@‘ Mulberry: Empowering MLLM with o1-like
Reasoning and Reflection via Collective Monte Carlo
Tree Search

2,3.* | Jiaxing Huang'*™, Wenhao Wu?, Jingyi Zhang', Yibo Wang?, Shunyu Liu’,

Yingjie Wang', Yuxin Song®, Haocheng Feng®, Li Shen*, Dacheng Tao'™
! Nanyang Technological University ? Tsinghua University ® Baidu Inc. * Sun Yat-sen University
* Equal Contribution & Corresponding Author

Huanjin Yao

Abstract

In this work, we aim to develop an MLLM that understands and solves questions
by learning to create each intermediate step of the reasoning involved till the final
answer. To this end, we propose Collective Monte Carlo Tree Search (CoMCTS), a
new learning-to-reason method for MLLMs, which introduces the concept of collec-
tive learning into “tree search” for effective and efficient reasoning-path searching
and learning. The core idea of CoOMCTS is to leverage collective knowledge from
multiple models to collaboratively conjecture, search and identify effective reason-
ing paths toward correct answers via four iterative operations including Expansion,
Simulation and Error Positioning, Backpropagation, and Selection. Using CoM-
CTS, we construct Mulberry-260k, a multimodal dataset with a tree of rich, explicit
and well-defined reasoning nodes for each question. With Mulberry-260k, we
perform collective SFT to train our model, Mulberry, a series of MLLMs with
ol-like step-by-step Reasoning and Reflection capabilities. Extensive experiments
demonstrate the superiority of our proposed methods on various benchmarks. Code
is available at https://github.com/HJYa000/Mulberry.

1 Introduction

“What I cannot create, I do not understand.”
—Richard Feynman

Multimodal large language models (MLLMs) embody the essence of this dictum, which understand
the world by learning to create expected responses to multimodal inputs such as images and text.
While MLLMs have recently shown significant progress in straightforward tasks [, 2], they often
experience obviously increased failures on complex tasks requiring in-depth reasoning [3]. Feynman’s
dictum might be the perfect metaphor of such failures of MLLMs, as we should only be able to
work something out if we can create and have a firm understanding of each step of the reasoning
involved. However, current MLLMs predominantly operate in a simple “direct prediction” mode [4],
i.e., generating brief, final answers to questions with little explicit and well-defined intermediate
reasoning steps.

In this work, we aim to develop an MLLM that understands and solves questions by learning to
create each intermediate step of the reasoning involved till the final answer. Recent advances in
NLP, such as OpenAl ol [3]], have shown great potential in enabling LLM to learn to reason and
tackle complex language tasks [6]]. The core design of these advances lies in AlphaGo-like “tree
search”: they employ tree search methods, like MCTS [7]], to bootstrap an LLM itself to build a tree
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Figure 1: (a) Our COMCTS shows great superiority in search effectiveness and efficiency against
other tree search methods. (b) Our Mulberry, trained on CoMCTS-searched data, outperforms
most open-sourced MLLMs and achieves competitive results against closed-source ones, showing
outstanding abilities in step-by-step reasoning and reflection.

of intermediate thoughts, explore effective reasoning paths, and leverage these paths to teach model
to reason step-by-step.

An intuitive idea is to directly apply these “tree search” methods to search effective reasoning paths
for MLLMSs, which, however, does not work well. As shown in Figure |I|, we believe this is largely
attributed to several search challenges for MLLMs. (1) Search Effectiveness: Traditional MCTS
methods [7} 18,19} [10] generally work by self-bootstrapping while current MLLMs are typically trained
with little explicit and well-defined intermediate reasoning steps, making these search methods often
trapped in homogeneous low-quality nodes within the reasoning space of a single MLLM, ultimately
leading to low search success rates. (2) Search Efficiency: Traditional MCTS methods typically
expand and explore only one reasoning node per search iteration, which advance a single step each
time and demand massive iterations, making them inefficient for computation-intensive MLLMs.

To tackle these challenges, we propose Collective Monte Carlo Tree Search (CoMCTS), a new
learning-to-reason method for MLLMs, which introduces the concept of collective learning into “tree
search” for effective and efficient reasoning-path searching and learning. The core idea of COMCTS is
to leverage collective knowledge to collaboratively conjecture, search and identify effective reasoning
paths toward correct answers. Specifically, CoMCTS searches effective reasoning paths iteratively,
and in each iteration, it leverages collective knowledge from multiple MLLMs to jointly (a) expand
diverse and complementary candidate subsequent reasoning nodes till the end from a given start
node, (b) simulate reasoning outcomes, position error candidate nodes and prune them along with
their child nodes, (c) backpropagate to update the score and visit count of each reasoning node in a
bottom-up manner, and (d) select the leaf reasoning node with the highest Upper Confidence Bound
value as next start node.

In this way, our CoMCTS achieves effective and efficient reasoning search. (1) The joint expansion
mechanism enables COMCTS to concatenate reasoning trajectories from multiple MLLMs via iterative
search, ultimately constructing an unified reasoning tree comprising diverse and complementary
reasoning nodes. Thus, it allows reasoning-path search not only within the reasoning space of a given
MLLM itself but also among those of others, benefiting from the synergy of multiple MLLMs while
avoiding being trapped in homogeneous low-quality nodes within the reasoning space of a single
MLLM itself. (2) The joint simulation and error positioning mechanism enables CoOMCTS to, in each
search iteration, skip multiple intermediate steps and select the last correct step as the next start node,
largely reducing search time while maintaining search effectiveness. Here, collective knowledge is
also crucial as it is often challenging for a model to recognize and position errors made by itself while
relatively easy by using other models.

Furthermore, we extend our COMCTS for reflective reasoning-path search. Based on the unified
reasoning tree constructed by CoMCTS, which provides both positive and negative reasoning nodes ,
we identify and integrate negative sibling nodes into effective reasoning paths to build the reflective
reasoning path that includes a transition from a negative reasoning node to a positive one. By learning
from reflective reasoning paths, MLLMs can perform appropriate step-wise reflection, dynamically
calibrating their reasoning trajectory from an erroneous node toward a correct one during long-chain
reasoning. Here, collective knowledge facilitates reflective reasoning-path search by providing a rich
set of diverse positive and negative reasoning nodes.



Using our COMCTS, we search effective and reflective reasoning paths for a set of multimodal inputs,
and construct Mulberry-260k, a Multimodal learning-to-Reason-and-Reflect dataset with a tree of
rich, explicit and well-defined reasoning nodes for each question. With Mulberry-260k, we perform
collective supervised fine-tuning to train our model, Mulberry, a series of Multimodal LLMs with
ol-like step-by-step Reasoning and Reflection capabilities.

The main contributions of this work are fourfold. First, we introduce the concept of collective
learning into MCTS, and propose CoMCTS which leverages collective knowledge to collaboratively
conjecture, search and identify effective and reflective reasoning paths for MLLMs, significantly
improving search effectiveness and efficiency. To the best of our knowledge, this is the first work
that explores collective learning with MCTS for MLLMs. Second, we construct Mulberry-260k
that provides a valuable resource for advancing research in step-by-step reasoning and reflection in
MLLMs. Third, we develop Mulberry, a series of MLLMs with outstanding capabilities in step-
by-step reasoning and reflection. Fourth, extensive experiments demonstrate the superiority of our
proposed methods on various benchmarks.

2 Related Work

2.1 Multimodal Large Language Model

MLLMs [} 20 114 12, [13) 1144 15, [16]] have made notable advancements in general vision-language
understanding, enabling them to interpret visual semantics across various domains. Recent studies [[17}
3| explore MLLM reasoning and reveal that directly employing CoT prompt to derive the final answer
may result in limited gains or even degradation. In addition, some studies [[18} [19] introduce plan-
based CoT prompting to guide models to generate intermediate information for predicting final
answers. Recent advances [4] attempt structured reasoning with a planed flow of certain pre-defined
stages, enhancing the CoT capabilities [15] of MLLMs. Differently, this paper, for the first time,
introduces the concept of “tree search” into MLLM reasoning and proposes a novel CoMCTS
technique to search effective and reflective reasoning paths to train our Mulberry, a series of MLLMs
with outstanding capabilities in step-by-step reasoning and reflection.

2.2 Large Language Model Reasoning

LLM reasoning methods can be broadly categorized into three types, i.e., prompt-based, plan-based
and learning-based reasoning. Prompt-based methods, like Chain-of-Thought (CoT) [20], mimic
human reasoning by providing a few hand-crafted, step-by-step solutions as references. Plan-based
methods, such as Tree/Graph-of-thought [21} [22]], predict multiple reasoning paths in a tree or
graph manner and take consistent units of thought for thoughtful decision-making. Learning-based
reasoning methods, represented by GPTol, Star [23]], Iter-MCTS [6] and ReST-MCTS [24], first
employ tree search approaches [25], like MCTS, to bootstrap an LLM itself to build a tree of
intermediate thoughts, explore effective reasoning paths, and leverage these paths to train model to
reason step-by-step.

2.3 Monte-Carlo Tree Search

Monte-Carlo Tree Search (MCTS) is a powerful search paradigm for complex decision mak-
ing problems and has been extensively explored across diverse fields, including games [26 27,
robotics [28| [29]], theorem proving [30]], matrices multiplication [31]], etc. For instance, AlphaGo [26]
introduces deep learning into MCTS, achieving superhuman results in board and video games [26, [27]].
Besides, [32,133]] explore MCTS for path finding and train timetabling problems, while [34] integrates
MCTS into physics-informed planning networks for robot control. In this work, we propose CoMCTS
that enables effective and reflective reasoning-path searching and learning on MLLMs.

24 Collective Learning

Collective learning, also known as Co-training, aims to harness collective intelligence of multiple
individuals to improve learning outcomes. This concept originates in early pioneering studies 35} 136,
371, which utilize collective knowledge to address data insufficiency issues in classification learning.
Recent advances introduce collective learning into deep neural networks for efficient and effective



deep learning. For example, [38,[39] employ collective knowledge from multiple classifiers to predict
more accurate pseudo-labels for semi-supervised classification; [40|] utilizes collective knowledge
from multiple discriminators to enhance image discrimination and generation; and [41] leverages the
synergy of multiple models for reinforcement learning.

3 Method

We first present COMCTS that introduces collective learning into “tree search” for effective and
efficient reasoning-path searching and learning. We then illustrate the extension of COMCTS for
reflective reasoning-path search, and describe data construction and model training using CoMCTS.

3.1 CoMCTS for effective reasoning

The core idea of CoMCTS is to leverage collective knowledge to collaboratively conjecture, search
and identify effective reasoning nodes in an iterative manner, aiming to find effective reasoning paths
leading to correct answers.

We denote a policy model as m, initialized by a pre-trained MLLM. We leverage collective knowledge
from a group of MLLMs {7y, 2, ..., Tk } to jointly search and learn effective reasoning paths.
Given a multimodal input question @ (e.g., a text instruction with an image, @ = {text,image}),
each model 7 can generate a sequence of intermediate reasoning states toward the final answer
(81,82, 83, ..., Sp1) ~ mp(+|Q) via autoregressive next token prediction. We define the intermediate
reasoning state at step m as s,,, and the state generated by model 7y, at step m as s%,. Each reasoning
step consists of one or a few sentences.

CoMCTS algorithm begins at the root node, i.e., either the start of a response or an incomplete
response, and performs reasoning-path search via a certain number of iterations, where each it-
eration comprises four key operations: (a) Expansion, (b) Simulation and Error Positioning, (c)
Backpropagation, and (d) Selection, as elaborated below.

(a) Expansion. The goal of this operation in CoMCTS is to expand the current leaf reasoning node
(if it is not a terminal node) to integrate new subsequent candidate reasoning nodes. Given the current
leaf node s’;;'l (i.e., the node selected by Operation (d) Selection or the root node), COMCTS utilizes
collective knowledge from a group of MLLMs, {7, 72, ..., Tk }, to jointly expand a set of diverse
and complementary candidate reasoning paths Scandidae = Ufil Sgandidate in parallel till terminal node:

j kY ok
Scandidale ~ Ty (|Q7 Parent(sm,)’ sm)? (1)
where Parent(s¥,) returns all parent nodes of s%, and (Parent(s¥,), s ) denotes the current reasoning
path from the root node to s¥,. S .. = {s!} stands for a potential reasoning path generated by
model ; starting from s®

(b) Simulation and Error Positioning. In this operation, COMCTS utilizes'collective knowledge
from {7y, 7o, ..., Tk } to jointly estimate the potential value of child nodes sf € Scandidate (added in

Operation (a)), and considers low-score nodes as erroneous reasoning nodes, and positions and filters
out them along with their child nodes:

j 1 o
R(s]) = e Z 7 (-|prompt,,,, @, Parent(s?), s7) 2)
=1
c*andidate = {SZ € SCandidate‘R(Sg) >= t} 3)

where R(s!) denotes a reasoning node evaluation function that uses the prompt, prompt,,,, to request
a group of MLLMs, {my, 2, ..., Tk }, to jointly evaluate the candidate reasoning node s. t is a
threshold and discontinued reasoning nodes in S are automatically removed following the

. candidate
error node removal in Eq.(3).

(c) Backpropagation. Given the new reasoning tree expanded and simulated using collective
knowledge in Operations (a)-(b), COMCTS performs a bottom-up update from the leaf nodes back to
the root node. Each node s along the newly expanded path in the reasoning tree updates its statistics,
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Figure 2: Overview. Our CoMCTS trains Mulberry with two alternating phases. In top part,
CoMCTS searches reasoning paths iteratively, and in each iteration, it utilizes collective knowledge
from multiple MLLMs to jointly (a) expand diverse and complementary candidate subsequent
reasoning nodes till the end from a given start node, (b) simulate reasoning outcomes, position error
candidate nodes and prune them along with their child nodes, (c) backpropagate to update the score
and visit count of each reasoning node in a bottom-up manner, and (d) select the leaf reasoning node
with the highest UCB value as next start node. In bottom part, we train the model to learn from the
reasoning trees constructed by CoMCTS.

including visit count NV and node value V:
N(s) - V(s) + 25, ecnilacs) Blst) @
N (s) + CountChild(S%, jigaer §)
N(s) < N(s) + CountChild( S, gidates S)s (5)

where Child(s) returns all the child nodes of s, and CountChlld(S

candidate’ S
function that calculates the number of child nodes of s in S, 4idate-

V(s) +

s) is a child node counting

(d) Selection. Following Operations (a), (b) and (c), COMCTS traverses the updated reasoning tree to
select the next starting node. This selection is guided by the Upper Confidence Bound (UCB) value,
which balances search exploration and exploitation. The UCB value of a node s is computed using

the node reward value V() and the visit count N (s). Among the candidate nodes s € S, ijae- the
one with the highest UCB value is chosen as the starting node sfn* for next search iteration:
-
sy, =argmaxV(s)+c- (6)

seS*

candidate

where c stands for a constant which controls the level of exploration. § denotes the parent node of s.

CoMCTS. These four operations, i.e., (a) Expansion, (b) Simulation and Error Positioning, (c)
Backpropagation and (d) Selection, are repeated for a pre-defined number of iterations or until correct
reasoning paths are found. This iterative process allows CoMCTS to construct a question-dependent
reasoning tree S with the correct reasoning path Y, and ultimately form a multimodal learning-
to-reason data triplet {Q,Y, S}. By applying our CoOMCTS to a set of multimodal questions, we
can construct a collection of multimodal learning-to-reason data triplets, which provide a tree of
rich, explicit and well-defined reasoning nodes toward the final answer for each question and enable
MLLMs to learn to reason step-by-step.

3.2 CoMCTS for reflective reasoning

In this subsection, we extend CoMCTS for reflective reasoning-path search. Based on the unified
reasoning tree constructed by CoMCTS, i.e., {Q, Y, S}, which provides both positive and negative



reasoning nodes, we identify and integrate negative sibling nodes into effective reasoning paths to
build the reflective reasoning path that includes a transition from a negative reasoning node to a
positive one.

Identifying negative sibling node. Given the effective reasoning path Y, we identify the negative
sibling reasoning node for s € Y using UCB:

Speg = argmin UCB(s;) — UCB(s), Vs €Y, (N
s1 €Sibling(s)

where Sibling(s) returns all the sibling nodes of s, i.e., the nodes on the same hierarchical level under

the same parent node of s. UCB(s) = V(s) + ¢+ lfff%((j))

as in Eq.H

Constructing reflective reasoning path. Based on Eq. [/} we randomly sample a reasoning node
s € Y with its negative sibling node s;cg, and concatenate them with a reflection prompt to form
a reflection trajectory, i.e., (Sneg, Prompt, g, s). We then use a function Replace(-) that replaces
s € Y with (Speg, prompt,.q..(, S) to convert Y into the reflective reasoning path Yepec:

Yieiee = Replace(Y, s, (Sneg, Prompt,g.., 5)), (8)

where prompt, ;... denotes a reflection prompt, such as “The previous reasoning step is wrong and

let’s rethink it again.” Then, we can integrate the reflective reasoning path Yeqec; into our data as a
quadruplet {Q, Y, Yiefieet, S} € D.

Collective Supervised Fine-Tuning (CoSFT). Given (Q,Y') € D, we apply standard SFT objective
to train our MLLM to learn from D constructed by CoMCTS:

Leosrr(me) = Y logmi(YQ), ©)
(Q,Y)eD

where Y = {s} denotes the effective reasoning path that includes a sequence of reasoning nodes
collectively conjectured, searched and identified by a group of MLLMs.

CoSFT for reflective reasoning. Given a question and its reasoning tree (), .S) € D constructed by
CoMCTS, we randomly sample a reflective reasoning path Yiegec from S as in Eqs and conduct
CoSFT for reflective reasoning:

LeosFrre(mr) = Y
(Q:}/reﬂecl)ep

where Yipeer = {s} denotes the reflective reasoning path that includes an additional step-wise
reflection trajectory.

log Tk (}/reﬂecl | Q)7 (10)

The goal of Lcosrr and LeosFrre is to maxi- Algorithm 1 Training Mulberry with COMCTS

mize the log probability of effective and reflec- Input: a set of policy models {7, 7, ..., T } ini-

tive reasoning path Y and Y.ger Over a tree
of reasoning nodes S generated by CoMCTS.
In addition, Lcosrrre €nables to leverage the
negative information during CoOMCTS search
process by learning to calibrate negative rea-
soning nodes.

3.3 Training with Collective MCTS

Using CoMCTS, we search effective and re-
flective reasoning paths for a set of multimodal
input questions, and construct Mulberry-260k,
a multimodal learning-to-reason-and-reflect
dataset with a tree of rich, explicit and well-
defined reasoning nodes for each question, i.e.,
a set of quadruplets {Q,Y, Yiefeet, S} € D.
To learn collective knowledge from Mulberry-
260k, we perform collective SFT to train
our model, Mulberry, a series of Multimodal
LLMs with ol-like step-by-step Reasoning
and Reflection capabilities.

tialized by different MLLMs; a set of multimodal
questions Dg
for i = I to MaxEpoch do
Reasoning Tree Search using CoOMCTS:
for Q) € Dg do
Collective Monte Carlo tree search:

{Q,Y,S} = COMCTS({m, 7o, ..., Tk }; Q)

if found an effective reasoning path then
Search and find Yiegec from S
Add {Q,Y, Yiefieet, S} into D
Remove @ from Dg
Model Training with CoMCTS Reasoning
Trees:
for k=11t K do
for (Qa K YI’eﬂect; S) € Ddo
Supervised Fine-Tuning:
Optimize 7, via Lcospr(mi) and
LcosFrre (k)

Output: Trained policy models {7, 72, ..., Tk }
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Figure 3: Qualitative illustration of reasoning tree searched by CoMCTS with rich, explicit, well-
defined reasoning nodes.

4 Experiments

In this section, we first introduce our CoMCTS-generated dataset, Mulberry-260K, including its
sources, construction, and analysis in Sec. 41| and provide implementation details in Sec.[#.2} We
then present the main results in Sec.[4.3] demonstrating the effectiveness of the searched data (i.e.,
Mulberry-260K) and the trained models (i.e., Mulberry). In Sec. [#4] we perform comprehensive
ablation studies on the impact of effective and reflective reasoning data and the contributions of
collective knowledge sources. Sec.[d.5]discusses the effectiveness and efficiency of COMCTS with
other tree search methods.

4.1 Dataset

The Sources of Raw Data. To construct a comprehensive and general-purpose tree-based reasoning
dataset, we collect 260K raw multimodal input questions (i.e., a text task instruction with an image as
an input question) from a wide range of domains, covering General Multimodal Understanding, Math-
ematics, Figure Understanding, Realworld Understanding, Science, Medical Image Understanding,
etc. The specific data sources are provided in the Appendix [I}

Reasoning Data Construction. As detailed in Sec. [3]and Algorithm [T]and visually illustrated in
Figures [2]and [3] we employ our COMCTS to search effective and reflective reasoning paths for a
set of raw multimodal input questions as collected from the mentioned “The Sources of Raw Data”,
ultimately constructing our dataset, Mulberry-260K. Note we only sample 15K data for reflective
reasoning training to avoid overabundance of reflection data.

4.2 Implementation Detail

We implement collective learning in CoMCTS with four models, including GPT-40, Qwen2-VL-7B,
LLaMA-3.2-11B-Vision-Instruct, and Qwen2-VL-72B, to construct Mulberry-260K. In CoMCTS,
we set maximum search iteration to 20 and threshold ¢ in Eq. |§| to 0. In each iteration, each model
generates one candidate reasoning path to balance search exploration and exploitation. We adopt
four popular MLLMs as baselines, conducting experiments on Qwen2-VL-7B and LLaMA-3.2-11B-
Vision-Instruct to examine the effectiveness of COMCTS, and on Qwen2-VL-2B and LLaVA-NeXT-
8B to study the generalization of COMCTS-searched data. Training details are in the Appendix B}

4.3 Main Results

To examine the effectiveness of searched data (i.e., Mulberry-260K) and trained models (i.e., Mul-
berry), we conduct extensive experiments with four powerful baseline models, and comprehensively
benchmark our Mulberry with various state-of-the-arts, including general and reasoning-based



Table 1: Main Results. To examine the effectiveness of the searched data (i.e., Mulberry-260K) and
the trained models (i.e., Mulberry), we conduct extensive experiments with four powerful baseline
models, and comprehensively benchmark our Mulberry with various state-of-the-arts, including
general and reasoning-based MLLMs.

Method MathVista MMStar MMMU ChartQA DynaMath HallBench MM-Math MME;,,,,, AVG
Closed-Source Model

GPT-4o0 [42] 63.8 63.9 69.1 85.7 63.7 55.0 31.8 2329  64.5
Claude-3.5 Sonnet [43] 67.7 62.2 68.3 90.8 64.8 55.0 - 1920 -
Open-Source Model

MM-1.5-7B [44] 47.6 - 41.8 78.6 - - - 1861 -
Idefics3-LLaMA3-8B [45] 58.4 55.9 46.6 74.8 - - - 1937 -
InternVL2-8B [46] 58.3 61.5 51.8 833 39.7 - - 2210 -
MiniCPM-V-2.6-8B [47] 60.6 57.5 49.8 - - 48.1 - 2348 -
DeepSeek-VL2-MOE-4.5B [48]  62.8 61.3 51.1 86.0 - - - 2253 -
Reasoning Model

LLaVA-CoT-11B [4] 54.8 57.6 - - - 47.8 - - -
LLaVA-Reasoner-8B [3] 50.6 54.0 40.0 83.0 - - - - -
Insight-V-8B [49] 49.8 574 42.0 77.4 - - - 2069 -
LLaVA-NeXT-8B [50] 375 42.1 417 69.5 22.7 334 0.6 1957 39.7
Mulberry-LLaVA-8B 56.3 54.5 43.0 79.5 34.1 475 18.9 2021 50.7'11
Llama-3.2-11B-V-Ins. [51] 48.6 49.8 41.7 83.4 34.3 40.3 4.1 1787 45.8
Mulberry-Llama-11B 61.1 58.5 45.6 83.5 37.2 48.9 18.7 2035 53.3751
Qwen2-VL-2B [2] 43.0 48.0 41.1 73.5 24.9 41.7 1.0 1872 425
Mulberry-2B 51.7 513 420 717 30.0 44.9 13.9 2013 47.9541
Qwen2-VL-7B [2] 58.2 60.7 54.1 83.0 42.1 50.6 5.9 2327 547
Mulberry-7B 63.1 613 550 839 45.1 54.1 23.7 2396 58.9%21

MLLMSs. The evaluation spans 8 widely used and challenging datasets, covering the fields ranging
from general and mathematical reasoning to hallucination and multi-disciplinary understanding and
reasoning in Tab.

Comparison with baselines. We first conduct experiments on baselines Qwen2-VL-7B and LLaMA-
3.2-11B-Vision-Instruct that are involved in collective learning of CoMCTS for joint reasoning-path
conjecture, search and identification. Trained with jointly-searched Mulberry-260k data, Mulberry-
7B and Mulberry-11B bring clear performance improvements against their baselines, i.e., +4.2%
over Qwen2-VL-7B and +7.5% over LLaMA-3.2-11B-Vision-Instruct averaged on 8 benchmarks,
validating the effectiveness of CoMCTS. On the other hand, we examine the generalization of
Mulberry-260k by applying it to train other models not involved in COMCTS, such as Qwen2-VL-2B
and LLaVA-NeXT-8B. Trained with Mulberry-260k, Mulberry-2B and Mulberry-8B enhance their
baselines with +5.4% and +11.0% gains, respectively, averaged on 8 benchmarks, demonstrating the
generalization of CoMCTS.

Comparison with reasoning-response models. We benchmark Mulberry with various state-of-the-
art reasoning-response models. Using the same base model LLaVA-NeXT-8B [50]], our Mulberry
outperforms LLaVA-Reasoner-8B and Insight-V-8B by +5.7% and +6.5% on mathematical benchmark
MathVista, and by +3.0% and +1.0% on multi-disciplinary benchmark MMMU, respectively. Besides,
Mulberry-11B surpasses LLaVA-COT-11B by +6.3% on MathVista under the same baseline LLaMA-
3.2-11B-Vision-Instruct. The great superiority of Mulberry is largely attributed to our CoMCTS,
which conducts collective tree search and generates rich, explicit and well-defined reasoning nodes
with flexible numbers of steps.

Comparison with state-of-the-arts. We compare our Mulberry with popular state-of-the-art models,
both open-source and closed-source. The results in Tab. [[|show that Mulberry, trained on COMCTS-
searched data, outperforms most open-sourced MLLMs and achieves competitive results against
closed-source ones, demonstrating outstanding abilities in step-by-step reasoning and reflection.

4.4 Ablation Study

Ablation Study on CoMCTS. We conduct ablation studies with powerful GPT-40 as the baseline
over 1K samples from Geo3K [52]] and GeoQA-Plus [53]], as shown in Tab. As the core of
CoMCTS, we examine how each model in the collective learning group contributes to the overall
tree search performance. Tab. [2|reports the Search Success Rates, and baseline GPT-40 works not



Table 2: Ablation Study on CoMCTS. We study Table 3: Ablation Study on Mulberry.

how each model in COMCTS collective learning con- As Mulberry is trained with effective and
tribute to overall tree search performance in Search reflective reasoning data searched by CoM-
Success Rate (S.S.R.). CTS, we study their respective contribu-
tions.
Direct Pred CoMCTS
GPT-40 |GPT-40 Qwen2-VL-7B Llama3.2-11B Qwen2-VL-72B SSR. Methods MathVista
v 58.2
v 63.8 Baseline 43.0
5 :; y 662 w/o Reflection Data (+245K)  50.9
7 i
i o Y v 2(9)‘2 w/ Reflection Data (+15K) 51.7

very well without tree search. It shows that COMCTS with only GPT-40 improves the performance to
63.8%, largely because our tree search designs like expansion, simulation and error positioning can
work even without using collective knowledge. Besides, progressively involving more models into
CoMCTS consistently improves the search performance, even with small models like Qwen2-VL-7B
(i.e., +2.4%), demonstrating the effectiveness of COMCTS in capturing useful collective knowledge
not only with large models but also from small models. In final, the inclusion of all four models in the
proposed CoMCTS performs clearly the best, i.e., 80.2%, validating the effectiveness of collective
learning on reasoning tree search.

Ablation Study on Mulberry. We train Mulberry with effective and reflective reasoning data
searched by CoMCTS and study their respective contributions to overall reasoning performance.
Results in Tab. [5Jon MathVista show that incorporating reflection data enhances performance by 0.8%,
demonstrating the complementarity of effective and reflective reasoning data searched by CoMCTS.

4.5 Discussion

Table 4: Comparison with other tree search meth-
ods. “GPT-40 (direct)” refers to baseline without tree
search. CoMCTS outperforms in search effectiveness
and efficiency.

Comparison with other tree search meth-
ods. We compare our COMCTS with other
tree search methods in search effective-
ness and efficiency, including the base-

line “GPT-4o0 direction prediction”, “tra-  Methods Search Success Rate T Average Search Iteration |
ditional MCTS [7]”, “ReST-MCTS [24]”  Gpr4o (direct) 582 B

that enhances MCTS by introducing par- MCTS 63.8 42.1

. « » ReST-MCTS 65.6 36.3

Flal search, and Omega—MCTS [9]” that Omega MCTS c6o 243
improves MCTS by designing binary search.  comeTs 80.2 12.7

Tab. 4] shows the results in search success
rate and average search iteration that indicate search effectiveness and efficiency respectively. We
can observe that existing tree search methods improve GPT-40 with limited gains. One main reason
lies in that traditional MCTS methods generally work by self-bootstrapping and often get trapped in
homogeneous low-quality nodes within the reasoning space of a single MLLM. On the other hand,
CoMCTS shows great superiority in search effectiveness and efficiency, thanks to the joint expansion
mechanism in COMCTS that allows reasoning-path search not only within the reasoning space of a
given MLLM itself but also among those of others, benefiting from the synergy of multiple MLLMs
while avoiding being trapped within the reasoning space of a single MLLM.

5 Conclusion

This paper presents COMCTS, a new learning-to-reason approach for MLLMs, which introduces the
concept of collective learning into “tree search” for effective and efficient reasoning-path searching
and learning. Based on the COMCTS, we search effective and reflective reasoning paths for a set of
multimodal inputs, and construct Mulberry-260k, a multimodal learning-to-reason-and-reflect dataset
with a tree of rich, explicit and well-defined reasoning nodes for each question. Using Mulberry-260k,
we train our model, Mulberry, a series of MLLMs with ol-like step-by-step Reasoning and Reflection
capabilities. Furthermore, extensive experiments, ablation studies and discussion demonstrate the
superiority of our proposed methods on various benchmarks. We hope that CoMCTS along with
Mulberry-260k and Mulberry will provides valuable resources and offer new insights for multimodal
MCTS search and reasoning.
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Appendix

We provide theorem statement and assumptions in Section[A] implementation details in Section [B]
more discussions in Section [C|and additional experiments in Section[D] In addition, we discuss the
relation to other studies in Section[E] provide the analysis of reasoning training data in Section[Fand
qualitative results in Section [G| Then, we provide the used prompts in Section [H] and the sources
of the raw data in Section E} In the end, we provide the analysis with error bars in Section [] and
discussion about the limitations in Section[Kl

A Theorem Statement and Assumptions

Theorem A.1 (CoMCTS Consistency). Let {my,ma,...,Tx} be a collection of models used in
CoMCTS. Suppose the following conditions hold:

1. The search space is finite, or after pruning below a threshold t, it remains effectively
traversable.

2. The return pg of each node s lies in a bounded interval [a,b] C R.
3. Nonzero generation probability and unbiased evaluation:

(a) For each model my, there exists €;, > 0 such that the probability of generating an
optimal branch is at least €.
(b) The collective evaluation function

K
1
R(s) = e Z 7rl<~ ‘ promptml,Q,Parent(s),s)
=1

has bounded bias, with controllable variance, approximating the true node value pi.
4. UCB Parameter: In the Selection phase, a UCB strategy with ¢ > 0 is used.

5. Repeated-Visit Opportunity: All candidate nodes above threshold t can be revisited with
positive probability; thus, as T — oo, each node not pruned is sampled infinitely often if it
remains promising.

Under these assumptions, as T — oo, the CoMCTS algorithm visits the optimal path infinitely often,
and the value estimate V' (s) converges to the true value 15 for each node.

Proof of Theorem [A.1]

Lemma A.2 (UCB Consistency [54]). In the multi-armed bandit setting with bounded i.i.d. rewards,

the UCBI strategy
— 1
UCB(k) = Xp + cy) =2
N

ensures that each suboptimal arm is pulled only finitely often, while the optimal arm is sampled
infinitely often. Consequently, X — pj asn — oo.

Lemma A.3 (Ensemble Near-Unbiasedness and Variance Control). Suppose fi1,. .., fix are unbiased
(or bounded-bias) estimators of some u, each with bounded variance. Then their average remains
close to p in expectation and can significantly reduce variance compared to a single estimator.

The proof proceeds by showing four key properties:

1. Optimal children appear in the tree due to nonzero expansion probability (e > 0).

2. Optimal nodes are not pruned, via Hoeffding’s inequality demonstrating that R(s*) > ¢
with high probability if s« > t.

3. UCB selection guarantees repeated visits for discovered optimal nodes.

4. Value estimates converge to the true values s under repeated sampling.
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Optimal Children Appear in the Tree

Let s* be a child node on the unknown optimal path. Each model 7, has probability ¢, > 0 of
generating s* during Expansion. If these events are approximately independent across k, the joint
probability of including s* is

K
Pexpansion = 1-— H(l — Gk) > 0.
k=1

Hence, after enough expansions, s* almost surely appears in the COMCTS search tree.

Optimal Nodes Survive Threshold-Based Pruning

Suppose s* is truly optimal, with pg« > t. In the Simulation and Error Positioning step, CoMCTS
computes

K
1
R(s*) = It Z m(- ‘ prompt,,,;, @, Parent(s™), s*)
=1
Let each individual score be X; within a bounded interval. Under near-unbiasedness (Lemmal[A.J)),

E[X;] ~ pse, E[R(s")] & ps=.
Define § = pg« —t > 0. Then

K K
Pr[R(s*) < ] = Pr[% Y X< t] - Pr[ZXl K e < —Kd]
=1 =1
By Hoeffding’s inequality, for X; and approximate independence, there holds

K
Pr{ZXl < Kt] < exp(—K(SQ).
=1

Therefore, a truly optimal node s* with pg« > ¢ is pruned with exponentially small probability,
implying s* remains in the tree almost surely.

UCB Selection Guarantees Repeated Visits

Nodes not pruned enter the Selection stage, using

UCB(s) = V(s) + ¢ llniNA(,Z))

where § is the parent of s. By analogy to multi-armed bandits (Lemmal|A.2), if s* is the highest-value
child, it gets chosen infinitely often. Hence N (s*) — oo as T — o0.

Value Estimates Converge

When a node s returns score R(s), backpropagation updates:

N(8) V(8) + 24, ccninacs) L(s1)
N(38) + CountChild(S:andidate, §) ’
N(8) « N(s5)+ CountChild(S* §)

candidate»

V(3) «+

As N(s*) — oo, the empirical average V' (s*) converges to s~ by standard arguments (e.g. the law
of large numbers for bounded returns). Ancestor nodes on the optimal path also receive increasingly
accurate updates, ensuring V' (s) — ps.

Combining all above results, we conclude that CoMCTS inherits the same consistency guarantees as
standard MCTS, with optimal paths ultimately visited infinitely often and V'(s) — ps.
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B Training Details

B.1 Implementation Details

CoMCTS implementation Details. We implement collective learning in CoOMCTS with four
models, including GPT-40, Qwen2-VL-7B, LLaMA-3.2-11B-Vision-Instruct, and Qwen2-VL-72B,
to construct Mulberry-260K. In CoMCTS, we set maximum search iteration to 20 and threshold ¢ in
Eq.[3]to 0. In each iteration, each model generates one candidate reasoning path to balance search
exploration and exploitation. In CoMCTS, we set the temperature to 0.9 for all models to balance
creativity and determinism. For all other hyperparameters, we use the same default values as in the
respective base models.

Model training details. In this paper, we use Mulberry-260K data searched by CoMCTS to train
the Mulberry series models based on four popular MLLMs, including both the search models
included in COMCTS (i.e., Qwen2-VL-7B and LLaMA-3.2-11B-Vision-Instruct) and the models not
within the search (i.e., Qwen2-VL-2B and LLaVA-NeXT-8B). We use the LLaMA-factory training
framework [S3] to train our models, using 8 NVIDIA H100 GPUs.

For the training scheme, all models are optimized for 2 epoch with the AdamW optimizer and a
cosine learning schedule. We fine-tune the models with a batch size of 128 and employ DeepSpeed
ZeRO-3 strategy to optimize memory consumption. A unified learning rate of 1e-5 is used for LLaVA-
NeXT-8B and LLaMA-3.2-11B-Vision-Instruct, while for Qwen2-VL-2B and Qwen2-VL-7B, the
learning rates are adjusted to 2e-5 and Se-6, respectively. As the number of tokens in the responses is
significantly greater than that of direct simple answers, the training time increases accordingly, as
detailed in Tab.

B.2 Training Loss Curve

We provide more in-depth training details regarding the training loss curve in Fig. ] Using the
Mulberry-260K dataset for collective supervised fine-tuning, consistent and stable training is achieved
across all four models, with the training loss steadily decreasing, demonstrating the training stability
of Mulberry-260K searched by CoMCTS.
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Figure 4: Training loss curve.
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Table 5: Training time. We provide the training time for Mulberry series models trained on Mulberry-
260K data generated by CoMCTS. The experiments are conducted on 8 NVIDIA H100 GPUs, using
Llama-Factory framework [55]].

Metrics Mulberry-LLaVA-8B Mulberry-Llama-11B Mulberry-2B Mulberry-7B
Training Time (hours) 12.5 11.2 4.5 6.0

C More Discussions

C.1 Detailed Comparison with the Existing COT Training Dataset

We provide detailed comparison of Mulberry-260K with the existing COT training dataset (i.e.,
LLaVA-Reasoner and LLaVA-CoT-100K) in Table[6] Table[6|compares key attributes such as dataset
size (number of images and QA pairs), average token length of questions and responses, and the
inclusion of reasoning and reflection. As shown, Mulberry-260K not only includes both reasoning
and reflection, but also provides longer and more informative responses, underscoring its value as a
CoT training resource.

Specifically, unlike LLaVA-Reasoner, which generates CoT reasoning by directly prompting GPT-4o,
Mulberry-260K employs the proposed CoMCTS search, producing step-by-step reasoning paths
that are not only longer but also feature more precise intermediate steps, benefiting from collective
expansion and error positioning in CoMCTS.

Different to LLaVA-CoT, which uses structured reasoning with a fixed flow of certain pre-defined
stages, Mulberry-260K leverages the proposed CoOMCTS to dynamically search for both reasoning
and reflection data, resulting in more detailed and logically coherent intermediate steps.

Furthermore, thanks to CoMCTS, Mulberry-260K is the first multimodal step-by-step reasoning
dataset equipped with reflective capabilities, fostering deeper exploration of reflection in MLLMs.

Table 6: Detailed comparison with the existing COT training dataset.

Datasets Images QA-Pairs Avg Question token Avg Response token Reasoning Reflection
LLaVA-Reasoner  ~404K  ~404K 314 122.0 Y N
LLaVA-CoT-100K ~100K  ~255K 232 2124 Y N
Mulberry-260K ~260K  ~260K 31.9 234.5 Y Y

C.2 Correctness of the Generated Reasoning Paths

As discussed in Limitation, neither our method nor advanced reasoning models (e.g., ol, QvQ,
DeepSeek-R1) can ensure every step is 100% correct. Similar limitations are noted in QvQ. Here, we
provide the manual evaluation of 100 reasoning paths. As shown in Table[7, our COMCTS yields a
much lower error rate in reasoning paths compared to MCTS.

Table 7: Manual evaluation of the correctness of the CoMCTS-generated reasoning paths.

Methods  Reasoning Path Error Rate

MCTS 42%
CoMCTS 18%

C.3 Training MLLMs on CoMCTS vs. Other Tree Search Data.

We examine the quality of the COMCTS generated data by providng the experiments using data
generated from standard MCTS. As shown in Table 8] models are trained on 26K samples searched
by MCTS and CoMCTS, respectively. By incorporating collective knowledge, COMCTS generates
more accurate reasoning paths, leading to a 2.1% performance improvement.
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Table 8: Training MLLMs on CoMCTS vs. other Tree Search data.

Methods MathVista
LLaMA-V-11B 48.6
MCTS 50.3
CoMCTS 52.4

D Additional Experiments

In this section, we include additional experiments on CoMCTS and Mulberry models. Unless
otherwise specified, the experiments in this section are based on the Qwen2-VL [2] model.

D.1 More Detailed Ablation Study on CoMCTS

We provide a more detailed analysis of search success rate in the CoMCTS ablation study in Table[9]
studying the direct predictions of search models and their performance in CoMCTS. We can observe
that due to the model’s limited reasoning capability, directly performing reasoning prediction with
a single model yields poor performance. When using only Qwen2-VL-7B, the success rate of
direct predictions is just 37.4%, and even the powerful closed-source model GPT-40 achieves only
58.2% accuracy in direct reasoning predictions. However, by leveraging tree search and collective
knowledge, our proposed CoMCTS significantly improves the search success rate to 80.2% with four
search models, demonstrating the effectiveness of CoMCTS.

Table 9: Ablation Study on CoMCTS. We study how each model in CoMCTS collective learning
contribute to overall tree search performance in Search Success Rate (S.S.R.).

Direct Prediction CoMCTS
GPT-40 Qwen2-VL-7B Llama3.2-11B Qwen2-VL-72B | GPT-40 Qwen2-VL-7B Llama3.2-11B Qwen2-VL-72B

v 58.2
v 37.4

v 35.4

v 48.3

63.8
66.2
69.7
v 80.2

S.S.R.

NNXXN
AN
N

D.2 Parameter Studies

Threshold ¢. We conduct a parameter study on the threshold ¢ of Equation [3|in CoOMCTS, analyzing
its impact on search success rate and average search iterations, as shown in Table[I0] In the COMCTS
tree, the node value V represents the quality of this reasoning step, and the threshold ¢ determines
whether the node is removed based on its value, thereby regulating the overall quality of nodes.
Setting ¢ to a higher value, i.e., t = 0.2, enhances the quality at each step but also slows down the
expansion of nodes. As the quality of each node improves, search models are more likely to find the
correct path within the collective search space, leading to an increase in search success rate. However,
as node expansion slows, the average search iterations increase significantly. Setting ¢ to a smaller
value, i.e., t = —0.2, increases the likelihood of nodes containing irrelevant information, disrupting
the reasoning process. This results in a slight decrease in search success rate and a modest increase
in average search iterations. On the other hand, setting the threshold as zero, i.e., ¢ = 0, achieves a
great trade-off in search success rate and average search iterations, balancing search effectiveness
and efficiency.

Temperature and repetition penalty. As shown in Tables|l I{I2] we also conduct extra hyperpa-
rameter studies (e.g., temperature and repetition penalty), indicating our method is tolerant to these
parameters.
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Table 10: Parameter Study of Threshold ¢. We study the impact of different threshold values ¢ in
Equation E]of CoMCTS on the search success rate and average search iterations.

Threshold Search Success Rate Average Search Iteration
-0.2 79.8 12.9
0 80.2 12.7
0.2 80.9 16.3

Table 11: Parameter Study of Temperature.

Temperature ~ Search Success Rate

0.7 80
0.8 79
0.9 (we use) 81
1.0 80
1.1 78

D.3 Discussion on Step Separators

We conduct experiments to discuss the impact of different step separators in Table [I[3] First, the
absence of step separators results in disorganized reasoning logic, leading to a notable decline
in model performance, with an accuracy of only 48.4% on MathVista. This result highlights the
importance of step separators in reasoning, as they enhance MLLMs’ ability to comprehend the
logical structure within reasoning paths. Next, we compare the special tokens separators (e.g.,
<step_1>, <step_2>, etc) with context separators (e.g., ###, as illustrated in Figure[7). The former
requires adding special tokens to the vocabulary, while the latter relies on predefined formatting
rules. The results in Table|13|show that the context separators method outperform the special token
separators, achieving an accuracy of 51.7% compared to 50.6%. This performance difference may
stem from models’ inherent tendency to use markdown formatting (e.g., ###) to highlight answers
and separate steps, which could lower the cognitive associated with learning this pattern in limited
data.

D.4 Discussing the Importance of Reasoning

We discuss the importance of step-by-step reasoning in Tab. [I4] Specifically, using the same 260K
multimodal data, we compare the results trained with direct answers to those trained with step-by-step
reasoning searched by CoMCTS. Experimental results show that training with reasoning responses
can substantially enhance model performance. For example, on MathVista, it outperforms direct
answer training by a margin of 4.9%. This improvement demonstrates the potential of reasoning to
enhance MLLM performance.

D.5 Training with Different Proportions of Mulberry-260K

As shown in Tab. we conduct the suggested studies by training models using different proportions
of Mulberry-260K data over the base model LLaMA-3.2-Vision-11B-Instruct. We can observe that
Mulberry consistently improves performance across all Mulberry-260K data proportions, demonstrat-
ing its effectiveness in limited-data scenarios. Besides, the performance gains increase steadily as
more Mulberry-260K data is used, highlighting its strong scalability.

D.6 Comparison with Base Models Trained using Other COT Data

As shown in Table |16} we conduct the comparison for analyzing the impact of different CoT training
datasets on the same base model. Using the LLaMA3-LLaVA-NeXT-8B base model, despite using
less training data, our Mulberry-LLaVA-8B outperforms LLaVA-Reasoner-8B by +3.1% in average
performance, which is largely because LLaVA-Reasoner learns reasoning responses directly distilled
from GPT-40 while our Mulberry learns from more effective reasoning data searched by the proposed
CoMCTS.

Similarly, with the LLaMA-3.2-Vision-11B-Instruct base model, our Mulberry-LLaMA-11B achieves
better results using only 100K QA pairs, significantly fewer than the 255K QA pairs used by
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Table 12: Parameter Study of Repetition Penalty.

Repetition penalty ~ Search Success Rate

0.8 78
0.9 79
1.0 (we use) 81
1.1 79
1.2 76

Table 13: Discussion on Step Separators. We study the impact of different reasoning step separators
on model performance.

Methods MathVista Accuracy
w/o Separators 48.4
Special Token Separators 50.6
Context Separators 51.7

Table 14: Discussing the Importance of Reasoning. We compared the results of models trained on
direct answer data with those trained on Mulberry-260K reasoning data.

Benchmark Baseline Direct Answers Step-by-step Reasoning
MathVista 43.0 46.8 51.7

LLaVA-CoT-11B. When scaling our dataset to 260K QA pairs, Mulberry-LLaMA-11B outperforms
LLaVA-CoT-11B by +2.7% on average, further demonstrating the advantages of CoMCTS-searched
reasoning paths over the pre-defined structured reasoning methods in LLaVA-CoT.

E Relation to Other Studies

E.1 Relation to Other MCTS Methods

We summarize the contributions of COMCTS and highlight the differences compared to previous
MCTS methods [24} 19, [7]]: (a) This paper presents CoMCTS, a new learning-to-reason approach
for MLLMs, which introduces the concept of collective learning into “tree search” for effective
and efficient reasoning-path searching and learning. (b) The joint expansion mechanism enables
CoMCTS to concatenate reasoning trajectories from multiple MLLMs via iterative search, ultimately
constructing a unified reasoning tree comprising diverse and complementary reasoning nodes. This
allows reasoning-path searches across multiple models, leveraging their synergy while avoiding traps
in low-quality, homogeneous nodes within a single MLLM’s reasoning space. (c) In each search
iteration, CoOMCTS skips multiple intermediate steps and selects the last correct step as the next
start node in the joint simulation and error positioning operation, largely reducing search time while
maintaining search effectiveness. Additionally, collective knowledge enhances error positioning,
allowing models to better identify errors through mutual validation.

E.2 Relation to Other Reasoning MLLMs

Multimodal large language models [56} 57, 158 [59] [11} 160, [61]] have made remarkable progress,
with recent MLLMs increasingly focusing on reasoning and intermediate steps [62, 163}, 14, 3} |49]].
We summarize the contributions of our models and highlight the differences compared to previous
reasoning MLLMs: (a) Based on the COMCTS, we search effective and reflective reasoning paths for
multimodal inputs, and construct Mulberry-260k, a multimodal reason and reflect dataset with a tree
of rich, explicit and well-defined reasoning nodes for each question. Mulberry-260k is then used to
train reasoning model Mulberry. (b) Unlike pre-defined stage-based methods, CoMCTS searches for
step-level reasoning data of varying lengths. Training Mulberry models on these CoOMCTS-searched
reasoning paths equips it with the ability to perform flexible step-by-step reasoning. (c) To the best of
our knowledge, Mulberry is the first work to explore the reflective capabilities of MLLMs through
tree search and collective knowledge.
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Table 15: Training with different proportions of Mulberry-260K.

Models Percentage of Mulberry-260K  QA-Pairs MathVista MMStar MMMU AVG
LLaMA-3.2-V-11B (Baseline) - - 48.6 49.8 41.7 46.7
10% ~26k 52.4 53.1 42.8 49.4
30% ~78k 54.0 56.1 43.6 51.2
Mulberry-11B 50% ~130k 581 579 449 536
100% ~260k 61.1 58.5 45.6 55.1

Table 16: Comparison of training with different CoT datasets on the same base model.

Models Base Model CoT Data QA-Pairs MathVista MMStar MMMU AVG
LLaMA3-LLaVA-NeXT-8B - - - 375 42.1 41.7 40.4
LLaVA-Reasoner-8B LLaMA3-LLaVA-NeXT-8B ~ LLaVA-Reasoner-404K  ~404K 50.6 54.0 40.0 48.2 (+7.8)
Mulberry-LLaVA-8B LLaMA3-LLaVA-NeXT-8B Mulberry-260K ~260K 56.3 54.5 43.0 513 (+10.9)
LLaMA-3.2-Vision-11B-Instruct - - - 48.6 49.8 41.7 46.7
LLaVA-CoT-11B LLaMA-3.2-Vision-11B-Instruct LLaVA-CoT-100K ~255K 54.8 57.6 449 52.4 (+5.7)
Mulberry-Llama-11B LLaMA-3.2-Vision-11B-Instruct Mulberry-100K ~100K 56.8 57.8 44.7 53.1 (+6.4)
Mulberry-Llama-11B LLaMA-3.2-Vision-11B-Instruct Mulberry-260K ~260K 61.1 58.5 45.6 55.1 (+8.4)

F Analysis of Reasoning Training Data

F.1 Analysis of Reasoning Data Distribution.

We analyze the COMCTS-searched reasoning paths in Mulberry-260K by examining the distribution
of reasoning steps, as shown in Figure[5] Figure [5]shows that reasoning steps predominantly fall
between 6 and 8, with an average of 7.5 across the entire Mulberry-260k. For simple reasoning tasks,
the chart-related subset of Mulberry-260k, reasoning steps typically ranges from 6 to 7, averaging
6.8. In contrast, for complex mathematical and logical reasoning tasks, such as the geometry-related
subset of Mulberry-260k, the distribution shifts to 7 and 10 steps, with an average of 8.9. These
observations highlight that CoMCTS’s collective tree search design generates effective reasoning
trajectories with flexible numbers of steps, learning from which allows to train a powerful MLLM
with reasoning flexibility, i.e., a model can “think less and faster” when handling simple questions
(i.e., allocate and generate fewer intermediate reasoning steps) and “think more and slower” when
tackling complex tasks (i.e., allocate and generate a greater number of intermediate reasoning steps).

(a) Mulberry-260K (b) Mulberry-260K-subset_geo (c) Mulberry-260K-subset_chart
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Figure 5: Distribution of reasoning steps in Mulberry-260K data.

F.2 Analysis of Effective Reasoning Training Data

We provide an example of effective reasoning data generated by CoMCTS in Figure [§] In this
reasoning path, an accurate image analysis is first searched, along with reasonable rationales, allow-
ing CoMCTS to subsequently search logical and correct step-by-step reasoning based on precise
perception and rationales, ultimately deriving the correct answer. This clear reasoning largely due
to CoMCTS’s collective expansion and collective error positioning, allowing search models to
complement each other, refine error identification, and iteratively improve reasoning paths.

F.3 Analysis of Reflective Reasoning Training Data

We provide an example of reflective training data generated by COMCTS in Figure[7} In this reasoning
path, one search model identifies correct reasoning path after several iterations, while CoOMCTS’s
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collective error positioning finds a perception error at Step 1 in another path. CoMCTS then integrates
the incorrect Step 1 into the correct reasoning path (i.e., before its sibling nodes) with a reflective
prompt to create reflective data. Here, incorrect Step 1 misjudges the proportion of "Medium Orchid",
but later steps identify and correct the error. Fine-tuning with this reflective data equips the model
with the ability to reassess previous steps when generating the next step, leading to more accurate
reasoning and improves performance.

G Qualitative Results

G.1 Qualitative Comparison

We provide a qualitative comparison of LLaVA-NeXT-8B [50], Qwen2-VL-7B [2], and Mulberry-7B
in Figure |8} LLaVA-NeXT-8B and Qwen2-VL-7B generate relatively short predictions without
thorough thinking, leading to incorrect answers. In contrast, our Mulberry, trained with CoMCTS-
searched reasoning data, creates rich, explicit and well-defined reasoning steps with comprehensive
understanding, ultimately arriving at the correct answer.

G.2 Reflective Qualitative Results

We present a reflective qualitative results of Mulberry in Figure[9] Fine-tuning on reflective reasoning
data, Mulberry models develop the capability to reflect on previously generated step. Here, Mulberry
initially misidentifies the accuracy of the parent but, through continuous reflection, detects the error
at Step 2, corrects it, and ultimately arrives at the correct answer.

(### Image Description:
The image depicts Xiaohua standing next to a flagpole, with the shadows of both
objects cast on the ground. Xiaohua's shadow is marked as measuring 1 meter, while

7 the flagpole's shadow is marked as measuring 6 meters.
] :" ### Rationales:
¥ The problem provides measurements of shadows and the height of Xiaohua. Using
Fa the properties of similar triangles, the question seeks the height of the flagpole.
i #it# Let's think step by step.
!'I ! l,", #it# Step 1:
P “ i I)?entify Ithe r.elationship betweer\ )(iac')hua's height and her shadow. The ratio of
{ iaohua's height to her shadow is 1.6:1.0.
lm 6m ### Step 2:

Use the same ratio for the flagpole to find its height. The ratio of the flagpole height

Question: If Xiaohua's shadow measures 1.0 to its shadow will be the same as Xiaohua’s.

units at the same time the flagpole's shadow
measures 6.0 units, and Xiaohua's height is #i Step 3:

approximately 1.6 units, what is the estimated | Set up the proportion using the known quantities:

height of the flagpole? Xiaohua's Height _ Flagpole's Height
Choices: A: 6.6m B: 7.6m C: 8.6m D: 9.6m Xiaohua's Shadow ~ Flagpole’s Shadow

#i#H# Step 4:
Correct Answer: D Substitute in the provided values:
.6_h
10760
#i#H# Step 5:

Solve for h (flagpole's height):
h =16 x 6.0=9.6

\### The final answer is: D

Figure 6: An example of effective reasoning training data.
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Gray
B Forest Green
B Medium Orchid
B Cornflower
Gold

B Red

Question: Is Medium Orchid the

minimum?
Answer yes or no.

Correct Answer: Yes

(### Image Description:

### Rationales:

slice size against others.

### Step 1:

- Gray: Smallest slice

- Gold: Fifth largest slice
- Red: Largest slice

### Step 1:

### Step 2:

#it# Step 3:

### Step 4:

Orchid slice.

#i## The final answer is:

Yes.
.

#it# Let's think step by step.

Identify the sizes of all slices.

N

A pie chart divided into six segments representing different colors. Each segment has
a label indicating its color. The colors include Gray, Forest Green, Medium Orchid,
Cornflower, Gold, and Red.

- The pie chart visually represents proportions of each category (color).
- The size of each slice indicates how much of the whole each category occupies.
- Since the question asks if Medium Orchid is the minimum, we need to compare its

- Forest Green: Second smallest slice
- Medium Orchid: Third smallest slice
- Cornflower: Fourth largest slice

I think | have made a mistake. Let me rethink it.
Identify the slice labeled "Medium Orchid" on the pie chart.

Visually compare the size of the Medium Orchid slice to each of the other slices (Gray,
Forest Green, Cornflower, Gold, Red).

Determine if the Medium Orchid slice is the smallest among all the slices.

Validate the comparison by checking if any other slice is smaller than the Medium

Figure 7: An example of reflective reasoning training data.

Question: Use a sector
paper sheet with a
central angle of 120.0
and a radius of 6.0 to roll
into a conical bottomless
paper cap (as shown in
the picture), then the
bottom perimeter of the
paper cap'is ()

Choices:

(A)2mem; (B)3mem;
(C)4 mem; (D) 5tem
Correct Answer: (C)

LLaVA: We need to find the derivative of f(x) at x=2
and compare it with the derivative of f(x) at x=5. We
can do this by using the power rule of
differentiation, which states that if f(x) = xAn, then
f'(x) = nxA(n-1). Atx=2, f'(2) = 2A(n-1) =2A3=8. At
x=5, f'(5) = 54(n-1) =543 =125.

Therefore, the derivative of f(x) at x=2 is larger than
that at x=5. The correct answer is (A).

Qwen2-VL: First, let's find the circumference of the
base of the cone. The circumference of the base is
equal to the length of the arc of the sector paper
sheet.

The formula for the circumference of a circle is C=2
Tur, where r is the radius. In this case, the radius of
the base of the cone is equal to the radius of the
sector paper sheet, which is 6.0 cm.

So, the circumference of the base of the coneis: C =
2nx6.0=12mcm.

However, the question asks for the bottom
perimeter of the paper cap, which is the
circumference of the base of the cone. Therefore,
the bottom perimeter of the paper cap is:12 t cm.

So, the correct answer is D

### Image Description:

A diagram shows a circular sector being transformed into a cone
without its base. The sector has a central angle labeled as 120°
and a given radius length of 6.

##t# Rationales:

To find the circumference or "bottom perimeter" of the resulting
cone from rolling up this sector, we need to understand that
when you form a cone using such a sector, the arc length
becomes the circumference of the base circle of the cone.

#i## Let's think step by step.

### Step 1:

Calculate the arc length of the sector which forms the
circumference of the cone's base. Arc Length = central
angle/360 x 2nr. Here, r=6 cm and central angle = 120°.

### Step 2:

Substitute values into the formula:

Arc Length = (120/360) x 21 x 6.

Simplify it further to get the actual arc length.

### Step 3:

Perform calculations: Arc Length = 1/3 x 12m = 4. This means
the circumference of the cone's base equals 4.

#i### The final answer is:
C

Figure 8: Qualitative Comparison. Our Mulberry, trained with CoMCTS-searched reasoning data,
creates rich, explicit and well-defined reasoning steps with comprehensive understanding, ultimately
arriving at the correct answer.
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(### Image Description: h
A bar chart titled "Accuracy of different algorithms" shows two bars representing
100 Accuracy of different algorithms algorithm accuracies. The first bar labeled "array" has a height around 10, while the
second bar labeled "parent" reaches up to about 95.
#### Rationales:
80 - The x-axis represents the names of the algorithms (array and parent).
- The y-axis measures accuracy from 0 to 100.
0 - Each algorithm has one corresponding bar indicating its accuracy level.
>
g #### Let's think step by step.
LI #4# Step 1:
Identify the accuracy levels for each algorithm.
- Array: Approximately 10%
20 - Parent: Approximately 95%
#iH# Step 2:
ol Determine which algorithms exceed an accuracy of 90%.
array parent - Only the "parent" algorithm exceeds this threshold.
1 think | have made a mistake. Let me rethink it.
Question: How many algorithms have Hith Step 2:
accuradies higher than 90? Compare these values against the threshold of 90%.
#iH# Step 3:
Correct Answer: Zero. Conclude how many algorithms meet or exceed this criterion. Based on the
comparison:
Annotation: array (10), parent (90) - No algorithm reaches above 90%.
### The final answer is:
\ZeroA )

Figure 9: Reflective Qualitative Results. Our Mulberry, trained with CoMCTS-searched reflection
data, generated reflective reasoning, ultimately arriving at the correct answer.

MCTS

#it# Image Description: #i## Image Description:

The image shows triangle ABC with a right angle at vertex C. Inside the
triangle, a perpendicular line segment BE drops from point B to side
AC, and another perpendicular CE drops to side AB. Angle B = 60° and
angle A = 30°. The segment BE =x = 7/3, and we are to find the

length of side a=BC.  rperception Error] A single model

trapped in a wrong image description.

The diagram shows a right triangle ABC with right angle at vertex C.
Angle B = 60°, angle A =30°. A perpendicular segment CE is drawn
from point C to side AB, forming a right angle at point E. The length
of BE is given as x = 7v/3. Side BC =a is to be found.

### Rationales:

ya #it# Rationales: We are dealing with right triangle BEC, where angle CBE = 60°, BE = x
74 X\ In right triangle BEC, angle CBE = 60° and BE is perpendicular to AC, is the leg adjacent to the angle, and BC =a is the hypotenuse.
E making triangle BEC a right triangle with a known angle and opposite Therefore, the cosine function is appropriate:
y side. We can use the sine function: cos(8) = adjacent / hypotenuse
a , sin(60°) = opposite / hypotenuse =x / a = cos(60°) =x/a
c 5 ‘A ### Let's think step by step. ### Let's think step by step.
Multiple models leverage
i Step 1: i Step 1: collective perceptual and
‘ V3. find Use the sine ratio in triangle BEC: Identify the known values: fresai abilities :‘; -
uestion: If x =7 V3, find a.| sin(60°) = -x= Qi) CuB G
Q EHEFA)=/0 [Reasoning Error] Ultimately leads x=7V3 correct answer.
st ste Yo incorrect reasoning. - cos(60°) =1/2
. ep 2:
Correct Answer: 14v3 [ (i B o ales: #4# Step 2:

sin(60°) =7 V3 / a, and sin(60°) =v3 / 2 Use the cosine definition in triangle BEC:

cos(60°) =x/a

### Step 3: =1/2=7V3/a
Solve the equation:
V3/2=7V3/a HH# Step 3:
Solve for a by cross-multiplying:
#itH Step 4: a=2x7V3=143

Cross multiply:

V3/2=7vV3/a > a=(7V3x2)/V3=14 #4# The final answer is: 143,

#it# The final answer is: 14.

Figure 10: An example to compare CoMCTS with other tree search methods.

G.3 Examples to Compare CoMCTS with Other Tree Search Methods

We provided a qualitative comparison between the CoMCTS and single model MCTS.

When a single model performs step-by-step reasoning, an error in the initial image understanding
can lead to a cascade of incorrect reasoning steps, ultimately resulting in a wrong answer. However,
when multiple models are used collaboratively for reasoning, if one model fails to correctly interpret
the image, others can help identify the correct steps. By cross-verifying and complementing each
other’s interpretations, the ensemble can jointly search for and arrive at the correct answer.

As illustrated in Figure[I0] the single-model MCTS failed to correctly interpret the image and got
trapped in an erroneous node, leading to a reasoning path that consistently failed to arrive at the
correct answer.

H Prompt

In this section, we present the prompts involved in different operations of COMCTS to execute various
task instructions. For expansion in operation (a), we use the prompt in Figure[TT|and Figure[I2] The
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prompt in Figure [TT]is used to expand the root node for the closed-source model GPT-40 and all
nodes for the open-source models. It is worth noting that, since open-source models can directly and
forcefully incorporate preceding reasoning steps, allowing the model to generate subsequent steps
based on previous responses, whereas closed-source models cannot. Therefore, we design specific
prompts for closed-source models to expand non-root nodes. For GPT-40, we use the prompt shown
in Figure[T2]to expand non-root nodes in the existing search tree and generate subsequent reasoning
steps. For error positioning in operation (b), we use the prompt shown in Figure [I3]to evaluate the
correctness of each step. Each step is scored as correct, neutral, or incorrect, with scores of 1, 0, and
-1, respectively. The evaluation results for each model are then combined through a weighted average.
Finally, we use the prompt in Figure[[4]to verify if the final answer from reasoning path matches the
ground truth.

rGenerate an image description based on the question.
Then, provide a rationale to analyze the question.
Next, generate a step-by-step reasoning process to solve the problem. Ensure the steps are logical
and concise.
Finally, provide a concise summary of the final answer in the following format: 'The final answer is:
xxx'. If the question is multiple-choice, provide the options along with their content. If it is free-
form, directly present the final result. Do not provide any explanation.

Format your response with the following sections, separated by ###:
#i## Image Description:

### Rationales:

##t# Let's think step by step.

#i## Step 1:

#it# Step 2:

### The final answer is:

\{QUESTION}

J

Figure 11: The prompt for expansion. The prompt expands root nodes in closed-source and all
nodes in open-source models.

Generate an image description based on the question.

Then, provide a rationale to analyze the question.

Next, generate a step-by-step reasoning process to solve the problem. Ensure the steps are logical
and concise.

Finally, provide a concise summary of the final answer in the following format: 'The final answer is:
xxx'. If the question is multiple-choice, provide the options along with their content. If it is free-
form, directly present the final result. Do not provide any explanation.

Format your response with the following sections, separated by ###:
### Image Description:

#it# Rationales:

#i## Let's think step by step.

### Step 1:

#i## Step 2:

#it# The final answer is:
{QUESTION}

Please complete the response based on the reasoning prefix without altering its content.

Reasoning prefix: {REASONING_PREFIX}

Figure 12: The prompt for expansion. The prompt expands non-root nodes in closed-source models.

I The Sources of Raw Data

To construct a comprehensive and general-purpose tree-based reasoning dataset, we collect 260K raw
multimodal input questions spanning various domain, including

¢ 55K Mathematical Data: From GLLaVA [64]], GEOS [65]], UniGeo [66]], GeoQA Plus [53],
Geo3K [52], MathVision [67], GeoMverse [[68], and MathV360K [69]. These datasets cover
a broad spectrum of mathematical problems, where solving requires extensive reasoning
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,### Question:
{QUESTION}

### Ground truth answer:
{GT_ANSWER}

### Reasoning steps:
{REASONING}

Given the question and reasoning steps listed above, along with the corresponding ground truth
answer, please evaluate the correctness of the image description, rationales, and each step of the
reasoning process.

Requirements:
1. Output the decision ("correct", "neutral", "incorrect") for each step following the format of
"Final Decision:\nlmage Description: [your decision]; Rationales: [your decision]; Let's think step
by step: [your decision]; Step 1: [your decision]; Step 2: [your decision]; ...";

\2. Do not provide any explanation.

Figure 13: The prompt for error positioning.

Evaluate whether the model's answer matches the correct result.

- If it does not align, respond with 'No'.
- If the model's answer aligns with the correct result, respond with 'Yes'.

Provide only 'Yes' or 'No' as the output, with no explanation.
The question is: {QUESTION}

The model's answer is: {MODEL_ANSWER}

The correct result is: {GT_ANSWER}

Figure 14: The prompt for evaluating the final result.

and multiple logical steps, highlighting their value in Mulberry-260K. We apply CoMCTS
search to the raw data from these datasets to generate reasoning paths, which are then used to
train Mulberry models, equipping them with advanced mathematical and logical reasoning
skills.

116K Figure Understanding data: From DVQA [70], DocVQA [71], FigureQA [72],
PlotQA [73]], ChartQA [74], InfoVQA [75], MultiHiertt [76], and LRV-Chart [77]. These
datasets cover various figure types and understanding tasks, including charts, bar graphs,
pie charts, histograms, etc. Training on these data searched by CoMCTS equips the model
with figure reasoning capabilities such as table computation, information retrieval, and trend
analysis.

41K Math Word Problem Data: From IconQA [78], TabMWP [79], CLEVR [80], CLEVR-
Math [81]], and Super-CLEVR [82]. These datasets span various mathematical word reason-
ing tasks. Training on them in Mulberry-260K strengthens the model’s counting, arithmetic,
and ogical deduction skills, enhancing its accuracy and interpretability in solving complex
math word problems.

2K Medical Data: From VQA-RAD [83]], and PMC-VQA [84]. These datasets focus on
medical visual understanding and reasoning, encompassing a variety of radiology images
and diseases. Leveraging this subset enhances the model’s capability in medical image
comprehension and diagnostic reasoning.

17K Science Data: From TQA [85], AI2D [86], and ScienceQA [87]. These datasets in
CoMCTS plays a critical role in enhancing the model’s ability to tackle complex scientific
problems, perform multi-modal reasoning, and interpret scientific illustrations and textual
descriptions cohesively.

24K Nature World QA Data: From VQA-AS [88], A-OKVQA [89], TextVQA [90],
Vizwiz [91], and VQA2.0 [92]]. These datasets encompass tasks involving naturalscenes,
textual elements, and open-ended visual question answering, challenging models to interpret
complex visuals, understand embedded text, and generate accurate responses. This subset
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plays a key role in enhancing the model’s ability to reason about real-world visual and
textual content across diverse contexts.

J Error Bars

We provide the error bars of different Mulberry models on the MathVista benchmark, as shown
in Tab. We conduct five repeated evaluations to obtain the error bars, and the results indicate that
the error bars fall within a narrow range.

Table 17: Error Bars. The experimental results are based on five repeated evaluations.

Benchmark Mulberry-LLaVA-8B Mulberry-Llama-11B Mulberry-2B Mulberry-7B
MathVista 56.3+0.3 61.1£0.2 51.74£0.3 63.1+0.2

K Limitations

Mulberry is a preliminary exploration work in o1-like MLLM, leveraging Collective Monte Carlo Tree
Search to enable effective and efficient reasoning-path searching and learning. CoMCTS leverages
collective knowledge to significantly improve the search success rate and efficiency of reasoning
path search. By training on the reasoning data generated through CoMCTS, Mulberry has gained
step-by-step reasoning capabilities, leading to a substantial improvement in overall performance.
Nevertheless, certain limitations must be acknowledged.

Hallucinations in intermediate steps. Hallucinations are still prevalent in MLLMs, whether in
closed or open-source models. For instance, the models may generate obvious errors in intermediate
reasoning steps yet still arrive at the correct final answer in CoMCTS. Therefore, although we
incorporated multiple models to better detect errors, some errors still persist in the intermediate steps
because ensuring the correctness of all intermediate steps often requires human checks, which is
extremely costly and unaffordable for us.

Error localization. During our experiments, we observed that models struggle to detect their
own errors. To address this, COMCTS employs multiple models to cross-check each other’s errors.
However, our findings also revealed that smaller models often fail to generate effective detection
responses, while larger models occasionally exhibit inaccurate error localization. Thus, inaccurate
localization may impact the efficiency of the search and we recommend using larger models for error
localization or exploring better prompts to enable smaller models to localize errors more accurately.

Reflective capability. Mulberry is an early-stage work in exploring reflective capabilities within the
field of MLLMs. We would like to clarify that since reflective data constitutes only a small portion of
the entire dataset, the Mulberry model generates reflective responses occasionally. We hope to further
explore the model’s reflective capabilities in future work.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: We provide our contributions and scope both in the abstract and introduction.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitation in the paper.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: This paper does not include new theoretical results
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Yes, we provide all necessary information to reproduce the experimental
results.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We will provide the anonymous code, and our code and data will be publicly
available.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The training and test details are described in the paper.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We report error bars based on multiple runs on part of the benchmarks.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide this information in the paper.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: Our research follows the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: There is no societal impact of the work performed.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Yes. All assets are properly credited and used under their respective licenses.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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13.

14.

15.

16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We will provide an anonymous URL.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: This research does not involve LLMs as any important, original, or non-
standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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