

2.2 Circumventing Data Protection100

To understand the real effectiveness of data protection, existing approaches propose techniques that101

degrade data protection. Specifically:102

Purification-based methods. Adversarial purification was first introduced to sanitize adversarial103

examples at test time [52, 59, 70]. DiffPure [42] employs pre-trained diffusion models to remove104

undesired noise from the perturbed images. In the context of protection removal for classification105

tasks, AVATAR [9] borrows a diffusion model pre-trained on the unprotected dataset to purify the106

protected dataset. LE-JCDP [25] fine-tunes a pre-trained diffusion model on additional data (i.e.,107

the test set) and regularizes the sampling stage to improve the quality of purified images. D-VAE108

[72] leverages a variational auto-encoder-based method to disentangle protective perturbations from109

protected images, which requires no additional data. Regarding style mimicry tasks, DiffPure, IM-110

PRESS [3], Noisy Upscaling [21, 41], GrIDPure [75], and PDM [68] prove effective in undermining111

the protection provided by current popular tools [21].112

Other methods2. The imperceptible nature of protective modifications enables adversarial train-113

ing to mitigate the protection efficacy for classification tasks [39, 62]. Additionally, processing the114

protected images by traditional and specially picked data augmentations can restore availability to115

some extent [34, 45, 78].116

Although existing methods often rely on pretrained models or require training models from scratch117

with a large amount of protected data, they still leave an availability gap between the purified and118

original datasets. In this work, we show that under a novel yet realistic threat model of limited119

protection leakage, the strength of data protection can be almost completely diminished.120

2.3 Diffusion Bridge Models121

Denote by qdata(x) the initial data distribution. We construct a diffusion process with a set of time-122

indexed variables {xt}Tt=0. Diffusion models transporting the initial distribution to a standard Gaus-123

sian distribution are associated with the following SDE [60]:124

dxt = f(xt, t) dt+ g(t) dwt, x0 ∼ qdata(x), (1)

where f : Rd × [0, T ] → Rd is vector-valued drift function, g : [0, T ] → R is a scalar-valued125

diffusion coefficient and wt is a Wiener process.126

1Note that while "availability attack" here refers to data protection methods, it can also mean indiscriminate
data poisoning attacks. See Appendix A for a complete discussion.

2We discuss the line of work that shows a “false sense of security” in current data protection in Appendix A.
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We are interested in the transportation between two arbitrary data distributions. Assume the diffusion127

process {xt}Tt=0 satisfies x0 ∼ qdata(x) and xT = x′ as a fixed endpoint. This process can be128

modeled as the solution of the following SDE [10, 49]:129

dxt = [f(xt, t) + g2(t)h(xt, t,x
′, T )] dt+ g(t) dwt,x0 ∼ qdata(x),xT = x′, (2)

where h(x, t,x′, T ) = ∇xt
log p(xT |xt)|xt=x,xT=x′ is the gradient of the log transition kernel from130

t to T generated by the original SDE (1). One can reverse the process (2) as follows Zhou et al. [76]:131

dxt = [f(xt, t)− g2(t)(s(xt, t,x
′, T )− h(xt, t,x

′, T ))] dt+ g(t) dŵt, xT = x′, (3)

where ŵt is a reverse Wiener process, q is the transition kernel of (2), and the score function132

s(x, t,x′, T ) = ∇xt log q(xt|xT )|xt=x,xT=x′ . The time-reversed SDE (3) is known to be asso-133

ciated with a probability flow ODE [60]:134

dxt = [f(xt, t)− g2(t)( 12s(xt, t,x
′, T )− h(xt, t,x

′, T ))] dt. (4)

Accordingly, a denoising diffusion bridge model (DDBM) parametrized by θ is trained by minimiz-135

ing the following (denoising) score matching objective:136

L(θ) = Ext,x0,xT ,t[λ(t)∥sθ(xt,xT , t)−∇xt log q(xt|x0,xT )∥2] (5)

where (x0,xT ) ∼ qdata(x,x
′),xt ∼ q(xt|x0,xT ) and λ(t) is the weighting coefficient.137

3 Threat Model138

Figure 1: The threat model and illustration of
BridgePure. Sequential images show the ODE sam-
pling (purification) process of an example image pro-
tected by One-Pixel Shortcut [67].

In this section, we introduce (1) how data139

protection provides service for individual140

data owners; (2) possible loopholes and141

an attack pathway; (3) the notion of pro-142

tection leakage, and (4) differences with143

existing works. Figure 1 summarizes the144

threat model considered in this paper.145

Protection service. To leverage avail-146

ability attacks for data protection, a black-147

box service can be offered to data owners148

without requiring machine learning exper-149

tise. For instance, Glaze [56] provides a150

user-friendly application where individu-151

als can locally apply the protection mecha-152

nism P to their personal dataset D, gener-153

ating a protected version D′. In our work,154

we assume all attacks operate in a black-box manner, meaning both data owners and adversaries155

have no knowledge of P’s internal mechanisms.156

Adversary. Note that while such black-box services are convenient for data owners, they are ac-157

cessible to anyone, without any ownership verification. This means adversaries can potentially use158

these services to generate protected versions of data belonging to others. For instance, if there exist159

publicly available unprotected images belonging to a data owner, an adversary A might use these160

unprotected images to form an additional dataset Da. Note that Da must be drawn from the same161

distribution as D, or from a sufficiently similar distribution.162

Formally, we define the adversary’s capabilities as: (1) Access to a large dataset D′ of protected data;163

(2) Access to a small additional dataset Da of unprotected data, where |Da| ≪ |D′| and Da∩D = ∅164

(with D being the original unprotected dataset corresponding to D′); (3) Access to the black-box165

protection mechanism P .166

Protection leakage. By querying the protection mechanism P on the collected dataset Da, the167

adversary A obtains a paired dataset D̂a := {(x,P(x))|x ∈ Da}, containing both unprotected168

and protected versions of each data point. While P remains black-box to A, this paired dataset169

D̂a reveals information about P . For real-world applications of data protection, a critical question170

emerges: Does the information leaked through D̂a compromise the protection provided by P?171
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Our main finding reveals that protection leakage enables the construction of a powerful purification172

mechanism P−1 that approximately reverses the protection P . Using this mechanism, an adversary173

A can purify the protected dataset D′ to obtain P−1(D′), which closely matches the availability of174

the original dataset D.175

Difference with other purification methods. Notably, compared to existing circumvention meth-176

ods discussed in Section 2.2, our approach is distinctive in two ways: (1) Our threat model assumes177

access to the black-box mechanism P , providing the adversary greater (but viable) capabilities; (2)178

Our method requires only limited unprotected samples to develop a purification from scratch, unlike179

DiffPure [42] and AVATAR [9], for which models are pre-trained using enormous additional data.180

We argue that even with a small amount of unprotected data, attackers can bypass existing data pro-181

tection mechanisms using moderate means—without requiring pre-trained models on specific types182

of data or massive computational resources. It also confirms that protection has a time and space183

dimension: any information that has ever been leaked or will be leaked in the future is significantly184

harder to protect. Similarly, protecting data in only one place is far from sufficient (for example,185

securing online data while neglecting offline data).186

4 Bridge Purification187

In this section, we specify the possible impact of protection leakage by introducing Bridge Pu-188

rification (BridgePure), a method that learns the inverse protection mechanism P−1 from limited189

protection leakage D̂a = {(x,x′)|x ∈ Da,x
′ = P(x)}, where each pair contains unprotected and190

protected versions of the same data. BridgePure works by modeling and then inverting the transfor-191

mation between the original and protected data.192

Bridge training. Assume the pairs (x,x′) come from a joint distribution qdata(x,x
′), where x′ =193

P(x). We aim to learn P−1 that approximately samples from qdata(x|x′), i.e., purifying the protected194

data x′. We first construct the stochastic process {xt}Tt=0 that starts from x0 = x and ends at195

xT = x′, where q(x0,xT ) approximates the true distribution qdata(x,x
′). This process can be196

modeled by SDE (2) in Section 2.3. We can reverse the process using the SDE (3) and ODE (4).197

Given the protection leakage D̂a, we train a denoising diffusion bridge model [76] from scratch via198

minimizing the score-matching loss in eq. (5) on D̂a.199

Sampling and purification. Different from standard diffusion models which perform uncondi-200

tional sampling, BridgePure’s sampling process requires each step to be conditioned on the endpoint201

x′ (i.e., the protected data). Following Zhou et al. [76], we deploy a hybrid sampling approach that202

combines Euler-Maruyama and Heun sampling methods, with a hyperparameter s ∈ [0, 1] control-203

ling the sampling randomness. When s = 0, the sampling is deterministic, and higher values of s204

introduce greater randomness. Choosing an appropriate s can enhance sampling quality and improve205

purified datasets’ availability, which we analyze through ablation studies on s in Section 5.4.206

BridgePure purifies the protected dataset D′ by performing conditional sampling for each protected207

sample x′. As shown in Figure 1, the purification process gradually removes protective features,208

such as the white spot on the horse’s chest. After obtaining the purified dataset P−1(D′), we evaluate209

purification effectiveness through model performance on the purified data, denoted as M(P−1(D′)).210

Pre-processing. When D̂a contains a small number of leaked pairs, BridgePure may overfit to the211

limited data and fail to generalize well to the protected dataset D′. To address this limitation, we212

introduce Gaussian noise to the protected data, inspired by the diffusion process:213

Gβ(x
′) =

√
1− βx′ +

√
βz, z ∼ N (0; I).

After pre-processing, the protection leakage becomes D̂a = {(x,Gβ(x
′))|x ∈ Da,x

′ = P(x)} and214

the protected dataset is D′ = {Gβ(x
′)|x ∈ D,x′ = P(x)}. BridgePure learns to model the transfor-215

mation between x and Gβ(x
′) using D̂a, then purifies Gβ(x

′) ∈ D′ by sampling approximately from216

qdata(x|Gβ(x
′)). The effectiveness of BridgePure can be enhanced through the appropriate selection217

of the pre-processing parameter β, which we examine through ablation studies in Section 5.4.218
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Table 1: Purification performance on CIFAR-10 and CIFAR-100 against nine availability attacks.
The best restoration results are emphasized in bold. We underline to denote the least number of pairs
required for BridgePure to surpass other baseline methods. We run five random trials for evaluation
and report the mean value and standard deviation.

AR DC EM GUE LSP NTGA OPS REM TAP
CIFAR-10 (94.01±0.15)

Protected 13.52±0.63 15.10±0.81 23.79±0.13 12.76±0.44 13.85±0.96 12.87±0.23 13.67±1.80 20.96±1.70 9.51±0.67

PGD-AT 81.78±0.31 82.56±0.23 83.86±0.06 83.80±0.28 83.46±0.09 83.39±0.22 9.60±1.58 85.47±0.17 81.82±0.12

D-VAE 90.22±0.44 88.63±0.28 88.75±0.22 89.80±0.43 90.04±0.22 87.88±0.25 89.48±0.37 83.07±0.38 83.22±0.49

AVATAR 91.41±0.13 89.04±0.17 88.46±0.24 88.05±0.31 89.05±0.29 88.50±0.30 87.87±0.19 89.66±0.47 90.76±0.24

LE-JCDP 92.07±0.21 91.63±0.23 90.69±0.31 90.79±0.20 91.22±0.31 91.57±0.25 58.60±1.28 90.39±0.24 91.60±0.14

BridgePure-0.5K 93.86±0.27 93.76±0.17 93.64±0.22 93.70±0.11 93.76±0.18 94.07±0.18 93.31±0.19 84.34±0.52 86.81±0.31

BridgePure-1K 92.48±0.11 93.78±0.25 93.73±0.15 93.80±0.20 93.84±0.19 93.94±0.08 93.49±0.26 92.69±0.25 87.62±0.05

BridgePure-2K 93.84±0.22 93.93±0.20 93.81±0.22 93.97±0.15 93.99±0.34 94.00±0.16 93.31±0.36 93.49±0.18 88.60±0.22

BridgePure-4K 93.56±0.21 93.81±0.05 93.87±0.15 93.84±0.21 93.93±0.27 93.93±0.12 93.50±0.28 93.50±0.11 92.91±0.12

CIFAR-100 (74.27±0.45)
Protected 2.02±0.12 36.10±0.67 6.73±0.12 19.50±0.48 2.56±0.16 1.51±0.22 12.18±0.52 7.07±0.19 3.59±0.12

PGD-AT 56.37±0.25 55.21±0.40 56.25±0.29 57.38±0.27 56.19±0.28 54.77±0.25 7.59±0.32 56.81±0.19 54.59±0.28

D-VAE 62.14±0.32 55.91±0.92 60.25±0.25 60.79±0.62 61.36±0.75 59.34±0.64 62.83±0.67 63.06±0.31 53.82±0.91

AVATAR 65.45±0.32 63.48±0.26 62.77±0.56 62.10±0.22 62.95±0.38 62.60±0.22 60.68±0.56 65.36±0.38 64.50±0.23

LE-JCDP 69.15±0.22 68.49±0.42 67.76±0.31 67.36±0.42 68.23±0.40 68.35±0.19 39.10±0.40 68.76±0.23 68.39±0.39

BridgePure-0.5K 67.49±0.31 73.69±0.21 73.17±0.13 72.69±0.49 73.33±0.77 69.11±0.86 74.18±0.31 66.53±0.29 62.75±0.25

BridgePure-1K 68.63±0.84 73.62±0.34 73.31±0.42 72.92±0.62 73.93±0.24 69.96±0.47 74.22±0.30 66.30±0.36 62.58±0.28

BridgePure-2K 68.05±0.16 73.83±0.15 73.70±0.30 73.55±0.29 73.86±0.56 73.90±0.19 73.96±0.40 72.38±0.44 64.96±0.27

BridgePure-4K 72.44±0.47 73.97±0.18 73.52±0.57 73.92±0.09 74.56±0.40 74.23±0.23 74.18±0.38 72.95±0.10 70.96±0.15

5 Experiments219

In this section, we (1) introduce our experimental setting, (2) present BridgePure’s purification re-220

sults on purifying availability attacks and style mimicry protection, and (3) conduct ablation studies.221

5.1 Experimental Setting222

Datasets. Our classification experiments use CIFAR-10/100 [29], ImageNet-Subset,3 WebFace-223

Subset,3 Cars [28], and Pets [43] datasets. For style mimicry experiments, we use artwork from224

artist @nulevoy,4 with details provided in Section 5.3.225

Protections. On classification tasks, we leverage 14 availability attacks to simulate different data226

protection tools. Among them, AR [54] and LSP [71] are L2-norm attacks, OPS [67] is an L0-norm227

attack, while the rest are L∞-norm attacks including DC [13], EM [24], GUE [33], NTGA [73],228

REM [15], TAP [14], CP [19], TUE [48], AUE [65], UC and UC-CLIP [74]. If not otherwise stated,229

these L∞-norm attacks use a modification budget ε = 8/255. More details about protection gener-230

ation are available in Appendix B.2. On generation tasks, we deploy two style mimicry protection231

tools, i.e., Glaze v2.1 [56] and Mist [32].232

BridgePure. We train BridgePure using a small set of (unprotected, protected) pairs to purify233

large-scale protected data and evaluate the purified dataset’s availability. We denote BridgePure-N234

as the model trained on N pairs, ensuring these training pairs are distinct from the protected samples235

to be purified. Following Section 4, we apply Gaussian perturbation with parameter β during pre-236

processing and control sampling randomness via parameter s. For CIFAR-10 and CIFAR-100, we237

report BridgePure’s best performance across four configurations: s ∈ {0.33, 0.8} and β ∈ {0, 0.02}.238

For ImageNet-Subset, WebFace-Subset, Cars, and Pets, we report results with s ∈ {0.33, 0.8} and239

β = 0. For style mimicry protection, we set s = β = 0.240

Purification baselines. We compare BridgePure with existing purification-based methods in Sec-241

tion 2.2, including adversarial training [39] and three purification baselines, including D-VAE [72],242

AVATAR [9], and LE-JCDP [25] on CIFAR-10 and CIFAR-100. Notably, D-VAE requires no ad-243

ditional data, while AVATAR uses a diffusion model trained on the unprotected dataset contain-244

ing 50K images, and LE-JCDP fine-tunes a diffusion model on the unprotected dataset containing245

3ImageNet-Subset is a subset of ImageNet [8] containing 100 classes. WebFace-Subset is a subset of
CASIA-WebFace [69] containing 100 identities. See Appendix B.1 for detailed settings.

4https://www.artstation.com/nulevoy, usage with consent from the artist.
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10K images. BridgePure leverages a significantly smaller amount of protection leakage for train-246

ing—ranging from only 0.5K to 4K pairs. For ImageNet-Subset and WebFace-Subset comparisons247

with DiffPure [42], details are provided in the relevant section.248

5.2 Purifying Availability Attacks249

Main results. We evaluate four levels of protection leakage: N = 500, 1000, 2000, and 4000250

pairs of unprotected and protected images. For each level, an adversary trains a BridgePure model to251

attempt purification of the protected dataset. In Table 1, we compare BridgePure with four baseline252

methods: adversarial training using PGD-10 with budget 8/255 in L∞-norm, D-VAE, AVATAR,253

and LE-JCDP. The results demonstrate the significant impact of protection leakage in three aspects:254

(1) Restoration with limited leakage: BridgePure substantially restores dataset availability even with255

a few leaked pairs. (2) Superior performance with higher budgets: Using up to 4K pairs, BridgePure256

consistently outperforms all baseline methods across nine attacks. (3) Closing the availability gap:257

BridgePure’s protection-specific design increasingly eliminates the availability gap, approaching258

perfect restoration as protection leakage increases.259

Figure 2: Performance comparison
with augmentation-based methods, and
protection dilution on CIFAR-100.
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Table 2: Purification performance on ImageNet-Subset and
WebFace-Subset against three availability attacks.

EM LSP TAP EM LSP TAP
ImageNet-Subset (66.18±0.60) WebFace-Subset (87.84±0.27)

Protected 6.83±0.68 26.77±1.49 17.48±0.81 1.72±0.06 2.33±0.44 3.24±0.52

DiffPure 54.87±0.36 56.31±0.47 62.03±0.34 86.54±0.16 78.01±0.21 79.59±0.79

BridgeP.-0.5K 65.89±0.53 65.74±0.31 62.76±0.31 87.80±0.42 87.80±0.27 82.48±0.23

BridgeP.-1K 65.66±0.38 66.02±0.50 63.89±0.38 87.76±0.20 87.67±0.37 86.38±0.26

BridgeP.-2K 65.96±0.49 65.88±0.35 63.96±0.47 87.77±0.40 87.72±0.24 87.27±0.42

BridgeP.-4K 66.02±0.55 66.27±0.52 64.34±0.51 87.60±0.12 87.64±0.26 87.46±0.19

Moreover, Figures 2 and 14 demonstrate that BridgePure consistently outperforms eight260

augmentation-based circumvention methods. (See Appendix C.6 for a detailed illustration of this261

comparison.). We also considered the scenario where the adversary dilutes the protected dataset262

with a sufficiently large amount of unprotected data. The results indicate that 500 leaked pairs have263

a significantly greater destructive impact and harm than 4,000 leaked unprotected samples.264

In Table 2, we evaluate BridgePure on ImageNet-Subset and WebFace-Subset to illustrate the265

risk of protection leakage in real-world scenarios. For baseline DiffPure, the diffusion model for266

ImageNet-Subset is trained on the entire ImageNet, and that for WebFace-Subset is trained on267

CelebA [35]. We report the best results of DiffPure among four selections of sampling step, i.e.,268

t∗ ∈ {0.1, 0.2, 0.3, 0.4}. When the amount of leaked pairs is 500, our BridgePure already surpasses269

DiffPure on the two datasets. Moreover, BridgePure can restore the availability to the original levels270

as the leakage grows.271

Table 3: Purification performance on Cars and Pets
against two label-agnostic availability attacks.

UC UC-CLIP UC UC-CLIP
Cars (43.25±1.71) Pets (49.56±0.81)

Protected 25.91±4.58 10.93±2.78 20.91±1.17 24.07±4.92

BridgeP.-0.5K 43.65±1.32 42.72±1.64 50.03±0.80 50.70±1.44

BridgeP.-1K 42.32±1.25 43.45±2.44 49.27±3.08 49.75±0.78

Label-agnostic case. We consider label-272

agnostic variants of availability attacks,273

i.e., UC and UC-CLIP, whose protection274

generation depends on clustering in the275

feature space of a pre-trained encoder such276

as CLIP [46]. We adopt their default im-277

plementation settings where the number of278

surrogate clusters is 10 and the protection279

budget is 16/255 in L∞ norm. In Table 3, BridgePure with at most 1000 leaked pairs can purify the280

protected datasets to the original availability levels.281

Contrastive learning case. We consider availability attacks that transfer to contrastive learning282

algorithms. We purify CP, TUE, and AUE by BridgePure and then train classifiers using SimCLR283

[6] and linear probing. Figure 3 shows that limited protection leakage enables BridgePure to recover284

the availability for contrastive learning significantly.285

Purified image quality. A distinct feature of BridgePure is its conditional generation based on the286

protected images. We observe that this approach enables high-quality restoration, preserves image287

details, and avoids artificial distortions or artifacts. Specifically, in Figure 4, we evaluate the similar-288

ity between the original (unprotected) data and their purified versions with PSNR and SSIM metrics.289
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Figure 3: Purification performance against
availability attacks that SimCLR evaluates.

Figure 4: PSNR and SSIM between processed datasets
and the original CIFAR-10.

Figure 5: Purification outcomes on UC-protected Cars. The left is the overview comparison and the
right shows local details around the wheel. We point out (1) the light, (2) the tire, and (3) the wheel
hub where BridgePure-0.5K preserves the original texture while DiffPure (t∗ = 0.2) blurs details.

We also present the similarity between the protected and unprotected pairs as a baseline. We observe290

that our method outperforms all baseline purification methods in terms of restoring the unprotected291

data. Moreover, our method consistently improves image similarity through purification, while other292

methods downgrade the similarity compared with the protected baseline.293

Moreover, in Figure 5, we compare the details of the purified images generated by DiffPure and294

BridgePure. In terms of the purification mechanism, DiffPure adds Gaussian noise to protected295

images and aligns them with learned trajectories before reverse sampling. We observe that such an296

unconditional process could cause the loss of texture details. In contrast, BridgePure’s conditional297

sampling preserves fine-grained features. Concretely, details of the vehicle purified by BridgePure,298

such as lights, tires, and wheel hubs, are in sharper clarity than those purified by DiffPure.299
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Figure 6: Performance with partial protection leakage
within 10 classes (left) and 20 classes (right) of LSP-
protected CIFAR-100. The x-axis represents the number of
leaked pairs in each leaked class and “B” stands for the un-
protected baseline. Here s = 0.33 and β = 0.

Partial protection leakage. We300

consider a scenario where the ad-301

versary aims to purify protected302

images from certain classes rather303

than the whole protected dataset D′.304

In Figure 6, we purify LSP-protected305

CIFAR-100 using partial protection306

leakage within 10/20 random classes307

and report the accuracy of leaked,308

non-leaked, and all classes, respec-309

tively. The results demonstrate that310

partial protection leakage poses an311

even more significant risk to relevant312

classes. For example, 5 pairs from each class are sufficient to make the test accuracy of the target313

classes better than the unprotected baseline, and more pairs will improve it further.314

5.3 Purifying Style Mimicry Protection315

In this section, we investigate the threat of protection leakage to copyright protection for generative316

models. We consider art style mimicry on the artwork from an artist @nulevoy with consent. We317

first fine-tune Stable Diffusion v2.1 [50] using 20 captioned paintings following the implementation318

of Hönig et al. [21]. We then reproduce the style of the artist with a list of prompts during inference.319

Our implementation details are available in Appendix B.5.320

For style mimicry protection, we apply Glaze and Mist to protect the 20 paintings we used previ-321

ously. We assume protection leakage of only 5 or 10 unprotected paintings of the same artist and call322

these public protection tools to obtain (unprotected, protected) pairs for BridgePure training. Finally,323

the 20 protected paintings are purified by BridgePure and fed into the style mimicry pipeline.324

8



Figure 7: Purification performance of BridgePure-5 (top) and BridgePure-10 (bottom) for style
mimicry. The presented paintings are mimicry outcomes of fine-tuned generative models.

Figures 7 and 10 show the style mimicry outcomes given different text prompts. Models fine-tuned325

on Glaze-protected artwork produce images filled with irregular patterns, while artwork protected by326

Mist leads fine-tuned models to generate artistic works with regular block-like perturbations. After327

purification by BridgePure, images protected by Glaze and Mist can no longer cause fine-tuned328

models to generate artwork with protective cloaks. Our results again suggest that for style mimicry,329

protection leakage poses a strong threat to existing data protection tools.330

Due to page limitations in the main text, we will compare our BridgePure and other advanced ap-331

proaches, including GrIDPure [75], PDM [68], and NoisyUpscaling [21], for purifying protected332

paintings in Appendix C.4. As shown in Figures 11 and 12, there BridgePure effectively removes333

protective perturbations while preserving the intricate details of the painting—an achievement that334

other approaches fall short of.335

5.4 Ablation Study336

Figure 8: Influence of s and β on BridgePure-1K perfor-
mance on CIFAR-10 (left) and CIFAR-100 (right).

Figure 8 shows that pre-processing337

with Gaussian noise can improve338

the availability restoration against339

some availability attacks which are340

“harder” to purify, e.g., TAP. How-341

ever, it also presents a performance342

ceiling for other protections, e.g., EM343

and LSP, and harms their purifica-344

tion results. Regarding the sam-345

pling randomness, while larger ran-346

domness slightly reduces the accu-347

racy for some protections, e.g., EM, LSP, and OPS, it can largely benefit the purification against348

TAP, REM, and AR.349

In summary, different protection methods are subject to different choices of the optimal hyperpa-350

rameter. Our results in this section reveal the worst-case damage caused by protection leakage by351

reporting the best-performing BridgePure within a limited number of trials.352

6 Conclusion353

In this paper, we identify a critical vulnerability in black-box data protection systems: protection354

leakage. We demonstrate that using a small number of leaked pairs, an adversary can train a diffu-355

sion bridge model, BridgePure, to effectively circumvent the protection mechanism. Our empirical356

results show that under this threat model, BridgePure exposes fundamental vulnerabilities in current357

data protection systems for both classification and generation tasks.358

Limitations and future work. Our findings highlight the necessity of addressing protection leak-359

age. At the system level, protection services could incorporate robust identity authentication mech-360

anisms to verify data ownership. At the algorithmic level, enhanced protection methods must be361

developed to strengthen resistance against advanced purification techniques. We discuss potential362

countermeasures in more detail in Appendix D.1. We have informed some black-box protection363

service providers regarding such risks and provided these suggestions.364
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A Data Protection and Data Poisoning Attacks572

In this section, we formalize the relationship between data protection and data poisoning attacks.573

First, let us define data poisoning attacks: given a clean training set Dc, data poisoning attacks574

create an additional poisoned set Dp such that a model trained on Dc∪Dp exhibits behavior aligned575

with the adversary’s objective. These attacks can be categorized as: availability (or indiscriminate)576

attacks [e.g., 2, 26, 27, 36, 37, 38, 40, 61] that reduce overall test performance, targeted attacks577

[e.g., 1, 16, 18, 55, 77], or backdoor attacks [e.g., 7, 17, 51, 64] that compromise model integrity for578

specific test samples or trigger patterns.579

Data protection can be viewed as a special case of availability attacks where: (1) |Dc| = 0, (2) Dp is580

the protected dataset D′, and (3) the adversary role is taken by the data protection service provider.581

Finally, the inadequacy of data poisoning as a protection mechanism has been conclusively demon-582

strated, both through conceptual analysis [47] and technical evaluation [21, 44]. Radiya-Dixit et583

al. [47] identify a fundamental limitation in data protection methods: their “once for all” deploy-584

ment mechanism fails to protect historical data and lacks cross-model transferability. While recent585

advances in transferable availability attacks [19, 48, 65] have partially addressed the model transfer-586

ability challenge, our work reveals that the vulnerability of historical unprotected data (protection587

leakage) poses an even more significant security risk.588

B Experiment Settings589

B.1 Datasets590

CIFAR-10/100. For CIFAR-10 and CIFAR-100 [30], the training set is divided into two parts: a591

set to be protected which contains 40,000 images, and a reference set comprising the remaining data.592

The images are 32×32 pixels.593

ImageNet-Subset. The ImageNet-100 dataset consists of 100 classes selected from the full Ima-594

geNet dataset [8]. Following Fu et al. [15], Huang et al. [24], and Qin et al. [45], we use a subset595

of ImageNet-100 containing 85,000 images. The test set includes 50,000 images, the set to be pro-596

tected contains 25,000 images, and the reference set includes 10,000 images. Images in both the597

protection and reference sets are resized to 224×224 pixels. For test images, the shorter edge is598

resized to 256 pixels, followed by a center crop to 224×224.599

WebFace-Subset. The CASIA-WebFace dataset [69] contains 494,414 face images of 10,575 real600

identities. We select the top 100 identities with the most images, resulting in a dataset of 44,697601

images. This dataset is split into three parts: a test set comprising 4518 images, a protection set with602

25,000 images, and a reference set containing the remainder. The images are 112×112 pixels.603

Pets and Cars. Pets [43] contains 37 categories of animals, in which the set to be protected in-604

cludes 3680 images and the test set contains 3669 images. Cars [28] contains 197 categories of605

automobiles, in which the set to be protected includes 8144 images, and the test set contains 8041606

images. Similar to ImageNet-Subset, images are processed to be 224×224.607

Table 4 summarizes the information about the datasets used for classification tasks. We delay the608

details of data preparation for the style mimicry task to Appendix B.5.609

Table 4: Dataset details.
Protection Reference Test Categories Balanced

CIFAR-10 40,000 10,000 10,000 10 ✓
CIFAR-100 40,000 10,000 10,000 100 ✓

ImageNet-Subset 25,000 10,000 50,000 100 ✓
WebFace-Subset 25,000 15,179 4,518 100 ✗

Cars 8144 - 8041 197 ✓
Pets 3680 - 3669 37 ✓
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B.2 Protection610

For CIFAR-10/100, ImageNet-Subset, and WebFace-Subset, we generate the availability attacks on611

the combination of the protection set and reference set to simulate the exact protection mechanism.612

The additional paired data are collected from the original and protected reference datasets. In Ap-613

pendix C.12, we will investigate more protections whose generation does not involve a reference614

dataset and present additional results showing the consistent effectiveness of BridgePure against615

them.616

For Cars and Pets, the protection generation of UC(-CLIP) is determined by the clustering of the617

protection dataset. The generated protection can be easily applied to unseen data. Thus, we collect618

additional paired data from the protected test dataset.619

For style mimicry protection, we will detail the implementation of Glaze and Mist in Appendix B.5.620

B.3 BridgePure621

Training. We train BridgePure from scratch using each paired dataset for 100,000 steps. The622

batch size is 256 for CIFAR-10, CIFAR-100; 32 for WebFace-Subset; 16 for ImageNet-Subset,623

Cars, Pets, and @nulevoy’s artwork. Training on CIFAR-10/100 and WebFace-Subset can run on a624

single NVIDIA L40S/RTX 6000 Ada GPU with 40 GB of memory. Training on ImageNet-Subset,625

Cars, and Pets can run on a single NVIDIA A100 GPU with 80 GB of memory. Training on artwork626

can run on 4 NVIDIA A100 GPUs in parallel. By default, we use the VE mode for bridge models627

and will compare VE and VP modes in Appendix C.11.628

Sampling. We adopt a 40-step sampling for all evaluated datasets. As recommended by DDBM629

[76], the guidance hyper-parameter is set to 1 for VP bridge models and to 0.5 for VE bridge models.630

B.4 Evaluation for Classification631

To evaluate the restoration of availability, we train classifiers on the original/protected/purified632

datasets (i.e., protection set in Table 4) and calculate their accuracy on the test set. If not other-633

wise stated, we train a ResNet-18 classifier for 120 epochs using an SGD optimizer with an initial634

learning rate of 0.1, a momentum of 0.9, and a weight decay of 0.0005. The learning rate decays by635

0.1 at the 80th and 100th epochs. The batch size is 128. For ViT and CaiT, we use Adam optimizer636

with an initial learning rate of 0.0005. We follow the evaluation setting from Zhang et al. [74] for637

UC and UC-CLIP.638

For contrastive learning, we train an encoder with the ResNet-18 backbone using SimCLR with639

a temperature of 0.5. The batch size is 512. We use an SGD optimizer with an initial learning640

rate of 0.5, a momentum of 0.9, and a weight decay of 0.0001. The learning rate scheduler is cosine641

annealing with a 10-epoch warm-up. The linear probing stage uses an SGD optimizer for 100 epochs642

with an initial learning rate of 1.0 and a scheduler that decays by 0.2 at 60, 75, and 90-th epochs.643

B.5 Style Mimicry644

Artwork. After obtaining the artist’s permission via email, we collect @nulevoy’s artwork from645

his homepage on ArtStation. The paintings are 1920×1080 pixels. Since Hönig et al. [21] verified646

that Stable Diffusion v2.1 without fine-tuning fails to generate paintings of @nulevoy’s style, it is647

reasonable to use these artworks for the style mimicry task.648

Protections. Glaze v2.1 takes an image of any shape as input and outputs a modified image of the649

same shape. Since it is a closed-source tool that only supports Windows and macOS platforms, we650

process the paintings on a MacBook Pro with an M3 Max chip. The protected paintings have the651

same shape as the original ones. The protection intensity is High and the render quality is Slowest.652

Mist takes square images and outputs images of the same shape. However, the max size it supports653

is 768×768. To preserve the object ratios in the painting and the image quality, we first resize the654

short edge of images to 768, center-crop them to square ones, and then feed them into Mist. The655

resulting protected paintings are 768×768 pixels.656
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Mimicry pipeline. We adopt the style mimicry implementation from Hönig et al. [21], which657

involves fine-tuning Stable Diffusion v2.1 [50] using a set of captioned paintings. For fine-tuning,658

the images are first center-cropped to 512×512 and their captions are auto-generated by a BLIP-659

2 model [31]. The fine-tuned model generates 768×768-pixel images based on predefined test660

prompts.661

We randomly select 20 paintings from artist @nulevoy for fine-tuning and use the same 10 prompts5662

from Hönig et al. [21] to evaluate the mimicry performance. For Mist, the mimicry process performs663

center-cropping on the 768×768 squared images, while for Glaze, the mimicry process performs664

center-cropping on the original images.665

BridgePure implementation. Assume a protection leakage consists of 5 or 10 pairs of original666

and protected artwork. To augment this dataset, we randomly crop the artwork to 512×512 pixels,667

generating a paired dataset with 1,000 pairs of paintings. BridgePure is then trained using this668

augmented paired dataset.669

For the style mimicry task, the protected fine-tuning set comprises 20 paintings, which are center-670

cropped to 512×512 pixels from the protected outputs of Glaze or Mist. BridgePure sanitizes these671

images, and the purified outputs are subsequently fed into the mimicry pipeline.672

C Additional Experiment Results673

C.1 Time Consumption674

On our machine with NVIDIA A100 GPUs, training a BridgePure on CIFAR-10/100 costs around675

22.5 hours with a single GPU, and that on ImageNet-Subset costs around 24 hours with a single676

GPU. For sampling a batch of 64 images from ImageNet-Subset with a single GPU, BridgePure677

costs 138 seconds on average while DiffPure (t∗=0.1) costs 165 seconds.678

On one hand, we empirically observed that early-stopping could reduce the time cost in BridgePure679

training. For example, BridgePure-4K trained with 40K steps on WebFace-Subset, which only680

costs 450 minutes in training, recovers the test accuracy of EM/LSP/TAP-protected dataset to681

87.88/87.87/87.61%. On the other hand, BridgePure follows an offline training scheme similar682

to other models—once trained, the model can purify an unlimited number of protected samples683

within the same domain. The additional computational overhead for each new sample is limited to684

inference cost only, which is minimal compared to the initial training. In other words, the purifica-685

tion cost for each image is amortized. Therefore, the training consumption shows no obstacle for686

malicious adversaries.687

C.2 Visualization of Sanitized Images688

We show original, protected, and BridgePure-purified images from CIFAR-10 and WebFace-Subset689

in Figure 9. Although availability attacks make perturbations less noticeable by imposing norm690

constraints, upon zooming in and comparing the protected image with the original, one can observe691

slight differences. However, images purified by BridgePure are indistinguishable from the original692

to human eyes.693

C.3 Additional Generated Images in Style Mimicry Task694

Figure 10 provides additional generated images in the style mimicry task investigated by Section 5.3.695

As discussed in Section 5.3, BridgePure eliminates the protective cloaks in the mimicry outputs.696

5The prompts for style mimicry include “a mountain by nulevoy”, “a piano by nulevoy”, “a shoe by
nulevoy”, “a candle by nulevoy”, “a astronaut riding a horse by nulevoy”, “a shoe with a plant growing inside
by nulevoy”, “a feathered car by nulevoy”, “a golden apple by nulevoy”, “a castle in the jungle by nulevoy”,
and “a village in a thunderstorm by nulevoy”.
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C.4 Purification Quality for Style Mimicry697

Figure 11 compares the purification effects with recent methods, including GrIDPure [75],698

PDM [68], and NoisyUpscaling [21]. For both Glaze and Mist, BridgePure-10 effectively removes699

the protective cloaks, whereas other methods leave behind visually perceptible patterns.700

Since PDM performs comparably to BridgePure, Figure 12 provides a comparison of the fine details701

in the purified paintings. PDM automatically smooths out sharp brushstrokes, whereas BridgePure702

preserves them perfectly. The preservation of these details is crucial for faithfully mimicking the703

artist’s style. Our results demonstrate that BridgePure achieves superior purification performance,704

particularly in preserving fine details while effectively removing protection cloaks.705

C.5 Minor Protection Leakage706

In previous tables, we report the results of BridgePure trained with protection leakage ranging from707

500 to 4000 pairs. Figure 13 investigates the performance of BridgePure with less leakage, i.e.,708

from 20 to 500 pairs, on CIFAR-10 and CIFAR-100 protected by LSP. For CIFAR-10, 100 pairs are709

sufficient for BridgePure to improve the test accuracy to 93%, while for CIFAR-100, BridgePure-710

100 only restores the accuracy to 50%, and BridgePure-200 improves it to 69%. This difference in711

purification performance with minor protection leakage is because CIFAR-100 has 10 times more712

categories, and thus, the leakage in each class is much less than that for CIFAR-10.713

C.6 Comparison with Augmentation-Based Methods and Protection Dilution714

Figure 14 shows the detailed performance comparison with augmentation-based methods and pro-715

tection dilution on CIFAR-10 and CIFAR-100, complementary to Figure 2. The augmentation-based716

methods include Cutout, Cutmix, Mixup, Gaussian Blur, Grayscale, JPEG Compression, bit depth717

reduction(BDR), and UEraser [45]. Regarding protection dilution, Dilution-4K means adding 4,000718

unprotected images to the protected dataset and training a classifier using the combined data. On719

both CIFAR-10 and CIFAR-100, our BridgePure-0.5K (sky blue dots in figures) consistently sur-720

passes these other methods (dots with other colors).721

Furthermore, it is well known that availability attacks are sensitive to the dilution of clean images.722

That is, mixing some unprotected images into the protected dataset could improve the test accuracy723

of trained classifiers. However, protection leakage poses a much more severe risk than protection724

dilution since it exposes the protection mechanism. Table 5 compares BridgePure with dilution on725

CIFAR-10 and CIFAR-100. With the same number of accessible unprotected images, BridgePure726

shows much better availability restoration than dilution.727

Table 5: Comparison between BridgePure and protection dilution. For example, Dilution-4K means
adding 4,000 unprotected images to the protected dataset and training a classifier using the combined
data.

AR DC EM GUE LSP NTGA OPS REM TAP Average

CIFAR10

Dilution-0.5K 36.6 46.4 43.6 45.8 48.5 54.7 54.0 42.5 71.3 49.3
BridgePure-0.5K 93.9 93.8 93.6 93.7 93.8 94.1 93.3 84.3 86.8 91.9
Dilution-4K 79.6 80.3 77.9 79.4 80.1 80.7 80.6 79.2 84.9 80.3
BridgePure-4K 93.6 93.8 93.9 93.8 93.9 93.9 93.5 93.5 92.9 93.7

CIFAR100

Dilution-0.5K 15.8 51.9 14.0 31.3 13.5 15.9 28.2 17.7 27.7 24.0
BridgePure-0.5K 67.5 73.7 73.2 72.7 73.3 69.1 74.2 66.5 62.8 70.3
Dilution-4K 48.7 64.4 40.6 52.8 45.2 46.3 52.1 42.0 54.6 49.6
BridgePure-4K 72.4 74.0 73.5 73.9 74.6 74.2 74.2 73.0 71.0 73.4

C.7 Mixture of Protection728

The mechanism P could possibly employ multiple availability attacks to protect data. In such cases,729

the protection leakage also contains a mixture of differently protected pairs. In Table 6, we consider730

a scenario in which P randomly applies one of five attacks to a given input data. We observe that,731

firstly, the mixture of protection harms the protection performance and this approach is not desirable;732
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secondly, BridgePure is still very effective in restoring availability when the leakage amount is733

relatively small.734

Table 6: Purification performance in the mixed-attacks scenario, where five availability attacks in-
cluding AR, EM, LSP, OPS, and TAP are randomly applied.

Protected BridgePure
0.25K 0.5K 1K

CIFAR-10 (94.01) 61.60±1.78 93.00±0.26 93.14±0.24 93.01±0.20

CIFAR-100 (74.27) 51.57±2.15 71.31±0.50 72.00±0.24 72.77±0.33

C.8 Evaluation with More Network Architectures735

In Table 7, we evaluate the purified CIFAR-10 datasets for classification using various network736

architectures, including SENet-18 [22], MobileNet v2 [53], DenseNet-121 [23], ViT [11], and CaiT737

[63]. It shows that the purification effect of BridgePure is consistent across networks.

Table 7: We evaluate BridgePure-1K-sanitized CIFAR-10 datasets using different network architec-
tures. The baseline is trained on unprotected data.

Baseline AR DC EM GUE LSP NTGA OPS REM TAP

SENet-18 94.00±0.18 91.79±0.26 93.78±0.12 93.73±0.11 93.77±0.31 93.96±0.15 93.96±0.18 93.28±0.16 92.32±0.36 87.37±0.10

MobileNet v2 90.60±0.29 87.63±0.44 90.29±0.11 90.17±0.18 90.40±0.10 90.43±0.15 90.73±0.42 90.32±0.12 89.03±0.38 84.54±0.24

DenseNet-121 94.44±0.15 92.24±0.16 94.32±0.23 93.92±0.29 94.11±0.14 94.07±0.16 94.37±0.10 93.74±0.12 92.93±0.24 87.75±0.26

ViT 84.80±0.15 84.61±0.27 84.48±0.50 84.26±0.11 83.94±0.52 84.80±0.39 84.82±0.21 84.89±0.43 83.95±0.08 80.05±0.34

CaiT 82.73±0.23 82.53±0.18 82.20±0.78 81.91±0.45 81.58±0.43 82.55±0.21 82.71±0.15 82.41±0.25 81.90±0.15 78.09±0.33

738

Table 8: Transferablity of BridgePure-4K across CIFAR-10 and CIFAR-100. For example, CIFAR-
100 → CIFAR-10 means BridgePure is trained using protection leakage of CIFAR-100 and is used
to purify protected CIFAR-10. Here s = 0.33 and β = 0.

Transfer AR DC EM GUE LSP NTGA OPS REM TAP

CIFAR-100 → CIFAR-10 Protected 13.52±0.63 15.10±0.81 23.79±0.13 12.76±0.44 13.85±0.96 12.87±0.23 13.67±1.80 20.96±1.70 9.51±0.67

(94.01±0.15) Purified 32.16±0.36 37.33±3.05 63.90±0.80 27.65±0.73 90.26±0.26 65.94±1.02 93.43±0.27 30.22±0.78 78.18±0.55

CIFAR-10 → CIFAR-100 Protected 2.02±0.12 36.10±0.67 6.73±0.12 19.50±0.48 2.56±0.16 1.51±0.22 12.18±0.52 7.07±0.19 3.59±0.12

(74.27±0.45) Purified 13.74±0.26 53.22±0.78 42.96±0.50 33.55±0.62 54.33±0.93 28.91±1.53 58.18±1.74 15.89±0.14 41.75±0.32

C.9 Transferability across Protections739

Although Appendix C.7 demonstrates that randomly mixing multiple protection mechanisms fails740

to hinder an adversary from deriving an effective BridgePure, we consider a different scenario in741

which the adversary collects some additional data Da but calls a different protection mechanism P ′,742

derives a BridgePure using such pairs, and then purifies a dataset protected by P . In this case, the743

purification ability of BridgePure reflects its transferability across different protections.744

On classification tasks, Figure 15 shows that BridgePure has limited transferability across protec-745

tions, and advanced purification relies on the awareness of the underlying mechanism for the pro-746

tected data.747

On style mimicry tasks, Figure 16 shows that BridgePure trained on Mist effectively purifies Glaze-748

protected paintings, and BridgePure trained on Glaze largely reduces Mist-patterns in the generated749

paintings.750

In summary, although BridgePure exhibits varying degrees of cross-protection transferability on751

different tasks, this does not undermine the main claim of this paper—namely, that the protection752

leakage outlined in the threat model poses a serious security risk.753

C.10 Transferability across Data Distributions754

In our threat model, we assume the additional dataset Da is sampled from the same distribution as755

that for D. Now we consider a different scenario where an adversary cannot collect additional data756
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from the same distribution but from another distribution, e.g., D is from CIFAR-10 and Da is from757

CIFAR-100, or vice versa.758

On classification tasks, we investigate the influence of such distribution mismatch on the purification759

performance of BridgePure in Table 8. When BridgePure is trained on pairs from CIFAR-100 and760

is used to purify protected images from CIFAR-10, the accuracy for OPS and LSP is over 90%, but761

that for other protections is lower than 80%. When BridgePure is trained on pairs from CIFAR-10762

and is used to purify protected images from CIFAR-100, the accuracy for all nine protections is763

lower than 60%. The reasons why BidgePure transfers well from CIFAR-100 to CIFAR-10 for LSP764

and OPS could be (1) OPS and LSP create rather regular patterns for protection while other methods765

generate irregular patterns (see Figure 9); (2) CIFAR-100 is more fine-grained than CIFAR-10 and766

thus CIFAR-100 pairs might cover the protection mechanism for CIFAR-10.767

On style mimicry tasks, we train BridgePure using painting pairs by the renowned Impressionist768

artist Claude Monet and use it to purify protected @nulevoy’s artwork. Figure 17 shows that the769

generated images are free of any protective patterns, indicating that BridgePure transfers well across770

different art styles.771

C.11 Comparison between VE and VP Bridges772

DDBM [76] supports two modes for the diffusion process: variance exploding (VE) and variance773

preserving (VP). Figure 18 compares the performance of VE and VP bridges on CIFAR-10 and774

CIFAR-100. When facing REM and TAP attacks on CIFAR-100, the VE bridge consistently outper-775

forms the VP bridge for two values of s. In other cases, the purification effects of the two modes are776

comparable. Therefore, we adopt the VE bridge as the default setting in this paper.777

Table 9: Purification performance on CIFAR-10 and CIFAR-100 against EMC*, OPS* and TAP*
protections.

EMC* OPS* TAP* EMC* OPS* TAP*
CIFAR-10 (94.01±0.15) CIFAR-100 (74.27±0.45)

Protected 13.05±0.54 12.01±0.97 7.68±0.50 1.41±0.11 12.44±0.66 3.24±0.32

BridgePure-0.5K 93.98±0.17 92.99±0.02 80.20±0.28 74.46±0.16 73.70±0.14 59.31±0.38

BridgePure-1K 94.06±0.10 93.52±0.30 82.44±0.40 74.54±0.17 74.26±0.16 63.79±0.29

BridgePure-2K 93.85±0.17 93.14±0.23 90.55±0.23 74.22±0.39 74.38±0.25 63.01±0.56

BridgePure-4K 93.95±0.15 93.92±0.08 93.07±0.19 74.00±0.39 74.36±0.38 69.92±0.13

C.12 More Discussion on Protection for Additional Data778

Note that our threat model assumes that the protection mechanism P can generate (unprotected,779

protected) pairs using only the additional data Da. While some availability attacks such as LSP, UC,780

UC-CLIP, Glaze, and Mist are precisely examined in this way, some other attacks may not fit exactly781

into the threat model. For example, EM and REM generate sample-wise protection on the dataset782

they optimize. Thus performing the protections on D and Da separately may result in different783

protection mechanisms.784

To ensure that the protection is consistent for D and Da, we generate the protection using both D785

and the reference set from which Da is sampled and evaluate the attacks in Tables 1 and 2. This may786

pose a slightly stronger protection leakage that allows an adversary to directly obtain the additional787

pairs. Here we consider three additional variants of the attacks we considered previously and allow788

access to Da only:789

• EMC*: We generate class-wise EM protection [24] using the 40K images to be protected790

and apply the protection to additionally collected data.791

• OPS*: Similar to EMC*, we generate OPS protection [67] using the 40K images to be792

protected and apply the protection to additionally collected data.793

• TAP*: The reference classifier is trained on the 40K images, and the protection for addi-794

tional data is to search adversarial examples for this classifier [14].795

We evaluate these three protections on CIFAR-10 and CIFAR-100 in Table 9 and the results confirm796

the potent purification ability of BridgePure that is consistent with the previous results in Section 5.2.797
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D Countermeasures and Broader Impacts798

D.1 Possible Countermeasures against Protection Leakage799

To prevent malicious adversaries from training a powerful BridgePure model, the most effective800

strategy is to restrict their access to protection leakage (paired data) derived from unauthorized801

sources. While it may be impossible to stop adversaries from acquiring a limited number of unpro-802

tected images, the critical safeguard is to limit their ability to use the protection mechanism (e.g., an803

API) to generate the corresponding protected versions. To implement this, we propose the following804

recommendations:805

• Include special parameters or random seeds in open-sourced methods to control repro-806

ducibility. In real-world deployment, such configurations should prevent malicious adver-807

saries from fully replicating the protection algorithm.808

• Avoid offline protection services, such as standalone applications, as they lose control over809

the invocation of the protection mechanism and cannot prevent protection leakage. Offline810

data protection services should not guarantee strong security.811

• Incorporate identity and data ownership verification into protection services. For exam-812

ple, in the case of artistic style protection, users should be required to declare and prove813

copyright ownership of the artwork to be protected, subject to provider review. The service814

should maintain a registry of verified styles and enforce that: (1) No single style can be815

registered by multiple users. (2) No single user can register multiple, conflicting styles. (3)816

Each user may only protect artworks consistent with their registered style.817

An alternative line of defense against the BridgePure threat is to design protection mechanisms818

that are resilient to its purification capabilities. However, to the best of our knowledge, no exist-819

ing availability attack or copyright protection method has been proposed that can effectively resist820

purification techniques based on diffusion models. Given that BridgePure directly learns the trans-821

formation between distributions—rather than relying on the traditional noise-adding and denoising822

pipeline—we believe that developing robust protection methods specifically against BridgePure rep-823

resents a more compelling and challenging direction for future research, with promising potential824

for broad real-world applications.825

D.2 Broader Impacts826

This research focuses on the reliability of data protection methods in real-world scenarios. Through827

the deployment of BridgePure, we discovered that limited protection leakage can lead to the failure828

of existing protection mechanisms. Our findings have profound implications for the community.829

It underscores the urgent need for more resilient data protection frameworks. Additionally, it in-830

forms researchers and practitioners about the risks associated with current black-box protection831

approaches, fostering the development of more secure methodologies. Finally, it empowers data832

owners and service users by increasing awareness of the potential weaknesses in protection systems,833

helping them make more informed decisions when sharing sensitive data.834
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Figure 9: Visualization of our BridgePure-1K on CIFAR-10 (top) and WebFace-Subset (bottom).

Figure 10: Additional results to Figure 7. Performance of BridgePure-5 (left) and BridgePure-10
(right) for style mimicry.
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(a) Purifying Glaze-protected @nulevoy’s paintings.

(b) Purifying Mist-protected @nulevoy’s paintings.

Figure 11: Paintings purified by recent purification methods and BridgePure-10.

Figure 12: Comparison of purified painting details (cropped from Figure 11) between PDM and
BridgePure. Red boxes emphasize the details that PDM blurs.
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Figure 13: Purification performance of BridgePure with small protection leakages to purify LSP-
protected CIFAR-10 (left) and CIFAR-100 (right). Here β = 0 and s ∈ {0.33, 0.8}.
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Figure 14: Performance comparison with augmentation-based methods, and protection dilution on
CIFAR-10 (left) and CIFAR-100 (right). The sky blue dots show the performance of BridgePure-
0.5. Dots with other colors stand for other circumvent methods. The dashed lines represent the
unprotected baselines. The higher the dots, the better the accuracy recovery.
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Figure 15: Transferablity of BridgePure-4K across different protections on CIFAR-10. The x-axis
represents the protection leakage on which BridgePure is trained. The y-axis represents the pro-
tected dataset to which the pre-trained BridgePure is applied for purification. Each cell shows an
improvement in test accuracy compared to the unpurified dataset. Here s = 0.33 and β = 0.
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Figure 16: Transferability across style mimicry protections. Left: Using BridgePure-10 trained
with (clean, Glaze-protected) pairs to purify Mist-protected paintings. Right: Using BridgePure-10
trained with (clean, Mist-protected) pairs to purify Glaze-protected paintings. Top: Clean paint-
ings by @nulevoy, protected ones, and BridgePure-purified ones. Bottom: Mimicked artwork by
prompting the Stable Diffusion v2.1 that is fine-tuned on the BridgePure-purified paintings.
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Figure 17: Transferability across datasets for style mimicry. We train BridgePure-10 on Monet’s
paintings and use it to purify @nulevoy’s protected artwork. Left: Both Monet’s and @nulevoy’s
paintings are protected by Mist. Right: Both Monet’s and @nulevoy’s paintings are protected by
Glaze. Top: Clean paintings by @nulevoy, protected ones, and BridgePure-purified ones. Bottom:
Mimicked artwork by prompting the Stable Diffusion v2.1 that is fine-tuned on the BridgePure-
purified paintings.
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Figure 18: Comparison between VP and VE modes of BridgePure-1K with s = 0.33 (left) and with
s = 0.8 (right). Here β = 0.
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